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Investigator: Michael Mendler

1 Previous research track record

A Previous relevant work by investigator The project will build on substantial previous
research carried out by the investigator in the area of real-time process algebras and type theory.

Modelling Real-Time Signal Processing with Process Algebras  The semantic underpinning of the
project will be the process algebra CSA (Calculus for Synchrony and Asynchrony) [CLM97] which was developed
by the principal investigator in cooperation with Gerald Liittgen (ICASE, USA) and Rance Cleaveland (Stony
Brook, USA). CSA is a conservative extension of Milner’s Calculus of Communicating Systems (CCS) by the
notion of “local clocks” as a new primitive concept expressing global synchronisation in distributed systems.
The predecessor of CSA is the process language PMC (Process Algebra with Multiple Clocks) [AM94] developed
by the investigator and Henrik Andersen (Lyngby, DK) for the specification of a commercial measurement
instrument, the B&K 2145 Signal Analyzer [AM95]. A clock in CSA is an abstract analogue to a system
clock in hardware that can be used to express real-time constraints. The scope of a clock can be localised to
a (logical or physical) part of the system that is controlled by this clock and in which assertions about the
quantitative real-time behaviour of the clock, and the computations synchronized by it, can be made. The
scope of different clocks may be disjoint, overlapping, or nested, so that the various different time layers of a
distributed heterogeneous signal processing application can be modelled. This feature is unique for CSA and of
central importance for the proposed project. The second distinguishing feature of CSA, contrasting to many
other real-time process algebras, is that it does not require a complete and detailed specification of the timing
properties of every single action in the system. The real-time behaviour is concentrated fully in the clocks
which focus on a just a few abstract yet essential real-time constraints. Quantitative real-time behaviour may
be linked very naturally with clocks. Timing parameters such as throughput, latency, minimum and maximum
separation of events may be seen as quantitative measures relating the occurrence times of clock ticks, of one
and the same or of different clocks. The separation of the quantitative from the qualitative, i.e. synchronising,
aspect of clocks provides the abstraction necessary to master the technical complexity of signal processing and
control applications, on which the proposed project focuses, where only few timing parameters are relevant but
varying over several orders of magnitude.

Constraints and Type Theory In [Men91, Men93] is it shown how behavioural abstractions can be
formalised in terms of type specifications by introducing a modal type constructor () for “correctness-up-
to-constraints.” In this way type checking corresponds to the construction and verification of abstraction
constraints. The close connection between Lax Logic and Constraint Logic Programming has been made precise
in [FMW97]. The idea of integrating constraints into a type system has been further developed in [MF96, Men98,
Men99] for the combined functional and temporal analysis of combinational systems. The work on Lax Logic
provides the inspiration for this project, and the technical expertise to tackle the subtle issue of abstraction
contraints within a type-theoretic framework.

Other relevant background  Mendler has substantial experience in the application of formal methods to
hardware and software design. He has published a formal semantics for VHDL based on streams [FM95], used the
Concurrency Workbench for the formal verification of asynchronous circuits [RMS92], worked on formal step-wise
refinement of layered communications protocols [SGM89] and on a mathematical framework for abstract program
interpretation [STM92]. He has also investigated formal methods for microprocessor synthesis [WM95, WM96].
More recently he is responsible for the theoretical underpinnings of MoSel [KMMG97], a model-based verification
tool for the automatic analysis of finite-state systems in monadic second-order logic. Mendler is collaborator
on the EPSRC funded project GR/L86180 “Lax Logic applied to Formal System Design” persued at Sheffield.
During the period 1995-1998 Mendler held a personal fellowship from the Deutsche Forschungsgemeinschaft to
apply Propositional Lax Logic to timing analysis of combinational systems. Until January 1999 Mendler worked
at the University of Passau, Germany. There, he began a close cooperation with the group of Werner Grass
on component-based programming environments for signal-processing applications [SBFT98b]. The project will
directly benefit from and continue this cooperation.

B Previous relevant work by collaborators The research group in the school of Mathematics
and Computer Science at Passau University, which is headed by Werner Grass, is supporting this proposal—
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see attached letter. Bernhard Sick in the Passau group has developed the graphical programming tools Sally
[SFUS95] and Iconnect [SBF198a] for the interactive programming of signal-processing and control applications.
These tools have been applied to industrial-sized case studies, e.g. for feature extraction of large data sets to train
neural nets [Sic98]. Many other relevant publications may be found at Sick’s http address, see [Sic98]. lconnect
has been developed in cooperation with Roland Mandl at Micro-Espilon GmbH, who is also collaborating.

C Institutional expertise and support  Sheffield University has a large and diverse Department
of Computer Science. There is expertise in the following four broad areas: Artificial Intelligence and Neural
Nets (AINN); Language, Speech and Hearing (SPANDH); Communications and Distributed Systems (CDS),
Verification and Testing (VT). Mendler is newly appointed reader (1st Feb 99) in the VT research group which is
headed by Mike Holcombe. The department has recently achieved a rating of 4 in HEFCE’s Research Selectivity
Exercise and it currently holds in excess of £1.5M in terms of EPSRC grants and fellowships and in excess of
£3.5M of other funding including European projects.

In 1996 Holcombe completed a large SERC project GR/H 73585. The project also involved the Depart-
ment of Automatic Control and Systems Engineering and investigated formal specification and verification of
hybrid systems. Holcombe was the principal investigator on the recent SERC project IED2/1/1031 “Functional
testing of high integrity VLSI” which was highly rated on evaluation. VT’s research work is also supported
by Daimler-Benz. Fairtlough in the VT group is principal investigator on the £180K EPSRC funded research
project GR/L86180 “Lax Logic applied to Formal System Design” which started in October 1998. Mendler is
collaborator on this project. Simons in the VT group is principal investigator on the £221K EPSRC project
GR/M56777 “MOTIVE - Method for Object Testing, Integration and Verification”

The case studies for the project proposed here will be drawn from robust mobile phone applications, spe-
cifically voice dialling in cars. The background and algorithmic know-how to realise these case studies will
be provided Martin Cooke of the SPANDH group. Cooke who is a recognised expert in speech recognition
is currently working on the problem of robust voice dialling and its applications. Cooke completed a £120K
EPSRC funded project into Robust Signal Processing and Recognition of Occluded Speech, under GR/K 18962,
in October 1998.

2 Description of proposed research

A Background

Application area  Industrial software production has to cope with the ever growing complexity of software
applications under increasingly tight time-to-market schedules. There is, of course, no general-purpose ‘silver-
bullet’ solution to the fundamental trade-off between the efficiency and reliability of the software development
process on the one hand and the efficiency and reliability of the produced software on the other. It is unlikely,
in particular, that novel general-purpose programming paradigms such as object-oriented programming can
resolve this inherent conflict. Case studies like [Hat98], in fact, suggest the contrary. For specialised applic-
ation domains like control and signal processing, or intelligent networking, a new class of high-level graphic
programming systems is beginning to establish itself as an alternative to the traditional low-level ‘program-it-
all-from-scratch-in-CT+ approach. These tools represent a component-based programming paradigm based on
module abstraction and software reuse. They typically provide a rich repository of pre-compiled and well-tested
software modules (such as FIR-filter, FFT-transforms, PID-controllers for signal processing). It is the restriction
to their specific application domain that permit component-based programming systems to take over from the
application programmer most of the error-prone programming tasks. By employing fixed design abstractions
they can encapsulate the complexity within abstract modules with clear-cut interfaces. Such tools embody a
wealth of domain-specific knowledge about the given application area. The enormous potential of component-
based application-specific programming environments in increasing programming efficiency has been clearly
demonstrated by academic and commercial projects. Their potential in increasing correctness and efficiency of
the application software itself, however, is only beginning to be recognized, such as by [SMC*96] in the domain
of intelligent networking. Currently only few programming tools in signal processing and control exploit light-
weight static validation techniques such as type-checking, timing analysis, or model-checking, which have been
developed in Computer Science over the past two decades. Here lies a large potential for further research and
development. Static validation methods can be an effective way to meet special demands of these application
areas, in addressing the quality characteristics of accurateness, reliability, and efficiency, but without incurring
prohibitive run-time overhead.
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Related work

Graphic programming environments for signal processing and control applications with integrated
run-time system. In [Sch97] an overview of the most important tools in this area is given. A widely
used PC-based programming tool for measurement and control applications is LabVIEW (Laboratory Virtual
Instruments Engineering Workbench) of National Instruments. It has a very powerful graphical user interface to
define virtual instruments and build applications by connecting them [JP97]. The are many other commercial
and noncommercial tools with graphical program specification. Examples are HP Vee of Hewlett Packard
[HPVee], DASYLab [TL97] by Datalog GmbH, DIAdem [Dia96] of GfS mbh. The system Khoros [Fri97] for pattern
recognition and image analysis is publicly available. Finally, we mention the tools Sally [SFUS95] and lconnect
[SBF+98a] developed by Passau University, the latter in collaboration with Micro-Epsilon GmBH. Apart from a
sophisticated GUI which supports a component-based programming style and the run-time system, these tools
have in common a number of features specific to signal processing, measurement and control applications. They
are typically based on a high-level data-flow model which may include:

¢ block-oriented data streams e different sampling rates e cycles in the data-flow graph, simple
control-flow e synchronization of data streams e parallel execution of graphs e real-time constraints
e hierarchical structuring e user defined data types and modules

In the following we shall simply refer to these as SGPR tools (for ‘Signal Graph Programming and Run-time’).
Besides the SGPR tools mentioned there exist other high-level systems without run-time system that generate
executable code from data flow specifications (see e.g. [BML96]). A well-known example is Ptolemy [Pto] which
was developed for the design and simulation of multiprocessor systems or DSPs. The kernel of Ptolemy has
been used in various other systems (simulation of optical communication networks, design of special purpose
processors [RGF97]) by a number of international companies and universities such as as HP, NEC, Cadence,
Universities of Boston and Berkeley, as well as governments.

Types and Type-Checking.  Some SGPR tools like Sally perform a limited form of type checking. For
instance, they may produce an error message in case a fixed-point number input is connected to a floating-
point output. Due to their high level of description the signal flow graphs of SGPR tools are rather similar to
functional programs, and many type-theoretic features developed for functional programming may be exploited.
Among them is the let-polymorphism [Mil78] which can be used for validating hierarchically structured flow
graphs involving local declarations and instantiating of generic modules. Dependent types [CW85] are useful
e.g. for generic modules whose number of inputs and outputs depend on a static parameter. Another example
arises if module types include timing information: The propagation delay through a FIR filter depends on the
the number of filter stages which is not known in advance but determined at programming time. A natural
example for sub-types is easy to find, too: in order to connect a module A producing data in blocks of 100
integer values with another module B that accepts integer blocks of variable size the type system must be able to
recognize the type integer[100] of A’s output as a sub-type of integer[*] which is the type of B’s input. There are
a number of type analysis algorithms in the literature for type systems of different expressiveness. An excellent
overview is given in [Mit90]. Traditionally, these focus on data structures only. There is, however, no intrinsic
reason why types should not also capture abstract reactive and temporal semantic constraints. It is the goal of
this project to demonstrate this. In SGPR tools type analysis may include the computation of sampling rates
to instantiate generic modules and introducing antialiasing filters appropriately. Further, if types express worst-
case propagation delays through modules, the type analysis for a composite signal flow graph might synthesize
the overall latency of the graph. In general, assuming that types also capture abstract reactive and temporal
behaviour, type synthesis would amount to computing the reactive and temporal properties of the composite
system from that of its parts, as far as these can be expressed in the given type system. In including reactive
and temporal aspects into the type checking and synthesis, this project conquers new terrain.

Processes and Model-Checking. In order to achieve a suitable level of flexibility in adjusting the de-
scriptive level we will employ a process algebraic approach. Process algebras are an extremely well investigated
framework for specifying and verifying concurrent systems at a high abstraction level. Their semantics typic-
ally is given in terms of transition systems describing the reactive behaviour of the system at hand, together
with an equivalence relation that compares processes according to some notion of observation. Traditionally,
process algebras are restricted to modelling the nondeterminism of distributed reactive systems. Recently, an
increasing number of papers in the area is concerned with introducing implementation specific features into
process algebras. Of those in particular the aspects of time [HR95] and priorities [CW95] are important for
this project. However, most of these process algebras, as far as the mentioned extensions are concerned, deal
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with non-distributed systems, i.e. with global time and global priorities. Only recently process algebras with
distributed time and priorities have been introduced [CLM97, CLN96]. Another characteristic of existing timed
process algebras is that they are geared towards a maximally detailed and low-level description of a system’s
temporal behaviour. For complex signal flow graphs this must inevitably lead to unmanageable descriptions.
Because of this these timed process algebras are not suitable as the basis of a notion of a reactive process
type as envisaged by this project, which is to represent static information that abstracts from most timing
parameters. The same applies to non-process-algebraic formalisms such as timed automata [AD94] or real-time
logics [JM94, GMM90, 0S95]. Therefore, as described above, we will use a more abstract approach based on
the clocked transition systems of CSA. Efficient algorithms for checking the equivalence of (CSA) transition
systems may be derived from the partition refinement method [PT87]. The other automatic analysis technique
that has been very successful, which carries to CSA as well, is model checking. Its purpose is to verify abstract
reactive properties expressed as logic formulas in a modal logic, such as the absence of deadlock or livelock,
mutual exclusion or other safety and liveness properties. In this area a lot of progress has been made, which
is documented, for instance, in the proceedings of the Springer LNCS conference series on Computer Aided
Verification. An overview of tools and methods is given in [IP96]. Recent notable developments on the tool
side include the North Carolina Concurrency Workbench [CS96], the Concurrency Factory [RPSO96] at SUNY,
Stony Brook, SMV [CMCHG96], SPIN [HP96] and TempEst [JPvO95]. For timed process algebras and timed
automata, too, model-checking algorithms have been developed, see e.g. the first issue of the STTT journal
[SCMO7]. It is expected that these can be adapted for CSA to include time parameters for clocks.

B Research programme and methodology

B.1 Aims and Objectives  The overall aim of this project is to open up and explore a new route for
transferring formal methods technology into software industry, by extending the conventional type-checking
paradigm. Specifically we aim to develop an automatic validation method based on the notion of real-time
process types in combination with rigorous semantic models that

¢ permits the specification of static functional, reactive, and temporal requirements e combines and
adapts standard type-checking, model-checking, and timing-analysis techniques,

e is specialised for use in component-based interactive programming environments in the signal
processing and control area.

By developing appropriate verification algorithms based on our method our long-term aim is to help practical
programming tools in the targeted application area meet the high demands on correctness, real-time perform-
ance, and numeric precision of the resulting programs. The specific objectives are

e to devise a theory of real-time process types that combines reactive and temporal behaviour e
to develop efficient automatic type analysis algorithms for this type theory based on the notion
of abstraction (from control data and timing) and constraints e to produce a stand-alone type
analysis tool implementing these algorithms e to demonstrate their usefulness and efficiency in the
application context, by integrating the type analysis into an existing SGPR system and running
application examples and use scenarios.

B.2 Methodology  Historically, type-checking focuses on functional behaviour only, i.e. addresses the
question “are the data of the right form and used consistently during the computation?” The project proposes
to extend the notion of types also to capture abstract reactive and temporal semantic constraints, e.g. “are the
data produced and consumed in the right order and properly synchronized with the computation phases?” or
“are new input data accepted with sufficient speed?” These, too, are abstract properties of SGPR programs
which may be verified statically at programming time. Using the close analogy between types and specifications
the project will develop a theory of real-time process types that extends the standard functional type systems by
reactive and temporal information, and devise appropriate type-analysis algorithms that extend the standard
functional type checking by model-checking and timing analysis (e.g. MILP-solving).

In order to obtain rigorous statements about the soundness and (relative) completeness of the extended
type-checking algorithms developed in this project an adequate semantic framework is needed. This will be
provided by the clocked transition systems of CSA. The process algebraic semantics provides for a technically
economical way to capture adequately the nondeterminism and concurrency. Both arise quite naturally in a
static description of signal flow graphs that abstracts to a large extent from data dependence, as well as most
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details of the run-time system and the implementation platform. The role of abstraction and nondeterminism
for static analyses is highlighted in [Cor96]. In [Cor96] it is shown for imperative programs how one can obtain
sufficiently precise and yet compact real-time models, even considering priorities, run-time overhead, or resource
limitations. Choosing a process-algebraic approach has the advantage that it is faithful to possibly distributed
implementations, and that it permits the modelling of optional and non-optional module inputs as well as any
other control-flow that may exist in a signal flow graph. For this many of the well-known data-flow semantics
based on streams (which go back to [Kah74]) are insufficient.

The clocks of CSA will be the interface between the qualitative (clock ticks as synchronisation event) and
the quantitative (relative distance between clocks ticks) real-time behaviour. The interface between reactive
and functional behaviour is given by the value-passing principle that combines in an orthogonal way the com-
munication action with the data transmitted in the synchronisation event. This separation of concerns makes
process algebras in general and CSA in particular an ideal semantic formalism for the project. The abstraction
level can be adjusted in several directions (data, timing, control state abstraction) by introducing additional
nondeterminism and also by trading between local (actions) and global (clocks) synchronisation.

A distinct methodological feature of the project will be the use of abstractions and constraints as a means for
the semantically consistent combination of dedicated validation algorithms. Dedicated algorithms for functional,
reactive, or temporal properties will need to abstract further from the CSA process types (which themselves are
abstractions of module behaviour). Efficient model-checking, for instance, will have to abstract from data and
possibly also from timing parameters. However, to maintain a consistent interpretation of the model-checking
result the data and timing constraints that are left behind must be taken care of. Similarly, efficient timing
analysis may require abstraction from control states and data. To trade complexity between different verification
methods and to obtain a consistent combination of type-checking, model-checking, and timing analysis we intend
to follow up ideas from Lax Logic and constraint programming.

B.3 Originality and timeliness = Model checking, timing analysis, and (ordinary) type checking are three
of the most well-known and successfully mechanized formal verification techniques developed in Computer
Science. They have been developed, however, as separate methods. Their combination within one coherent
specification and validation system has not been attempted before.

A new generation of formal methods tools discussed in the literature combines different verification methods
to overcome their inherent limitations and expand their applicability. Recent work advocates hybrid specification
and verification methods, such as combining theorem-proving and model-checking [ORR*96, Yu99]. In another
direction some workers advocate data-abstraction and generation of data constraints to extend model-checking
with functional verification [HGD95]. Our project, too, falls into this class of hybrid methods, but focuses
on static validation rather than formal verification. It is not the generality and expressiveness of one single
formalism that is at issue in this project but the semantically consistent combination of different static analysis
methods.

On the theoretical side the project will highlight the importance of intensional soundness and completeness
theorems to deal with abstractions in the presence of constraints. So far most abstractions considered, e.g. in the
model-checking literature, evade the problem of constraints simply by applying abstractions only in situations
in which the property one is interested in is known to be preserved. This, however, is a rare case in practice and
rules out many interesting applications of model-checking. The results of this project, which takes abstraction
constraints seriously, therefore may be expected to conquer new terrain for model-checking applications. The
same applies to the timing analyses considered by the project.

B.4 Programme of work  We are requesting funding to develop the proposed theory of real-time types
to include static reactive and temporal information, and associated abstractions. These are the main novel
features of our type theory. Conventional data types will also be considered, though not be the main focus.
The work will proceed in three phases, as described in the following.

Phase I: Type Systemm In the first year the type system of real-time process types PT, specialised for
the class of SGPR programming tools, will be developed. Its semantics is defined as an extension of CSA to
capture static constraints on the reactive and temporal behaviour of modules and signal flow graphs. The
extension consists in adding timing parameters to CSA clocks, and finite value passing to CSA actions. Clock
timing parameters are to measure the relative speed of modules at different synchronization levels. In terms of
clock timing parameters it will be possible to express a number of standard performance requirements such as
lag time, throughput, response time constraints. It will be shown how typical real-time scheduling strategies
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employed by SGPR tools can be expressed by CSA processes that enforce execution priorities on clocks. In
the project we will restrict ourselves to value passing over finite data types, which is adequate to model the
control flow in SGPR graphs. According to the static analysis paradigm all non-finite influence of signal data on
the control flow and performance will be subsumed by nondeterminism and worst-case timing approximations.
There exist standard techniques for adding value passing (e.g. [HL95]) to CCS-based process languages such
as CSA. More specifically, we can build on work done at the Technical University of Denmark [Mgr99] for the
related language PMC.

Based on suitably formalised languages PT of process types and SFG of signal flow graphs, the type system
will consist, at its heart, of a typing relation my : pt,..., my, : pt,, FpT sfg : pt, specifying that a given signal flow
graph sfg € SFG posesses the process type pt, assuming that all the modules my, ... m, have the process types
pty,...,pt,, respectively. The relation Fpt embodies the CSA semantics of process types. It defines the typing,
and serves as the formal basis to establish soundness and completeness of specific type analysis algorithms to
be developed in phases II and III that implement the type system.

Phase II: Type Analysis In year 2 the type analysis algorithms for the type system are developed. Full
type checking in terms of Fpt (4.e. using the transition system semantics) would combine all three behavioural
aspects of control data, reaction, and time together. This is likely to be too inefficient for practical SGPR
tools. Instead, in phase II, the project will identify fragments PTy, PT¢, PT4 of PT that focus on reaction,
time, and data, respectively. The fragment PTr would abstract (to an adjustable degree) from data and timing
and thus reduce PT to the standard CTL model-checking problem; Similarly, PT{ will be the fragment of pure
(combinational) timing analysis, and PT 4 of conventional type checking problems. To make use of these simpler
fragments abstraction maps aq; : PT — PTy, ag, : PT — PTy, and o,y : PT — PTy will be defined. There
may be several such maps, e.g. different ag, for response-time and lag-time analysis. The purpose of a4, a4,
a,¢ is to reduce the general type checking problem for PT to that for PTy, PT¢, PT, respectively, for which
efficient modifications of well-known static validation algorithms can be implemented. Since these abstractions
loose information their correctness and completenss is only up to constraints. For instance, where ag; abstracts
from control data and timing it will increase the nondeterminism of a type pt and introduce into ag4;(pt) new
potential execution paths, which are executable (or sensitizable) only if certain associated data and timing
constraints are met. If the abstract PTr model-checking my : ag4:(pty),. .., My : agr(pt,,) Fet, sfg : aq:(pt) finds
that these execution paths are relevant for the given reactivity property agq:(pt) to hold, then these data and
timing constraints need to be validated separately outside of the model-checking. This means that the model-
checking algorithm must be implemented so that it keeps track of all the relevant constraints. These depend
both on the abstractions aq:(pt;) and on the property checked, ag(pt). The same applies to abstract PTy and
PT4 analyses. We will develop the type-checking algorithms so they generate abstraction constraints and prove
soundness and completeness properties for them relative to the generated constraints. This corresponds to the
notion of intensional soundness and intensional completeness of Lax Logic type theory [Men98, MF96].

Phase IIT: Implementation and Integration In the last phase we will implement the type-checking
algorithms and integrate them into one of the reference tools provided by Passau and Micro-Epsilon to produce
a demonstrator. The most suitable one of the tools will be selected in meetings PM3 and PM4.

We plan to implement a type analysis machine centered around a constraint handling system kernel that
serves to keep track of and solve constraints arising from the abstractions agg, a gy, oy This will exploit standard
constraint programming technology. Relevant constraint-solving packages will need to cover inequations for time
parameters, Boolean equations for control data, and term unification for ordinary data types. The type analysis
machine will be integrated with the tool’s GUI, so that it accumulates and solves typing constraints as the user
incrementally builds up a signal flow graph. Because of the interactive nature of this process, special attention
needs to be paid to error recovery and backtracking.

A demonstrator will be built to evaluate the usefulness and efficiency of the new validation features, based on
an application from speech recognition. The case study planned is a system for robust voice dialling in mobile car
phones. The algorithmic solution to this problem will be provided by Martin Cooke in the Speech and Hearing
Group. The experiments will explore different ways of modularising and distributing the complex speech
recognition algorithms developed by Cooke and perform static validation of reactive and timing constraints for
these.

B.5 Workplan  The work plan defining the work packages is given in Fig. 1.
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Figure 1: Work Plan

Phase I: e WP 1: Analyse requirements for SGPR tools; RA to attend training course at Passau to
study the project’s reference tools Sally/lconnect; simple application case study. ¢ WP 2: Extend CSA by
finite value-passing and clock timing parameters; Develop semantic framework of clocked symbolic transition
systems. e WP 3: Define formal languages SFG and PT together with the Fpt typing relation, and its
CSA semantics; Specify a representative number of Sally/lconnect modules and signal flow graphs in PT to
demonstrate adequacy of the type system as a static specification language for SGPR tools. e Milestone M1:
Interim report on WP1-WP3. e Project meetings: PM1 at Passau to discuss modelling requirements;
PM2 to review CSA model and discuss useful abstractions.

Phase II: e WP 4: Define fragments PTr, PT¢, PTy4 of PT; reformulate standard CTL model-checking
for PTy, floating mode timing analysis algorithms for PTy, and standard type checking for PT4. ¢ WP 5:
Define suitable abstractions ag;, agr, a4 and identify associated abstraction constraints; extend type-checking
algorithms of WP4 to generate constraints; establish relative (= intensional) soundness and completenss the-
orems for them. e Milestone M2: Interim report on WP4-WP5. e Project meeting: PM3 to review
theoretical results and plan implementation.

Phase III: e WP 6: Implement a stand-alone system combining the type analyses and abstractions of
WP5 with constraint solving techniques. ®« WP 7: Integrate the type analysis machine with the user interface
of Sally/Iconnect; Characterize a complete set of Sally/lconnect modules in terms of PT types; extend module
library by type-information ¢ WP 8: Use the demonstrator on synthetic examples, as well as the speech
recognition case study; Evaluate efficiency and usefulness of the type analysis machine as a static and automatic
validation facility. e Milestone M3: Demonstrator, case study, final report. ¢ Project meeting: PM4 at
Passau after completion of WP6 to decide on which implementation to use for the demonstrator, and to prepare
integration.

C Relevance to beneficiaries and collaborators  Beneficiaries of this work are the community
of engineers and scientists who seek to make significant progress in the application of formal methods in industrial
practice by exploiting the potential of large grain verification in terms of domain-specific formal methods [LG97].
The challenge that must be met is the conflict between efficiency on the one hand, and expressiveness and
correctness on the other. It is here that the project attempts to make a contribution. It attempts to show
that it is possible to combine dedicated and efficient verification methods without compromising efficiency
and correctness. By demonstrating the feasibility and usefulness of a combined static validation in a class
of domain-specific programming environments the project introduces a natural “interpolation” point between
formal methods and software engineering practice, and thus opens up a new path for technology transfer.

By integrating model-checking and timing analysis within one coherent specification and validation system,
as well as by specialising to a particular application domain the project is likely to raise new questions of both
practical and theoretical nature that are of interest to the Computer Science community in general. Specifically,
it will show how the notions of type-theoretic abstraction and constraints may permit to trade the complexity
between different static verification techniques, and to allow for efficient implementations without jeopardizing
the overall semantic correctness of the analysis.

Immediate beneficiaries of this project will be the group of Sick who are developing SGPR tools, and the
group of Cooke who are using such tools to experiment with different voice recognition algorithms. The type
checking and timing analysis methods developed in the project, when implemented in the SGPR tool, would
assist Cooke to establish the static correctness of complex voice recognition algorithms, and to study the effect
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of different algorithmic solutions on their performance.

D Dissemination and exploitation The annual project reports will form the basis of papers
presented at conferences such as Tools and Algorithms for the Construction and Analysis of Systems, Parallel
and Real Time Systems, Computer Aided Verification, as well as for papers in journals such as Formal Methods
in System Design, Software Tools for Technology Transfer, Automated Analysis of Software, and the IEEE
Transactions.

A successful conclusion of the project would establish a solid case for commercial development of the val-
idation framework in SGPR tools, but the theoretical nature of the research precludes industrial involvement
at this stage. The commercial potential will be assessed as part of the final project meeting PM4 when the
integration is discussed.

E Justification of resources  The work will require a substantial amount of research which Mendler
is not in a position to undertake. We therefore request funding of a RA1B researcher to work on the project
for 3 years. The named candidate for the post is Barry Norton, who has finished at Sheffield this summer,
with a 1st class BSc in Software Engineering. Norton was awarded the Engineering faculty’s Mappin Medal,
as the best student of Software Engineering. He is an exceptional candidate for this project. He has not only
the theoretical background (Mathematics, Logic and Logic Programming) but also considerable experience in
industrial C++ programming and component-based software developments. More details can be found in the
attached CV. Norton will be expected also to do a (part-time) Ph.D in Computer Science on a topic closely
related to the project. However, in view of the many and extremely well-paid positions in Industry offered to a
1st class candidate we would not be able to keep him merely on a studentship. He will accept, however, an RA
position. Norton has now joined our Verification and Testing group on a short term research project funded
by Daimler-Benz and supervised by Mike Holcombe, which will terminate in March 2000. The Daimler-Benz
project specifically involves model-checking and automata-based verification methods, and thus will provide
Norton with an ideal preparation towards the proposed project.

The project requires a dedicated machine for full-time use by the researcher. To build the final demonstrator
for the speech recognition case studies a high-quality microphone and an audio card are required. To have
available sufficient power for numerical computations we request funding for a dual-processor machine. Also,
in order to store the large amounts of signal and parameter data necessary for the application the machine will
need to be equipped with a second disk drive.

The project will build on existing constraint programming techniques. We plan to use the commercial C++
constaint solving library (ILOG Solver /Planner/Scheduler) developed by ILOG Ltd. Bracknell to be customised
and suitably extended by us, for integration with our implementation. The RA1B will attend a 3-day ILOG
training course at Bracknell.

We are requesting support for the RA1B to travel to Passau to work with Bernhard Sick in years 1 and 3.
On the first of these visits the RA1B will be given 6 weeks training on the Iconnect tool and its implementation,
including a two-day professional crash course run by Micro-Epsilon. This will establish a good link with Passau
and reduce the time needed for the RA1B to become a skilled user of SGPR tools. The investigator will also
need to travel to Passau, for a shorter period of time, to attend the PM1 and PM4 project meetings. To assure
the scientific quality of his work and to scrutinise the theoretical methodology the RA1B will need to undertake
a short term visit to an internationally leading research center in model-checking and logic programming, such as
the groups of Rance Cleaveland and Scott Smolka at SUNY, Stony Brook, N.J. USA. We request £1,000 for this.
We further request funding to attend European conferences and workshops within the UK, and international
conferences in year 3.

In addition to routine office expenses of £500 p.a., we will need £200 p.a. for telephone contact between
Sheffield and Passau.
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