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1 State of the Art and Preliminary Work

This is a follow-up grant proposal (renewal) to DFG project LU 1748/3-1 / VO 615/12-1 of the
same title, of which approx. 75% (full-time equivalent) has been completed to date and whose
funds are expected to be depleted at the end of March 2017 (Augsburg) and November 2016
(Bamberg), resp. The granted current support pays for one PhD student (Research Assistant)
each at Augsburg (Dipl.-Inform. Ference Bujtor) and Bamberg (Dipl.-Math. Sascha Fendrich).
This section reports on what we have achieved so far and reviews some new related work that is
relevant for the follow-up research proposed here.

According to the original grant proposal, the current “project’s aim [has been] to significantly
enhance the theoretical foundations and practical utility of those heterogeneous specification for-
malisms for reactive systems that mix operational and logic styles of specification. Our particular
interest is in formalisms that add logic elements to state machine notations, such as Caillaud et
al.’s Modal Interfaces (MI) [71], which emphasise logic conjunction for composing specifications,
and Paige et al.’s Contractual State Machines (CSM) [45], which extend a simple hierarchical
state machine notation by temporal-logic operators.”

Because the original proposal was devised for 36 months but has only been funded for 24 months,
we had to narrow its scope. We decided to leave out the theory and tool support for Contrac-
tual Statecharts (CSC), which eliminated work packages BA5 (“Defining a formal semantics for
CSM/CSC”), BA6 (“Adapting the existing CSM toolset to CSC”), BA7 (“Developing refinement
checkers for CSC”) and BA8 (“Evaluating the CSC framework via case studies”), and shifted the
analogous work packages A6–A8 for modal interface theories from Augsburg to Bamberg.

Given this narrowing of the project aim to interface theories, the research project has fully deliv-
ered so far. While the implementation of tool support and its evaluation are ongoing, the project’s
outcome to date has already significantly advanced the theoretical foundations of and the degree
of heterogeneity within interface specifications, as described below. This is evidenced by 11 peer-
reviewed publications in the proceedings of international conferences (7 papers) and in leading
international journals (4 articles), while 2 further journal articles have been submitted and are
currently under review (cf. Sec. 1.1). In addition, 3 Bachelor’s theses [50, 74, 76] and 2 Master’s
theses [40, 42] have been successfully completed at the Universities of Augsburg and Bamberg
on topics closely related to this research project.

Interface Theories, Interface Automata & Modal Transition Systems. Interface theories sup-
port the component-based design of concurrent systems and offer a semantic framework for,
e.g., software contracts [3], web services [8] and the Internet of Things [56]. Technically, interface
theories are concurrency-theoretic formalisms that allow one to specify component interactions
by means of nondeterministic transition systems (LTSs) labelled with input and output actions.
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These LTS may be combined via parallel composition, conjunction and quotient operators. They
are equipped with compositional refinement preorders, which allow one to relate component in-
terfaces to each other as well as to relate interfaces to component implementations.

The focus of our investigations have been interface theories combining de Alfaro and Henzinger’s
Interface Automata (IA) [30] and Larsen’s Modal Transition Systems (MTS) [51]. This has re-
sulted, as we argue below, in the most elegant and general such interface theory to date – Modal
Interface Automata (MIA) – and has been found very problematic in the past [5, 52, 71], due to
a conflict between unspecified inputs being forbidden in MTS but allowed in IA. To be able to
describe our achievements we first provide some background on the IA and MTS settings.

The distinguishing feature of IA is a parallel composition operator on system components, where
receiving an unexpected input is regarded as an error, i.e., as a communication mismatch. In
so-called pessimistic interface theories [5], a parallel composition of components is not defined,
if such a mismatch occurs. In optimistic theories [18, 19, 52, 71], such as the ones considered
in this research project, a communication mismatch is acceptable as long as the system envi-
ronment can prevent it from being reached; in this case, the components are called compatible.
Technically, all those states of the parallel composition are pruned from which entering an error
state cannot be prevented by the environment. The refinement relation on IA is an alternating
simulation not unlike bisimulation [64], where a refined interface simulates a specification’s inputs,
while the specification simulates the interface’s outputs.

IA suffers from the fact that outputs cannot be required, because any interface may be imple-
mented by a component that accepts all inputs and does not offer any output, thereby avoiding
errors altogether. This is undesired in practice and has led researchers to combine IA and MTS;
the latter features may- and must-transitions to express allowed and required behaviour, resp.
According to modal refinement, all required behaviour must be preserved and no disallowed be-
haviour may be added when refining an interface. Consequently, whereas outputs are optional
in IA, they may now be enforced in theories combining IA and MTS, such as our Modal Interface
Automata (MIA). In order to express conjunction we combined – already in the conference version
of [60] – IA with dMTS. The latter is a restricted form of Disjunctive MTS [54], where a disjunctive
must-transition has several target states but only a single action label.

Results of work packages. We now provide a summary of the results of the work packages of
the original proposal, excluding the rather obvious work package WP 1 devoted to the orientation
of the two RAs at the start of the project and the work packages deleted due to the narrowing of
scope.

Work packages WP 2–5 deal with “Studying compatibility & consistency notions” (WP 2), “Devel-
oping fully-abstract semantic theories” (WP 3), “Comparing our theories to related work” (WP 4)
and “Extending MI by contracts” (WP 5). Since the revised project goal was to further develop
our version MIA of modal interfaces [60], which builds upon both IA and MTS, we have started to
investigate the above issues for these two basic models, and only then we returned to the con-
tinued development of MIA. Comparisons to related work have been carried out throughout the
project. In the following, we therefore structure the presentation of our obtained research results
accordingly. We finish with a brief report on the currently ongoing work packages WP 6–8 on
“Implementing an editor & a simulator for MIA” (WP 6), “Developing refinement checkers for MIA”
(WP 7) and “Evaluating the MIA framework via case studies” (WP 8).

Basic models & full abstraction. We developed fully-abstract refinement preorders in [12] for IA
and in [11, 13] for (d)MTS, i.e., coarsest precongruences for parallel composition that preserve
compatibility and deadlock-freedom, resp., as the basic property.

In [12], the studied model is called EIO, a variant of IA with an additional explicit set of error states.
For an unprejudiced study, parallel composition is just an unpruned parallel product, where the
states with a mismatch are marked as errors. The fully-abstract precongruence is characterized
as component-wise inclusion of a pair of trace sets. This corresponds to the independent work
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in [18] and the older, more denotational approach of Dill [33]. A pruning on the parallel product is
then defined by us in [12] and proved correct in our setting where, notably, inputs may be nonde-
terministic; surprisingly we discovered that, in the corresponding IA-setting [29], the definition of
pruning is inadequate since parallel composition is not associative.

In this context, two orthogonal, minor aspects are explored in the context of two student theses.
The Master’s thesis [42] considers the approach of [29], where a simulation – with an additional
condition for the set of enabled inputs – instead of alternating simulation is used. The student
studied several variations of this and compared them to alternating simulation [30, 61]. The
second thesis, a Bachelor’s thesis [74], works out our results of [12] with multicasts instead of
binary handshakes. Multicast allows an output to synchronize with several inputs, instead of only
one input, and is employed in related work [71].

Analogously, the aim in [13] is to justify a semantics for MTS by a full-abstraction result, where
the basic requirement is that a refinement step must not introduce a deadlock. Note that MTS
does not distinguish between input and output actions, so that compatibility is not an issue, and
employs a CSP-like parallel composition. An interesting aspect in [13] is that we avoid prejudic-
ing our results by a disputable deadlock notion for MTS: we associate with each MTS its LTS
implementations using standard modal refinement; whether a deadlock is introduced then de-
pends only on these LTSs. We characterized the according fully-abstract precongruence by a
modality-sensitive form of failure semantics and proved it to be thorough. Note as an aside that
MIA-refinement, as described below, inherits non-thoroughness from (d)MTS and modal refine-
ment. In addition, we considered in [13] may- and must-testing in the sense of De Nicola and
Hennessy [32] where, in the latter case, a failure/divergence semantics arises. In this context, we
showed how to construct a conjunction wrt. failure- and failure/divergence-semantics, which is an
MTS in both settings, whereas no MTS is a conjunction wrt. modal refinement.

We continued our approach of [13] in [11] for dMTS. Again, a testing preorder based on deadlock
avoidance can be characterised by failure semantics, but the latter is difficult to determine and
the preorder fails to be a precongruence. This shortcoming disappears if one aims to avoid
deadlock and divergence instead. Here, a failure/divergence semantics arises that is coarser,
hence arguably better, than the standard one, and which can also be justified by a natural variant
of must-testing. This semantics was only mentioned once before in [82]. Some preparatory
results for [11] can be found in the Bachelor’s thesis [76].

Modal Interface Automata & contracts. Whereas the first MIA-refinement preorder in [60], on
which the original grant proposal was based, inherited features mainly from IA, we improved
this in [61] by a proper treatment of ⌧ -must-transitions and by allowing standard weak transitions
when matching output-may-transitions. Although we still have essentially only must-transitions for
inputs to avoid the compositionality problem in [52], we loosened input-determinism by allowing
disjunctive must-transitions for inputs. As desired, MIA-refinement is a precongruence for parallel
composition k, disjunction and, by its nature, conjunction. To support the use of conjunction for
perspective-based specification, a refinement notion that allows one to extend a MIA’s input and
output alphabets is needed. This does not succeed in the optimistic approach of [61], but we
developed a suitable refinement notion for the pessimistic approach of MIO [5].

Whereas the compositionality problem of [52] is only partly solved in [71], we proposed a com-
plete solution in a fully nondeterministic setting with multicasts, true input-may-transitions and
conjunction supporting alphabet extension [10]. The key idea for this full combination of IA and
dMTS is to add a universal state e to the MIA structure. An input-may-transition from some state s
to e expresses that, as in IA, one may add to s the resp. input-transition with arbitrary subsequent
behaviour. An alternative representation of this feature is studied in a Bachelor’s thesis [50]. Most
importantly, there is now also a quotient operator in [10], i.e., an adjoined operation to k: given a
global specification P and an already implemented component D, the quotient P//D is the coars-
est specification Q such that QkD refines P , i.e., P//D is the most flexible completion of D wrt. P .
Quotienting is important for interface theories, because it can be employed for decomposing con-
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current specifications stepwise, for specifying contracts and for reusing components. In contrast
to [71], our quotient operator for MIA permits nondeterministic specifications and complements k
rather than a simpler parallel product without pruning.

So far, errors e in MIA model unknown behaviour for which no guarantees can be made and which
satisfy the law e v p ) p = e, capturing that an error cannot be introduced when refining an
ordinary state. We also investigated an error-aware variant EMIA of MIA in [38], whereby errors
model unwanted behaviour that must not be implemented. Hence, EMIA satisfies the additional
law p v e ) p = e, i.e., refining cannot redefine an erroneous situation to be non-erroneous.
This leads to a finer interface semantics that has several desirable properties, including a more
natural treatment of variability inherent, e.g., in software product lines [52] and the fact that EMIA
is itself an assembly theory [46], where binary component compatibility is extended to multiple
components.

According to the original project proposal we extended MIA by contracts [14]. To do so, we in-
troduced, analogously to [59], a temporal logics for safety properties and an intuitive satisfaction
relation between MIA and formulae. For each logical operator, we defined a corresponding op-
erator on MIA such that a MIA satisfies a formula if and only if it refines the translation of the
formula into a MIA. This way and as promised in the original proposal, we developed a truly
heterogeneous and more practical interface theory that supports concise interface specifications.

Tool support & case studies. Work on tool support has started in Summer 2015 in the context of a
Master’s project at Bamberg [40] and is ongoing. In contrast to what we envisaged in the original
project proposal, we have not implemented the MIA theory within the MIO Workbench [5] but in
Google’s parallel programming language Go [34]. This has been done in anticipation of our future
use of MIA as a behavioural type theory for concurrent programming, which is one of the main
objectives of our follow-up research proposal presented below. The choice of Go is justified not
only by the fact that it is a modern parallel programming language that is employed for developing
large concurrent systems, e.g., for platforms as a service and application container engines, but
especially by its support of MIA’s synchronous communication discipline.

Our Go implementation so far includes facilities to (i) specify interfaces textually, with support
for the MIA operators parallel composition, conjunction, disjunction and hiding, (ii) simulate inter-
faces via tracing their behaviour step-by-step, (iii) export interfaces into the well known dot-format
for graphically displaying MIAs by off-the-shelf viewers, and (iv) check MIA-refinement between
interfaces using the QBF-theory within the SMT-solver Z3 [31]. At its core, our refinement checker
adapts an existing QBF-encoding of the refinement problem in Parameterized Modal Transition
Systems [6] to MIA. MIA differs from the former setting in that it is parameter-free but includes
internal transitions and distinguishes between input and output actions.

In the next few months we will finalise our prototypic MIA implementation in Go and evaluate
it via case studies and comparisons with established interface theory tools such as TICC [2],
Ptolemy II [55] or the MIO Workbench [5].

Related work for the proposed follow-up research. Our research project’s continuation de-
scribed below will focus on extending our interface theory MIA with data as well as with mech-
anisms to express liveness and fairness properties, and on casting MIA as a behavioural type
theory. We discuss relevant related work next.

Interface theories with data. Interface theories have also been developed for shared-variable
communication, where one speaks of Interface Modules [16, 35]. In Sociable Interfaces [28],
for example, interfaces synchronise via actions and change data values during output actions.
Assumptions on the environment are formulated for input actions – essentially as pre- and post-
conditions on data states –, and interfaces are deterministic for inputs. Variables can be written
by concurrently executing interfaces. To enhance compositional reasoning, Sociable Interfaces
enforces that an interface is informed about value changes of variables of interest. A similar
approach to handling data has also been adopted by Hennicker et al. for MIO [4].
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Moreover, Doyen et al. [35] study a conjunction operator for another interface theory involving
shared-variable communication in order to be able to reason about combined specifications,
i.e., when a component implements several interfaces, and component reuse. However, parallel
composition in [35] permits only limited communication, if at all, and no full-abstraction result
is proved. As an aside, the conjoining of specifications has also been investigated in TLA, a
temporal logic of actions with shared-memory communication [1].

Less studied is value-passing communication in the context of interface theories with data. A
recent extension of IA with value passing can be found in Holı́k et al. [47], where each process
has local variables whose values can be communicated. Transitions have data-dependent guards
that are required to be mutually exclusive; hence, only deterministic processes are considered.
Refinement is stronger than in IA because, if the larger process offers several outputs, at least
one of them has to be preserved. Similar to our MIA theory, also a quotient operator is studied
and applied to mediator synthesis.

Liveness & fairness. So far our heterogeneous MIA theory only deals with safety properties but
not with progress or more general liveness properties. In practice, liveness is only satisfied under
some fairness assumptions; see [39] for a classic survey or the recent survey [81] that focuses
on concurrent systems. Weak and strong fairness has also been studied in process algebras;
see, e.g., [27] and also the dissertation of Parrow [68].

Fairness is frequently specified by adding Büchi states or counters to automata-based specifi-
cation and verification frameworks; when doing so, often compositionality is ignored. One early
approach on how to reason about fairness properties with Büchi states in a compositional, hetero-
geneous process algebra is [22]. More recently, Siirtola et al. [75] utilize unidirectional counters
and the chaos-free failures/divergence-semantics (CFFD) [79], so that liveness and fairness can
be compositionally decided using the popular FDR2 [73] and NuSMV [20] model checkers. An-
other approach to fairness employing CFFD semantics can be found in [70], while a compositional
semantics for weakly fair traces is presented in [83].

A way to avoid the technical complications of fairness assumptions is to treat them implicitly, e.g.,
as in fair testing [72]. Fair-testing refinement preserves properties of the form ‘action a remains
always possible’ so that the occurrence of a may be assumed to be guaranteed, i.e., a is live. This
approach is employed for formal verification in combination with partial order reduction in [80].

Behavioural types. Behavioural type systems aim to ensure various properties of concurrent
programs, such as race freedom, so as to guarantee well-defined interactions between compo-
nents [41]. For example, IA has been employed as a foundation for a rich type theory within the
Ptolemy II software framework [55]. Similar lines of research utilizing process-algebraic ideas
have been developed in the context of contracts, e.g., for mobile processes [15]; the relation of
contracts to interfaces has also been investigated [67]. More importantly, however, a simple yet
practical version of ‘processes as types’ has recently attracted much attention: multi-party ses-
sion types [26, 48], which are based on ideas of the ⇡-calculus [65] and are used for formally
reasoning about communication protocols and, in particular, web services.

Session types allow one to statically check for simple communication properties between pro-
cesses that cooperate according to a globally agreed protocol. Of particular interest are compati-
bility and progress properties, which ensure that communication sessions are always successfully
conducted to the end. A session type results from decomposing the globally agreed property by
projecting it onto each protocol participant. Hence, session type theories deal with closed sys-
tems and refer to a pessimistic notion of compatibility. This is in contrast to IA-based interface and
other behavioural type and refinement theories, which consider open components and employ an
optimistic notion of compatibility.

The most important point of departure between session types on the one hand and behavioural
type and refinement theories on the other hand is that the former allow one to reason about
properties of a concurrent system’s communication structure only – and this only for restricted
communication topologies –, while the latter consider semantically deeper properties and general
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communication structures. For example, most session type theories do not support reasoning
about complex temporal properties or about protocols such as the sliding window protocol [17].

In our follow-up proposal we plan to apply MIA’s refinement preorder to behavioural type check-
ing. However, MIA-refinement is likely to be too fine for this purpose, because it is compositional
wrt. all contexts. By restricting compositionality to contexts satisfying a specific communication
structure that is specified by a session type, we will coarsen MIA-refinement and thereby permit
more implementations. Note that, while most session theories employ an asynchronous com-
munication mechanism, also variants with synchronous multicast communication, as adopted by
MIA, have been studied [49].

1.1 Project-Related Publications

1.1.1 Articles Published by Outlets with Scientific Quality Assurance

[PSP1] G. Lüttgen and W. Vogler. Modal Interface Automata. Logical Methods in Computer
Science, 9(3:4), 2013.

[PSP2] G. Lüttgen, W. Vogler, and S. Fendrich. Richer interface automata with optimistic and
pessimistic compatibility. Acta Informatica, 52(4-5):305–336, 2015. An extended abstract
appeared in 13th Intl. Workshop on Automated Verification of Critical Systems (AVoCS
2013), vol. 66 of ECEASST, Europ. Assoc. of Software Science and Technology, 2013.

[PSP3] F. Bujtor, S. Fendrich, G. Lüttgen, and W. Vogler. Nondeterministic Modal Interfaces. In
41st Intl. Conf. on Current Trends in Theory and Practice of Computer Science (SOFSEM
2015), vol. 8939 of LNCS, pp. 152–163, Springer, 2015. A full version has been submitted
to the Theoretical Computer Science journal.

[PSP4] F. Bujtor and W. Vogler. Error-pruning in Interface Automata. Theoretical Computer
Science, 597:18–39, 2015. An extended abstract appeared in 40th Intl. Conf. on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2014), vol. 8327 of LNCS,
pp. 162–173, Springer, 2014.

[PSP5] F. Bujtor and W. Vogler. Failure Semantics for Modal Transition Systems. ACM Trans. on
Embedded Computing Systems, 14(4):67, 2015. An extended abstract appeared in 14th
Intl. Conf. on Application of Concurrency in System Design (ACSD 2014), pp. 42–51, IEEE,
2014.

[PSP6] F. Bujtor, L. Sorokin, and W. Vogler. Testing preorders for dMTS: Deadlock and the new
deadlock/divergence-testing. In 15th Intl. Conf. on Application of Concurrency in System
Design (ACSD 2015), pp. 60–69, IEEE, 2015. A full version has been submitted to the
ACM Trans. on Embedded Computing Systems journal.

[PSP7] S. Fendrich and G. Lüttgen. A generalised theory of Interface Automata, component
compatibility and error. In 12th Intl. Conf. on Integrated Formal Methods (IFM 2016), LNCS,
Springer, 2016. Accepted for publication after peer-reviewing.

[PSP8] F. Bujtor and W. Vogler. ACTL for Modal Interface Automata. In 16th Intl. Conf. on
Application of Concurrency in System Design (ACSD 2016), IEEE. Accepted for publication
after peer-reviewing.

1.1.2 Other Publications & Patents

None
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2 Objectives and Work Programme

2.1 Anticipated Total Duration of the Project

This is a follow-up proposal (renewal) to DFG project Foundations of Heterogeneous Specifica-
tions Using State Machines and Temporal Logic, which has been funded for 24 months (grant no.
LU 1748/3-1 and, resp., VO 615/12-1) and of which approx. 75% (full-time equivalent) has been
completed to date. Further DFG funding is now sought for extending this project by 36 months.

2.2 Objectives

Aim. The project’s aim is to significantly enhance the theoretical foundations and practical utility
of those heterogeneous specification formalisms for concurrent systems that mix operational and
logic styles of specification. Our particular interest is in interface theories on the basis of de Alfaro
and Henzinger’s Interface Automata (IA) and Larsen’s Modal Transition Systems (MTS), which
emphasise parallel composition and logic conjunction for composing specifications. The project
so far has introduced the novel Modal Interface Automata (MIA) theory, which stands apart from
related work in that it fully supports compositional, nondeterministic specifications and features
temporal-logic operators for specifying safety properties. The distinct advantage of this are more
compact, concise and reusable specifications.

The follow-up project, for whose funding we apply here, shall deliver substantial extensions to
our MIA theory along two axes: heterogeneity and applicability. Firstly, MIA’s heterogeneity shall
be greatly expanded by adding further logic operators and refining MIA’s semantics, so that also
liveness and fairness properties can be expressed. This will permit the specification of significant
additional classes of reactive-system and concurrent-software requirements within MIA, namely
those capturing behavioural guarantees. Secondly, MIA’s application scope shall be widened
significantly from solely being a refinement theory for compositional specification and design, to
also lending itself as a behavioural type theory. This will allow for advanced typing support for
parallel programming, which will ultimately lead to more reliable concurrent software. As a first
but important step towards technology transfer, the project shall produce and evaluate novel,
prototypic tools for MIA within the parallel programming language Go.

Objectives. The concrete objectives of the follow-up project are as follows:

1. Extending MIA with data (WP BA1 & A2). Practical specification and programming lan-
guages obviously deal with data. In parallel programs, data is exchanged in intricate ways
via shared variables or value passing. Reasoning about data becomes nontrivial, because
data must be guarded against interferences caused by data races. Here, we wish to extend
MIA with concepts for data, and to revise our MIA framework accordingly.

2. Expanding MIA’s heterogeneity (WP A3, A4 & BA5). We wish to add further propositional
and temporal logic operators, in particular implication and operators for expressing liveness
properties. In this context, we will explore the trade-off between relaxing MIA-refinement,
e.g., in the spirit of fair testing, and enriching MIAs, e.g., by counters or Büchi states.

3. Developing MIA to a behavioural type theory (WP A+BA6, A+BA7, A8 & BA11). In order
to utilise MIA for parallel programming, we wish to study MIA as a type theory, where MIAs
describe the behaviour of processes and communication channels. This involves adapting
MIA-refinement for type checking as well as inferring behavioural types from parallel pro-
grams. The former will employ session types for describing the communication structure of
the partner processes with which a process communicates.
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Figure 1: Proposed scheduling of work packages.

4. Tool support & case studies (WP BA9, A+BA10 & A+BA12). Interface theories and be-
havioural types will only be adopted in the practice of developing reactive systems and con-
current programs, if they are accompanied by tools. Starting from our first prototype tool of
MIA in Google’s parallel programming language Go, we wish to optimise the SMT-based re-
finement checker and add facilities for providing diagnostic information to the programmer.
We will further incorporate our temporal logic operators as well as data. The resulting tool
shall be evaluated by means of several case studies and made available publicly.

Outcome. In the last 18 months (full-time equivalent), the project has developed the theoretical
foundations for novel, expressive and heterogeneous interface theories. The project’s outcome
to date are 11 peer-reviewed publications in international conferences and high-quality journals.
To make our results useful for software development practice, the project extension for which we
apply here, will add to our theory essential features for concurrent programming wrt. data, het-
erogeneity and behavioural types. A sophisticated tool prototype accompanied by case studies
will lay the basis for a future technology transfer to the software industry.

2.3 Work Programme incl. Proposed Research Methods

The proposed programme of work involves 12 work packages, in which our international and na-
tional collaborators participate as follows: Prof. Cleaveland in work packages WP BA9, A+BA10
and BA11, Prof. Valmari in WP A4, and Prof. Nestmann and Dr. Peters in WP A+BA6, A+BA7
and A8. Work packages whose name starts with letter ‘A’ and letters ‘BA’ will be led by the project
team at Augsburg and Bamberg, resp., and those starting with ‘A+BA’ will be conducted jointly
throughout. The proposed scheduling of all work packages is depicted in Fig. 1.

WP BA1: Shared-variable communication. This work package shall investigate a different
communication mechanism to MIA’s multicast, namely shared-variable communication. In partic-
ular, processes will communicate via global variables, which can be read in transition guards and
written by actions associated with transitions. A particular emphasis of our study will be on the
impact of data races, i.e., write/write and read/write conflicts, on compatibility.

Our reference semantics for share-variable MIA will be a ground semantics that simply encodes
data values into states, but which is impractical due to state explosion. Instead, we will employ
pre- and post-conditions at transitions in the form of logic formulas over atomic data propositions,
such as value comparisons. This is inspired by Hennicker et al.’s handling of data for MIO [4] and
also by Sociable Interfaces [28], and naturally supports compositional and symbolic reasoning.
The resulting MIA transitions may be symbolic in that data values, also for write operations, might
not necessarily refer to specific values but to ranges of values; these ranges may be expressed
by basic data types such as integer or bool. This aspect will be taken into account by our notion
of MIA-refinement in the shared-variable setting.

WP A2: Value-passing communication. Using similar ideas as above, this work package
shall extend MIA’s multicast communication by value-passing. In departure from shared-variable
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communication, processes will have local variables, which again can be used in transition guards
and actions. Following the lines of [47] we will study, in our more general nondeterministic setting,
the influence of value passing on compatibility and the construction of quotients.

WP A3: Revisiting MIA semantics. Also as a preparation for WP A4, we shall investigate
whether there are natural precongruences lying strictly between MIA-refinement and the trace-
and failure-based preorders studied by us in [12] for IA and in [11, 13] for (d)MTS, resp. The
motivation is that the latter preorders are fully justified by intuitive notions of observation, in con-
trast to the finer bisimulation-like MIA-refinement. At the same time, the interplay of the transition
modalities is currently represented poorly in the (d)MTS failure-semantics.

A first step shall be to combine the approaches of [11, 12, 13] and to determine the coarsest pre-
congruence wrt. parallel composition that preserves compatibility and deadlock-freedom. Another
candidate is the coarsest precongruence wrt. parallel composition and ^, which preserves com-
patibility and consistency; here, ^ is the conjunction operator we developed for MIA-refinement
[10]. This second idea is taken from Logic LTS [58].

WP A4: Expressing liveness in MIA. So far, operators for expressing liveness properties
are missing in our MIA-logic. It seems unlikely that such connectives can be translated into
resp. operators on MIAs in a way that the main results of our heterogeneous framework are
preserved. Typically, the treatment of liveness properties needs a preorder based on fairness
notions, possibly for a modified model, e.g., with Büchi states. This usually leads to complications
wrt. compositionality. Therefore, it might be more promising to study preorders that are slightly
stricter than the failure preorder, such as the CFFD-preorder of Valmari et al. [70] or the fair-testing
preorder [72]. As explained in the related work section above, the fair-testing preorder preserves
properties of the form ‘action a will be performed eventually’ without the need of fairness notions
or Büchi states.

WP BA5: Implication for MIA. Like conjunction, implication ! is a very important operator
for specification, which can be characterised in MIA as the adjoint of conjunction. It is unlikely
that implication on general MIAs exists, because this would yield a negation operator on MIAs
via P ! ↵. Therefore, we wish to explore restricted forms of implication, e.g., by adapting the
independence relation of Larsen et al. [53]. Also negative results showing that implication does
not exist for certain MIAs would be of interest. In this context, it might also be worthwhile to study
the impossibility of a finite axiomatisation of MIA-refinement in the presence of implication.

WP A+BA6: Comparing interface theories and session types. ‘Processes as types’ is a
wide field, which is addressed by largely disjoint research groups within the concurrency theory
community. Since the next work package aims at enhancing the MIA interface theory with con-
textual information expressed by session types, it is necessary to understand in technical detail
the commonalities and differences between interface theories and session types. Session types
are syntactic representations of communication structures, whereas MIA is an operational model
focusing on a richer semantics and with fewer restrictions. We expect that the typing relation of
session types can be understood as an abstraction of MIA-refinement. A challenging question is
what role the transition modalities in MIA play in this context.

WP A+BA7: Coarsening MIA-refinement. A MIA specifying a system component can be im-
plemented by more MIAs than those permitted by MIA-refinement, if contextual information is
taken into account. The current MIA-refinement is a precongruence and, thus, respects com-
position with arbitrary contexts, i.e., component environments. In practice, however, a system
designer or programmer often has a class of contexts satisfying a specific communication struc-
ture in mind. Such classes may be captured by session types, which in essence coarsens the
refinement relation. Technically, this will correspond to quotienting the specification-side MIA by
session types, thereby eliminating behaviour not respecting the given communication structure.
For this purpose we will investigate and adapt our quotienting operator for MIA.
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WP A8: Extending MIA with name-passing. A strength of session types is the possibility to
delegate a session from one component to another by name-passing as in the ⇡-calculus [65].
Similarly, channel names can be passed along channels in parallel programming languages in-
cluding Go. As an aside, note that channels in Go are finite FIFO buffers, which can be modelled
in MIA. Because we wish to use MIAs as behavioural types for Go, we will enrich value-passing
MIA by the capability to pass names as values. To do so, we will built upon the vast work on
⇡-calculi theory. Of particular interest to us will be how the presence of name-passing effects
compatibility and consistency within MIA.

WP BA9: Implementing heterogeneous MIA with data. Our existing initial tool for MIA pro-
grammed in Go will be extended to handle data on the basis of the first two work packages
on shared-variable and value-passing communication, resp. In the first place, this involves the
implementation of MIA’s operators, which now deal with symbolic transitions and with variable
values associated with states. A second challenge is the according extension of our SMT-based
refinement checker, for which we will employ a counterexample-guided abstraction refinement
(CEGAR) approach [21] including predicate abstraction [43], as is standard in modern automated
verification [36]. Obviously, we will have to restrict ourselves to decidable data theories such as
integer linear arithmetic, so that refinement checking can again be reduced to SMT-checking. If
time permits, we will also study how the refinement checker could be extended to handle the
name-passing described in the previous work package.

WP A+BA10: Providing diagnostic information. So far, our prototypic tool does not provide
any feedback to the user if a refinement check fails. The aim of this work package is to enhance
the tool with the ability to provide according diagnostic information. Since MIA-refinement is a
co-inductively defined behavioural relation, we envisage that this information will have the form
of a strategy for a two-player game [77]. To achieve our goal, we first need a game-theoretic
characterisation of MIA-refinement in the presence of data and the resp. pre- and post-conditions.
The second step is then to extract the strategy from the satisfying assignment that is output by
the SMT-solver; recall that our refinement checker employs a QBF-encoding.

WP BA11: Behavioural type checking and type interference. In this work package we will
use MIA as a behavioural type theory for the parallel programming language Go. We envisage
that the programmer annotates every Go process in a program with a MIA that describes the
process’ use of channels when communicating with the other processes in the program. Such a
MIA will typically be the result of the refinement-based design methodology supported by our MIA
theory. Essentially, type checking is MIA-refinement checking as discussed in WP BA9, where the
abstract MIA (i.e., the implemented type) to be checked against the given MIA (i.e., the desired
type) is inferred from the Go process. This will take place inside the CEGAR mentioned above.
Part of the work package will also be the design of a nice textual syntax for MIA types, which is
suitable for programmers; in particular, one can think of a notation that decomposes MIA types
onto each process and channel of the considered Go program separately.

WP A+BA12: Case studies. Our heterogeneous interface theory MIA and its use as behavioral
type theory in the Go programming language will be evaluated by means of case studies, which
will employ our prototypic tool support for MIA.

We will focus on at least two of the five following case studies taken from the rich literature on
interface theories and related fields, some of which we will suitably detail with data aspects in
order to be able to analyse also data-dependent communication behaviour: (a) a car parking
system, which has been studied by Benvensite et al. [7] and which utilises Modal Interfaces [71]
and its quotienting operator for expressing contracts; (b) a mode logic within an aircraft control
system [57, 62], which is typically designed in a stepwise, top-down manner and which monitors
an aircraft’s sensors and selects the control laws that in turn compute values for adjusting the air-
craft’s actuators; (c) a harbour docking system that manages ships waiting to dock at a harbour,
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tracks the entering of ships into the port to the quays and prevents the double allocation of ships
to quays, whose design has been investigated by Harbird [44] using a model transformation ap-
proach that combines operational and declarative design language features; (d) an autonomous
rendezvous and docking system, which describes a spacecraft’s capability of locating and dock-
ing with another spacecraft and which has been studied by Emmi et al. [37] in the context of
Interface Automata; (e) the remote procedure call case study of Broy and Lamport [9], which has
been employed by Larsen et al. for evaluating Modal Transition Systems with conjunction [53].

In each case, we will design the system in a refinement-based fashion using MIA as a speci-
fication and design language, starting from a global specification that conjunctively composes
declarative behavioural requirements and which we expect to heavily employ MIA’s temporal-
logic operators. Then, we will successively detail much of the declarative content using oper-
ational constructs, and each such refinement step shall be verified by our refinement checker.
At the end of the design phase we will have obtained a collection of parallely composed MIAs,
each of which may be interpreted as a behavioural type. The system under study shall then be
implemented in Go as a collection of processes, one for each behavioural type. Our type checker
will be exercised to verify that each process satisfies its type, so that our compositional theory
guarantees that the implemented parallel system indeed satisfies its global specification.

Using this approach to specification, design and verification, we will systematically evaluate our
interface and behavioural type theories as well as our tool prototype. Our focus will be on sev-
eral orthogonal aspects. Firstly, we will explore the flexibility of MIA as a compositional, het-
erogeneous refinement theory, as well as the utility of the behavioural type system for parallel
programming. Secondly, the benefit of heterogeneity, i.e., the mixing of declarative and opera-
tional styles of specification, will be investigated. In this context, we wish to establish whether
heterogeneity does indeed yield more concise specifications and whether our MIA interface the-
ory adopts the right set of operational, propositional-logic and temporal-logic operators. Thirdly,
the scalability of our algorithms for checking MIA-refinement, inferring behavioural types from Go
processes and providing diagnostic information to designers and programmers will be evaluated
and, if necessary, improved. Although the above case studies are below industrial size, they
share many characteristics of industrial software designs. The conduct of these case studies will
help us transferring our technology to software engineers who can then build tool-supported and
industrial-strength interface methodologies on top of it.

2.4 – 2.6 Not Applicable

2.4 Data handling; 2.5 Other information; 2.6 Descriptions of proposed investigations involving
experiments on humans, human materials or animals.

2.7 Information on Scientific and Financial Involvement of International
Cooperation Partners

Not applicable; see Sec. 5.4.1 for information on international (and national) cooperation partners
with whom we will be working together informally. These partners neither have applied nor will
apply for funding with the DFG or a partner organization in the context of this project proposal.
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[57] G. Lüttgen and V. Carreño. Analyzing mode confusion via model checking. In SPIN ’99, vol.
1680 of LNCS, pp. 120–135. Springer, 1999.
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4 Requested Modules/Funds

Funds are requested for the full application period of 36 months. All funds other than for staff are
to be split 50:50 between Augsburg and Bamberg.

4.1 Basic Module

4.1.1 Funding for Staff

At each site, Augsburg and Bamberg:

• 1 Research Assistant, RA (PhD student) for 36 months full-time (Doktorandin/Doktorand
und Vergleichbare, 100% der regelmäßigen Arbeitszeit)
This RA will be the main researcher contributing to the project from Augsburg’s and Bam-
berg’s end, resp. That this post is full-time does not only match the volume of work pro-
posed, but is also necessary to attract suitable candidates, given the excellent job prospects
and the high starting salaries offered in the IT sector.
It is envisaged that, initially, the RAs currently working on the project, Dipl.-Inform. Ferenc
Bujtor (Augsburg) and Dipl.-Math. Sascha Fendrich will stay on; however, they are likely to
leave in Summer 2017 when they are expected to have completed their doctoral studies.
In Augsburg, the RA post will likely be filled with a student who conducts her/his Master’s
thesis on a concurrency-theoretic topic with Prof. Vogler.
In Bamberg, Johannes Gareis, M.Sc., shall be employed as RA after the leaving of Sascha
Fendrich. For his Master’s thesis, Mr. Gareis has built an initial prototype of a tool imple-
menting MIA for the programming language Go [40].

• 1 Student Assistant, SA (Studentische Hilfskraft) at the standard rate.

– At Augsburg: 13.44 Euro per hour for 44 hours per month for 24 months, for a total of
14,192.64 Euro.

– At Bamberg: 12.16 Euro per hour for 44 hours per month for 36 months, for a total of
19,261.44 Euro.

After a familiarisation period with the project of three months, the SA will assist the RA with
tool development (mainly with the programming tasks of WP BA9, A+BA10 & BA11) and
evaluation (with the conduct of case studies in WP A+BA10). A student at Augsburg who
has taken one or more of Prof. Vogler’s modules on automata theory, process algebra and
distributed algorithms, would be most suitable for the SA position at Augsburg. The SA at
Bamberg will likely be recruited among the students who take Prof. Lüttgen’s modules on
software engineering, software analysis and software verification.
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4.1.2 Direct Project Costs

4.1.2.1 Equipment up to 10,000 Euro, Software and Consumables. Specialised equipment
for carrying out the proposed project is not required. All staff on the project will be equipped by
the Universities of Augsburg and Bamberg with

• State-of-the-art PCs and/or laptops. All software necessary for carrying out the project is
available free of charge.

• Headsets and webcams. These will enable the communication (via Skype or similar ser-
vices) between the project sites Augsburg and Bamberg, and with the project partners at
Maryland, USA, Tampere, Finland, and Berlin, Germany.

No funds for consumables are requested.

4.1.2.2 Travel Expenses. Funds are requested to cover the cost of travel that is required for
carrying out the project and presenting its results to the international scientific community:

• Conferences/workshops
Each site is expected to actively participate in two international conferences/workshops
during each project year, with one travel being within Europe and one overseas. Examples
of targeted meetings are, in alphabetical order, the international conferences on Applica-
tion of Concurrency to System Design (ACSD), Concurrency Theory (CONCUR), European
Symposium on Programming (ESOP), Fundamental Approaches to Software Engineering
(FASE), Foundations of Software Science and Computation Structures (FOSSACS), Foun-
dations of Software Engineering (FSE), Automata, Languages and Programming (ICALP)
and Current Trends in Theory and Practice of Computer Science (SOFSEM).
The cost of a European trip is estimated at 1,500 Euro (including registration fees, accom-
modation and travel expenses), and the one for an overseas trip at 2,200 Euro. Therefore,
22,200 Euro is requested in total for all conference/workshop travel.

• Augsburg–Bamberg cooperation
The cooperation between Augsburg and Bamberg will require of the RAs mutual, quarterly
short visits of three days each for the duration of the project. In addition, each applicant
will travel to the partner site once per year for three days. This totals 18 three-day trips,
estimated at 400 Euro per trip. Thus, 7,200 Euro is requested to support the Augsburg–
Bamberg cooperation throughout the application period.

• Further cooperations
The two international project partners are located in Maryland, USA (Prof. Rance Cleave-
land) and Tampere, Finland (Prof. Antti Valmari). For the project duration, one one-week
visit to each of the partners by one member of the project team is planned. The travel
expenses for the Maryland trip and the Tampere trip will be approx. 1,900 Euro and 1,200
Euro, resp.
Semi-annual three-day visits to the national project partner in Berlin, Germany (Prof. Uwe
Nestmann and Dr. Kirstin Peters), are envisaged by one member of the project team, esti-
mated at 500 Euro per trip. Hence, the expected expenses for these six trips will total 3,000
Euros.
The overall costs of visits to cooperation partners are thus 6,100 Euro.

• Summer schools
Each of the two RAs working on the project will apply to a distinguished international sum-
mer school, such as the Marktoberdorf Summer School, related to the topics Formal Spec-
ification, Concurrency Theory and Automated Verification that are relevant to this proposal.
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The projected costs are 2,000 Euro per RA for travel, accommodation and participation
fees, thus, totalling 4,000 Euro.

In summary, the requested funds for travel are 39,500 Euro overall.

4.1.2.3 Visiting Researchers. In addition to the funds for visiting the two international project
partners as explained under bullet point “Further cooperation” above, we request funds for one
one-week visit of each of these project partners to Augsburg or Bamberg. Analogously to above,
these costs total 3,100 Euro.

We also request funds for our national partner to visit Augsburg or Bamberg every six months for
three days each. These six visits are estimated at 400 Euro each, totalling 2,400 Euro.

Thus, we request 5,500 Euro overall for visiting researchers.

4.1.2.4 & 4.1.2.5 Not Applicable. 4.1.2.4 Expenses for laboratory animals; 4.1.2.5 Other costs.

4.1.2.6 Project-Related Publication Expenses. 250 Euro p.a. are requested for each site, Augs-
burg and Bamberg, totalling 1,500 Euro over the application period.

This fund will enable us to publish in some of the increasing number of high-quality open-access
journals and conference/workshop proceedings that impose moderate charges, such as those
appearing in the Leibniz International Proceedings in Informatics (LIPIcs) and Electronic Pro-
ceedings in Theoretical Computer Science (EPTCS) series.

4.1.3 Instrumentation

Funds for equipment exceeding 10,000 Euro or major instrumentation exceeding 100,000 Euro
are not requested.

4.2 – 4.7 Not Applicable

4.2 Module temporary position for funding; 4.3 Module replacement funding; 4.4 Module tempo-
rary clinician substitute; 4.5 Module Mercator fellows; 4.6 Module workshop funding; 4.7 Module
public relations funding.

5 Project Requirements

5.1 Employment Status Information

(a) Lüttgen, Gerald, Universitätsprofessor (W3), University of Bamberg (lifelong civil servant)
(b) Vogler, Walter, Universitätsprofessor (C3), University of Augsburg (lifelong civil servant)

5.2 First-Time Proposal Data

Not applicable
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5.3 Composition of the Project Group

Both applicants will be the only people working on the proposed project, who will not be paid out
of the DFG’s funds.

5.4 Cooperation with Other Researchers

5.4.1 Researchers Cooperating on this Project

Past & present cooperations. International collaborators on the original project have been Dr.
Benoı̂t Caillaud, INRIA Rennes / IRISA, France, Prof. Rance Cleaveland, Univ. Maryland, USA,
Prof. Keijo Heljanko, Aalto Univ., Finland, and members of their research groups. The envisaged
collaboration with Prof. Richard Paige, Univ. York, England, did not materialize due to the project’s
funding of only 24 instead of 36 months, which resulted in eliminating the work packages related
to Contractual Statecharts (CSC) on which Prof. Paige had intended to cooperate.

Much input from the collaborators was gained at a two-day workshop on the topic of interface the-
ories at the University of Augsburg on 27–28th February 2014. This workshop was attended by
Dr. Caillaud and Dr. Jean-Baptiste Raclet (France), Dr. Antti Siirtola (Finland), as well as two na-
tional researchers working on interface theories – Prof. Rolf Hennicker (LMU Munich, Germany)
and Prof. Alexander Knapp (Univ. Augsburg, Germany) – and the project team, i.e., Mr. Bujtor,
Mr. Fendrich, Prof. Lüttgen and Prof. Vogler. The workshop included presentations on current
research activities and very stimulating discussions on the topics (i) deterministic vs. nondeter-
ministic interface theories, (ii) optimistic vs. pessimistic notions of compatibility, (iii) the importance
of the quotienting operator and (iv) the complexities of interface operators.

The implementation and practical evaluation of the MIA interface theory developed within this
project has recently been started at Bamberg [40] and is the focus for the approx. 6 months (full-
time equivalent) that remain in the original project. In this context, Prof. Cleaveland will provide
advise on various issues on tool building and, in particular, on ways how to efficiently implement
the MIA refinement preorder. A visit of Prof. Cleaveland to Bamberg is planned for Summer 2016.

Future cooperations. In the follow-up project proposed here, the project team at Augsburg and
Bamberg will continue the collaboration with Prof. Cleaveland and initiate a new collaboration
with Prof. Antti Valmari, Tampere Univ. Technology, Finland, and Prof. Uwe Nestmann, Technical
Univ. Berlin, Germany:

Prof. Rance Cleaveland, Univ. Maryland, USA, is Full Professor within UMD’s Department of
Computer Science, is Chairman and Co-founder of Reactive Systems, Inc., and has been the
Executive and Scientific Director of the U.S. Fraunhofer Center for Experimental Software Engi-
neering between 2005 and 2015. He has collaborated with Prof. Lüttgen since 1995, including
joint research on the topic of heterogeneous specification formalisms [22, 23].

Prof. Cleaveland has much experience in providing industrial-strength tool support based on firm
mathematical groundings in concurrency theory and automated verification, and in conducting
industrial case studies. In addition to his knowledge in implementing process-algebraic theories,
which he gained as one of the chief designers and implementors of the pioneering Concurrency
Workbench [24], he is a leading expert in automatically checking data-based systems [25, 84].
Integrating data into our MIA interface theory using shared-variable and value-passing communi-
cation is a main research objective of the follow-up project proposed here.

Prof. Antti Valmari, Tampere Univ. Technology, Finland, is Full Professor within Tampere’s De-
partment of Mathematics and is currently collaborating with Prof. Vogler on algorithmic aspects
of fair testing [80].

Prof. Valmari’s research concentrates on verification algorithms, methods and tools for reac-
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tive and concurrent systems, which has led to many process-algebraic semantic models and to
verification-motivated work in data structures and algorithms, regarding which he is best known
for his partial-order reduction methods [78]. He is an internationally recognised expert in inte-
grating aspects of liveness and fairness in compositional, concurrency-theoretic settings [70, 80],
which is a main objective of the research proposed here.

Prof. Uwe Nestmann, Techn. Univ. Berlin, Germany, is Full Professor within the Institute for
Software Engineering and Theoretical Computer Science. We also expect to cooperate with
Dr. Kirstin Peters who is a Senior Staff Scientist (Habilitandin) in Prof. Nestmann’s research
group [69].

Prof. Nestmann and Dr. Peters are leading experts in process algebras and their use for rea-
soning about distributed systems; in particular, they have much experience in type systems and
⇡-calculi [63, 66]. Prof. Nestmann and Dr. Peters will advise us on how best to extend MIA with
name passing, and will also assist us in investigating typing techniques employed in ⇡-calculi and
session types for our envisaged MIA-based behavioural type theory.

5.4.2 Past Collaborators

Within the past three years, the applicants have collaborated scientifically with the following na-
tional and international researchers: Prof. Blai Bonet, Univ. Simón Bolı́var, Venezuela; Dr. Benoı̂t
Caillaud, INRIA Rennes / IRISA, France; Prof. Gianfranco Ciardo, Univ. Iowa, USA; Prof. Rance
Cleaveland, Univ. Maryland, USA; Prof. Flavio Corradini, Univ. Camerino, Italy; Dr. Mike Dodds,
Univ. York, England; Dr. Patrik Haslum, Australian National Univ., Australia; Dr. Victor Khomenko,
Univ. Newcastle, England; Norman Kluge, Hasso Plattner Institut, Univ. Postdam, Germany, Dr.
Jan Tobias Mühlberg, K.U. Leuven, Belgium; Dr. Richard Müller, Humboldt Univ. Berlin, Germany;
Prof. Richard Paige, Univ. York, England; Prof. Frank Piessens, Univ. Leuven, Belgium; Dr. Chris-
tian Stahl, Techn. Univ. Eindhoven, The Netherlands; Prof. Sylvie Thiébaux, Australian National
Univ., Australia; Prof. Antti Valmari, Tampere Univ. Technology, Finland.

5.5 Scientific Equipment

All equipment necessary for carrying out the proposed project, i.e., PCs/laptops with standard
software, headsets and webcams, will be provided by the Universities of Augsburg and Bamberg.

5.6 – 5.7 Not Applicable

5.6 Project-relevant cooperation with commercial enterprises; 5.7 Project-relevant participation in
commercial enterprises.

6 Additional Information

None
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