
Refinement Patterns for Contractual Statecharts

Dr. Gerald Luettgen and Dr. Richard Paige

Summary

The strategic goal of this project is to improve the theoretical bases and corresponding tool support for the design
languages and methodologies that are widely used for building avionics and aerospace systems. Existing languages,
particularly the popular Stateflow statecharts, lack in expressiveness and tool support for refinement-based designs
as practised by engineers. In particular, they have no support for declarative styles of specification used at early
design stages, and their semantics do not entirely benefit from the existing wealth of research on concurrent systems
and semantics in component–based design. The specific novel contributions of this proposed research project are:

1. The definition of the syntax and semantics of an extension of Stateflow statecharts, Contractual Statecharts,
which supports developers in writing models in mixed declarative and operational specification styles;

2. A refinement relation for component–based, stepwise design that allows for trading off operational for declar-
ative content in models;

3. Supporting simulation and model checking tools, which shall be developed and implemented so as to integrate
with the industry-standard Stateflow tool, to enable engineers to analyse their mixed–style models;

4. A set of refinement patterns capturing standard rules expressing how to translate between declarative and
operational styles of specification, and a tool assisting in the application of refinement patterns.

The project will be driven by industrial case studies and, where necessary, will involve feedback from the industrial
partner on the utility of the language, supporting tools and patterns.

1 Previous Research Track Record

Dr. Gerald Luettgen. GL joined the Programming Languages and Systems group at the University of York as
Senior Lecturer in 2003. He completed his PhD in Computer Science at the University of Passau, Germany, in 1998,
before becoming a Research Scientist at ICASE / NASA Langley Research Center.

GL’s expertise is in the fields of concurrency and automated verification. He was the PI of the EPSRC-funded
research project “Type Analysis for Component-based Real-time Programming” (GR/M99637/01) which developed
a process-algebraic, bisimulation-based reactive-type theory and supporting tools for applications in digital signal
processing [13]. Currently GL is the PI of the EPSRC-funded research project “New-generation Symbolic Model
Checkers for Verifying Asynchronous Systems” (GR/S86211/01) which explores novel model-checking technologies
that exploit the event locality inherent in asynchronous systems in order to increase verification efficiency [3]. GL’s
experience gained within both projects will particularly help in the proposed project with designing a component-
based theory that is usable in practice, and with providing efficient automated tool support.

Of most relevance to this project is GL’s expertise with formalisms combining operational and assertional spec-
ification styles, and with statecharts. While conducting research at NASA Langley Research Center, GL was a
co-investigator of the NSF-funded research project “Heterogeneous Specification Formalisms for Reactive Systems”
(NSF/9988489) which defined a uniform, refinement-based semantics for combining the process algebra CCS and
the temporal logic LTL [5]. The difference to the proposed project is that CCS+LTL is a much more expressive
language than the proposed Contractual Statecharts language, as it can additionally express fairness and unbounded
liveness properties. However, it has a very complex semantics that is not engineer-friendly and does not lend itself
readily to efficient tool support.

In recent years, GL’s research on the process-algebraic and model-theoretic semantics of statecharts and Esterel
has gained international recognition as it provided insights into how these synchronous languages are related and
established novel full-abstraction results [9]. Last, but not least, GL’s experience with the design of avionics software
at NASA means that he is familiar with the ad-hoc design methodologies employed by avionics engineers and with
the domain of the case studies provided by our industrial partner.

1



Dr. Richard Paige. RP joined the High-Integrity Systems Engineering group at the University of York as Lecturer
in 2001. He completed his PhD in Computer Science at the University of Toronto in 1997.

RP is currently the PI of the EPSRC-funded research project “Agile Development of High-Integrity Grid Middleware”
(GR/S64226/01) which is developing a software engineering methodology for producing more dependable Grid
systems. RP is also an investigator in the EU IST project MODELWARE which is the largest software engineering
project currently run by the European Commission. His contribution to this project is the development of industrially
applicable behavioural semantics for UML-like languages and formal analytic techniques for determining whether
UML-like specifications are consistent. Since 2002, RP has been a strand leader in the Defence and Aerospace
Research Partnership (DARP) for High-Integrity Real-Time Systems, where he is leading research on model-based
systems engineering. His experience within these projects will help in the proposed project in the development of
language semantics that are usable by engineers, and in his experience in building dependable computing systems.

Of particular relevance to the proposed project is RP’s work on UML semantics within ModelWare [14]. This work
developed an action semantics for the core of UML (the Meta-Object Facility) which was usable by MODELWARE’s
industrial partners (e.g., Thales, Adaptive, France Telecom) and the tools they used in day-to-day engineering. His
work on agile development for Grids is also relevant as it is producing principles and practices, usable by engineers,
for improving the dependability of complex and, in this case, distributed systems [2].

RP’s recent work on methodologies for meta-modelling in engineering language design has seen international recog-
nition for distilling the principles and practices in constructing modelling languages [15]. Some of this work is being
used in the DARP project where the domain of focus is avionics and aerospace systems; he is therefore familiar and
experienced with the domain of interest to our industrial collaborators.

Institutional expertise and support. The RAE 6*–rated Computer Science Department at the University
of York has several internationally renowned research groups with expertise in the fields of software engineering
and formal methods, in particular regarding their application to High–Integrity Systems Engineering, Programming
Languages and Systems and Real–Time Systems which are of interest to this research proposal. Current research in
the Department is funded by grants and contracts totalling £5 million from the EPSRC, the European Commission,
other government departments and industry.

The Department is home to the BAE Systems Dependable Computing Centre which focuses on dependable avionics
systems, and which has worked on statecharts for many years. It also houses the Rolls-Royce University Technology
Centre which undertake basic research and technology transfer of academic research into industrial practice, particu-
larly for aircraft engine systems. These industrial centres are part of the High-Integrity Systems Engineering (HISE)
group, led by Prof. John McDermid, and which is made up of approximately 50 researchers experienced with all
aspects of engineering high-integrity, and particularly aerospace, systems. Within HISE there is substantial expertise
on the use of statecharts and tool support for the widely used Stateflow dialect of statecharts [18], particularly by
Dr. Ian Toyn and Dr. Andy Galloway.

The Programming Languages and Systems group, led by Prof. Colin Runciman, has substantial expertise in the
fields of language design, concurrency theory, formal semantics, automated verification and tool support. There is
also expertise in the Department on embedded systems, particularly from the Real-Time Systems group.

2 Description of Proposed Research

2.1 Background and Related Work

Background. Avionics and aerospace systems are complex, involving computer hardware, software and mechani-
cal/hydraulic devices (e.g., ailerons). Engineers of such systems are faced with engineering deadlines, hard physical
constraints (e.g., the architectural design of the airframe), safety constraints, and unchangeable hardware constraints
(e.g., the maximum processor speed). A variety of development techniques are applied in order to produce high-
quality embedded real-time software for avionics and aerospace systems, but the state-of-the-practice is lacking in
a number of respects: (i) an explicit software architecture is not regularly constructed, making it difficult to iden-
tify reusable components and to manage change due to modified customer requirements; (ii) the models that are
produced during development often are at odds with engineering judgement in that they can neither adequately
express engineering solutions nor accurately reflect engineering design discipline; (iii) there is no formal basis for
the refinement process employed when step-by-step refining the initial, largely declarative specifications to the final,
operational designs; and (iv) tool support for analysing the models that are produced is remarkably limited and
mostly comprises of a drawing tool and a simulator. This last point is critical: one of the benefits of modelling
early in the development process is to catch mistakes and omissions before they become embedded in code. Without
better analytic techniques for models for aerospace and avionics systems, the state-of-the-practice will be difficult
to improve.

This project aims to address this last point, by linking together established and novel theoretical ideas in refinement-

2



based designs with practical application to aerospace and avionics systems engineering, in the domain of statecharts
technology. This will be carried out by extending Stateflow statecharts with lightweight contracts and enabling
statecharts to be used in combination with more declarative styles of specification. Our research will facilitate the
formal study of the refinement technologies used by engineers, alleviate some of the practical difficulties associated
with extracting statecharts from existing systems, and make it easier to analyse practical statecharts models.

Related work. Regarding semantic foundations of multi-paradigm design languages, previous work by GL with
Rance Cleaveland [5] studied a combination of the process algebra CCS and the temporal logic LTL and based the
refinement preorder on the theory of testing rather than bisimulation. The mixed language CCS+LTL is clearly
targeted at concurrency theoreticians and not engineers, and no aim at axiomatising the refinement preorder or
providing refinement patterns was made.

Regarding extensions of statecharts, Galloway and Toyn [6, 8] have extended the Stateflow language to include a
simple annotation language on states, which is used in the formal validation of Statecharts. The annotations could
be considered as simple contracts, however they only cover a very restrictive subset of Stateflow behaviour (e.g., no
support for events, transition actions, and-states). Moreover there is no support structural refinement at the chart
level. Our proposed work differs in that it (i) supports a mixture of specification styles, as well as a contract language
that can express more than simple, propositional assumptions; (ii) allows for more flexibility in placing contracts,
such as placing contracts on transitions, e.g., when requiring a combination of states to be active or inactive in order
for a given transition to be enabled; (iii) is equipped with a theory and tool support for refinement checking.

In another line of research, Sowmya and Ramesh have extended statecharts with Lamport’s temporal logic TLA [16].
In contrast to what we propose, they allow declarative information to be attached to states only and not also to
transitions, although their declarative language TLA is more expressive than our contract language. Their semantics
is based on logics, so that refinement between designs reduces to logical implication. However, they neither focus
on component-based refinement, nor do they propose refinement patterns.

While our concept of refinement patterns in this context is novel, it has some similarity to design patterns. Design
patterns have also been studied for statecharts [19], with the aim of facilitating the reuse of statechart implemen-
tations. Refinement strategies in the context of refinement calculi or programming methodologies [17] have also
some similarity to what we are proposing; the main differences are the context (typically data transformation or
algorithmic refinement [17]), the single style of specification (usually declarative) and the scope (typically strategies
focus on behavioural refinement). We intend to look carefully at this work to help motivate additional refinement
patterns of our own. More distantly related is earlier work on refinement calculi and tools, e.g., [1], which attempted
to provide support and a collection of strategies for refining specifications into programs.

A key problem with expressing refinement patterns is the form in which their specification is made. Clark et al. [4]
proposed a component-based form of pattern specification with “holes”, wherein missing units of functionality (e.g.,
classes and objects) and constraints on instantiation (e.g., preconditions on when the pattern can be applied) are
encapsulated within one UML-like component. We anticipate using a variant of this approach in cataloguing our
own refinement patterns; the approach in [4] has not previously been applied in this domain.

Last, but not least, it needs to be emphasised that our notion of refinement is not concerned with safety as in Safety
Engineering, since safety does not refine. Instead, we consider the refinement of system specifications and designs,
by successively trading off concrete, operational content for abstract, declarative content. However, our concept of
refinement might help in arguing safety cases, but investigating this is not in the scope of the proposed project.

2.2 Research Programme and Methodology

Aims and objectives. Software engineers often rely on an ad-hoc, component-based design methodology that
step-by-step refines abstract reactive–systems designs given in a mixed operational and declarative notation into
concrete, fully-operational designs. The project’s aims are to put this methodology on a formal footing via so-called
refinement patterns, and to support the methodology by the development of state-of-the-art tools that integrate with
the popular Matlab/Stateflow design tool [18]. These aims will be achieved by pursuing the following objectives:

I. To develop a novel and elegant language, Contractual Statecharts, that combines the operational statecharts
language with contracts (cf. Eiffel and Spark Ada) for declaratively specifying behaviour, and to implement
this language by extending the Matlab/Stateflow tool with a facility for specifying contracts;

IIa. To provide a structural operational semantics for Contractual Statecharts on the basis of extended I/O au-
tomata, and implement a simulator for the Stateflow extension which executes this semantics;

IIb. To develop a compositional refinement preorder for Contractual Statecharts which reflects the component-
based design methodology;

IIIa. To establish the concept of refinement pattern, to provide example refinement patterns, and to develop tool
support for applying refinement patterns;

IIIb. To provide model-checking tool support for the refinement preorder (in the finite-state case);

3



IV. To conduct case studies, provided by our industrial partner, that apply the developed refinement patterns and
tools to the design of avionics software.

The outcome of the proposed research will be (i) a new language, Contractual Statecharts, permitting the description
of mixed operational and declarative designs of reactive systems, (ii) a set of refinement patterns for the stepwise
refinement of abstract, declarative designs into concrete, operational designs and (iii) a suite of tools consisting of
a simulator, a model checker and a refinement pattern applier, all of which interface to the Matlab/Stateflow tool
set. Using these results, engineers will be able to profit from the formal tool support underpinning one of their most
practised design methodologies and to share and reuse refinement patterns among different projects.

Methodology. At the centre of the project is a novel design language for reactive–systems software, particularly
avionics software, that combines ideas of statecharts, such as supported by the commercial tool Stateflow [18] and
contracts [11], such as employed in the programming languages Eiffel and Spark Ada. An extensive study of case
studies provided by our industrial partner and textbook examples will enable us to identify the core subset of
Stateflow to be supported, as well as the contract language to be designed. The contract language shall be clear
and unambiguous, permit an elegant definition of its semantics and must allow for specifying safety properties and
bounded liveness, including pre-/post-conditions and system invariants. Our novel design language shall enable
engineers to attach contracts to both statecharts states and transitions, whence we will refer to it as Contractual
Statecharts. To support this language within Matlab/Stateflow requires us to properly extend the tool’s graphical
interface and to modify the internal textual representation of Stateflow diagrams.

The semantics of Contractual Statecharts will be based on an extension of Lynch and Tuttle’s I/O automata [10],
where states may be annotated with actions and variables, and with information whether the choice between outgoing
transitions of a given state is a nondeterministic one, or a logical one representing disjunction. Specific states encoding
blocked design (deadlock), universal design (true) and unimplementable design (false) must also be distinguished.
This semantics shall be complemented by a simulator tool for Contractual Statecharts, which will allow us to validate
whether our semantics conforms to Stateflow and the desired contract semantics.

Moreover, a refinement preorder will be developed that formalises the engineering practice of step-by-step refining
abstract, declarative designs into concrete, operational designs, by successively replacing contractual contracts spec-
ifying the behaviour of a component by a statechart satisfying this prescribed behaviour. Such component-based
reasoning demands of our refinement preorder to be compositional. As our focus of application is on control software,
we suggest the refinement relation to be found on Park and Milner’s notion of (bi-)simulation. For Contractual Stat-
echarts representing finite-state systems, such a refinement relation will be decidable, and we can use existing ideas
of characteristic formulae for behavioural relations [7] to reduce the decision problem to a satisfiability problem in
propositional logic. Accordingly, a model checker shall be developed that interfaces to a powerful SAT-solver [12].

Many engineers would want to stepwise refine their designs according to “refinement patterns” that have proved
successful in the past. Although being implicitly used for decades, refinement patterns are not a formally established
concept. Refinement patterns are pairs of parameterised designs, i.e., designs including unspecified or under-specified
components, whose concrete instantiations are all related according to our refinement preorder. Much care will be
given to identify both structural and behavioural refinement patterns that are commonly used in reactive-systems
design and particularly in avionics. Tool support shall be provided for applying these refinement patterns.

Our language of Contractual Statecharts, our refinement theory and patterns, and our tool support will be exercised
and evaluated by means of two realistically-sized case studies provided by our industrial partner.

Originality and timeliness. Engineers today are already using multi-paradigm design methodologies that mix
operational and declarative styles. To specify operational behaviour, engineers typically resort to a dialect of
statecharts, such as implemented in the popular Matlab/Stateflow tool set. To specify declarative behaviour,
engineers often provide pre-/post-conditions and invariants within design documents and implementation languages
such as Eiffel or Spark Ada. However, multi-paradigm design methodologies are still used ad-hoc, and neither have a
sound formal underpinning nor do they support the validation of design steps. Research has instead focused on design
patterns to improve reusability, reduce design time and increase design quality; these patterns focus on transforming
designs into implementations, but not on refining high-level declarative designs into low-level operational designs.

These observations lead immediately to our ideas of Contractual Statecharts for specifying multi-paradigm designs,
and of refinement patterns for trading-off declarative content for operational content in a component-based, step-
by-step manner. Our theory underlying Contractual Statecharts and refinement patterns will put the described
multi-paradigm design methodology on a sound footing and enable the provision of tool support. In contrast to
other approaches to refinement–based system design, our approach does not require engineers to conduct refinement
proofs themselves: they can either rely on already proved refinement patterns or, if the provided pattern repository
does not suffice for a particular application at hand, suggest a refinement step of their own that will be automatically
checked for correctness. Although our focus is thus not on generality but on practicality, the proposed project will
also provide groundwork for unifying different design methodologies in more general ways in the future.

4



The timeliness of our proposal is also evidenced by related research currently in preparation overseas, most notably
at the group of Prof. Willem-Paul de Roever at the University of Kiel, Germany. Its researchers, in particular
Dr. Harald Fecher, wish to investigate top-down refinements of statecharts based on under- and over-approximations
of execution traces. To specify such approximations, they intend to extend statecharts by temporal logics so as to
be able to express general liveness and fairness properties. In contrast, our approach will be less general – as it
considers only contracts expressing safety and bounded liveness properties – but additionally focuses on refinement
patterns and emphasises tool support. We plan to collaborate with this group regarding the semantic foundations
of temporal-logic extensions of statecharts and the definition of open interfaces for tool support.

Programme of work. The aims and objectives described above will be accomplished via a programme of work
constituting four inter-related phases. Informally, these are (I) Defining language support for Contractual Stat-
echarts; (II) Defining and validating the semantics of the language; (III) Developing refinement support; and
(IV) Evaluating the language and refinement techniques via industrially valuable case studies. The project is
jump-started by first analysing existing industrial case studies and textbook examples, in order to inform Phase (I).

(I) Language support. The first phase is to define an integrated language for Contractual Statecharts, where we shall
build the language on a core of the Stateflow dialect of statecharts. Stateflow is used widely by our industrial partner
and in the aerospace, avionics and defence domains; case studies provided by our industrial partner will guide us
in identifying an appropriate core of Stateflow. Restricting ourselves to such a core is necessary, as Stateflow has
many features, such as the 12-o’clock rule for resolving nondeterminism, that make it difficult to provide a clean
semantics. Fortunately, most of these features are not used for designing safety-critical software. We anticipate
that the Stateflow core must include actions (activities), history junctions (history states), connective junctions
(conditional states), supertransitions (interlevel transitions), local variables and guards (conditions), since this is a
subset used by domain experts, is computationally expressive and contains no substantial redundancy. Additional
constructs will be considered through careful analysis of case studies supplied by the industrial partner, and by
examining textbook examples such as the classic elevator. It is important to note that this project focuses on
statecharts, whence extending our research results from Stateflow to include Simulink block is future work.

To the identified statecharts core will be added a simple language of contracts. The contracts shall allow us to
capture and reason about pre-/postconditions and invariants over environment and generated events, action and
state names, and variables as well as bounded temporal behaviour, e.g., “within k steps”, “along all reaction steps”,
“in the next reaction step”. Thus, we envision using a linear-time temporal logic. This would be useful for our
industrial partner since aerospace engineers anecdotally think about linear time in a declarative style (as supported
by our contract language) and branching time in an operational style (as supported by our statecharts language).

To syntactically integrate contracts with statecharts, both a visual and textual dialect for the integrated language
will be produced. This will allow engineers to switch easily between declarative and operational styles of specification
as necessitated by their engineering judgement. Textual representations of statecharts are often considered a tool
implementation issue, but engineers frequently prefer to express design textually.

The result of this will be an integrated Contractual Statechart language. There are several challenges to be addressed:
identifying the exact list of language features, starting from the core set described above; standardising on a visual
representation; defining a textual dialect for the language. An overarching issue here is the notion of interfaces as
the language shall be component-based. While statecharts naturally support components, they are not entirely self-
contained due to, e.g., inter-level transitions. To support compositional reasoning, states through which inter-level
transitions are allowed to pass will need to be equipped with a proper interface.

(II) Language semantics. This phase concentrates on producing a sound semantics for the integrated language
defined in Phase (I). The main requirement for the language to be industrially useful is that the semantics supports
compositional reasoning; otherwise, the language and its supporting tools will simply not scale.

Statecharts’ step semantics can be given in terms of I/O automata [10], appropriately extended to deal with features
such as actions and history states. Our contract language can also be given an operational semantics using structural-
operational-semantics (SOS) rules, but the underlying automata model must be able to distinguish between logical
disjunction and process choice, as well as the extreme contracts true and false. Hence, part of this work will be to
suitably extend the I/O automata model. The challenge here is to produce a concise semantics so as to facilitate
both a clean implementation and simple proofs about system properties.

A simulator for Contractual Statecharts will also be developed – partly because engineers routinely employ simulation
for systems analysis and partly because only a simulator will allow us to validate whether our semantics is compatible
to the original semantics of Stateflow. This activity is supported by our collaborator Prof. Rance Cleaveland who
is an expert in the undocumented semantics of Stateflow. He is Executive Director of the Fraunhofer Institute for
Experimental Software Engineering at the University of Maryland and CEO of Reactive-Systems, Inc. (www.reactive-
systems.com) which sells a test-case generator and a simulator for Simulink/Stateflow.

In addition, a refinement semantics will be given, based on a preorder inspired by (bi-)simulation. This will be

5



defined so that a concrete design refines an abstract design if both are essentially bisimulation equivalent but some
disjunctive choice in the abstract design is resolved in the concrete design. Basing the preorder on bisimulation is
crucial in this application domain. The preorder must be compositional for the Contractual Statecharts language,
as the refinement process must be done in a step-wise and component-wise fashion for it to be scalable, and because
our refinement patterns demand an open-systems rather than a closed-systems view.

The challenges with this part of the work are to fully explore the design choices for the refinement preorder, making
sure that compositionality is preserved while matching designer intuition; the advice of our industrial collaborators
will be vital here. It is likely that there will be a feedback loop between the definition of the preorder and the
definition of the aforementioned SOS-rules in order to reach a stable and useful semantics.

(III) Developing refinement support. The third phase of the project is to develop industrially applicable support for
the refinement method developed in Phase (II). This will be accomplished by defining a suitable notion of refinement
pattern and by developing a model checker for the refinement preorder.

Refinement patterns in the context of Contractual Statecharts is a new concept. Inspired partly by design patterns
and by refinement strategies in the context of program refinement calculi, as well as axiomatisations of preorders in
process algebra, refinement patterns provide a mechanistic way to promote easier use of the refinement technique.
A refinement pattern is a pair of abstract and concrete templates, so that when a particular Contractual Statechart
under investigation matches the abstract template (i.e., is an instantiation of the abstract template), then it may
be refined by the appropriate instantiation of the concrete template. A simple example is given in below.

e

f fe refines

e

We term the pattern shown on the left structural, as one
structure is refined by a behaviourally equivalent struc-
ture. Another example would be a refinement pattern for
replacing declarative (contractual) specifications with oper-
ational (statecharts) specifications. Consider a set of three
switches specified as statechart, with the contract that only
one switch is on at any given time. One behavioural re-
finement pattern would be to refine the Contractual State-
charts specification of such behaviour with a statechart in
which the contract is realised via event broadcasting.

We will identify a small set of structural and behavioural refinement patterns by revisiting the case studies that we
considered for defining the Contractual Statecharts language in Phase (I). We need to identify refinement patterns
that are industrially relevant and which have the potential for mechanisation via automatic identification. For this
we will closely consult our industrial collaborators who are already applying ad-hoc refinement strategies in practice
as they make use of Stateflow. A challenge here is to define a precise language for specifying refinement patterns
for Contractual Statecharts. Such patterns can, informally, be thought of as statecharts with “holes”, together with
a constraint on what can be placed in these holes; these constraints ensure that any instantiation of the pattern is
syntactically and semantically valid. We envision exploiting the ideas of the template specification language defined
by Clark et al. [4] as part of their submission for UML 2.0. Moreover, we will prove our refinement patterns correct,
i.e., all valid instantiations of abstract and concrete template of a given pattern are related by our preorder.

Application of the refinement patterns shall be supported with a tool so that (i) an engineer can highlight the
component of the Contractual Statechart under investigation, select a pattern, and (ii) the tool will verify that the
highlighted component is an instance of the abstract template of the selected pattern, and if so, (iii) the tool will
replace the abstract template with an instance of the concrete template. This requires the tool to be able to hold a
repository of patterns, to which further patterns shall be easy to add.

Many refinement patterns used in practice are not specific for a given system design, but rather a specific application
domain. This is why we primarily focus on embedded avionics and aerospace software. However, some patterns may
be very specific to the application under consideration, so that the engineer must be able to manually construct a
refinement of a given system. Nevertheless, the engineer should be supported in proving that the proposed refinement
is correct. This leads to the issue of developing a decision procedure for our refinement relation.

If a Contractual Statechart under investigation happens to be finite state, then our refinement preorder should be
decidable and efficiently computable. Bisimulation-based preorders are normally efficiently computable via partition-
refinement algorithms, e.g., as is done in the Concurrency Workbench. The challenge here is that our preorder is not
defined on simple labelled transition systems but on the more expressive extended I/O-automata. One successful
technique for checking bounded temporal properties occurring in Contractual Statecharts is to translate into a
satisfiability problem on propositional formulae and to use a SAT-solver for bounded model checking, thereby
helping us to avoid the state-space explosion problem. This route shall be followed in this project and there is hope
that structural properties of statecharts (e.g., guards of transitions being mutually exclusive) can be exploited to
make the SAT-based checking more efficient. Implementing a model checker entails (i) conducting a static analysis to
determine whether the behaviour of a Contractual Statechart under consideration is finite state and (ii) implementing

6



a translation of the refinement preorder/partitioning algorithm in SAT. While the latter is novel, there is work on
characteristic formulae for pre-bisimulation that we can adapt [7]. As the contracts that are part of our language
can only capture safety and bounded liveness properties, the characteristic formulae will also be able to be expressed
as propositional formulae. In addition, it shall be investigated how best to relay counterexamples to engineers in
case the model checker detects a violation of our refinement preorder.

(IV) Case studies and evaluation. The work outlined in the previous sections will be driven by case studies from
our collaborators; these will be used to evaluate the language, its semantics, the refinement patterns and the tool
support. We envision taking two industrial case studies and re-expressing and re-assessing them once our tool
support is available. This evaluation will be done together with our partners, to ensure that the tools delivered
provide value to engineers. To validate that the languages and tools we deliver are general and do not work only on
the case studies of our collaborators, we will introduce a third case study at this stage.

Workplan. A detailed diagrammatic workplan is attached and comprises the abovementioned four phases. The
contents of each phase’s work packages, the packages’ timing and the distribution of work between the two full-time
researchers employed on the project, one RA and one project student, can all be found in this workplan.

Although our research ambitions are high, the risks are well calculated. Should early work packages take significantly
longer than anticipated, we propose not to develop the model checker, i.e., deleting WPs III.4–6. While having a
model checker is highly desirable, we could always conduct our case studies using refinement patterns only. Should
delays occur at late project stages, we will conduct only two of the three proposed case studies, see WP IV.1
and IV.2. In either case, we would appropriately re-assign the work packages between RA and PhD student in order
to re-balance the workload and to guarantee that the PhD student conducts PhD-level research.

2.3 Relevance to Beneficiaries

The software engineering community will benefit from the formal underpinning of a widely but informally used
component-based design methodology, which mixes ideas of operational and declarative specification languages and
refines system designs by trading off declarative for operational behaviour. The project will conceptually as well
as pragmatically establish refinement patterns as a technique for systems design, thus complementing well-known
design patterns for systems implementation.

The formal methods and automated verification communities will benefit from advancing the theory of such mixed
design languages and, in particular, of component-based refinement relations, as well as from our experiences in
employing SAT-solving technologies in deciding refinement relations for finite-state designs.

The aerospace, avionics and defence industries will benefit from the access to and the evaluation of novel tools that
support the design of typical systems considered by these companies. As the tools to be developed are integrated
with the Matlab/Stateflow design tool already used in the design process employed in these industries, they will not
interfere with the engineers’ current design flow but rather improve the quality of designs. Particular beneficiaries
here are our industrial partner, as they provide the case studies that will be studied within the research project;
they profit from us carrying out a feasibility study of the developed technology within their application domain.

2.4 Dissemination and Exploitation

The dissemination of our research results will proceed along two routes. The first, classical route consists of presen-
tations at international conferences and publications in renowned journals. The following lists the main conferences
and journals of interest to us, organised by research topic of relevance to the project:

Topic Conferences Journals
Language/simulation FSE IEEE TSE
Semantics CONCUR, ICALP FACS, Inform. & Comp.
Refinement patterns FSE, FM IEEE TSE, ACM TOCL, STTT
Model checking TACAS, CAV, AVOCS FMSD, FACS, STTT
Case studies ISSC, SafeComp IEEE TSE, ACM TOSM, STTT

In addition to presentations at conferences we also plan presentations at our industrial partner, comprising of formal
presentations for the management and engineering presentations for the potential users of our technology.

The second dissemination route will make our developed software tools, the produced user manuals and the conducted
case studies available via the Internet. This will further increase the visibility of our research and encourage the
uptake of our technology by both the software engineering community and the embedded-systems community.

The commercial exploitation of our research results and tools will be evaluated together with our industrial partner, as
well as tool vendors such as HIS, at the end of the project. We envision that our refinement-based design technology
and tools are highly applicable to a wide class of avionics control systems. This is because the technology puts

7



current ad-hoc design practices on a sound footing and because the tools are designed to integrate well with the
work flow currently practised in the avionics and defence industries, which already use Stateflow in their tool chain.

References

[1] D. Carrington, I. Hayes, R. Nickson, G. Watson, and
J. Welsh. A tool for developing correct programs by re-
finement. In BCS Refinement Workshop, eWIC, 1996.

[2] H. Chivers, R. Paige, and X. Ge. Agile security via an
incremental security architecture. In Extreme Program-
ming, vol. 3556 of LNCS, pp. 57–65, 2005.

[3] G. Ciardo, G. Lüttgen, and R. Siminiceanu. An efficient
iteration strategy for symbolic state-space generation. In
TACAS, vol. 2031 of LNCS, pp. 328–342, 2001.

[4] T. Clark, A. Evans, P. Sammut, and J. Willans. Applied
Metamodelling. www.xactium.com, 2004.

[5] R. Cleaveland and G. Lüttgen. A logical process calculus.
In EXPRESS, vol. 68,2 of ENTCS, 2002.

[6] A. Galloway and I. Toyn. Proving properties of Stateflow
models using ISO Standard Z and CADiZ. In ZB-2005,
vol. 3455 of LNCS, pp. 104–123, 2005.

[7] A. Ingolfsdottir and B. Steffen. Characteristic formulae.
Information and Control, 110(1):149–163, 1994.

[8] F. Iwu, A. Galloway, I. Toyn, and J. McDermid. Prac-
tical formal specification for embedded control systems.
In INCOM, 2004.

[9] G. Lüttgen and M. Mendler. The intuitionism behind
Statecharts steps. ACM TOCL, 3(1):1–41, 2002.

[10] N. Lynch and M. Tuttle. An introduction to I/O au-
tomata. CWI-Quarterly, 2(3):219–246, 1989.

[11] B. Meyer. Applying design by contract. IEEE Computer,
25(10):40–51, 1992.

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient SAT solver.
In DAC. IEEE/ACM, 2001.

[13] B. Norton, G. Lüttgen, and M. Mendler. A semantic the-
ory for synchronous component-based design. In CON-
CUR, vol. 2761 of LNCS, pp. 461–476, 2003.

[14] R. Paige, D. Kolovos, and F. Polack. Refinement via con-
sistency checking in MDA. In REFINE, ENTCS, 2005.

[15] R. Paige, J. Ostroff, and P. Brooke. Theorem proving for
view consistency checking. L’Objet, 9(4), 2003.

[16] A. Sowmya and S. Ramesh. Extending Statecharts with
temporal logic. IEEE TSE, 24(3):216–231, 1998.

[17] S. Stepney, F. Polack, and I. Toyn. Patterns to guide
practical refactoring. In ZB-2003, vol. 2651 of LNCS,
pp. 20–39, 2003.

[18] The MathWorks, Inc. Matlab/Simulink/Stateflow tool
suite. www.mathworks.com.

[19] S. Yacoub and H. Ammar. A pattern language of state
charts. In PloP ’98, vol. WUCS-98-25 of Techn. Rep. Se-
ries, Washington Univ., Dept. Computer Science, 1998.

8



Appendix: Diagrammatic Workplan

PM1 PM2 PM3 PM4 PM5

M1 M3 M4M2Milestones

meetings
Project

3612 18 24 300 6

RA

V1 V2Visits

PhD

Involvement of
industrial partners

Involvement of
industrial partners

V3 V4 V5

Case studies

II.1
I.2

I.3

III.2
III.1I.5I.4

I.3
I.2

I.1 II.3
III.3

IV.1
IV.3

II.1

I.4 III.4II.2
II.3 III.5

III.6
IV.2I.1

Work packages

Phase I: Defining the Contractual Statecharts language
WP I.1: Get familiarised with case studies and textbook examples
WP I.2: Identify suitable subset of Stateflow
WP I.3: Identify suitable contract language
WP I.4: Define combined Stateflow+contract language
WP I.5: Implement combined language in Stateflow

Phase II: Defining and validating the semantics of Contractual Statecharts
WP II.1: Define semantics of Contractual Statecharts in terms of extended I/O automata
WP II.2: Develop bisimulation-based refinement relation and prove compositionality
WP II.3: Write a simulator for Contractual Statecharts and validate semantics

Phase III: Developing refinement support
WP III.1: Identify structural refinement patterns
WP III.2: Identify behavioural refinement patterns
WP III.3: Provide tool support for applying refinement patterns
WP III.4: Identify and implement finiteness checks of Contractual Statecharts designs
WP III.5: Develop and implement model-checking support
WP III.6: Investigate how best to display counterexamples

Phase IV: Conducting case studies and evaluating our research
WP IV.1: Conduct two case studies provided by one industrial partner
WP IV.2: Conduct one case study provided by another industrial partner
WP IV.3: Draw conclusions and explore potential for commercial exploitation

Visits

Two one-week visits by Prof. Rance Cleaveland to York:
V1: To transfer knowledge regarding building simulators and to validate the semantics of Contractual Statecharts
V2: To discuss possible implementation avenues for model checking our refinement preorder

Three one-week visits to our project partners in Kiel, Germany (V3–V5 )

Project meetings

Purpose of the project meetings to be held at York:
PM1: To kick start the project, bringing together researchers and industrial partner
PM2: To discuss the mixed-language approach with the industrial partner
PM3: To review the project at half time between investigators and research personnel
PM4: To progress the critical tool support phase together with our consultant Prof. Cleaveland
PM5: To conclusively evaluate the project and write the final report

Milestones

M1: Requirements for the Contractual Statecharts language captured
M2: Language definition, implementation and evaluation completed
M3: Refinement patterns and refinement checking completed
M4: Project completed and evaluated


