Book Review for AMS Reviews

Review of Constraints Meet Concurrency
by Jacopo Mauro
Atlantis Press, 2014

This monograph is a reprint of the author’s
PhD thesis at the University of Bologna, which
was supervised by Maurizio Gabrielli and se-
lected by the Italian Chapter of the European
Association for Theoretical Computer Science
(EATCS) as one of the best Italian PhD thesis
in 2012. The thesis explores several theoretical
and practical topics related to concurrent con-
straint programming and solving.

Constraint satisfaction problems (CSPs) have
been studied in the field of artificial intelligence
and beyond for decades, and a large number
of tools and algorithms for constraint program-
ming and solving exist today. Indeed, many
practical problems can be casted as CSPs, in-
cluding scheduling, timetabling, resource allo-
cation, and planning problems in manufactur-
ing, education, medicine, and many other sec-
tors. However, solving large CSPs efficiently
is a challenge and requires advanced search al-
gorithms that employ clever search heuristics
and fast techniques for consistency checking and
constraint propagation.

The recent shift towards parallel computing
and powerful cloud infrastructures poses both a
challenge and an opportunity for CSP solving.
On the one hand, constraint programming fea-
tures must be (and are) integrated in parallel
languages such as Go and Scala as well as main-
stream languages such as Java and C#. On the
other hand, cloud computing increases the scal-
ability of CSP solvers and opens up the possi-
bility of constraint solving as a service. This is
exactly when this timely monograph comes onto
the scene. It is well-written and sufficiently self-
contained to be easily accessible to theoretical
computer scientists with knowledge in program-
ming language semantics.

The monograph consists of two parts that
follow two introductory and rather superficial
chapters that overview basic aspects of con-
straints (Ch. 2) and concurrency (Ch. 3). The
first part focuses on the usage of constraints
in concurrency and investigates the expressive
power of dialects of Frithwirth’s Constraint Han-
dling Rules (CHR) language. This Turing-
powerful concurrent constraint language is well-
researched and has been implemented over sev-
eral imperative, functional and logic languages.
It is equipped with two formal operational se-

mantics: a classic theoretical semantics and an
abstract semantics that abstracts from propaga-
tion histories (Ch. 4).

The first two CHR-fragments defined by the
author (Ch. 5) still include a host language’s
built-in unification but impose restrictions that
render each fragment less expressive than Tur-
ing machines. The first fragment prohibits the
use of variables in a constraint rule’s guard or
body if they do not already appear in the rule’s
head. The second fragment limits the number
of atoms in a rule’s head to one. In both cases,
the existence of an infinite computation wrt. the
abstract operational semantics, and thus termi-
nation, is decidable. Regarding the first frag-
ment, the proof employs the theory of well-
structured transition systems (WSTS). In the
second case, a highly non-trivial proof by hand
is conducted, as reduction techniques involving
WSTS or Petri nets are not applicable.

Two Turing-powerful CHR-dialects that re-
sult from Koninck’s extension of CHR with pri-
orities, whereby higher priority rules are chosen
first for execution, are also considered (Ch. 6).
One extension fixes priority at compile-time,
hence priorities are static. The other extension
allows priority annotations involving variables
that are instantiated at run-time and, thus, for
priorities to be dynamic. The author proves
that CHR with priorities is more expressive than
standard CHR. under the theoretical semantics,
because there exists no acceptable language en-
coding of CHR with priorities into standard
CHR. In addition, an encoding of CHR with dy-
namic priorities into CHR, with static priorities
demonstrates that dynamic priorities do not in-
crease expressivity beyond CHR with static pri-
orities. In contrast to standard CHR, the ex-
pressivity of CHR with priorities is not altered
when restricting rules to those having at most
one atom in each rule’s head.

The monograph’s second part presents first
steps towards developing an online service-based
portfolio CSP solver. This is motivated by the
observation that different solvers are better at
solving different problem instances, even within
the same problem domain. The author pro-
totypes a cloud-based framework called Con-
straint in Clouds (CiC), for efficiently solving
large CSPs by employing several solvers in par-



allel, or the same solver with different parame-
ters (Ch. 7). CiC is implemented in Montesi and
Guidi’s service-oriented programming language
Jolie and includes learning techniques for fore-
casting solving time as well as failure-handling
techniques. Systematic benchmarking testifies
to the validity of the author’s ideas for minimiz-
ing average constraint solving time, which are
inspired by dispatching rules in scheduling, and
also to his choice of classifiers for the smart as-
signment of cloud resources (Ch. 8).

The CiC prototype reveals two significant
shortcomings of Jolie, too: the lack of a broad-
casting primitive and a request-response pat-
tern that is inefficient wrt. fault-handling. In
response, the author develops a broadcasting
concept based on a radix-tree data structure
together with an algorithm for computing the
minimal number of trees required (Ch. 9). He
also presents a new approach to model request-
response interactions, which enables a more nat-
ural treatment of faults and the programming of
timeouts (Ch. 10); this approach is formalized in
Guidi et al.’s SOCK calculus for service-oriented
computing. The monograph concludes with a
brief summary of the author’s contributions and
a rather out-of-place philosophical treatise on
scientific discovery (Ch. 11).

Although the title “Constraints Meet Concur-
rency” may raise higher expectations on syner-
gies between the two fields than the monograph
covers, I applaud the author for an outstanding
dissertation that advances both the theory and
practice of CSP solving. The obtained theoreti-
cal results on the expressivity of various dialects
of the CHR language are very interesting to ex-
perts in the field and nicely complement related
work. The work on concurrent-constraint solv-
ing as a cloud service and on features of service-
oriented programming is comparably less ma-
ture but a promising and important first step
towards increasing the scalability of CSP solvers
by utilizing modern, massively parallel comput-
ing infrastructures. Therefore, I sincerely hope
that this monograph finds its rather broad au-
dience, which ranges from concurrency theoreti-
cians, to CSP solver engineers, to parallel pro-
gramming language designers.

GERALD LUTTGEN

Software Technologies Research Group
University of Bamberg

D-96045 Bamberg, Germany

E-mail: gerald.luettgen@swt-bamberg.de



