
Project Description
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1 State of the Art and Preliminary Work

Software engineers increasingly employ heterogeneous notations for specifying complex soft-
ware systems, which mix declarative-logic and operational specification styles. This is because
requirements are frequently stated in restricted forms of natural language or simple spreadsheets
(declarative) and combined with design elements in the form of component interfaces (declara-
tive, also operational) or state machines (operational). The popular Unified Modeling Language
(UML) supports such heterogeneous notations, e.g., with its class diagrams, its state machine
variant and its Object Constraint Language (OCL) [67]. A recent academic focus wrt. hetero-
geneity is on modelling formalisms for reactive systems software, including hierarchical state ma-
chines and protocol interface theories. For example, Contractual State Machines [33] uses logic
constraints to express contracts between a reactive system and its environment and between the
system’s components, and employs patterns that allow designers to systematically refactor and
refine components. Another example are Modal Interfaces [61] where a system component may
be required to implement several interfaces simultaneously, i.e., to satisfy their conjunction.

One concrete application example where such heterogenous modelling formalisms are useful is
the development of mode logics in aircraft control systems. Mode logics monitor an aircraft’s
sensors, e.g., speed and altitude, and select the control laws that in turn compute values for ad-
justing the aircraft’s actuators, e.g., its elevators. Engineers typically develop such safety-critical
systems stepwise [55]. In a first step, system requirements are stated in controlled English, the
basic ones of which describe modes and their behaviour via declarative constraints. For exam-
ple, a mode “isolate” may be specified as “the actuator is turned off indefinitely”, and several
concurrent modes may be governed by the invariant “exactly one actuator per elevator is active
at any one time” [55]. Additionally, more advanced requirements for fault detection, isolation and
recovery (FDIR) are specified. In a second step, the basic requirements are casted manually
into a simple state-machine controller, e.g., using Mathwork’s popular Simulink/Stateflow tool.
This state machine is then successively extended in a third and fourth step by adding compo-
nents/states and transitions that realize the FDIR requirements. Finally, in a fifth step, the system
is tested to ensure that its requirements have been met. Hence, the engineers have followed a
component-based method of stepwise refinement, successively trading declarative content (re-
quirements) for operational content (design, in the form of states and transitions). Unfortunately,
the lack of formal support for heterogeneous specification notations and associated component-
based refinement means that this method is applied informally and not managed by tools. This is
why verification activities are only conducted at the end, and not already along the way.

Indeed, the foundations of heterogeneous specification notations, which are the focus of this
project, are relatively immature. Related work often avoids mixing operational and logic specifi-
cation styles by translating one style into the other. For example, logic content may be translated
into operational content, such as in Kurshan’s work on ω-automata [39], which employs trace
inclusion for refinement. Trace inclusion, however, is insensitive to deadlock and thus inadequate
in the presence of concurrency. Dually, operational content may be stated as logic formulas, as is
done by Lamport in [40] where implication is refinement. A similar approach is followed in Hoare
and He’s UTP [35], which has been used in the literature to give semantics to languages that
consider both behavioural aspects and data aspects of systems, e.g., to Woodcock and Caval-
canti’s Circus [59] which combines the process algebra CSP with the model-based language Z.
However, UTP does not treat inconsistent operational content as logically false.
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This project shall explore novel ways of deeply integrating (temporal) logic operators in concur-
rent state machine formalisms, and develop notions of refinement that are (i) deadlock sensitive,
(ii) compositional, (iii) fully-abstract wrt. logic consistency, and (iv) compatible with logic satisfac-
tion. These shall be applied to new variants of Modal Interfaces and Contractual State Machines,
thus strengthening their foundations. The following describes preliminary work on our framework
Logic LTS, and related work on interface theories (in particular Modal Interfaces), Statecharts
based formalisms, and tool support (see Figure 1 for an overview).

Logic LTS. A seminal step towards a mixed operational and logic setting was taken by Olderog
in [58], where process-algebraic constructs are combined with trace formulas and refinement is
based on failure semantics. Here, trace formulas can serve as processes, but not vice versa.
Thus, Olderog does not support the unrestricted mixing of specification styles. This shortcoming
has been addressed by us in our setting of Logic Labelled Transition Systems (Logic LTS) [51, 52],
which is based on prior – but mathematically less robust – work of the first applicant [14, 15].

Logic LTS combines operational and logic styles of specification within a unified framework. It in-
cludes operational, i.e., process-algebraic operators such as parallel composition and hiding, and
the propositional-logic operators conjunction and disjunction. Logic LTS extends labelled transi-
tion systems by an inconsistency predicate on states, where an inconsistent state, or process,
denotes empty behaviour that cannot be implemented. Inconsistencies may arise when conjunc-
tively composing processes with different ready sets, i.e., initial action sets [51]. The refinement
preorder we adapted for Logic LTS is a variant of ready simulation [9], which is compositional
regarding all operational and logic operators of interest. A specification that cannot be refined
further has deterministic behaviour: we call such specifications concrete implementations and,
in the context of component-based design, these can be regarded as implemented components.
Our ready simulation is sufficiently expressive regarding the specification of concrete implemen-
tations [26]. It is also fully abstract wrt. a reference preorder that preserves consistency when
refining specifications [52], i.e., it is the coarsest compositional preorder wrt. parallel composition
and conjunction when taking consistency into account. Full-abstraction results are a repeating
theme in the applicants’ research [16, 50, 62] and testify to the optimality of a mathematical set-
ting. Such results have not been attempted in any work directly related to this research proposal.

We have extended Logic LTS in [53] by embedding a temporal logic for specifying safety proper-
ties. The chosen branching-time logic allows one to state properties regarding the enabledness
of actions, using standard temporal operators such as always and unless, which are shown to
be compositional for ready simulation. The embedding is conservative in that ready simulation,
when restricted to pairs consisting of a process and a temporal formula, coincides with the logic’s
satisfaction relation. Moreover, ready simulation, when restricted to formulas, is entailment. The
extended setting is unique in that it lends itself to freely mixing operational and temporal-logic
styles of specification, with the fully-abstract ready simulation facilitating component-based de-
sign and analysis via compositional refinement checking. The setting’s practical utility has been
demonstrated in [53] by modelling and analysing a simple mode logic.

Notably, Fecher and Grabe [27] also employ ready simulation as implementation relation and
define a specific satisfaction for temporal-logic formulas similar to our approach. In [27], whenever
a process satisfies a formula, each concrete implementation of the process satisfies the formula;
however, Fecher and Grabe do not allow the free mixing of operators.

Große-Rhode considers heterogeneous specifications where different viewpoints on a system
are described in different formalisms [31]. These formalisms are then related via a category of
transformation systems that plays the role of our Logic LTS. Refinement in terms of process-
algebraic behavioural relations – a core notion in our approach – is not considered, and neither
are declarative behavioural constructs such as temporal-logic operators.

Interface Theories. A key notion in component-based software development is the one of inter-
face, which is an abstract description of a component’s behaviour. Interfaces can be composed
in parallel and refined in a compositional manner. Characteristically, an interface formulates as-
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Figure 1: Overview of prior, related and proposed work.

sumptions on the inputs from its environment and guarantees regarding its outputs. Care has to
be taken in case one interface in a composition violates the assumptions of another component
in some reachable state. Usually, the treatment is optimistic, i.e., the composition is defined such
that the assumptions on the environment ensure that entering such incompatible states can be
avoided. Two interfaces are called incompatible if no such helpful environment exists. Naturally,
compatibility of interfaces should be preserved by refinement. Interfaces may also be understood
as behavioural types such that refinement is type-checking, as is done in Ptolemy II [46].

An interface theory in the above sense was first developed by de Alfaro and Henzinger in an
automaton setting with input and output actions, called Interface Automata (IA) [19]. They define
refinement via an alternating simulation, i.e., interface M refines interface N whenever (i) M can
simulate all inputs prescribed by N and (ii) N can simulate all outputs of M . In other words,
M must accept at least as many inputs and provide at most as many outputs as N . Originally,
de Alfaro and Henzinger introduced a slightly weaker refinement relation [21] that is close to ready
simulation for Logic LTS. The first step for defining parallel composition on Interface Automata
is to consider the automaton product; a state in this product is incompatible if one interface
performs an output that is not expected by the other. Now, parallel composition is obtained by
pruning this product, i.e., by removing all states from which an incompatible configuration can be
reached via outputs of the composition. The intuition behind this pruning is that outputs cannot
be controlled by the environment and, thus, the environment must refrain from certain inputs to
avoid incompatibilities. Pruning for parallel composition is quite similar to backward propagation
for conjunction in Logic LTS, where one deals with inconsistencies rather than incompatibilities.

Interestingly, the idea of preserving inputs and not adding outputs in a refinement step, and the
idea of pruning, can already be found in Dill’s language-based – and thus not deadlock-sensitive –
setting for modelling asynchronous circuits [23]. A similar approach to the one of Interface Au-
tomata was developed in Petri net models of asynchronous circuits, in order to define when a
collection of STGs – i.e., Petri nets labelled with signal edges – is a correct decomposition of a
specification STG N [63]. STG-refinement requires that the collection simulates the inputs and
bisimulates the outputs of N . Thus, one cannot simply relinquish all outputs in a refinement step
as is the case for Interface Automata. Furthermore, STG-refinement ensures that the collection
does not get into an incompatible state if the environment obeys the assumptions specified by N .

Interface theories have also been developed for web services [8], and in settings with shared-
variable communication where one speaks of Interface Modules (IM) rather than Interface Au-
tomata [13, 24]. In Sociable Interfaces (SI) [18], for example, interfaces synchronise via actions
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and change data values during output actions. Assumptions on the environment are formulated
for input actions – essentially as pre- and post-conditions on data states –, and interfaces are
deterministic for inputs. Variables can be written by several concurrent interfaces. To enhance
compositional reasoning, SI enforces that an interface is informed about value changes of vari-
ables of interest. Moreover, Doyen et al. [24] study a conjunction operator for another interface
theory involving shared-variable communication in order to reason about combined specifica-
tions, i.e., when a component implements several interfaces, for component reuse. However,
parallel composition in [24] permits only limited communication, if at all, and no full-abstraction
result is proved. As an aside, the conjoining of specifications has also been studied in TLA, a
temporal logic of actions with shared-memory communication [1].

Modal Interfaces. The framework of Modal Transition Systems (MTS) [41] was introduced by
Larsen et al. and refines plain LTS by distinguishing between may- and must-transitions. The
employed refinement preorder, called modal refinement, ensures that a refinement implements
all must-transitions of a specification and never adds any transition that is not allowed by a may-
transition of the specification. This is formally defined via two-way simulations that are strong
bisimulations [57] for those transition systems for which may- and must-transitions coincide.
Modal refinement is also characterised via a temporal logic in the style of Hennessy and Milner
in [41], and is related to ready simulation in Logic LTS in [53]. Larsen and Xinxin also consider
a generalization of quotienting, namely solving equation systems of process-algebraic terms up
to strong bisimilarity [45]. They construct a so-called disjunctive MTS whose concrete imple-
mentations are exactly the solutions of the equation system. Quotienting facilitates incremental,
component-based design and analysis, and is thus of relevance to us.

Larsen also defined a conjunction operator on MTS which, however, results in systems that violate
the MTS requirement that any must-transition is also a may-transition [41]; related decision prob-
lems such as the existence of a common implementation, have been studied in [3]. In the context
of an MTS-based proof methodology, Larsen and others later restricted conjunction to indepen-
dent specifications that avoid inconsistencies [44]. Their interest was in a proof methodology for
an MTS-variant of the process algebra CCS [57], where parallel composition and conjunction can
be mixed more freely than in [58]; in particular, conjunction is shown to distribute over parallel
composition. Larsen et al. also employ a typical pattern of MTS within their proof methodology
that corresponds to simple invariance formulas in the temporal logic CTL [25]; in contrast to Logic
LTS, an algebraic theory of mixing operational and logic operators is not considered in [44].

The idea of may- and must-transitions may sensibly be adopted to Logic LTS for specifying ranges
of ready sets more compactly, as is shown by us in [53]. Notably, it may also be used to address a
major shortcoming of Interface Automata, namely that an interface can always be refined by a do-
nothing interface that accepts all inputs and provides no outputs. For example, Nyman et al. do
so in [42] by extending MTS by explicitly distinguishing input and output actions. For these Modal
I/O Automata, they adopt the concepts of compatibility and pruning from Interface Automata, and
then show that Interface Automata can be embedded in Modal I/O Automata so that alternating
simulation and modal refinement coincide. However, no conjunction is defined for Modal I/O Au-
tomata; we have recently remedied this lacking in [54] for the modal refinement preorder of [42],
though this preorder requires further scrutinizing. Caillaud et al. [61] consider modal extensions
of interfaces, too, which they call Modal Interfaces. In contrast to Modal I/O Automata, they study
deterministic automata only, where alternating simulation becomes a trace inclusion, and con-
sider conjunction and quotienting, as well as parallel composition and compatibility with pruning.
Again, no full-abstraction result is established, nor are standard logic laws proved.

Hennicker et al. also investigated Modal I/O Automata but, in contrast to [42] and the Interface
Automata of [19], adopted a pessimistic view on compatibility and called the resulting setting
MIO [5]. Here, ‘pessimistic’ means that, if the composition of two MIOs might reach an incom-
patible state, then they are deemed incompatible and thus cannot be composed. Hennicker et al.
then studied variations of compatibility and alternating-simulation-based refinement [6], and ex-
tended their setting to include data [4]. As in Sociable Interfaces [18], transitions are accompanied
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by pre- and post-conditions on data states.

Finally, it shall be mentioned that temporal logic has also been introduced to Modal Interfaces.
Feuillade and Pinchinat [28] define a logic that is similar to ours for Logic LTS [53], and prove that
this logic and MTS are equally expressive wrt. concrete implementations; this also involves trans-
lating formulas into MTSs. In contrast to our work, their setting is not mixed, does not consider
nondeterministic systems and specifications, and does not include a refinement relation. Indeed,
a unique feature of Logic LTS in comparison to related work is that its refinement relation sub-
sumes the standard temporal-logic satisfaction relation, thereby naturally embedding temporal
logic in a state-machine-based specification language.

Statecharts. Statecharts (SC) is a family of visual languages for specifying reactive and/or
object-oriented systems, which extend finite-state machines by mechanisms for state hierarchy
and for concurrency via event broadcast and shared-variable communication [34], thus facilitat-
ing the compact specification of complex systems. Statecharts and their semantics have been
investigated extensively by the first applicant, e.g., in [22, 47]. Most well-known is the Statecharts
dialect of the UML, called UML state machines. Statecharts have also been extended with various
logics; for example, Galloway and Toyn [30] augment Statecharts to include assertions at states,
which are then used for the formal validation of Statecharts specifications via theorem proving.
In an article misleadingly entitled “Extending Statecharts with Temporal Logic” [65], Sowmya and
Ramesh translate Statecharts into a temporal logic based on first-order predicate calculus, for
which they also construct an axiomatic proof system. In contrast to [30], their goal was not only
to reason about the behaviour of Statecharts but also about their structure. However, no mixing
of Statecharts with (temporal) logic operators is considered in [30] and [65].

Such a mixing was instead the focus of an industry-supported research project at the Univer-
sity of York, England, which was carried out between 2007 and 2010 [49], and of which the first
author of this proposal was a co-investigator until his departure from York in Spring 2009. The
strategic goal of that project was to improve the theoretical basis and tool support for the design
languages and methodologies that are widely used for building avionics and aerospace systems.
Existing languages, and in particular Statecharts, lacked in expressiveness and tool support for
refinement-based designs as practiced by engineers. Accordingly, the project had intended to
combine Statecharts with temporal logics, so as to add declarative constraints – or contracts
(cf. [56]) – to states and transitions. However, this was never carried out; instead, our Logic LTS
framework was enriched by state hierarchy and global variables, and called Contractual State
Machines (CSM) [33]. This was then taken as the foundation for developing a set of refinement
patterns that capture standard rules for translating between operational and logic styles of spec-
ification. In addition, a tool assisting in the application of refinement patterns was implemented,
but no compositional checker for computing ready simulation on given CSMs was built.

Tools. The behavioural interface approach to component-based development is supported by a
variety of academic tools. For example, the Ptolemy II tool [46] includes an editor and a sim-
ulator for manipulating and animating Interface Automata, respectively. It also offers algorithms
for checking compatibility and refinement. The TICC tool [2] has similar functionality but targets
Sociable Interfaces. It employs decision-diagram-based techniques for storing and manipulating
complex state spaces and a game-based computation of alternating simulation. Again, this func-
tionality is also available for MIO interfaces via the MIO Workbench [6], which is implemented
within the Eclipse framework [29]. However, it currently supports only action-based MIOs and no
data states. Last, but not least, York’s toolset for Contractual State Machines [33] combines an
editor and a simulator with an assistant for applying refinement patterns. It is implemented within
Eclipse, too, and the pattern applier is realised using model transformation techniques.

1.1 Project-Related Publications
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1.1.1 Articles Published by Outlets with Scientific Quality Assurance

[PSP1] R. Cleaveland and G. Lüttgen. A semantic theory for heterogeneous system design. In
20th Intl. Conf. on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2000), vol. 1974 of LNCS, pp. 312–324, 2000. Springer.

[PSP2] H. Fecher, D. de Frutos-Escrig, G. Lüttgen and H. Schmidt. On the expressiveness of
refinement settings. In 3rd Intl. Conf. on Fundamentals of Software Engineering (FSEN
2009), vol. 5961 of LNCS, pp. 276–291, 2009. Springer.

[PSP3] G. Lüttgen and W. Vogler. Conjunction on processes: Full-abstraction via ready-tree
semantics. Theoret. Comp. Sc., 373(1-2):19–40, 2007. An extended abstract appeared in
9th Intl. Conf. on Foundations of Software Science and Computation Structures (FOSSACS
2006), vol. 3921 of LNCS, pp. 261–276, 2006, Springer.

[PSP4] G. Lüttgen and W. Vogler. Ready simulation for concurrency: It’s logical! Inform. and
Comput., 208:845–867, 2010. An extended abstract appeared in 34th Intl. Coll. on Au-
tomata, Languages and Programming (ICALP 2007), vol. 4596 of LNCS, pp. 752–763,
2007, Springer.

[PSP5] G. Lüttgen and W. Vogler. Safe reasoning with Logic LTS. Theoret. Comp. Sc., 412(28):
3337–3357, 2011. An extended abstract appeared in 35th Conf. on Current Trends in The-
ory and Practice of Computer Science (SOFSEM 2009), vol. 5404 of LNCS, pp. 376–387,
2009, Springer.

[PSP6] G. Lüttgen, M. von der Beeck and R. Cleaveland. Statecharts via process algebra. In
10th Intl. Conf. on Concurrency Theory (CONCUR ’99), vol. 1664 of LNCS, pp. 399–414,
1999. Springer.

[PSP7] A. Rensink and W. Vogler. Fair testing. Inform. and Comput., 205(2):125 –198, 2007.

[PSP8] M. Schäfer and W. Vogler. Component refinement and CSC-solving for STG decompo-
sition. Theoret. Comp. Sc., 388(1-3):243–266, 2007.

1.1.2 Other Publications

[PSP9] W.-P. De Roever, G. Lüttgen and M. Mendler. What is in a step: New perspectives on a
classical question. In Z. Manna and D. Peled, eds., Pnueli Festschrift, vol. 6200 of LNCS,
pp. 370–399, 2010. Springer.

2 Objectives and Work Programme

2.1 Anticipated Total Duration of the Project

The project has not yet started. Its duration shall be 36 months, for which DFG funding is sought.

2.2 Objectives

Aim. The project’s aim is to significantly enhance the theoretical foundations and practical utility
of those heterogeneous specification formalisms for reactive systems that mix operational and
logic styles of specification. Our particular interest is in formalisms that add logic elements to
state machine notations, such as Caillaud et al.’s Modal Interfaces (MI) [61], which emphasise
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logic conjunction for composing specifications, and Paige et al.’s Contractual State Machines
(CSM) [33], which extend a simple hierarchical state machine notation by temporal-logic opera-
tors. This will lead to mathematically well-founded, yet practical theories of Modal Interfaces with
Contracts (MIC) and Contractual Statecharts (CSC), respectively, as is highlighted in Figure 1.

Adding logic specification facilities to state-machine formalisms has distinct advantages, even if
the expressiveness of the formalism is not increased. Firstly, logic formulas enable more compact
and concise specifications. Secondly, it may simply be adequate to describe system properties,
e.g., mutually exclusive behaviour, with logics instead of providing partial operational descriptions.
This is particularly true in the context of the component-based development of reactive systems.
While the rough architecture of a system is often known from the outset, typically only few of its
components can initially be described operationally. Components that are identified later in the
design process, as well as off-the-shelf components, may instead be specified by contracts [56]
which express the components’ assumptions on, and its guarantees to related components within
the architecture and the system environment. Conceptually, contracts are nothing else than logic
formulas that must be satisfied by any implementation. Therefore, a component-respecting, com-
positional approach to refining and analysing such specifications is necessary, whose foundations
will be developed and applied in this proposed project.

Objectives. The concrete objectives of this project centre around the following themes:

1. Study of consistency & compatibility notions (WP A1+2, WP BA1+2).
In heterogeneous specification formalisms of the kind mentioned above, key semantic no-
tions when composing specifications conjunctively and in parallel are consistency [51] and
compatibility [19], respectively. The conjunction operator of a formalism is closely related
to the employed notion of refinement on specifications, which in turn is influenced by the
choice of parallel composition [52]. Consequently, this project shall begin by studying con-
sistency and compatibility notions implied by popular parallel composition operators.

2. Development & evaluation of fully-abstract semantic theories (WP A3, WP BA3, WP 4).
The findings on consistency and compatibility shall provide the foundations for developing
semantic theories that involve conjunction, parallel composition and refinement, and that
are applicable to MI and CSM. The novelty here is that the refinement preorder of each
theory shall be fully-abstract wrt. preserving deadlock, compatibility and the theory’s oper-
ators, thus providing a strong mathematical foundation for component-based specification
and development, which the MI and CSM formalisms are currently lacking. The theories
shall be completed by studying algebraic laws of various operational and logic operators,
as well as laws mixing those operators. The theories shall also be carefully compared and
contrasted to related work.

3. Application to MI: Extending MI by contracts→ MIC (WP A5).
The theoretical results obtained will be the cornerstone for extending MI by temporal-logic
operators, so as to be able to express safety properties [53]. One may view this as a lan-
guage mechanism for phrasing logic contracts that govern operational behaviour, which will
permit system designers employing interfaces to capture specifications more concisely. In
addition, MI with Contracts (MIC) shall be equipped with a quotienting operator that enables
incremental development and verification [61]. MIC shall be given a strong semantic theory
along the lines outlined in Item 2 above, which will also put the existing theory of MI [61] on
a stronger footing via a full-abstraction result.

4. Application to CSM: Defining the formal semantics of CSM/CSC (WP BA5).
Our theoretical results shall be applied further to alter CSM to the originally intended State-
charts dialect [49], by replacing its process-algebraic parallel composition with the broad-
casting parallel composition of Statecharts [34], and equipping it with a formal semantics.
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This will fix the shortcomings of [33] in a mathematically elegant, fully-abstract way. It will
also lead to a specification formalism, to which we refer as Contractual StateCharts (CSC),
which has similarities to MIC except for the different concept of parallel composition.

5. Tool support for MIC & case studies (WP A6–8).
Interface theories will only be adopted in the practice of reactive systems development if
they are accompanied by tools. Hence, prototypic tool support for MIC shall be provided in
form of a toolset built within the Eclipse framework [29] and consisting of four components.
A visual editor and a simulator will allow designers to draw MIC interface specifications and
to animate their behaviour, respectively. At the centre of our attention, however, shall be the
development and implementation of compatibility and refinement checkers for determining
whether two specifications are compatible and, respectively, whether one specification for-
mally refines another. The MIC framework shall be evaluated by means of case studies as
described below.
Regarding the automation of our refinement methodology, we will rely on and adapt ex-
isting, state-of-the-art automated verification technologies. The computational challenges
of refinement checking for interface theories are currently being investigated by Dr. Benoit
Caillaud at IRISA Rennes, France, who is a collaborator to our proposed research project.
Therefore, investigations into this topic are not part of our proposal, but our research will
certainly be informed by Dr. Caillaud’s work.

6. Tool support for CSC & case studies (WP BA6–8).
This objective is analogous to the previous one, except that it focuses on CSC rather than
MIC. CSM is already supported by an editor and simulator implemented within Eclipse [29],
and with a facility for manually refining system specifications via pre-defined templates using
model transformation technologies [37]. This existing toolset shall be adapted to CSC and
then be supplemented with an automated CSC refinement checker. The CSC framework
and the refinement checker shall be evaluated via case studies as described below.

Outcome. The project’s outcome will be mathematically robust, yet practical theories of refine-
ment-driven reactive systems development. Thanks to the integration of logic contracts, state-
based formalisms for specifying reactive systems will become more flexible and permit more
concise specifications. The basis for this will be the concurrency-theoretic advancements in het-
erogeneous system specifications mixing operational and logic operators, which are at the heart
of this project. The potential impact will be demonstrated via realistic case studies exercising our
prototypic toolsets, which will lay the basis for a future technology transfer.

2.3 Work Programme incl. Proposed Research Methods

The proposed programme of work involves 15 work packages. The work packages related to
MIC (WP A1–A8) will chiefly be conducted at Augsburg, while those related to CSC (WP BA1–
BA8) will be led by Bamberg. Obviously, there are many parallels between our proposed work on
MIC and CSC, which will require frequent interactions between the research teams at Augsburg
and Bamberg. The scheduling of all work packages and the involvement of our international
collaborators is depicted in Figure 2.

WP A1, BA1: Orientation. The project shall start off by giving the hired Research Assistants
the opportunity to familiarise themselves with the relevant literature in the field (cf. Section 1),
including the applicants’ prior work on Logic LTS [51, 52, 53]. WP A1 will be conducted at Augs-
burg and focus on interface theories and foremost on Modal Interfaces (MI) [61], while WP BA1
will be carried out at Bamberg and concentrate on Statecharts-like formalisms and in particular

8



Figure 2: Proposed scheduling of work packages.

Contractual State Machines (CSM) [33]. Of interest to us is, e.g., shared-memory communication
which is a common feature of interface theories and Statecharts; especially, we wish to see how
the treatments of data in the MIO approach [5] and in Sociable Interfaces [18] compare.

WP A2, BA2: Studying compatibility & consistency notions. These work packages shall
study compatibility and consistency notions implied by popular parallel composition operators,
ranging from operators that rely on communication via synchronising actions [11, 57], to ones
that distinguish between input and output actions [19, 60] or have Mealy-style input/output ac-
tions [34], to those that communicate via shared variables [13], to operators that mix some of
these concepts [18]. Our goal is to revisit our work on CSP-style communication in Logic LTS [52]
and to define conjunction in settings with shared-memory communication (WP A2) and broadcast
communication (WP BA2), which is relevant to Statecharts dialects, as well as in settings involv-
ing parallel composition in the style of Interface Automata (WP A2).

Essential to our approach is the definition of conjunction on processes, which will be based on a
notion of immediate inconsistency combined with backward propagation. The idea of immediate
inconsistency is simply that two processes are inconsistent if they do not have a common imple-
mentation. Although the notion of implementation is not yet defined at this stage, this observation
can give information on how the immediate activities of the two processes must be related, since
an implementation must not introduce new deadlocks or incompatibilities in any environment.

WP A2 and BA2 shall study requirements for avoiding new deadlocks and incompatibilities in
a shared-memory setting and, respectively, in a setting with broadcast communication. These
scenarios have in common that communication is non-blocking for the sender and the writer, re-
spectively, in contrast to the communication scheme investigated by us in [52]. In the broadcast
scenario, there are typically no incompatibilities since unexpected messages are simply ignored,
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and deadlock means that no further messages are sent. In the shared-memory scenario, there
may be read-write and write-write conflicts and one may also add assumptions on values writ-
ten [4], and deadlock arises when no further action is enabled. Both scenarios can be extended
by transition modalities [41], which may influence the notions of inconsistency and incompatibility.

WP A3, BA3: Developing fully-abstract semantic theories. Here, we shall develop full-
fledged semantic theories around our conjunction and parallel composition operators studied in
WP A2 and BA2. Similar to our prior work on Logic LTS, we will characterise refinement preorders
presumably based on variants of ready simulation, and prove these preorders compositional for
our operators and fully-abstract relative to a naive refinement preorder that considers immedi-
ate inconsistency and deadlock only. This will be done for broadcasting systems (WP BA3) and
shared-memory systems (WP A3) separately, and these results will be combined to a treatment
of CSM (WP BA3), thus providing the groundwork for WP BA5. Furthermore, a refinement pre-
order will also be characterised for Modal Interfaces (WP A3), as a starting point for WP A5, for
which we will consult with Dr. Caillaud who is an expert on interface theories.

Then, we will check the desirables for each of these settings. This will firstly include a sanity check
whether our conjunction operators are indeed conjunctions in the relevant settings, i.e., whether
a specification refines a conjunction of specifications if and only if it refines each specification.
Secondly, we will prove compositionality for disjunction and for operational connectives like choice
and action scoping. Thirdly, standard Boolean laws involving disjunction and conjunction will be
verified. We will also consider laws that mix Boolean and operational operators, and the question
whether our preorders are thorough [43], i.e., whether one specification refines another if and
only if each of its concrete implementations refines the other specification. If one of these checks
should fail, this would indicate a shortcoming in the definition of conjunction. Thus, WP A2/BA2
and WP A3/BA3 are interleaved in our schedule of work (cf. Figure 2).

WP 4: Comparing our theories to related work. This work package shall compare our con-
junction operators and refinement preorders to related work, and reflect on the algebraic laws
obtained. The related work of importance to us comprises (i) Interface Automata [19], (ii) Inter-
face Modules [13, 20] and Sociable Interfaces [18], (iii) Modal I/O Automata [42], Modal Inter-
faces [61] and MIO [5], and (iv) Logic LTS [52]. It will be interesting to see whether our approach
justifies the preorders adopted in the literature for Interface Automata and Modal I/O Automata;
note that the early papers on Interface Automata [19, 21] present two subtly different preorders.
Also, correctness notions in digital circuits [23, 63, 66] are of relevance here. Another aspect we
will study in this work package is the expressiveness of our theories, which will be measured via
thoroughness as in [26]. Our experienced collaborators Prof. Cleaveland and Dr. Caillaud will
assist us in the scientifically robust assessment of the novel theories developed by us in WP A3
and BA3. This is particularly important, given the quickly moving field of interface theories.

WP A5: Extending MI by contracts (MIC). This work package shall extend Modal I/O Au-
tomata, or Modal Interfaces (MI), via a facility for specifying temporal-logic contracts. This will
lead to a truly heterogeneous and more practical interface theory that supports concise interface
specifications, and which we call Modal Interfaces with Contracts (MIC). The results of WP A2,
A3 and BA3 will provide the context for working out an elegant semantic theory for MIC. Specif-
ically, we will (i) define a temporal logic for safety properties and an intuitive satisfaction relation
between processes and formulas (contracts), (ii) translate contracts into MIC’s operational frag-
ment, and (iii) show that contract satisfaction coincides with MIC refinement. If time permits, we
will also investigate the modelling of interesting further properties outside our contract language,
such as contracts involving simple liveness conditions [64].

Since interface technologies are essential for incremental, component-based software develop-
ment, we will study the quotienting problem for MIC parallel composition, which provides the
theoretical foundation for this development approach. In contrast to the seminal work on quoti-
enting of Larsen and Xinxin [45], we will consider inequations based, e.g., on ready simulation
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and involving a different kind of parallel composition. As in [45], it might turn out to be necessary
to extend MIC in order to express such quotients. In addition to quotienting for parallel composi-
tion, it may also be interesting to look at quotients for conjunction. Usually, these would simply be
implications, so we will have to investigate how to add a general implication operator to MIC.

WP BA5: Defining a formal semantics of CSM/CSC. The Contractual State Machine lan-
guage (CSM) [33] is a visual variant of our Logic LTS [53], with added state hierarchy and
shared-memory communication. The aim of this work package is to transform CSM to a proper
Statecharts dialect, as was originally intended by the CSM research project carried out at the
University of York [49]. This involves changing the CSP-style parallel composition operator of
Logic LTS to an event broadcast operator [60]. In addition, the York project treated (finite) data
simply by providing a ground semantics, i.e., by encoding data values into states, which makes
practical verification difficult due to state explosion. Here, we will replace this treatment by explic-
itly adding to transitions pre- and post-conditions in the form of logic formulas over atomic data
propositions, such as value comparisons. This is inspired by Hennicker et al.’s handling of data
for MIO [5] and also by Sociable Interfaces, which directly reflects the idea of contracts [56] and
naturally supports compositional and symbolic reasoning. We thus call our Statecharts dialect
Contractual StateCharts (CSC).

Our work of WP A3 and BA3 will serve as the semantic backbone for giving an operational
semantics and a full semantic theory to CSC. It will need to be extended by a hierarchy operator
as well as by operators for dealing with boundary-crossing transitions. Our main result of WP A3
and BA3, which establishes the compatibility of the logic satisfaction relation with the fully-abstract
refinement preorder, then provides a formal basis for the compositional verification of CSC, i.e.,
for incremental verification along state boundaries and state hierarchies.

WP A6: Implementing an editor & a simulator for MIC. A first step towards tool support for
MIC shall be (i) an editor for drawing MIC specifications and (ii) a simulator for executing such
specifications according to the MIC semantics defined in WP A5. Since such tool components are
standard, we wish to save development effort by not starting from scratch, but rather by adapting
the editor and simulator of Hennicker et al.’s MIO Workbench [6], which is implemented within
the Eclipse framework [29] and available to us in source code. We will use these components for
validating the MIC semantics and when conducting WP A8.

WP BA6: Adapting the existing CSM toolset to CSC. Paige et al.’s toolset for CSM [33] con-
sists of an editor, a simulator and a refinement pattern applier, is also implemented within Eclipse,
and made available to us in source code by our collaborator Prof. Paige. This work package shall
adapt the CSM editor and simulator to our CSC language, which primarily means replacing the
CSP-style parallel operator with the broadcast parallel operator of Statecharts, as well as substi-
tuting the underlying semantics machinery with the one developed in WP BA5. In addition, the
CSC way of handling data is different from CSM, as it will involve pre- and post-conditions on
data states. Analogously to WP A6, the editor and simulator will be used for validating the CSC
semantics and when conducting WP BA8.

WP A7, BA7: Developing refinement checkers for MIC & CSC. Key to our MIC and CSC
toolsets will be algorithms for automatically checking whether one given specification refines a
second specification, according to the variants of ready simulation introduced in WP A3 and BA3.
We shall develop and implement such refinement checkers for MIC and CSC within Eclipse.

This can be done via partition-refinement techniques as proposed by Bloom and Paige in [10].
These techniques may be combined with advanced data structures such as the decision dia-
grams employed by the TICC tool [2], and also with decision procedures if data states occur in
a specification [38], as is the case for our CSC language. Alternatively, ready simulation on two
specifications may be computed by translating one specification into its characteristic temporal-
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logic formula, in the sense of Ingolfsdottir and Steffen [36], thereby reducing refinement checking
to model checking this characteristic formula against the other specification [68].

Our collaborator Prof. Cleaveland has co-developed several preorder checkers – conceptually
and in practice [17] – and will assist us in deciding which implementation strategy will work best
for MIC and CSC. We will also implement compatibility checking for MIC, which – like refine-
ment checking – requires an analysis of the state spaces of the underlying specifications. In this
context, we will also compare our MIC toolset to other interface-theory tools such as TICC [2],
Ptolemy II [46] or the MIO Workbench [6], wrt. (i) usability and conciseness and (ii) the perfor-
mance of MIC’s compatibility and refinement checkers.

As an aside, we stress that we do not aim here at advancing automated verification algorithms,
but rather adapt them to our refinement-checking needs. In addition, our proposal – while being
connected to model checking since our refinement relations include temporal-logic satisfaction
as a specialisation – does not aim at compositional model checking. This is because the latter
requires an automatic decomposition of a system implementation and a temporal-logic formula,
while our focus is on the composition of operational and declarative-logic specification styles.

WP A8, BA8: Evaluating the MIC & CSC frameworks via case studies. Our approaches to
heterogeneous specification formalisms shall be evaluated by means of case studies, which will
employ our MIC and CSC toolsets. We will focus on two case studies which, although below
industrial size, will make a first connection of our foundational research results with practical
aspects. This will help us transferring our technology to software engineers who can then build
tool-supported and industrial-strength specification and design methodologies on top of it.

The first case study is in the avionics domain and concerns the stepwise design of a mode
logic (WP A8). This will allow us to validate as to how far the informal approach to designing
mode logics currently employed in practice – as described on the first page of this proposal –
can be formalized using our theory and supported by our prototypic tools. Questions of interest
are the following: (a) Are our declarative-logic extensions to automata notation sufficient and
natural enough for concisely expressing a mode logic’s requirements? If not, what modelling
constructs are missing? (b) Are the successive informal refinement steps conducted by engineers
when transitioning from declarative requirements to operational designs supported by our formal
refinement preorders? If not, what aspects are too strong in, or not covered by, our preorders, and
how would an improved preorder look like? (c) Is the current automated verification technology
adapted by our tools mature enough to deal with such realistic examples? If not, which aspects
require improvement? Mode logics are a good example for investigating these questions since
their basic structures are simple, since they are focussed on control and require only simple data
types, and since realistic examples of mode logics are available in the public domain [55]. Indeed,
the idea for part of this grant proposal dates back to when the first investigator was working on
the formal modelling and analysis of mode logics for NASA [48]. If time permits, we will conduct
a larger avionics case study donated to our collaborator Prof. Paige and the University of York by
BAE Systems. This case study is not in the public domain and involves an Integrated Flight and
Propulsion Control System that has already been studied at York and is specified using Stateflow
state machines and English-language constraints.

The second case study will exercise our CSC toolset and re-consider the Harbour Docking case
study investigated by Lishan Harbird – a PhD graduate of Prof. Paige – for CSM in her recent PhD
thesis [32] (WP BA8). This case study involves a system that manages ships waiting to dock at a
harbour, tracks the entering of ships into the port to the quays, and prevents the double allocation
of ships to quays. The design of this system is based on heterogeneous refinement patterns
catalogued in the CSM toolset, which provide a systematic basis for gradually introducing detail
as design decisions are made. The design process starts with a contract, then applies refine-
ment and refactoring patterns until a completed state machine design is achieved. We will redo
this case study using our CSC toolset which will, firstly, help us in validating the CSC semantics
and the underlying semantic design decisions using the CSC simulator. Secondly, our refinement
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checker will testify to the correctness of the refinement-pattern instantiations employed in the orig-
inal case study [32]. Thirdly and most importantly, we will compare and contrast the ‘small-step’
refinement via refinement patterns as in the CSM toolset [33] to the ‘large-step’ refinement sup-
ported by our CSC refinement checker. The latter will allow us to address the question whether
the small-step refinement implied by Harbird’s patterns is indeed a practical alternative to the
large refinement conducted by engineers today when designing control systems.

Lastly and if time permits, we will additionally re-consider Broy and Lamport’s Remote Procedure
Call case study that has been introduced in [12] and considered by Larsen et al. for MTS with
conjunction in [44], within our heterogeneous interface formalism. It should be noted that our
novel approach to heterogeneous specification will allow us to deal with application scenarios
that have rarely been studied before; therefore, re-considering a known case study will have the
flavour of conducting a new one.

2.4 – 2.6 Not Applicable

2.4 Data handling; 2.5 Other information; 2.6 Descriptions of proposed investigations involving
experiments on humans, human materials or animals.

2.7 Information on Scientific and Financial Involvement of International

Cooperation Partners

Not applicable; see Section 5.4.1 for information on international cooperation partners with whom
we will be working together informally. These partners neither have applied nor will apply for
funding with the DFG or a partner organization in the context of this project proposal.
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[47] G. Lüttgen, M. von der Beeck, and R. Cleaveland. Statecharts via process algebra. In
CONCUR ’99, vol. 1664 of LNCS, pp. 399–414. Springer, 1999.
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4 Requested Modules/Funds

Funds are requested for the full application period of 3 years. All funds other than for staff are to
be split 50:50 between Augsburg and Bamberg.

4.1 Basic Module

4.1.1 Funding for Staff

At each site, Augsburg and Bamberg:

• 1 Research Assistant, RA (PhD student) for 36 months full-time (Doktorandin/Doktorand
und Vergleichbare, 100% der regelmäßigen Arbeitszeit)
This RA will be the main researcher contributing to the project from Augsburg’s and Bam-
berg’s end, respectively. She or he will work on all work packages scheduled at Augsburg
(WP A1–A8) and, respectively, Bamberg (WP BA1–BA8). That this post is full-time does
not only match the volume of work proposed, but is also necessary to attract suitable can-
didates, given the excellent job prospects in and the high starting salaries offered by the IT
industry. In Augsburg, Dipl.-Inf. Ference Bujtor shall be employed as RA; he currently holds
a fixed-term teaching post at the University and is being introduced to the field of interface
theories by Prof. Vogler. In Bamberg, the post will be advertised nationally and internation-
ally if no suitable candidate among the graduates of Prof. Lüttgen can be recruited.

• 1 Student Assistant, SA (Studentische Hilfskraft) for 44 hours per month for 21 months, at
the standard rate.

– At Augsburg: 12.16 Euro per hour, for a total of 11,235.84 Euro.
– At Bamberg: 11.52 Euro per hour, for a total of 10,644.48 Euro.

After a familiarisation period with the project of three months, the SA will assist the RA
with tool development (mainly with the programming tasks of WP A6–7 and WP BA6–7,
respectively) and evaluation (with the conduct of case studies in WP A8 and WP BA8,
respectively). A student at Augsburg who has taken one or more of Prof. Vogler’s modules
on automata theory, process algebra and distributed algorithms, would be most suitable for
the SA position at Augsburg. The SA at Bamberg will likely be recruited among the students
who take Prof. Lüttgen’s modules on software engineering and parallel programming.

4.1.2 Direct Project Costs

4.1.2.1 Equipment up to 10,000 Euro, Software and Consumables. Specialised equipment
for carrying out the proposed project is not required. All staff on the project will be equipped by
the Universities of Augsburg and Bamberg with

• State-of-the-art PCs and/or laptops. All software necessary for carrying out the computing-
intensive work packages WP A6–8 and WP BA6–8 is available free of charge.

• Headsets and webcams. These will enable the necessary frequent communication (via
Skype or similar services) between the project sites Augsburg and Bamberg, and with the
project partners at Maryland, Rennes and York.

No funds for consumables are requested.
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4.1.2.2 Travel Expenses. Funds are requested to cover the cost of travel required for carrying
out the project:

• Conferences/workshops
Each site is expected to actively participate in two international conferences/workshops
during each project year, with one travel being within Europe and one overseas. Examples
of targeted meetings are, in alphabetical order, the international conferences on Applica-
tion of Concurrency to System Design (ACSD), Computer Aided Verification (CAV), Con-
currency Theory (CONCUR), Fundamental Approaches to Software Engineering (FASE),
Foundations of Software Science and Computation Structures (FOSSACS), Foundations of
Software Engineering (FSE), Automata, Languages and Programming (ICALP) and Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), plus some of their
affiliated, high-quality workshops.
The cost of a European trip is estimated at 1,400 Euro (including registration fees, accom-
modation and travel expenses), and the one for an overseas trip at 2,000 Euro. Therefore,
20,400 Euro is requested in total for all conference/workshop travel.

• Augsburg–Bamberg cooperation
The cooperation between Augsburg and Bamberg will require of the RAs mutual, bi-monthly
short visits of three days each during the first 18 months of the project. The visiting intervals
can then be relaxed to once per calendar quarter for the remaining 18 months. In addition,
each applicant will travel to the partner site once per year for three days.
This totals 21 three-day trips, estimated at 300 Euro per trip. Thus, 6,300 Euro is requested
to support the Augsburg–Bamberg cooperation throughout the application period.

• International cooperation
The three international project partners are located in Rennes, France (Dr. Caillaud); Mary-
land, USA (Prof. Cleaveland); and York, England (Prof. Paige). For the project duration, one
one-week visit to each of the partners by one member of the project team is planned.
The travel expenses for the European trips will be approx. 1,000 Euro per trip, and those for
the Transatlantic trips will be approx. 1,600 Euro per trip. This totals 3,600 Euro for all travel
related to the project’s international cooperations.

• Summer schools
Each of the two RAs working on the project will apply to a distinguished international sum-
mer school, such as the Marktoberdorf Summer School, related to the topics Formal Spec-
ification, Concurrency Theory and Automated Verification that are relevant to this proposal.
The projected costs are 1,800 Euro per RA for travel, accommodation and participation
fees, thus totalling 3,600 Euro.

In summary, the requested funds for travel are 33,900 Euro overall.

4.1.2.3 Visiting Researchers. In addition to the funds for visiting the international project part-
ners as explained under bullet point “International cooperation” above, we request funds for one
one-week visit of each project partner to Augsburg or Bamberg. Analogously to above, these
costs total 3,600 Euro.

4.1.2.4 & 4.1.2.5 Not Applicable. 4.1.2.4 Expenses for laboratory animals; 4.1.2.5 Other costs.

4.1.2.6 Project-Related Publication Expenses. 250 Euro p.a. are requested for each site, Augs-
burg and Bamberg, totalling 1,500 Euro over the application period.

This fund will enable us to publish in some of the increasing number of good-quality open-access
journals and conference/workshop proceedings that impose moderate charges, such as those
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appearing in the Leibniz International Proceedings in Informatics (LIPIcs) and Electronic Notes
in Theoretical Computer Science (ENTCS) series. However, it is envisaged that we will mainly
publish in journals and proceedings that do not charge authors.

4.1.3 Instrumentation

Funds for equipment exceeding 10,000 Euro or major instrumentation exceeding 50,000 Euro
are not requested.

4.2 – 4.7 Not Applicable

4.2 Module temporary position for funding; 4.3 Module replacement funding; 4.4 Module tempo-
rary clinician substitute; 4.5 Module Mercator fellows; 4.6 Module workshop funding; 4.7 Module
public relations funding.

5 Project Requirements

5.1 Employment Status Information

(a) Lüttgen, Gerald, Universitätsprofessor (W3), University of Bamberg (lifelong civil servant)
(b) Vogler, Walter, Universitätsprofessor (C3), University of Augsburg (lifelong civil servant)

5.2 First-Time Proposal Data

Not applicable

5.3 Composition of the Project Group

Both applicants will be the only people working on the proposed project, who will not be paid
by the DFG. However, if it should turn out at the beginning of the last year of funding that the
project would benefit from additional human resources in order to provide better tool support
(see WP A6–8 and WP BA6–8), then the first applicant will make extra funds of the University of
Bamberg available to pay for one additional Student Assistant (Studentische Hilfskraft) for up to
44 hours per month for a maximum of 12 months, at the standard Bamberg rate of 11.52 Euro
per hour, for a total of up to 6,082.56 Euro.

5.4 Cooperation with Other Researchers

5.4.1 Researchers Cooperating on this Project

The project team at Augsburg and Bamberg will collaborate with three internationally leading
researchers and their teams in the context of the proposed research project:

Dr. Benoı̂t Caillaud, IRISA Rennes, France. Dr. Caillaud is heading IRISA’s research team on
realising algorithmic methods of reactive and distributed systems from partial and heterogeneous
specifications [7]. He is an expert in contracts and interface theories [61], and will advice us when
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developing our algebraic theory of modal interfaces extended with temporal-logic contracts (MIC)
and when contrasting this theory to related work (WP A3, 4, 8).

Prof. Rance Cleaveland, University of Maryland, USA. Prof. Cleaveland is also Executive and Sci-
entific Director of the Fraunhofer Center for Experimental Software Engineering, Maryland, USA.
He has previously collaborated with the first applicant on a heterogeneous specification formal-
ism combining process algebra and temporal logic [14, 15], and is therefore particularly suited
for discussing the theories developed by us and for comparing them to related work (WP4). His
main contribution to this project, however, will be in consulting us when developing and evaluat-
ing refinement checkers for MIC and CSC (WP A7, A8, BA7, BA8). Prof. Cleaveland is a leading
expert in behavioural preorder checking for finite-state systems [17] and in automatically check-
ing data-based systems [68]. As Chairman and co-founder of Reactive Systems, Inc., he has
much experience in providing industrial-strength automated verification support and conducting
realistic case studies.

Prof. Richard Paige, University of York, England. Prof. Paige is an expert in formal aspects of
software engineering and in model-driven development. He has recently co-developed the Con-
tractual State Machines (CSM) specification formalism [33] as the Principal Investigator (PI) of
a UK research project that was co-authored by the first applicant, Prof. Lüttgen, and of which
Prof. Lüttgen was a co-PI until his departure from York to join the University of Bamberg in
April 2009. In contrast to what is proposed here, the CSM toolset provided by the UK project
is manual rather than automated, and focuses on applying patterns of refinement via model
transformations [37]. Prof. Paige will help us with adapting York’s CSM toolset to simulate models
wrt. our fully-abstract CSC semantics (WP BA6). In addition, he will assist us with the conduct of
case studies employing CSC (WP BA8); in particular, re-considering some of the examples and
case studies used in the York project will likely provide interesting insights regarding the practical
utility of our automated refinement checking technique for CSC when compared to York’s manual
refinement pattern applier for CSM.

5.4.2 Past Collaborators

Within the past three years, the applicants have worked with the following national and inter-
national researchers on joint projects: Prof. Flavio Corradini, University of Camerino, Italy; Dr.
Maria Rita di Berardini, University of Camerino, Italy; Dr. Andrew Galloway, University of York,
England; Victor Khomenko, University of Newcastle, England; Dr. Jan Tobias Mühlberg, Univer-
sity of Leuven, Belgium; Prof. Richard Paige, University of York, England; Dr. Ralf Wollowski,
Hasso-Plattner-Institut, Potsdam, Germany.

5.5 Scientific Equipment

All equipment necessary for carrying out the proposed project, i.e., PCs/laptops with standard
software, headsets and webcams, will be provided by the Universities of Augsburg and Bamberg.

5.6 Project-Relevant Interests in Commercial Enterprises

Not applicable

6 Additional Information

Not applicable
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