RealType Project Report:
Type Analysis for Component—Based Real-Time Programming

Grant: GR/M99637/01; PI: Prof. M. Mendler (Years 1 € 2) / Dr. G. Luettgen (Year 8); Date: July 2003

Background/Context. The theme of this research is to extend the well-known and successful technique
of data types by reactive information, aiming at forming a semantic basis for static analysis in component—
based programming. Since the research proposal’s submission in 1999, this idea has been receiving increasing
interest in the research community and, by now, has turned into a recognised research theme at international
level, referred to by terms such as behavioural types, interface types, reactive types or architectural types.
Notable researchers competing in this area are Luca de Alfaro, Thomas Henzinger and Ed Lee in the USA,
Albert Benveniste and Jean—Pierre Talpin in France, Marco Bernardo in Italy and Franz Puntigam in Austria,
to name but a few. In this context, the present work is distinguished methodologically by using a process—
algebraic approach to reactive types and with respect to application in that it focuses on component—based
programming in the domain of digital signal processing and control (DSPC).

Within the RealType project, ICONNECT, a tool for the visual development of signal processing applica-
tions, was taken as a typical member of the family of tools targeted. A detailed description of ICONNECT and
a comparison to related tools (e.g., LabVIEW, Matlab/Simulink, Agilent Vee, DIAdem, and DASYlab) can
be found in [24]. ICONNECT itself has descended from an academic tool for signal processing developed at the
University of Passau, Germany; both the University of Passau and the commercial vendors of ICONNECT,
Micro—Epsilon GmbH in Ortenburg, Germany, were partners on this project.

Ezxample. As an example of the programming style adopted in DSPC tools consider the digital spectrum
analyser modelled by the hierarchical signal-flow graph in Fig. 1. The task is to analyse an audio signal
and continually show an array of bar—graphs representing the intensity of the signal in disjoint sections of
the frequency range. The spectrum analyser is designed with the help of source components Soundcard
and Const, and computation components Element and BarGraph. Each instance cl, c¢2, ... of Element,
written as ck:Element or simply ck, is responsible for assessing the intensity of one frequency range, which
is then displayed by component dk:BarGraph. The first input port eix; of ck:Element is connected to the
output port 50 of component s0:Soundcard, which generates the audio signal and provides exactly one audio
value each time it is scheduled. As can be seen by the wire stretching from output port oy to input
port eigo, ck:Element is also connected to component sk:Const, which initialises ck:Element by providing
filter parameters when it is first scheduled. In contrast to components Soundcard and Const, Element is not
a basic but a hierarchical component. Indeed, every ck encapsulates one instance of Filter, ck1:Filter, and
one of Quantise, ck2:Quantise, as shown in Fig. 1 on the right—hand side.

s0: Soundcard Overall System Encapsulated component ‘ Element’
SO0
cl:Element d1:BarGraph
sl:Const F o6y _) ckElement
% o €0y gy .
' 2 St cKL:Filter ck2: Quantise
c2:Element d2:BarGraph P fis fo@—— dix niw—’_" &%
s2:Const b b o 2”_,—« fiyo
B .21 502 gi2 ki
Cop W €22

Figure 1: Digital spectrum analyser

According to the DSPC scheduling policy adopted in ICONNECT, which is targeted at uni—processor
architectures, the example application will be serialised as follows within each execution cycle. First, each
source component instance gets the chance to execute. In the first cycle, this will be sO:Soundcard and all
sk:Const. In all subsequent cycles, only s0:Soundcard will request to be scheduled, since sk:Const can only
produce a value once. Each produced sound value will be instantaneously propagated from output port 5o
of s0 to the input port eig; of each ck:Element, for all £ > 1, according to the principle of isochronic broadcast.
This guarantees that all ck must have received the new value from s0:Soundcard before any cl:Element may
be scheduled, and ensures that the array of bar—graphs display a consistent state synchronous with the

environment. The scheduler then switches to scheduling computation components. Since all necessary inputs
of each ck are available in each cycle, every ck will request to be scheduled. The scheduler will serialise these
requests, each ck will execute accordingly, and the synthesised frequency—strength signal will be emitted
by component ck2:Quantise via port qo, and propagated by ck through port €6;. Upon reception of this
signal by dk:BarGraph at port gi,, this computation component instance will also request to be scheduled
and, according to the synchrony principle of run—to—completion, granted execution within the same cycle.
When all components dk have executed, the current cycle ends since these do not generate outputs that
need to be propagated to the system environment. It is important to note that, since each ck encapsulates
further computation component instances, its execution is non—trivial and involves a sub—scheduler that will
schedule ck1:Filter and ck2:Quantise in such a way that an execution of these instances will appear atomic
outside of ck. This ensures that the scheduling of the inner ckl and ck2 will not be interleaved with any
sibling ¢l of ck, or any component dk.

Let us now consider what happens if instances s0:Soundcard and s1:Const are accidently connected the
wrong way around, i.e., output port 50 is connected to input port eij2, and output port ¢o; of s1:Const to
input port eij; of cl:Element. Recall that c11:Filter within c1:Element will only read a value, an initialisation
value, from port eijs in the first execution cycle and never again afterwards. Thus, when the value of
sO:Soundcard produced in the second cycle is propagated to port ei;o and further to fijs, the system jams.
This is because the value that has been produced in the second cycle and stored at this latter port, has not yet
been read by c11:Filter. According to Micro—Epsilon GmbH, jams were the single most prominent problem in
the use of the ICONNECT tool and were only dealt with in an ad—hoc fashion by assigning execution priorities
to components; however, no compile—time checks were available to demonstrate the absence of jams.

Objectives. The project’s main objective, as reaffirmed at the initial project meeting with the industrial
and academic collaborators [1], was the development of a compositional interface model, or coordination
model, of synchronous scheduling that (i) admits hierarchical run—to—completion abstraction (ii) captures
isochronous broadcast, (iii) facilitates static jam checks, and (iv) is applicable to the ICONNECT tool. The
RealType project envisioned that this coordination model captures the interfaces of components together
with the imposed scheduling constraints; these interfaces could then be understood as a reactive type, with
the checking of jam—freeness corresponding to type checking. In the course of the project, it was realised
that the underlying semantic foundations were not unique to tools such as ICONNECT but apply to many
synchronous languages, including Esterel [3] and Statecharts [11]. Consequently, the project’s objectives
were generalised accordingly, thus widening the impact of RealType.

What was not any more a priority for the collaborators in Passau since the submission of the project
proposal was timing analysis. This is because all implementations of the ICONNECT technology had been on
multi—tasking operating systems, while experiments with real-time operating systems proved unpersuasive.
Given the change of interests of the collaborators that are documented in the minutes of the first project
meeting [1], the project’s focus had to shift from ‘timing analysis’ to ‘coordination and semantics’.

Key Advances and Supporting Methodology. The novel approach of the RealType project has re-
sulted from understanding hierarchical dataflow—oriented systems not as an extended form of pure dataflow,
as was done in Ptolemy [4] and in previous work of our collaborators [18], but as a new form of synchronous
programming language that needs to be grounded in a more general set of semantic primitives. In the
Ptolemy approach, the validation against behavioural faults such as jams and the formation of synchronous
steps of behaviour are dealt with together, by finding a solution to a system of linear equations. This tech-
nology requires that the number of inputs of each component per execution is fixed, which is an assumption
that is not valid in tools such as ICONNECT, as shown in the above example regarding the inputs eigs. To
generalise the Ptolemy approach to include statefulness of components as well as nondeterministic responses
to input values, probabilistic assumptions are necessary [4]. Since these are difficult to validate in practice,
the confidence in the correctness of jam analyses in Ptolemy is often compromised.

In contrast, the view taken by RealType is that the operations of systems in ICONNECT are a series of
synchronous steps, in each of which a fized point of communications is reached by run—to—completion, i.e.,
by asynchronous chain reaction. The new form of synchronous coordination model envisaged thus involves a
globally—synchronous and locally—asynchronous (GSLA) scheduling discipline. To achieve this, the temporal
process algebra CSA, which had previously been co—developed by Luettgen and Mendler [7], was adapted.
This algebra is general enough to express a mixture of synchronous and asynchronous behaviour. For doing

so, it employs the concept of abstract clocks that are governed by an implicit mazimal-progress assumption
reflecting run—to—completion. The unique contribution of the RealType project was to present, for the
first time, a hierarchical and compositional model for GSLA scheduling. The developed CSA—based model
decomposes the global run—to—completion scheduling into local interface descriptions, i.e., reactive types,
assigned to individual components and permits jam analysis via behavioural equivalence checking [15, 22, 23].

As in other synchronous languages, such as Esterel and Statecharts, the global nature of synchronous
encapsulation in GSLA scheduling naturally leads to positive and negative dependencies of control on the oc-
currence of signals. This poses a tangled and deep compositionality problem which had not been satisfactorily
addressed in the literature before. In the context of the RealType project, therefore, this problem was studied
extensively, covering not just ICONNECT but synchronous languages in general. This resulted in novel con-
structive semantics based on intuitionistic Kripke models and game graphs published in [2, 13, 14, 15, 16, 17].
That work proposes solutions to the compositionality problem and provides a semantic framework that can
serve as a basis of a component model for the Esterel and Statecharts’ family of languages, which addresses
a similar application domain in embedded systems design as the ICONNECT tool. The model adopted for
IcoNNECT [15, 22, 23] differs from that for Esterel, in particular, in that recurrence of signals within one
synchronous step is also explicitly dealt with.

In view of the fact that reactive types are static descriptions of interface behaviour and as such always
constitute an abstraction in time and data of the actual component, it was anticipated in the project proposal
that Laz Logic [8] would be used to tackle the subtle issue of abstraction constraints in a type—theoretic
framework. This track has been followed, too, but not yet been integrated with the coordination model
mentioned above. In [9], it was demonstrated that the modal operator of Lax Logic indeed captures a
general notion of constraint context, thereby establishing Lax Logic as a logic of constraints and solving an
open problem originally raised by Curry on constructive modalities. Relating to the envisaged application
within RealType, a special constraint interpretation of the Lax Modality was investigated in [10], where it
was shown that complete timing information can be extracted from proofs in Lax Logic.

GSLA Modelling — Course of Actions. To build a compositional coordination model, within which
each component may exhibit independent state and make nondeterministic choices, we followed as proposed
an approach based on the temporal process algebra CSA [7]. In the following, a more detailed description
shall be given of the developments of our process—algebraic coordination model for compositional GSLA
scheduling, which may be understood as a reactive-types language. These developments are listed below in
chronological order, highlighting how the project progressed over time and pointing our relevant publications,
talks and visits within the RealType project.

The first project year was largely spent by the post—graduate RA, B. Norton, to familiarise himself
with DSPC tools, in particular with ICONNECT and GSLA scheduling, and with temporal process algebra, in
particular CSA. At the same time, Norton developed first CSA models that captured various aspects of GSLA
scheduling, including run—to—completion and isochrony, and demonstrated how these may be implemented
in verification tools. These ideas were relayed to the collaborators at a visit to Passau (27th January — 3rd
February 2001), which was attended by personnel from Micro-Epsilon GmbH and at which two talks were
given. The first talk on the use of CSA to model ICONNECT was refined into a presentation for BCTCS17
in Glasgow [20]; technical details can be found in Norton’s MPhil/PhD Transfer Report [21]. This work
shows how both the synchronous nature of systems scheduled in ICONNECT and the isochronic broadcast
nature of the produced system outputs could be captured using CSA. The second talk focused on how the
CSA model could be implemented in the functional language Haskell, how this model could be interfaced to
the Microsoft software platform employed by Micro-Epsilon GmbH, and also on how this model could form
the basis of a GSLA scheduler itself. The strategy for implementation was further discussed in meetings at
Micro—Epsilon GmbH’s offices in Ortenburg (30th July — 12th August 2001), where it was also negotiated
that source code for various ICONNECT modules would be made available to the project in order to program
a realistic demonstrator. The details on the resulting implementation of this demonstrator became a report
which is available on the RealType web site [19] that is maintained by Norton.

The second project year focused on elaborating on the idea of reactive types and on exploring the utility
of temporal observation equivalence [7], which underlies the semantic theory of CSA, for checking jams at
compile—time rather than at run—time. As basis of this work served the insight that CSA models describing
the interfaces of components, together with the constraints imposed by the GSLA scheduling discipline,

may be viewed as behavioural types to those components. In this context, type inference would be the
interpretation of the act of compositionally deriving a model for a DSPC system alongside its creation, that
type assignment would be natural alongside encapsulation in creating hierarchical systems, and that type
checking would be appropriate at this point. It was observed that type checking would naturally be based
on CSA’s temporal observation equivalence since this is insensitive to internal actions whilst at the same
time being sensitive to jams. In further analogy to the fundamental ideas of type theory we noted that just
as well-typedness can guarantee termination in certain lambda calculi where reduction is the fundamental
computational operation, so the aim of well-typedness in this system would be reactivity. These ideas have
been refined and presented at the workshop on Automated Verification of Critical Systems (AVoCS ’02) [22].

The beginning of the final project year saw the hand—over of the project’s leadership from Mendler, who
took up a chair at the University of Bamberg, Germany, to Luettgen. After assessing the status of the project,
the new PI decided on finishing off the work of the first two project years by eliminating two weaknesses
of the developed CSA model for GSLA scheduling, which already emerged during the second project year.
First, the model needed to be extended to a fully-fledged coordination model. In particular, this concerned
including the ability of modelling hierarchy, or encapsulation, in signal-flow graphs, which had been ignored
so far in order not to overly complicate matters for the quite inexperienced RA. Second, the semantic theory
underlying jam detection needed to be completed by providing an axiomatisation of temporal observation
equivalence. Unexpectedly, dealing with both issues proved to be extremely challenging and thus filled
out the full final project year. Addressing the first weakness involved introducing a clock—hiding operator
to CSA, which had not been attempted before for temporal process algebras incorporating the maximal—
progress assumption. Several possible operators, reflecting different intuitions about encapsulation in the
presence of time determinism, needed to be evaluated for their utility for the DSPC domain and for their
implications, regarding compositionality and full-abstraction, for CSA’s semantic theory. Dealing with the
second issue on axiomatisation turned out to be quite problematic, before it was found that no simple finitary
axiomatisation of CSA could exist for which the traditional proof schemes for Milner’s CCS, of which CSA is
a conservative extension, would work. This insight came as a surprise as it contradicts what related work [5]
suggests. To keep the technical framework of RealType simple, it was decided to identify a suitable fragment
of CSA, expressive enough for modelling ICONNECT’s GSLA scheduling but which admits a conventional
style of axiomatising behavioural congruence. This fragment was found during a visit Luettgen and Norton
made to Prof. Cleaveland in Washington (13th September 2002) and to the ICASE Research Institute at
NASA Langley Research Center (14th — 26th September 2002). In a nutshell, the notion of maximal progress
in CSA was strengthened in a way that still permits one to model centralised systems, which is sufficient
since DSPC applications in ICONNECT are scheduled on uniprocessor architectures. This approach avoids
the experienced difficulties in the observational theory mentioned above and also simplified the definition
of a clock-hiding operator. In a subsequent visit by Norton to Mendler in Bamberg (30th September —
9th October 2002), the semantic theory for the new calculus was largely completed. This included the first
proof of full-abstractness of an observational theory with clock hiding. The resulting algebra, CaSE, was
successfully employed to compositionally model GSLA scheduling for signal-flow graphs with hierarchy. This
work will be presented at the annual international conference on Concurrency Theory (CONCUR '03) [23];
it pioneers the CSA—based GSLA scheduling model as a framework for reactive types. The original Haskell
implementation, developed at the end of the first project year, has also been reworked as a demonstrator,
now implementing CaSE. This demonstrator has been presented successfully to Micro—Epsilon GmbH (11th
July 2003), as is documented by the collaborator’s attached letter of appraisal. The axiomatisation of CaSE
will be included in Norton’s PhD thesis, which should be submitted by the end of this year.

Project Plan Review. The project has undergone a major shift in objectives during the period of funding.
As a result, the project could not maintain the workplan and work packages originally announced in the
proposal. The reasons for the deviation were twofold:

First, the original plan of extending CSA by quantitative temporal information and, based on that, the
development of timing analysis algorithms was given up early on. This became necessary after both our
industrial partner and the academic collaborator abandoned plans for re-implementing the reference tools
on a real-time platform during the first year [1]. Instead, their focus shifted to the problem of statically
analysing jams. Since this required a faithful and much deeper modelling of the GSLA scheduling mechanism,
as opposed to abstract worst—case timing analysis, the project had to embark on more serious studies into

process—algebraic theory than was anticipated. Along with that, behavioural equivalences and axiomatisation
of a language of reactive types based on CSA clocked transition systems became central to the work, while
the idea to cover ordinary functional data types and timing information was postponed. As a result of the
shift in focus, it also became necessary for the RA to spend much more time for acquiring a deep theoretical
knowledge in process theory, before he could contribute substantially to the project.

Second, the PT Mendler took up a chair at the University of Bamberg, Germany, in April 2002. Although
new Anglo—German agreements would have permitted the transfer of the grant to Bamberg, Mendler handed
over to Luettgen as PI since the employed RA Norton was not able to move due to personal reasons. This had
a couple of implications for the project’s focus. On the one hand, Luettgen’s expertise in temporal process
algebra greatly helped with developing CaSE. On the other hand, Mendler’s experience in type theory was
no longer present, which implied a further shift of the project towards the semantic foundations for GSLA
scheduling. In December 2002, unforeseen by both Mendler and Luettgen, the new PI left Sheffield for the
University of York. This time, Norton was prepared to move, but unfortunately the EPSRC, despite our
request, did not judge it possible to transfer the grant to York. Obviously, these circumstances caused some
disruptions in the management of RealType.

Despite the deviation from the original objectives and workplan, the RealType project has made sub-
stantial scientific progress in the compositional semantics of synchronous languages. This laid the foundation
for developing a synchronous, compositional and hierarchical coordination model for DSPC applications and
ICONNECT, which establishes a framework for reactive types. As this was at the core of the project proposal,
RealType’s main objectives have clearly been achieved. Unfortunately, the necessary change in workplan
meant that there was not enough time and resources to investigate other matters originally proposed, in-
cluding the conduct of a real-world case study in collaboration with Prof. M. Cooke at Sheffield.

Explanation of Expenditure. Since the employment of a named RA was the main item of expenditure
in the proposal, this has been substantially as planned. The decision to investigate in depth the process—
algebraic approach and to put aside the analysis part have saved on software costs, since the actual tools
used, such as Haskell and Microsoft Visual Studio, were either free—of-charge or available to the project on
campus licences. The anticipated expensive licence for iLogic’s constraint—solver library was not acquired.
Therefore, consumables and equipment ended up underspent. Furthermore, travel costs were reduced by a
collaboration grant from the British Council under project number PRO1163/CH, which funded some visits
to the collaborators in Passau.

Research Impact and Benefits. The potential research impact of the project on component—based
development is very high. Tools like Ptolemy and ICONNECT have proven very successful and useful to the
signal-processing and embedded-systems communities, yet most of them still are without the validation
support for dataflow—oriented systems in which state and nondeterministic choice play a major part. As well
as enabling such validation in a static fashion, the semantic basis established in this project has been shown
capable of dealing with the other problems that the application of our coordination model to ICONNECT
has brought out [21]. The accompanying letter of appraisal from Micro—Epsilon GmbH that is attached to
this Grant Review Report may be taken to witness the success of this programme. As indicated above,
the behavioural types approach is clearly now gaining credibility and acceptance in the application of formal
methods to software development [12]; we also cite its addition as a new topic to the call for papers of the
international conference on Formal Methods for Open Object—based Distributed Systems (FMOODS) and
anticipate more such interest in the future. Specifically, the GSLA reactive type developed in the project,
viewed as a compositional coordination model, opens up a distinct new research direction that would mirror
current activities in the area of globally asynchronous and locally synchronous systems (GALS).

The RealType project has produced several peer-reviewed publications, among which are 7 papers in
international workshops and conferences as well as 2 journal articles, and was the centre of several talks at
university seminars, including one at the University of Sussex (27th June 2003). During the project’s funding
period, an international workshop on Semantic Foundations of Engineering Design Languages (SFEDL *02)
was organised successfully by the Pls as a satellite event to ETAPS ’02 in Grenoble, France. A second work-
shop on the same topic is now scheduled in conjunction with ETAPS '04. Moreover, Luettgen and Mendler,
in cooperation with Manfred Broy, are guest editors for a special issue of the Formal Aspects of Computing
Journal on this topic [6]. This special issue attracted a large number of high—quality contributions, so that
it will be bound in two volumes.

Further Research and Dissemination.

A few work packages within the RealType project are still in

the process of being finalised, including an axiomatisation of CaSE’s semantic theory. Their results will
first be published as part of Norton’s PhD thesis, and later in the form of conference papers and journal
articles. The work conducted within RealType already pushes our research towards the up and coming
field of coordination languages, especially since our coordination model may easily be extended to one where
optional inputs may appear as a first—class feature. Thus, a coordination language for synchronous systems
with possible serialised execution, with instantiation and encapsulation as first—class operations, and where
optional input and isochronic output are paired and taken together, may be imagined. As stated in the
attached letter, our industrial partners Micro—Epsilon GmbH have expressed their continued support of
these activities in the future.

References

(1]
2]

Minutes of the first project meeting at Passau, 29th
January — 2nd February 2001.

J. Aguado, G. Liittgen, and M. Mendler. A-maze-
ing Esterel. In Workshop on Synchronous Languages,
Applications, and Programming (SLAP ’03), vol. 88
of ENTCS. Elsevier Science, 2003.

G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics, imple-
mentation. SCP, 19(2):87-152, 1992.

S. Bhattacharya. Software synthesis and code gener-
ation for signal processing systems. IEEE Trans. on
Circuits and Systems II: Analog and Digital Signal
Processing, 47(9):849-875, 2000.

M. Bravetti and R. Gorrieri. A complete axiomatiza-
tion for observational congruence of prioritized finite-
state behaviours. In 27th Intl. Coll. on Automata,
Languages and Programming (ICALP ’00), vol. 1853
of LNCS, pp. 744-755. Springer-Verlag, 2000.

M. Broy, G. Liittgen, and M. Mendler. Semantic
foundations of engineering design languages. Formal
Aspects of Computing, 2003. Special issue; to appear.

R. Cleaveland, G. Liittgen, and M. Mendler. An al-
gebraic theory of multiple clocks. In 8th Intl. Conf.
on Concurreny Theory (CONCUR ’97), vol. 1243 of
LNCS, pp. 166-180. Springer-Verlag, 1997.

M. Fairtlough and M. Mendler. Propositional lax
logic. Inform. and Comp., 137(1):1-33, 1997.

M. Fairtlough and M. Mendler. On the logical con-
tent of computational type theory: A solution to
Curry’s problem. In Types for Proofs and Programs,
vol. 2277 of LNCS, pp. 63—78. Springer-Verlag, 2002.

M. Fairtlough and M. Mendler. Intensional com-
pleteness in a fragment of Gédel-Dummett logic. Stu-
dia Logica, 73:51-80, 2003.

D. Harel. Statecharts: A visual formalism for com-
plex systems. SCP, 8:231-274, 1987.

E.A. Lee and Y. Xiong. A behavioural type sys-
tem and its application to Ptolemy II for component-
based design. In SFEDL [6]. Submitted.

G. Liittgen and M. Mendler. Fully-abstract State-
charts semantics via intuitionistic Kripke models. In
27th Intl. Coll. on Automata, Languages and Pro-
grammang (ICALP ’00), vol. 1853 of LNCS, pp. 163—
174. Springer-Verlag, 2000.

(14]

23]

G. Liittgen and M. Mendler. Statecharts: From vi-
sual syntax to model-theoretic semantics. In Work-
shop on Integrating Diagrammatic and Formal Speci-
fication Techniques (IDFST ’01), vol. 1, pp. 615-621.
Austrian Computer Society, 2001.

G. Liittgen and M. Mendler. Axiomatizing an al-
gebra of step reactions for synchronous languages.
In 13th Intl. Conf. on Concurrency Theory (CON-
CUR ’02), vol. 2421 of LNCS, pp. 386—401. Springer-
Verlag, 2002.

G. Liittgen and M. Mendler. The intuitionism be-
hind Statecharts steps. ACM Trans. on Computa-
tional Logic, 3(1):1-41, 2002.

G. Liittgen and M. Mendler. Towards a model the-
ory for Esterel. In Workshop on Synchronous Lan-
guages, Applications, and Programming (SLAP ’02),
vol. 65,5 of ENTCS. Elsevier Science, 2002.

W. Maydl, B. Sick, and W. Grass. Towards a specifi-
cation technique for component-based measurement
and control software for embedded systems. In 28th
EUROMICRO Conf., pp. 74-80. IEEE Press, 2002.

B. Norton. Haskell as a controller for reactive
components. www.dcs.shef.ac.uk/ barry/RealType/
Nor00.pdf, 2000.

B. Norton. Clocked transition systems and the com-
positional modelling of reactive components under
synchronous scheduling. EATCS Bulletin, 74, 2001.

B. Norton. Reactive types for component-based
development. www.dcs.shef.ac.uk/ barry/RealType/
Nor01.pdf, 2001.

B. Norton. Reactive types for dataflow-oriented
component-based development. In 2nd Workshop
on Automated Verification of Critical Systems (AV-
0CS ’02), vol. CSR~02-6 of Techn. Report Series, pp.
195-209. Univ. of Birmingham, 2002.

B. Norton, G. Liittgen, and M. Mendler. A composi-
tional semantic theory for synchronous component-
based design. In 14th Intl. Conf. on Concurreny The-
ory (CONCUR ’03), LNCS. Springer-Verlag, 2003.
To appear.

A. Sicheneder, A. Bender, E. Fuchs, M. Mendler, and
B. Sick. Tool-supported design and program execu-
tion for signal processing applications using modular
software components. In Intl. Workshop on Software
Tools for Technology Transfer (STTT ’98), vol. NS-
98-4 of BRICS Notes Series, pp. 61-70. BRICS, 1998.

