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Abstract Modal transition systems are a popular semantic underpinning of interface the-
ories, such as Nyman et al.’s IOMTS and Bauer et al.’s MIO, which facilitate component-
based reasoning for concurrent systems. Our interface theory MIA repaired a compositional
flaw of IOMTS-refinement and introduced a conjunction operator. In this paper, we first
modify MIA to properly deal with internal computations including internal must-transitions,
which were largely ignored already in IOMTS. We then study a MIA variant that adopts
MIO’s pessimistic — rather than IOMTS’ optimistic — view on component compatibility and
define, for the first-time in a pessimistic, non-deterministic setting, conjunction and disjunc-
tion on interfaces. For both the optimistic and pessimistic MIA variant, we also discuss
mechanisms for extending alphabets when refining interfaces, which is a desired feature for
perspective-based specification. We illustrate our advancements via a small example.

Keywords Interface theory - disjunctive modal transitions system - modal interface
automata - interface refinement - alphabet extension - perspective-based specification

1 Introduction

Interfaces play an important role for checking interoperability of system components, in
particular in the component-based design of critical systems. Over the past two decades, re-
search has focused on interface theories for sequential and object-oriented software systems.
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These theories comprise behavioural types, which are often referred to as contracts [17] and
express pre- and post-conditions as well as invariants of methods and classes; see [13] for a
survey on contract languages and contract verification. More recently, interface theories de-
scribing behavioural/reactive types for concurrent systems [4,9,10, 15,16, 19] have emerged
as a key technology, e.g., for specifying web services [6] and software contracts [3].

Many behavioural interface theories are inspired by de Alfaro and Henzinger’s Interface
Automata (IA) [1], which employs transition systems with input and output actions and
alternating simulation for refinement. It is distinguished from classic process algebras by
its parallel composition operator: an interface cannot block an incoming input in any state
but, if an input arrives unexpectedly, this is treated as an error, i.e., as an incompatibility. IA
suffers from the fact that outputs cannot be required since any interface may be implemented
by a component that accepts all inputs and does not engage in any output, hence avoiding
errors altogether. This is undesired in practice and has led researchers to base theories [4,15,
16,19] on Larsen’s modal transition systems (MTS) [14]; these distinguish between must-
and may-transitions and, thus, allow one to enforce outputs via output must-transitions.

In the light of errors that may arise when joining components in parallel, two schools on
MTS-based interface theories have emerged, which treat compatibility either optimistically
or pessimistically. To explain the difference, consider a component that offers an input a fol-
lowed by an output b. If this component is composed in parallel with a component that does
not offer an input on b, then an error state is reached after input a. Now, in the optimistic
setting, the components are still considered to be (potentially) compatible since the system
environment might refrain from sending an a and, thus, from forcing the parallel system into
the error state. In the pessimistic setting, the components are deemed to be incompatible —
with their parallel composition not being defined — because there exists a system environ-
ment — namely the environment initially offering the a — leading to the error state.

Therefore, the pessimistic school of Bauer et al. [4] only defines the composition of a
restricted set of components; however, their MIO setting employs standard modal refinement
as refinement preorder and standard weak transitions for abstracting from internal compu-
tation. In contrast, the optimistic school of Nyman et al. [15] follows IA in that parallel
composition is still defined in the presence of error states, if some concrete system envi-
ronment may prohibit such states to be reached. Their IOMTS setting is equipped with a
customized preorder, which allows one to compose a much larger set of components than in
MIO. Fatally, IOMTS-refinement does not require the matching of internal must-transitions
of implementations and is not at all permissive wrt. abstracting from internal computation.
Our interface theory Modal Interface Automata (MIA) [16] adopts IOMTS-refinement while
repairing a compositional flaw regarding IOMTS parallel composition. It also adds conjunc-
tion on interfaces with common alphabets (i.e., action sets), which is a key operator allowing
engineers to specify a concurrent system from different perspectives.

This paper advances the state-of-the-art of both schools. Regarding the optimistic MIA
setting, we first re-consider IOMTS-refinement so that it properly deals with internal com-
putation including internal must-transitions (cf. Sec. 2). Along the way we also permit gen-
eral disjunctive must-transitions, thereby increasing expressiveness and enabling an intuitive
definition of disjunction on interfaces. In particular, disjunctive must transitions are neces-
sary to define a conjunction for nondeterministic systems in the presence of modalities (see
Fig. 5 below). To the best of our knowledge, no existing work on disjunctive MTS considers
weak transitions, and doing so turns out to be technically quite involved. In addition, we also
extend MIA-refinement so as to allow alphabet changes during refinement along the lines of
de Alfaro and Henzinger [1], which were also adopted by Chilton et al. [9,10]. Extending
alphabets is useful in practice, firstly, when composing partial specification interfaces to an
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overall interface conjunctively — in the sense of perspective-based specification employed in
software engineering — and, secondly, since implementors may decide to add extra features
that are not covered by the specification interface (cf. [19]). However, we demonstrate that
the alphabet changes of de Alfaro and Henzinger are not suited for the first purpose and
support the second only for inputs (cf. Sec. 2.4).

We then study a pessimistic variant of MIA, to which we add a powerful alphabet ex-
tension mechanism. Equally important, we define — for the first-time in a pessimistic, non-
deterministic setting — conjunction and disjunction on interfaces (cf. Sec. 3). While Bauer [2]
and Raclet et al. [19] also investigated conjunction, they did so only for deterministic inter-
faces not containing internal computation.

The interface theory of [19] additionally considers a quotient operator, which is a kind
of inverse to parallel composition. It may be used for decomposing concurrent specifications
stepwise and for component reuse. We leave the definition of a quotient operator for MIA to
future work as this will be technically very challenging in the nondeterministic input/output
setting of MIA, in contrast to the deterministic theories of [19] and [9].

In summary, we achieve a richer interface theory than related work does. In MIA,
one may specify non-deterministic behaviour, enforce outputs, express disjunctive must-
transitions, abstract from internal computation, interpret compatibility optimistically or pes-
simistically, compose interfaces conjunctively and disjunctively, and support perspective-
based specification in the pessimistic setting. A small example dealing with a communica-
tion protocol illustrates our advancements for both the optimistic and the pessimistic MIA
variant (cf. Secs. 2.3 and 3.4). Finally, Sec. 4 contains our conclusions and suggestions for
future work.

2 Modal Interface Automata: The Optimistic Setting

This section fixes a severe shortcoming of MIA [16], which it inherited from IOMTS [15],
namely that the refinement preorder ignores the matching of must-transitions labelled with
the internal action 7. The MIA variant below also permits (in contrast to [16]) general dis-
junctive must-transitions, thus enabling a natural definition of disjunction on interfaces.

Definition 1 (Modal Interface Automata) A Modal Interface Automaton (MIA) is a tuple
(P1,0,—>,--»), where

(i) P is the set of states,

(i) A =4 IUO with INO = 0 is the alphabet consisting of disjoint inputs and outputs, resp.,
and not containing the special, silent action 7,

(ili) — CPx(AU{1}) x (Pn(P)\0) is the must-transition relation (with Fg, (P) being
the set of finite subsets of P),

(iv) --»C P x (AU{t}) x P is the may-transition relation,

such that the following conditions hold for all i € [ and @ € AU{7}:
@ p 5 P and p L pr implies P’ = P" (input determinism),

) p-2sp implies 3P'.p — P' and p’ € P’ (input must),
(©) p-2 P implies Vp'eP'. p B p' (syntactic consistency).

Conds. (a)—(c) are adapted from the corresponding definition in [16]. Input determinism
is required for the MIA-refinement preorder (see below) to be a precongruence for parallel
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composition and conjunction; this condition is already imposed by IA, but note that, here, an
input must-transition is disjunctive, thus allowing nondeterminism within a transition. The
input must condition is natural in the presence of IA-inspired parallel composition: a may-
input in an interface specification may simply be left out by a refining implementation, and
thus increase the potential for errors rather than decrease it. Finally, syntactic consistency is
natural and inherited from modal transition systems [14].

In the sequel, we identify a MIA (P, 1,0, —, --») with its state set P and, if needed, use
index P when referring to one of its components, e.g., we write Ip for /. Similarly, we write,
e.g., I instead of Ip, for MIA P;. In addition, we let 7, o0, a, @ and « stand for representatives
of the alphabets I, O, A, OU{t} and AU {7}, resp., write A = I /O when highlighting inputs /
and outputs O in an alphabet A, and define d =4¢ a and T =4 € (the empty word). In figures,
we often refer to an action a as a?, if a € I, and as a!, if a € O, and omit the label of
T-transitions. Must-transitions (may-transitions) are drawn using solid, possibly splitting
arrows (dashed arrows); any depicted must-transition also implicitly represents the resp.
may-transition(s).

We now define weak must- and may-transition relations that abstract from transitions
labelled by 7, as will be needed for MIA-refinement. This is the first definition of this kind
which covers disjunctive must-transitions; it is also quite subtle as can be seen in Lemmas 4
and 11 below.

Definition 2 (Weak Transition Relations) Weak must-transition and weak may-transition
relations = and ==3, resp., are defined as the smallest relations satisfying p:gg{ r},
p =<3 p and the following conditions, where & € OU {€} and 0 € O:

(a) p:(b>P’, p' € P and p' — P" implies p:@> (P\{p'HuP,

(b) p:%P’ ={p1,...,pn} and Vj. p; —* P;, implies p—23 Ujz1 Py

(@) p:i:)p” N p’ implies p:i;}p',

(d) p=S3p” %5 p" =53 p' implies p=25 p'.

The following extension of =e> to sets of source states will also be useful and is defined as
the smallest relation satisfying P:€$P and

@) P== P, p/ € P' and p’ —% P" implies P— (P'\ {p'}) UP".

An example of a weak disjunctive must-transition can be found in MIA P in Fig. 1. Here we
o . .. T o
have po —3 {ps, pa} subsuming the transitions po — {p1, p2} due to Cond. (a), pi — ps

and p; BN p3 due to Cond. (b), as well as p3 SN p4 again due to Cond. (a). Our refinement
relation which is based on the above definition and adapted from [15,16], is called MIA-
refinement:

Definition 3 (MIA-Refinement) Let P, Q be MIAs with Ip O Iy, Op C Og and IpNOg = 0.
A Relation Z C P x Q is a MIA-refinement relation if for all (p,q) € %#:

(i) g LN Q' implies 3P'. p 5 P'and Vp'eP' 3¢ eQ . (p'.qd) € Z,

(i) g -2 Q' implies 3P'.p=w¢P’ andVp'eP' 340 . (p',¢) € %,

(iii) p 2 p' implies Elq’.q:(i)g q and (p',q') € #.

We write p C g and say that p MIA-refines q if there exists a MIA-refinement relation %
such that (p,q) € Z.
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Fig. 1 MIA-refinement example: p refines go with input/output alphabets P : {i,i'}/{o} and Q: {i}/{0,0'}.

One can immediately see that C is the largest MIA-refinement relation. The key difference
to [16] is that our definition of MIA also allows T-must-transitions, which must be consid-
ered in the refinement relation (Cond. (ii), for @ = 7). In addition, we now permit not only
leading but also trailing 7-transitions when matching an output in Conds. (ii) and (iii); these
were not allowed in [16] in the tradition of [1,15]. The reason why input must-transitions
must be matched directly and not via a weak transition is due to MIA parallel composition,
which we adopt from IA [1] and explain below.

Another difference to [16] is that we now permit the modification of a MIA’s alphabet
during refinement, along the lines of de Alfaro and Henzinger [1] and Chilton [10]. The
three preconditions on the alphabets in Def. 3 mean that MIA-refinement allows one to
extend the input alphabet and to restrict the output alphabet as far as action types are pre-
served, i.e., a dropped output action is not added as a new input action. Note that Cond. (ii)
ensures that an output action o can only be removed from the alphabet if essentially no
o-must-transitions are present. Also observe that the refining MIA may have additional in-
put transitions with arbitrary subsequent behaviour, because input may-transitions are not
considered in Cond. (iii). This will be crucial for establishing monotonicity wrt. parallel
composition (see Thm. 12 below).

An example of a refinement is illustrated in Fig. 1, where it is easy to check that Z =
{(p0,90),(P1:90):(P2,495), (P4.93). (P5,91): (P3.96), (P6:94): (P4, G6), (P6:q3) } is @ MIA-
refinement relation, i.e., pg C go. It is important to note that the disjunctive must-transition
g0 — {q1,492,43} must be matched by po N {pa,ps} with (pa,q3),(ps,q1) € %, because
Po—3 {p3,ps} is not a possible match due to p3 -2,

This example also shows the intuition behind disjunctive must-transitions. They allow
one to specify several alternatives for the behaviour after an action, from which at least
one must be implemented. The disjunctive o-transition at state go specifies the alternative
behaviours at states g, g» and g3. As a refinement of g, it is sufficient for state pg to
implement only a subset of the behaviours described by ¢, ¢ and g3 after action o, e.g., to
implement ¢g; by ps and g3 by p4 and not to implement ¢, at all. Thus, disjunctive transitions
allow one to express choices of behaviours and a disjunction operator. In addition, they are
necessary for being able to express conjunction on MIA. (See Sec. 2.2.)

As an aside, we wish to comment on another definition of refinement that may appear
sensible at first glance, which is defined as MIA-refinement except that new inputs of the
refining MIA are matched by “idling” as expressed by the following additional condition:

(iv) p — P withi € Ip\ I implies Vp' € P'.(p/,q) € %.

However, the example in Fig. 8 (see Sec. 2.4) shows that the resulting refinement relation
would not be transitive, since then 3 £ 7, C p but r3 / p.
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Now that we have justified MIA-refinement intuitively, we focus our attention on prov-
ing that it is indeed a preorder. While reflexivity is trivial, transitivity requires that action
types are preserved, i.e., p & g and g C rimplies p C r if Ip N Og = 0. However, establishing
transitivity is far from trivial due to the consideration of weak disjunctive must-transitions.
We start off with a key lemma:

Lemma 4 Consider arbitrary MIAs P and Q.

(a) Let p:wsP', p € P and p':ggP". Then, there exists some P such that p:w>F and
P CPC (P {pUP.

(b) Let p=w;P/, {p1,---,pn} C P and p,<=E;P,-f0r 1 < i < n. Then, there exists some P
such that p=3P < (P'\{p1,.... pu}) U UL, P

(c) Letp =w; UL, P, and P, =€>Pi’f0r 1 <i< n. Then, there exists some P such that p zmgp
and PC UL, Pl

(d) Let P == P' and P" C P. Then, there exists some P such that P zegﬁ CcCP.

(e) Let p:ggP’ ={pi1,...,pn} and pi—= P for 1 <i < n. Then, there exists some P such
that p=—3P C U, P.

Proof We only prove Part (a) here and postpone the proofs of the other parts to App. A. The
proof of Part (a) proceeds by induction on the definition of p’ —£4 P, The claim is trivial
for P’ = {p’}. Now assume that p’zg}P’”, peP” p—Pand P = (P"\{p})UP.
Further, by induction hypothesis, p zd)sﬁ C (P'\{p'})UP" for some P’ such that P C P
Applying Def. 2(a) to p:d)sﬁl and p —— P (observe p € P'), we get p:d);ﬁ with P =4¢

(P\{pHUPL S (P \{p'HUP")\p)UP C (P\{p'HU(P"\{p})UP = (P'\{p/})UP";
note that equality fails at the second inclusion if p € P'\ ({p'} UP). Further, P" C P =

(P'\{p})UPsince P” CP. 0

This lemma allows us to replace the strong disjunctive must-transition in the premise of
Def. 3(ii) by a weak one:

Proposition 5 Let Z C P x Q be a MIA-refinement relation for MIAs P, Q and (p,q) € Z%.

() q=‘?;Q’ implies HP’.p%P’ and Yp'eP' 3¢ €Q'.(p' ) € Z.
(b) p=23p implies q'.q==3q and (p',q') € Z.

Proof The proof of Part (b) is standard; thus, we focus on proving Part (a) concerning weak
disjunctive transitions. We proceed by induction on the definition of ¢ =w> o

— Let @ =7 and Q' = {¢}. Then, we choose P’ =4 {p}.

— Let qzd);Q’ due to Def. 2(a), i.e., we have q=(b>Q”’, ¢ €0",q - Q" and Q' =
(Q"\{4"})UQ". By induction hypothesis, there exists some P"” with p:‘bgP’" and
vp" € P"3q" € Q".(p",q") € Z. Further, for each p” € P" with (p”,q") € Z, there
exists a P” with p”:egP” and Vp € P"3g € Q".(p,q) € %Z. Let P be the union of all

these P”. By Lemma 4(b), we conclude p —3 P/ C (P""\ {p" cP"|(p",q") € #})UP.
If p' € P/, then either p’ € P with a matching g € Q" C (', or there is a matching

q/// c Q///\{q/l} g Ql~
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- Letq:ng’ due to Def. 2(b), i.e., ® = o, q:esQ ={q1,...,qn} withg; - Q; for all
1 <j<n,and Q' = j_, Q;. By induction hypothesis, there exists a P" with p Eypr
and Vp"” € P 3q; € Q".(p",q;) € %. For each p" € P", there exists some j and P”
with p” =3 P” and Vp € P"3g € Q;.(P,9) € #; let P be the union of all these P".

By Lemma 4(e), we obtain p —= P’ C P. For each p/ € P’, there exists a matching g in
some Q; C Q. O

Corollary 6 MIA-refinement = is a preorder, where transitivity is understood as: p & q and
q E rimplies pErif IpNOg = 0.

Proof Reflexivity immediately follows from the fact that the identity relation on states is
a MIA-refinement relation. For transitivity one shows that the composition of two MIA-
refinement relations is again a MIA-refinement relation, using Prop. 5 and following the
lines of [18]. O

2.1 Parallel Composition

We define a parallel composition operator | on MIA in analogy to IA [1,15] in two stages:
first a standard product ® between two MIAs is introduced, where common actions are
synchronized and hidden. Then, error states are identified, and all states are pruned from
which reaching an error state is unavoidable in some implementation.

Definition 7 (Parallel Product) MIAs P, and P, are composable if AjNA; = (I, N O,) U
(01N L). For such MIAs we define the product Py @ P, = (P, X P», [,0,—>, --+), where
I=(LUhL)\(01UO02) and O = (01U0,)\ (I; ULL) and where — and --» are defined as
follows:

(Mustl) (p1,p2) —= P{x {p2} if pi - P/ and a ¢ A,

(Must2) (p1,p2) == {p1} x Py if pr—>Pyand a ¢ A,

(Must3) (p1,p2) — P x P it p - P| and p; LN P; for some a
a . (04

(Mayl)  (p1,p2) = (py,p2) if p1--»pjanda¢Ar
o . o

(May2) (p1,p2) - (p1,05) if pr--»phanda ¢ A

(May3) (p1,p2) 5 (p’l,plz) if p; N p'l and p; N p'2 for some a.

The difference to the version of MIA in [16] is that we now have T-must-transitions; in
particular, this has led us to introduce Rule (Must3).

Definition 8 (Parallel Composition) Given a parallel product P; ® P», a state (p1, p2) is an
error state if there is some a € A] NA; such that (a) a € Oy, p; %5 and D2 7&> or(b)a € 05,
)2 “%5 and Pl 7L> We define the set E C P; X P; of incompatible states as the least set such
that (p1, pa2) € E if (i) (p1, p2) is an error state or (i) (p1, p2) -2 (P}, py) and (p},ph) € E.

The parallel composition Py|P, of P; and P, is now obtained from P, ® P, by pruning,
namely removing all states in E and every transition that involves such states as its source,
its target or one of its targets; all may-transitions underlying a removed must-transition are
deleted, too. If (p1, p2) € P1| P, we write p;|p2 and call p; and p, compatible.
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Fig. 2 Matching inputs with (a) leading and (b) trailing 7-transitions result in a compositionality bug. (c) The
respective problem does not exist for outputs. (d) Trailing T are unproblematic as well.

It is easy to see that parallel products and parallel compositions are well-defined MIAs and
that the parallel composition operator is commutative and associative. Strictly speaking,
associativity holds only if all components are mutually composable. To see what might go
wrong, consider P, Q and R such that a is an input for P and R and an output for Q. While
in (P|Q)|R the former two MIAs synchronize on a, which is hidden as a result, the latter two
MIAs synchronize on a in P|(Q|R). In practice, this issue can be circumvented by a suitable
renaming of actions; in our example, one could simply rename a to a fresh action b in P
and Q.

In addition and as we will show below, MIA-refinement is compositional wrt. parallel
composition, i.e., C is a precongruence. It is this desired property that requires us in Def. 3
to match input must-transitions strongly and to ignore input may-transitions when matching,
both of which we discuss in the following.

To see the former, consider Fig. 2(a)-(c) with input/output alphabets Ap =4t Ag =qr
{i}/{0,0'} and Ag =¢¢ {0} /{i}. Firstly, leading 7-transitions are forbidden as one can see
in Fig. 2(a): p should not refine ¢ because ¢ and r are compatible while p and r are not since

(p,r) is an error. Therefore, one must not be able to match a transition — by a transition

sequence (é) " —_, unless the notion of error state originating from IA [1] is changed,
as is done in [4]. Secondly, allowing trailing 7-transitions for P in Cond. (i) of Def. 3 would
lead to a compositionality problem as illustrated in Fig. 2(b): p would refine ¢ but, while ¢
and r are compatible, p and r are not since they reach an error state after synchronizing on i.
This problem does not occur with outputs as we can see in Fig. 2(c): p does not refine g since
the underlying o-may-transition requires one to match p’ with ¢’ by Cond. (iii) of Def. 3.
Fig. 2(d) illustrates that our trailing 7-transitions in Def. 3(iii) are unproblematic as well;
here, neither p nor g is compatible with .

To see why input may-transitions are ignored when matching, observe that prescrib-
ing their matching as in Def. 3(iii) for output may-transitions would also yield a compo-
sitionality defect. For example, for the MIAs in Fig. 3 with alphabets Ap =4t {0}/0 and
Ag =ar Ay =ar {i}/{o}, we would have ¢’ C g but p|g’ &/ p|g. As an aside, observe that
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Fig. 3 Necessity of ignoring input may-transitions when matching. Here, p and p|q are deadlocked processes,
i.e., they do not have an outgoing transition.

MIA-refinement is powerful enough to model STG-bisimulation [21] with internal actions
by considering only must-transitions; in that setting, it is practically important to allow un-
specified inputs in an implementation.

We are now going to prove compositionality of MIA-refinement wrt. parallel compo-
sition, which requires us to establish a couple of auxiliary properties regarding the preser-
vation of composability and consistency under refinement, as well as a property of weak
must-transitions.

Lemma 9 (Composability) Let P, P> and Q be MIAs with py € P, g € Q and p| E q such
that Q and P> are composable and A1 NAy C Ag NAz. Then, P; and P> are composable,
IoNO,=11N0xand OpgNhL 2 O1NDh.

The intuition behind A; NA> C Ap NA; is that no new synchronizations may be introduced,
while existing synchronizations may be removed.

Proof Since Q and P, are composable we have (I} N\L)U(I;N02)U(01NL)U(01N0,) =
A1NAy CApNAr = (IpN02)U(OgNh);in particular, (I} VL) U (11N 0,) C (IpN0O2) U
(O NL). Since the first intersection is contained in I; and I; N Op = @ by preservation of
action types, we get (I} NL)U(I;N0,) CIpN O, C I NO,. Since I and O, are disjoint, we
conclude /1 N, = 0 and, as a first consequence, Ip N O2 = I} N 0». Since O; C Op, we also
have O; N O, = 0 by composability of Q and P,. Therefore, A} NAy = (1N O02)U (01 N D).
Finally, Op NI, © O1 N1 is obvious, as O1 € Op. O

Lemma 10 (Consistency) Let Ep be the E-set of Py @ P, and Eg be the one of Q® P, for
MIAs Py, P, and Q such that Q and P> are composable and Ay NAy C Ag NAj. Further, let
P1 € P, pr € Py and q € Q such that py £ q. Then, (p1,p2) € Ep implies (q,p2) € Eg.

Proof The proof is by induction on the length of a path from (p;,p>) to an error state
of QP
(Base) Let (pi,p2) be an error state.
- Let pg —g-)Pl witha € O;NL C OgNkh and p; 7@;)2. Then, for some ¢/, we have
q:ngq’—Lj»Q by p1 £ ¢; hence, (¢, p2) 23(qd.p2) € Eg and (g, p>) € Eg as well.

- Let py —g->P2 with a € O, N1} and p 7&>p1. If g L>Q, we have a contradiction
to p; E g; otherwise, (g, p2) is an error state since a € [; N0, =Ip N O, by Lemma 9.
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(Step) For a shortest path from (p1, p2) to an error state, consider the first transition (p1, p2)

2, (P}, Pb) € Ep with ® € OU{1}. The transition is due to either Rule (May1), (May2)
or (May3). In all cases we show p/ C ¢’ for some ¢’ € Q, which implies (¢, p5) € Eg by
induction hypothesis.

(May1) pi -2+p, pl. p2 = ph. @ ¢ A, and ® € 01U{7} by @ € OU{1}. Ducto p; C g
and Def. 3(iii), there is a ¢’ such that g ==3 od and p E ¢, and (¢, p2) =23 (¢, p2) by
applications of Rule (May1). By induction hypothesis, (¢, p2) € Eg and, therefore,
(Q»Pz) € EQ

(May2) p1=p}.p2 —C—Oepz phand @ ¢ A;. Since @ ¢ I; implies o ¢ Iy and since @ ¢ Og
by composability, we can apply Rule (May2) again and obtain (g, p2) 2 (q,P5),
so that (g, pb) € Eg by induction hypothesis. Hence, (g, p2) € Eg, too.

(May3) o = 7, and we distinguish the following cases:

-1 —fepl p’1 with a € Oy, and p> —f-)Pz p’2 with a € . By p; © g we have
q:;Qq” f-)Q q" :ngq’ for some ¢',¢",q" with p| E ¢'. Therefore, we get
€ T € .

(q,p2)==3(¢",p2) --» (¢"", Py) ==3 (¢, p,) via Rules (May1) and (May3). By

induction hypothesis, (¢', p5) € Eg and, hence, (g, p2) € Eg, too.
-1 —il-)Pl p’1 with a € I, and py —L—lepz p’2 with a € O;. Note that a € Iy since
IiN0O; =IpNO, by Lemma 9. If g —ﬁ-)g, then g 7L>Q by syntactic consistency
and (g, p2) is thus an error state. If ¢ —L—IéQ, then there exist unique p; i)pl
P’ and ¢ —*5¢ Q' by input determinism. We have p| € P’ by Def. 1(b) and

. a . .

dg'eQ’. p| E ¢’ since p| T q. Hence, g --+¢ ¢’ by syntactic consistency and
(g,p2) N (¢', p5) due to Rule (May3). By induction hypothesis, (¢', p5) € Eg
and, therefore, (q, p») € Ep. O
Lemma 11 (Weak Must-Transitions) Ler P and Q be composable MIAs. If p == P' and
q 250 Q' for some a € (OpNp)U(IpNOp), then (p,q) “4RinP®QwithRC P x (.
Proof Consider P C P and P with (i) p—,P" = {p1,...,pn} and Vi. p; —+p P, such
that P = \J}_, P and (ii) P’ is obtained from P’ by repeated application of Def. 2(a)
with © = 7. In P® Q we get (p,q) —3 P" x {g}. by the definition of — and repeated

application of Rule (Mustl). Now, according to the definition of :83, one can replace
(P1,9),---,(pn,q) in P" x {q} one after the other by the elements of P, x O',.... P, x Q'
such that we finally get (p,q) —£4 R where R’ C P" x Q'. Note that R’ can be a proper
subset of P’ x Q, as is demonstrated by the example below.

The replacements of some p by P that transform P" to P’ can be applied to (i) P’ x Q'
and (ii) R". In Case (i), all (p,q’) with ¢’ € Q' are replaced by the elements of {p} x Q.
The same is done in Case (ii), provided there is some (7, q’); if not, no replacement occurs.
These transformations preserve the inclusion, so finally R C P’ x Q'. O

Fig. 4 shows that, in general, R # P’ x Q'; here, lé!;;, {2,3,4,5} and Oiw 0, but not
l|0:£> {2,3,4,5} x {0}. The sets R with maximal cardinality satisfying 1|0 4R are
{2,4,5} x {0} and {3,4,5} x {0}.

Theorem 12 (Compositionality of Parallel Composition) Ler P;, P>, and Q be MIAs with
P1EP, ppEP, g€ Qandp) E q, aswell as Ay N Ay CAgNA,. Assume that Q and P, are
composable; then:
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P: al o: P®Q:

T T i
1 { 0Da? (1,0)

3 5 (3,0) p (5,0

2.0 > 4,0)

Fig. 4 Example showing that set R in Lemma 11 is not always the full set P’ x Q'.

(a) Py and P are composable.
(b) If g and py are compatible, then so are py and p> and pi|p2 T q|p».

Proof Part (a) follows from Lemma 9. Regarding Part (b), the first claim is implied by
Lemma 10 above. To establish the second claim, note that the alphabet inclusion precondi-
tions for py|p2 C g|p, follow from the respective preconditions for p; £ g. In addition, by
simple set algebra and preservation of action types for P; and Q, we have

Ip,p, NOgip, = ((1UDL)\ (01U02)) N ((0gU02)\ (IgUL))

Y (1 (01V02)) N 00\ lg U D))
ChL ﬂOQ
=0.

For equality () observe that I, can be omitted from the left operand of N since it is excluded
in the right operand, and vice versa for O,. We now prove that

X =qr {(p1lP2.4|p2) | P1 € q, p1,p2 as well as g, p» compatible}

is a MIA-refinement relation, for which we let (pi|p2,¢q|p2) € % and check the conditions
of Def. 3. In the following, Ep stands for the E-set of Pi ® P, and E for the one of Q ® P,
as in Lemma 10.

(i) Letg|ps LN QO with QN Eg = 0 due to either Rule (Mustl) or (Must2).

(Mustl) g —l>Q Q' and Q = Q' x {p2}. Then, by p C g, there is a P{ C P; such that
p1 —p, P and Vpi€P,3q'€Q'. p}| C ¢'. Now, (p1,p2) — P| x {p2} according
to Rule (Mustl) and as i ¢ A,. For p/| € P|, we have a suitable ¢’ € Q'; moreover,
(P},p2) ¢ Ep since (¢, p2) ¢ Eg and due to Lemma 10 that is applicable by the
theorem’s assumptions. Thus, for the arbitrary p}|p,, we have (p)|p2,¢'|p2) € Z%.

(Must2) py —p, Py and Q = {q} x P}. Then, (p1,p2) — P = {p1} x P} according to
Rule (Must2) and since i ¢ AgNA> D A| NA,. For (p1, ph) € P, we get (p1,ph) ¢ Ep
because (g, p) ¢ Eg and due to Lemma 10. Thus, pi[p2 — P and, for py|p}, € P,
we have g|p5 € Q with (p1|p5.q|p5) € %.

(i) Let g|p2 2 Qand QN Eop = 0 due to either Rule (Mustl1), (Must2) or (Must3):

(Mustl) ¢ LQ Q' and Q = Q' x {p»}. Then, by p; C g, there exists P| C P; such that

p1 zwspl P{ and Vp\eP{34'€Q’.p C ¢'. Now, (p1,p2) zwsPl’ x {p2} according to
Rule (Mustl) and since @ ¢ A. Because p; and p, are compatible, this also holds
for all pairs along this weak transition by the definition of Ep. For p| € P we have
a suitable ¢’ € Q' such that, for the arbitrary p/ |p», we also have (p}|p2,q’|q2) € Z.
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(Must2) p» i>1>2 P} and Q = {q} x P;. In this case we obtain that (pi,p>) 2 P=
{p1} x P} by Rule (Must2) and since @ ¢ AgNA, D A NA,. For (p1,ph) € P we

get (p1,ph) ¢ Ep since (g, p}) ¢ Eo and due to Lemma 10. Thus, p;|ps —— P and

therefore also p1|p2 2, P. Moreover, for (p1,p5) € P, we have (pi1|ph,q|ph) € Z.
(Must3) o = 7, and we distinguish the following cases: B

- q—0 0 witha € Og, p» —p, Py witha € b, and Q = Q' x P}. By p1 C g,

there exists some P| with pj — p, P{ such that Vp| €P{ 3¢'€Q’. p C ¢'. Now,

(p1,p2) :%R C P{ x P, by Lemma 11 and, as in Case (ii)(Must1) above, all

pairs along this weak transition are compatible. Hence, for all p/|p} € R, we
have some ¢’ € Q' such that (p}|ph.q'|py) € Z.

- g5 Q' witha € Iy, py —“+p, P, with a € 0p, and 0 = Q' x P}. By pi Cq,
there exists some P| with p; ——p P{ such that Vp|€P{3¢'€Q’. p| C ¢'. Now,
(p1,p2) — P| x P} by Rule (Must3), whence (pi,p2) =£>P1' X P Consider
some (p),p5) € P{ x P} and some ¢’ € Q' with p) C ¢'. Since ¢'|p} € Q is not
in Eg, we also have (p},p}) ¢ Ep due to Lemma 10. Thus, (p}|p},q'|p) € %#
for all p)|p}, € P| x P;.
(iii) Let pi|pa -2, P15 ¢ Ep, which is due to one of the Rules (May1), (May2) or (May3):
(Mayl) ph = p, and p, —?epl Py By pi € g, we have q:ozbqu’ for some ¢’ such that
P\ £ ¢'. Hence, (¢, p2) :(f:) (¢, p2) by repeated application of Rule (May1) and since
¢ A,. If any state on this weak transition were in Eg, then also (g, p2) € Eg, which
contradicts (p1|p2,q|p2) € Z. Thus, q|p2 =23 q'|p> with (p}|p2.4'|p2) € Z.
(May2) p} = pi and p, —Cgapz p5. Then, (q,p2) 2, (g, p%) by Rule (May2) and since
Iy 2 Ip due to p; E q. If the latter state (g, ph) were in Ep, then also the former
state (g, p2). Therefore, we have g|p; -2 g|p5 and, moreover, (p1|p},q|ph) € Z.
(May3) @ =1, p; —(—lepl p} and ps —fepz p) for some action a.
- a€ 01Nk Due to p; E g, we get q:i:)Qq” —feQ q”’:i:}ql for ¢',4",q"
53(q"p2) 52 (@7, Ph) =53 (d,ph)
by Rules (May1l) and (May3). As in Case (Mayl) above, g|p> 5y q'|p5 and
(P\1py,d'|Ph) € %.

— a € 1N O,: Note that a € Iy since I N0 = Ip N O, by Lemma 9. If ¢ —/—'->Q,
then (g, p2) would be an error state, which is a contradiction. Therefore, q—L—zeQ
and, by Def. 1(b), there exist unique p; ——p, P/ and ¢ —o Q' by input-
determinism and syntactic consistency. We have p| € P| and 3¢'eQ’.p| € ¢

such that p} £ ¢'. Now, we obtain (g, p2)

since p; € g. Hence, (g, p2) N (¢, py) by Rule (May3), and (¢, p,) cannot be
in Eg by reasoning as above. Thus, g|p; -5 q'|p5 with (p}|ph.q'|p5) € Z. O

2.2 Conjunction & Disjunction

Conjunction will be defined for MIAs with potentially different alphabets; naturally, we
demand that an input of one MIA cannot be in the output alphabet of the other. We proceed in
two stages, similarly to parallel composition. State pairs can be logically inconsistent due to
unsatisfiable must-transitions (cf. Def. 14 (F1) and (F2)) and are then removed incrementally
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in the second stage. The following definition coincides with the one of our previous version
of MIA [16], but now considers T-must-transitions (cf. Rules (OMust1) and (OMust2)) and
allows conjuncts with different alphabets.

Definition 13 (Conjunctive Product) Let (P,Ip,Op,—p, --+p), (Q,1p, Og,—¢,--*0)
be MIAs with (Ip N Ogp) =0 = (OpNlp) and disjoint state sets. The conjunctive product
P&Q =4 (Px Q)UPUQ, I,0,—,--), where I =IpUIp and O = Op N Oy, inherits the
transitions of P and Q and has additional transitions as follows:

(OMustl) (p,q) —={(p,d)|p' € P, q:CE#Q g} if p—pP and q:i’sQ
(OMusi2)  (p,q) > {(P/,q) | p=23pp',q €Q'} if p=S3, and g3 O/
(IMustl)  (p,q) — P’ if p—pP andq /=g
(IMusi2)  (p,q) — Q' it pAspandg—sgQ
(IMust3)  (p,q) =P x O/ if p—pP andg —i>Q 0
(Mayl) — (p,q) -=> (P,q) if p=t3pp

(May2)  (p.q) -*> (p.q) it g-l3,q

(May3)  (p.q)-2» (¢4 if p=23,p andq=23,¢
(Mayl)  (p.q) -*> 1/ if p-lspp andg-Log
(IMay2)  (p,q) -+ if pLopandg-trgq
(IMay3)  (p,q) s (r'.d) if p Lop p and g —iaQ q

Observe that the conjunctive product is inherently different from the parallel product, as
can be seen from some ‘unusual’ rules that define single transitions on the basis of weak
transitions (Rules (OMust) and (May)) and synchronize on 7-transitions (Rule (May3)).
These will be justified by Thm. 15 below; see also [16] for examples demonstrating that
the above rules cannot be simplified. Regarding Rules (IMust1) and (IMust2), observe that
inputs are always implicitly allowed in MIA; for example, in Rule (IMustl), g does not
impose any restrictions on the behaviour after input i and is therefore dropped from the
target state. Finally, Rules (May3) to (IMay3) guarantee syntactic consistency.

As an aside, note that in the (OMust) rules and in similar cases below the target set of
the defined transition is finite (cf. Def. 1). If one wishes to deal with infinite target sets in
MIA, one has to modify the definition of =8$ by allowing the simultaneous replacement of

several p’ by suitable P’ in Def. 2(a); this would make the latter definition more complicated
and Lemma 11 superfluous.

Definition 14 (Conjunction) Given a conjunctive product P&Q, the set F C P x Q of (log-
ically) inconsistent states is defined as the least set satisfying the following rules:

(F1) 3.0€0p. p—5p andq;/:):)Q implies (p,q) € F
(F2) 3.0€0¢.p ;/:)31, and g%+ implies (p,q) € F
(F3) (p,q) >R andR' CF implies (p,q) € F

The conjunction P A Q of MIAs P and Q with (IpNO0g) =0 = (OpNIp) is obtained
by deleting all states (p,q) € F from P&Q. This also removes any may- or must-transition
exiting a deleted state and any may-transition entering a deleted state; in addition, deleted
states are removed from targets of disjunctive must-transitions. We write p A ¢ for state (p,q)
of P A Q; all such states are defined — and consistent — by construction.
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Fig. 5 Disjunctive must-transitions are needed for conjunction (adapted from Fig. 7 in [16] and Fig. 5 in [5]).

Note that conjunction is well-defined; in particular, / O = @ and target sets are never empty:
if R’ becomes empty for some (p,q) —%4 R, then also (p,q) is deleted when constructing
P A Q from P&Q according to (F3). Conjunction is also commutative and associative.

Figure 5 shows an example of conjunction: we specify the behaviour of a waiter in a
restaurant from two perspectives. The desired overall specification will then be the conjunc-
tive composition of both perspectives. The first perspective, P, requires the waiter to greet
(g!) the customer and to accept that the customer then asks for the menu (am?). Then, the
waiter may hand out a menu with pizzas and desserts on it (mpd!) or a menu with pizzas
and salads on it (mps!); afterwards, an order of a pizza (p?) and an order of a dessert (d?)
or, resp., an order of a pizza (p?) and an order of a salad (s?) must be accepted. The sec-
ond perspective, Q, allows one to enquire in the kitchen whether desserts or salads will be
on offer today (internal action 7) and to greet the customer. After being asked for a menu,
the respective menu must be handed out. The overall specification P A Q and two common
refinements R and S of P and Q are also shown.

That the conjunction of two MTSs cannot always be expressed as an MTS has been
shown in [12,5,16] for three different refinement notions somewhat related to MIA-refine-
ment and in [8] for a range of refinement notions. We adapt these proofs to our example and
argue that no MIA without disjunctive must-transitions can serve as a conjunction, i.e., is
equivalent to P A Q. By contradiction, consider a MIA C where ¢ € C is equivalent to 1 A 1'.

. mps mpd
Cleary, we have ¢ L%, but neither ¢ —5-5-2% 2% (cf. R) nor ¢ &, am mpe (ct. S). Hence,

. . X d .
for any ¢’ with ¢ _8,.9M o/ we have neither ¢’ 223 nor ¢/ “2%. Hence, C is not a refinement
of O, which is impossible.
Operator A indeed defines conjunction on MIA, i.e., A is the greatest lower bound wrt. C:

Theorem 15 (A is And) Let P and Q be MIAs with (IpNOg) =0 = (OpN1y) and disjoint
state sets. We have (i) (3MIAR and r € R.r © p and r E q) iff p A q is defined. Further, in
case p \q is defined and for any MIA R and r € R: (ii)rE pand rC q iff rC pAgq.

The theorem’s first part reflects the intuition that specifications p and g are logically incon-
sistent if they do not have a common implementation; formally, p A g is undefined in this
case. Its proof demands us to reason about inconsistent states, for which we resort to a notion
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of witness, in analogy to [16] but now also considering T-must-transitions (see Cond. (W3)
below):

Definition 16 (Witness) A witness W of P&Q is a subset of (P x Q) UPUQ such that the
following conditions hold for all (p,q) € W:

(WI) p—"p implies ¢==
(W2) g2 implies p:ggp
(W3) (p,q) >R implies R'NW #0

Lemma 17 (Concrete Witness) Let P&Q be a conjunctive product of MIAs. Then, for any
witness W of P&Q, we have (i) F \W = 0. Also, (ii) the set W =4 {(p,q) € P x Q| IMIAR
andr € R.rE pandrC q} UPUQ is a witness of P&Q.

Proof Since Part (i) is obvious, we directly proceed to proving Part (ii), for which it suffices
to consider the elements of {(p,q) € Px Q | IMIAR and r € R.7 C p and r C g¢}; thus, let
(p,q) € W due to MIA R and r € R:

(W1) p—25p P implies r :UgR R'by r £ p. Choose some ' € R'. Then, r :Z;R ' by syntactic
consistency, and ¢ :Z:)Q byrtg.

(W2) Analogous to (W1).

(W3) According to the operational rules for conjunction, we distinguish the following cases
for a must-transition of (p,q):

(OMustl) Then, (p,q) —= S, ice., p —p P and §' = {(p/,¢)| p' € P, q:i)z)Qq’}.
By r C p we obtain some R C R such that r=@>RR’ and Vr’'eR’ 3p'eP'./ € p'.
Choose ¥ € R' and the resp. p’ € P'; now, r :?3 r"’ due to syntactic consistency, and
q :(3:;Qq’ with 1’ € ¢’ for some ¢’ by r € g. Thus, we have p’ € P" and ¢’ such that
(p',q') e WNS dueto R and r. Case (OMust2) is analogous.

(IMust1) Then, (p,q) p , and we are done. Case (IMust2) is analogous.

(IMust3) Then, (p,q) P Q' dueto p —p P and q —i>Q Q' .Byrt p,rt gand
input-determinism, we have some R’ and ' € R’ with r *im R',3p'eP . ¥ E p'and
34'eQ.¥ ¢ . Thus, (p'.q) e WN(P' x Q) duetor. O

Statement (ii) of this lemma is now the key for proving Thm. 15:

Proof (of Thm. 15) (i)”=>"": This follows directly from Lemma 17 above.

(ii)"<=": Let R be a MIA. We now show that % =4; {(r,p) ERX P |3g€ Q.rC pAq}UC
is a MIA-refinement relation, by checking the three conditions of Def. 3 for some (r, p) € Z
due to g:

- Letp —i>p P'. This can lead to a transition of p A ¢ in two ways:
(IMustl) g 7L>Q, whence pAgq p. By r C pAg, there is some R’ such that r LSRR
and Vr'eR'3p'eP’.F C p'.
(IMust3) g —i>Q Q', whence pAg LN (P'xQ')\F.By rt pAg, there is some R’ such
that r —g R’ and Y/’ €R’ Ip'ANg € P x Q. ¥ Cp Ag and, thus, (¥, p') € Z due
toq'.
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- Letp LP P'. Then, g :i):) 0 since, otherwise, p A g would not be defined due to (F1).
Thus, by Rule (OMustl), pAqg — {p'Aq | p € P, q:‘f:}Qq’, P’ A ¢ defined}. By
r € p/Ag, we get some R’ C R such that r=d’>RR’ andV/eR Ip'Ng' . p' e P, q:i):)Qq’
and 7' C p' A¢'. Hence, Y/’ eR'3p'eP'. (v, p') € #Z due to 4.

P implies 3p' Aq'.pA g :?3 P'Aq and r' € p’ Aq'. The contribution of p in this

weak transition gives p==3, p’, and we have (', p’) € Z due to ¢'.

(i)”<="": This follows from (ii)”"<=" by choosing R=PAQ and r = pAgq.

(ii)”==": Let R be a MIA. We show that Z =4 {(r,pAq) |r €R,rC pand rC g}UC is
a MIA-refinement relation. By Part (i), p A g is defined whenever r € p and r C q. We verify
the conditions of Def. 3 for (r,pAq) € Z:

- pAgq —' P Thisis w.l.o.g. due to Rule (IMustl), i.e., p —5p P and q 7/%Q. By rCp,
we have some R’ such that r —¢ R’ and V//€R' 3p'€P'.¥ C p/, whence (,p') € Z.

- Let pAg — (P' x Q') \ F. This is due to Rule (IMust3), i.e., p —p P’ and ¢ —¢ Q.
By rC pand r C g, we get a unique r —& R’ because of input-determinism such that
Vr'eR'3p’'eP’,q'eQ'. ¥ C p'and ¥ C ¢'; thus, (', p' Ng') € Z.

- Let pAg -2+ . This is w.L.o.g. due to p ——p P' and ' = {p' Aq' | p' € P, q:(i):)Qq’,
p' Aq defined} (cf. Rule (OMustl)). By  C p, we have some R’ C R such that rigR R
and Vr'eR' 3p'eP’.r' C p'. Consider some arbitrary ' € R’ and the resp. p’ € P'. Then,

0] , . . J— o !
we have r==3, 1’ by syntactic consistency and, due to r C ¢, some g’ with g==3 04 and
¥ T4 . Thus, p’ Aq' €S and (¥ ,p' Nq') € Z.

— Let r -2sg /. Consider p:cgz) Iy q:(ngq’ satisfying ' © p’ and r’' C ¢'. Therefore,
(r',p' Nq') € Z#. Further, if 0 # 7, we have pAgq -2 p' Aq' by Rule (May3). Otherwise,
either p :L)P p’ and q:ngq’ and we are done by Rule (May3), or w.l.o.g. p :L)P p’ and
g=¢q' and we are done by Rule (May1), or p=p’ and g =¢'. O

As a corollary to this theorem, one obtains compositionality of MIA-refinement wrt. con-
junction:

Corollary 18 If p = q and p Ar is defined, then q \r is defined and p Nr E g \r.

Proof Assume p C gq. Then, (always) pArE pAr <= (by Thm. 15(i)) pArC p and
pArCE r = (by assumption and transitivity) pAr E g and p Ar C r <= (by Thm. 15(i)
and (ii)) pArE gAr. O

Note that one cannot expect that definedness of g A r implies that of p A r, because special-
izing g to p might introduce an inconsistency.

We now turn our attention to defining the dual disjunction operator VV on MIA, which
expresses the least upper bound property wrt. £. The definition of disjunction may make use
of the disjunctive must-transitions relation also for inputs and the internal action 7:

Definition 19 (Disjunction) Let (P,Ip,Op,—p,--»p) and (Q,Ip, Og,—¢,-->¢) be two
MIAs with Ip N Ogp = 0 = Op NIy and disjoint state sets. The disjunction PV Q is defined
by ({p \/q‘pGP, qGQ} UPUQ,I, 07—),77-)), where [ =g4¢ Ip Nlp, O =4t Op U Oy, and
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— and -~ are the least sets satisfying the conditions —pC—, ~—+pC--», —oC—,
--+0C--» and the following rules:

(Must)  pVq— {p,q}

(IMust) pVq——PUQ if p—spPandg—p Q'
(May)  pVq-»p, pVg-—2q

(Mayl) p\Vq-*»p/ if p-tspp and Sq',q_i,Q q
(May2) P\/(I‘i" q if q—£+Q q' and Elp’,p_i}Pp/

It is not difficult to see that V is commutative and associative. The idea behind the oper-

ational reading of V is very intuitive since pV g LN {p,q} naturally describes disjunctive
behaviour. The only subtle point is that must-inputs must be matched directly, which justifies
Rule (IMust) above. We now have the following desired theorem and corollary:

Theorem 20 (V is Or) Let P, Q and R be MIAs with Ip N Og = 0 = Op NIy and disjoint
state sets and states p, g, 1, resp. Then, pN qE riff pC rand g C r.

Proof “=": We establish that % =4 {(p,r) | 3¢.pV ¢ C r}U C is a MIA-refinement
relation. To do so, we let (p,r) € % due to g and check the conditions of Def. 3:

(i) Letr ——5g R By pV ¢ C rand the only applicable Rule (IMust), pV ¢ Py Q' dueto
p s pP and q —i>Q Q' such that Vp'ePUQ’ 3r'eR’. p' C ¥ Therefore, Vp'eP'3r' eR’.
p' £ r and, hence, (p/,r) € Z.

(i) Letr —x R'.By pVgq Cr,wegetpVyg :@55’ for some §’ such that VseS§' 3r'eR’.sC v
If p Vq:wgS’ , then the transition sequence underlying this weak transition starts with

pVq LAY {p,q} and the remainder can be decomposed showing p =w; PP, q:w}Q o

and §' = P'UQ'. AsVp'eP'Ir'eR’.p' C v/ and C C Z we are done now.

The only remaining case is @ = 7 and S’ = {pV g}. Then, there is some ' € R’ such

that pVg C 7, ie., (p,r') € Z. Hence, we are done in this case, too, since p :Tgpp.
(iii) Let p -2 pp. Then, pVgq N p and, due to pV q C r, we apply Def. 3(iii) twice to

. . w
obtain some 7 with r==3,7 and p’ T 7.
R °

“4=":Let pCrand qE r. We prove that Z =4 {(pV ¢q,7)}UC is an MIA-refinement
relation by considering the following cases for (p V g,r):

(i) Letr R R. By p C rand g C r we have P’ and Q' satisfying p —i>g P.q L)Q o
such that Vp'eP' 3r'€R’. p' © ¥ and Vq'€eQ' Ir'€R’. ¢/ C v. Thus, pV g — P'UQ’ using
Rule (IMust) and we are done.

(i) Let r -5x R.. By p Crand g C r we have P’ and Q' such that p=w;PP’, qzngQ’,
Vp' e PUQ'3r e R'. p' C /. Hence, pV qi}P’ U Q' due to Rule (Must).

(iii) Let pVv g 2, Hence, ® = 7, and w.l.o.g. we must only consider pV g N p. This
transition is matched with r :i; g7 since p Er. a

Corollary 21 MIA-refinement is compositional wrt. disjunction.
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Fig. 6 Example in the optimistic MIA setting: Design = (Sender AResetter)|Medium and Spec.

2.3 Example

We illustrate the utility of our interface theory by a small example that models parts of a
communication protocol (see Fig. 6) and is inspired by an example in [19]. The protocol’s
abstract specification is given by MIA Spec. It receives a message from its environment (ac-
tion get), delivers it (put) and signals to its environment its willingness to handle the next
message (nxt). The two T-may-transitions making up the 7-loop model that the message’s
transmission may fail and that this failure may possibly be repaired.

The design of our protocol contains a generic component Sender, which receives a
message for delivery (get). It sends this message (msg) to the Medium and waits for an
according acknowledgment (ack). In case a negative acknowledgment arrives (nack), the
message is re-sent. Sender is specialized by conjoining it with component Resetter, which
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can suggest a reset (rst) after a negative acknowledgment. Both Sender and Resetter
have input must-loops in certain states (actions ack, nack and get) in order to make the
protocol robust against unexpected messages, which are simply dropped.

MIA Sender A Resetter is the result of formally applying our conjunction operator
to Sender and Resetter. No inconsistency arises in our example. However, if one would
refine Sender and Resetter by removing the rst-loop at state D and making the rst-
transition from b to a a must-transition instead of a may-transition, then state Db (or, more
precisely, D A b) would be inconsistent.

MIA Medium specifies a communication medium with potential failure, which receives
a message (msg) and may either deliver it to the environment (put) or — via the T-may-
transition — may lose it. In the former case, Medium returns to its initial state by sending an
acknowledgment (ack); in the latter case, it may return a negative acknowledgment (nack),
which may either be followed by a re-sent of the message (msg) or by the medium being
reset (rst).

The parallel composition Design =4 (Sender AResetter)|Medium is also shown
in Fig. 6. Using our MIA-refinement preorder, it is now easy to check that Design = Spec
since Z =4 {(Aa1,T), (Bal,U),(Ca2,U),(Ca4,V), (Bb5,V),(Cb4,V),(Ca3,W), (Dal,W)}is a
MIA-refinement relation. Note that the put-must-transition originating in state U is matched
by the weak must-transition Bal pzuts Ca3, i.e., the ability to abstract from internal computa-
tion is indeed required in practice. In addition, observe that the get-loop in state Bal does
not need to be matched.

2.4 Perspective-Based Specification: Alphabet Extension

In perspective-based specification as employed in software engineering, one wishes to spec-
ify a component from multiple separate perspectives. Each perspective should be specifiable
independently of the other perspectives and consider only those actions that are relevant for
the current perspective, i.e., each component has its own alphabet; these alphabets may be
identical, disjoint or overlapping. The specification of the overall component should then
arise as the conjunction of all perspective specifications. We will show in this section that
our theory — as presented so far — is not really suited for perspective-based specification, and
that various approaches of addressing this issue that appear to be intuitive at first sight, are
not appropriate solutions.

As an example of perspective-based specification, recall MIAs Sender and Resetter,
which are specifications of two perspectives of the component Sender A Resetter. Ob-
serve that Resetter has only loops for ack and get, and therefore it does not really know
these actions. They are, basically, actions of the Sender perspective but not of the Resetter
perspective. In the spirit of perspective-based specification, we wish to specify Resetter
without the ack- and get-loops, and not even mention these two actions in the alphabet
of Resetter; these actions are then not known to Resetter. In general, such ‘unknown’
actions may not only be inputs but also outputs.

Unknown inputs. The main source of problems is due to Rules (IMustl) and (IMust2) in
Def. 13. For example, if conjunct P specifies a transition p — P’ where input i is unknown

to Q, then p Ag — P’ for any g € Q, thereby losing the behavioural requirements expressed
by conjunct Q. This is usually undesired in perspective-based specification.
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Fig. 7 Extending Q with an i-loop.
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Fig. 8 Alphabet extension and conjunction in the optimistic setting.

To keep conjunct Q, one could add an i-must-loop to each state ¢ € Q such that then
pAq—= {p' Nq|p' € P'}, expressing the neutrality of Q wrt. i in each of its states. But
now the problem is at those states p’ € P with p’ 7L>p, i.e., p’ stipulates on the environment

not to produce i, because p' A g —+ g is also undesirable (cf. Fig. 7). For this reason, we
made both Sender and Resetter input-enabled by employing input must-loops. However,
as said above, we would rather prefer not to mention, e.g., inputs ack and get in Resetter.
Furthermore, Sender’s specifier really requires that a well-behaved environment will not
produce get when Sender is, e.g., in state B; this cannot be expressed anymore when us-
ing conjunction, although expressing such requirements is an essential feature of interface
theories based on 1A [1].

A potential way out would be input may-loops. However, input may-transitions with-
out accompanying must-transitions are not allowed in MIA; see the input must condition of
Def. 1 and the discussion of its necessity in Fig. 3. However, such may-transitions would
not help solving the problem. To see this, consider the MIAs P and Q depicted in Fig. 8
with input/output alphabets 0/{0,0'} and resp. {i}/0, as well as MIAs Ry, R, and R3 with
alphabets {i}/{0,0'}. Intuitively, r; and r, should refine p A ¢, while r3 should not. This
is because (i) p morally has an i-may-loop and g allows input i, and (ii) p enforces one
output o and prohibits o’ independently of any i. However, there is no MIA R with alpha-
bets {i}/{0,0'} and r € R which has these properties of p A g, because, if r; refines r, then
so does r3.

Unknown outputs. We now consider the case that conjunct P specifies a transition p Zp P,
where output o is unknown to conjunct Q. Then, o is not in the alphabet of P A Q, i.e., what-
ever P specifies wrt. o is ignored; this most likely contradicts what the specifier wants. Even
worse, p /A g is inconsistent for any g € Q. This can be avoided by inserting o-may-loops for
all g € O, which is what we have done wrt. outputs msg and nxt of Resetter in Fig. 6.
The loops express that Q is neutral wrt. o, and this time without further undesirable con-
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sequences. Rather than explicitly adding such loops, this can be done more elegantly and
implicitly by modifying the refinement preorder, as we will do in Sec. 3.

In passing we note that adding an o-must-loop to each g € Q instead, makes p' A g
inconsistent if p’ £-p. This is certainly inadequate since Q has no knowledge of o.

Conclusion. The use of loops for dealing with alphabet extensions has already been studied
by Raclet et al. in [19] for their Modal Interfaces (MI); they refer to the addition of may- and
must-loops as weak and strong extension, resp. As our interface theory does, MI combines
MTS and IA, but unlike MIA in a purely deterministic setting without disjunctive transitions.
Raclet et al. employ weak extensions when dealing with conjunction, and strong extensions
for parallel composition. In effect, they end up with two different refinement relations when
showing precongruence for conjunction and parallel composition, resp. As a consequence,
MI is an incoherent theory.

In summary, conjunction, or refinement, for perspective-based specification is still an
open problem in the optimistic setting. Next, we will investigate this problem again, but for
the pessimistic approach to interface theories [4], and show how it can be solved there.

3 The Pessimistic Setting

Orthogonal to the ‘optimistic’ school on interface theories, comprising IA [1], IOMTS [15]
and the above MIA, is the school of Bauer et al. who has adopted a pessimistic view of
compatibility in the presence of errors; see, e.g., [4]. Their interface theory, called MIO,
also roots in Larsen’s modal transition systems [14] and allows may-inputs, but it defines
parallel composition for much fewer interfaces when compared to optimistic approaches.

In our opinion, intuition for the pessimistic setting is weak since it distinguishes a state p
where an input i is absent, from the situation where an i-transition leads to an error state;
in both cases, an error is reached if and only if the environment provides input i. However,
the pessimistic setting has technical advantages as we will see below. We will therefore re-
develop our MIA theory for such a pessimistic setting, to which we will primarily contribute
conjunction and disjunction operators and also disjunctive must-transitions. For complete-
ness note that conjunction was defined by Bauer for a pessimistic interface theory in [2];
however, he considered deterministic interfaces only and no internal actions.

Definition 22 (Relaxed MIA) A Relaxed Modal Interface Automaton (Relaxed MIA) is a
tuple (P,1,0,—,--+) as in Def. 1, but which must only satisfy syntactic consistency.

In the context of the pessimistic setting, it turns out that input determinism and input must
(Conds. (a) and (b) of Def. 1) are not necessary. We thus eliminate these conditions from
MIA and call the resulting automata Relaxed MIAs. In analogy to Def. 2 we now define
weak transitions for Relaxed MIA and, for convenience, overload the transition symbols:

Definition 23 (Relaxed Weak Transition Relations) The relaxed weak must-transition re-
lation = and relaxed weak may-transition relation ==3 are defined identically to the weak
must- and may-transition relations in Def. 2, but replacing @ by o, @ by &, and o by a. For
input actions, we additionally define a restricted weak must-transition that only allows trail-
ing T-actions as follows:

(e) p P implies p =i>=)P’,
(f) p===+P, p' € P'and p' — P" implies p—3=4 (P'\ {p'}) UP",
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Observe that p :iHP’ implies p :I}P’ , which will be used in the sequel.

Since may-inputs are available in the pessimistic setting, extending the alphabets of in-
terfaces can be defined via an according operation, as we will see below (Def. 33). Therefore,
we first consider refinement and operators for Relaxed MIAs with the same input and output
alphabets. The corresponding notions for Relaxed MIAs with dissimilar alphabets will then
be defined on the basis of the existing ones and the alphabet extension operator.

Definition 24 (Modal Refinement on Relaxed MIA) Let P,Q be Relaxed MIAs with the
same input/output alphabets. Z C P x Q is a modal refinement relation if for all (p,q) € Z:

() g — @' implies IP'. p—533 P! and Vp'eP' 3¢'cQ’. (p',q) € %,

(i) ¢ - Q' implies EIP’.pz(bsP’ andVp'eP' 34 €Q’. (p',q) € Z,

(iii) p -2» p/ implies Hq’.q:(z:) q and (p',¢') € #.

We write p C ¢ and say that p modal-refines q if there exists a modal refinement relation %
such that (p,q) € %. Moreover, we denote the kernel of € by 3.

Using the same line of argumentation as in the optimistic case, one can establish that C is a
preorder and the largest modal refinement relation.

3.1 Parallel Composition

The definitions of composability, parallel product and error state for Relaxed MIAs are as
in Def. 7 for MIAs. However, the pessimistic setting is distinguished from the optimistic
one by the following definition of compatibility, which is much stricter than the notion of
compatibility introduced in Def. 7:

Definition 25 (Compatibility on Relaxed MIA) Given Relaxed MIAs P; and P», states
p1 € Py and p; € P, are called incompatible if an error state is reachable from (pi, p2) in
P; ® P,. Here, reachable means reachable via any kind of may-transition, in particular also
via input may-transitions. We write p; ® p for (p1, p2), if p1 and p, are compatible.

It is important to point out that, due to the strict notion of compatibility, parallel composition
is undefined much more often than in the optimistic approach. This view ignores that errors
can be masked by suitable environments; in this sense, the pessimistic approach does not
capture a truly open systems view.

Note that Lemma 11 is still valid in the pessimistic setting. We now obtain the analogue
of Thm. 12:

Theorem 26 (Compositionality of Parallel Composition) Let P, P>, Q be Relaxed MIAs
with p1 € P, p2 € P, g € Q and p & q. Assume that Q and P are composable; then:

(a) P, and P, are composable.
(b) If q and py are compatible, then so are p1 and p> and p1 ® p2 © q® ps.

Proof Part (a) follows immediately since Relaxed MIA Q has the same input and output
alphabets as MIA Py, due to p; T g. Regarding Part (b), we first show that

Z =t {((p1.p2),(q,p2)) | P1 C q}

is a modal refinement relation; observe that this relation does not mention compatibility. We
check the conditions of Def. 24 for some ((p1, p2),(q,p2)) € %:
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(i) Let (g,p2) LN 0O due to either Rule (Must1) or (Must2).
(Mustl) ¢ HQ QandQ=Q x{p}.Byp C C g, thereis P| g Py such that p; :>:>P1

and Vp\eP{34'€Q’. p/ T ¢'. Now, we obtain (py,p>) =9=>P1 x {p2} by repeated
application of Rule (Mustl) and i ¢ A,. For each (p},p2) € P| x {p>}, there is a
suitable ¢’ such that ((p}, p2), (¢, p2)) € Z.

(Must2) py —p Pj and Q = {q} x P}. Then, (p1,p>) L {1} x P} by Rule (Must2),
since p; and ¢ have the same alphabets by p| C ¢. Because ((p1,p5),(q,05)) € Z
for each p’2 € P,, we are done.

(i) Let (q,p2) BN 0 due to either Rule (Mustl), (Must2) or (Must3) The cases (Mustl)

and (Must2) are as in Case (i) with 25 in place of 5 and =¢ in place of =ﬁ In
Case (Must3), we have @ = 7 and distinguish the following sub-cases:
- -0 Q' witha € Og, py ~+p, Pywitha € b,and Q= Q' x P;. As p; C g, there ex-
ists some P| with p; =a$pl P| such that Vpi €P| 3¢'€Q’. p| € ¢'. Now, (p1, p2) 4R
for some R C P{ x P} by Lemma 11. Hence, for each (p}, p5) € Rwehaveaq’ € Q'
with ((p}, p5). (4, P3)) € Z.
— The case for a € Ip N O, is analogous, writing =a>:>p1 for :a>p1 .

(iii) This condition, where (p1,p2) 2, (P}, ph) due to either Rule (Mayl), (May2) or
(May3), is similar but much simpler to establish than Conds. (i) (in case ¢ € Ip) and (ii)
(in case & € Og U{T}) above.

We now conclude the proof of Part (b) by reasoning that compatibility of ¢ and p, implies
compatibility of p; and p,. To do so, assume p; and p, are incompatible; then, the sequence
of may-transitions leading from (p1, p2) to an error state (p/, p5) can be matched according
to the above modal refinement relation &% and Def. 24(iii) via a transition sequence leading
from (g, p2) to (¢, py) with pj C ¢'. If there is an action a € O N with p} —ﬁepl and
Py /p,, then ¢’ :i;Qq” —g->Q and (¢, pj) £ (4", p5), where the latter is an error state. If
there is an action a € I; N O, with p} £~ and p), -%5, then ¢ - would contradict Cond. (i)

of Def. 24 and the definition of —3-; thus, (¢',py) is an error state. In any case, (q,p2)
would reach an error state. Hence, compatibility of ¢ and p, implies compatibility of p;
and p;.

Now we can restrict Z to pairs where p; and p, as well as g and p; are compatible.
This relation is a modal refinement relation, too: the strong and weak transitions considered
above use only pairs of compatible states since these can be reached from p; ® p; or ¢ ® ps.
Thus, the restricted relation proves p1 ® p2 C ¢ ® ps. O

In contrast to the optimistic setting, the matching of input may-transitions in the refinement
preorder does not preclude compositionality. This is because for py & ¢, there exist much
fewer p; such that ¢ and p, are compatible. Hence, for establishing the precongruence prop-
erty for parallel composition ®, there are much fewer results p; ® p2 & g ® pa to prove.

3.2 Conjunction & Disjunction

The definition of conjunction A on Relaxed MIA gets by with five instead of eleven rules.
This is because it allows one to merge the corresponding rules for outputs and inputs, due to
the use of weak input must-transitions in Def. 24:
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Definition 27 (Conjunctive Product on Relaxed MIA) Let (P,1,0,—p, --+p) as well
as (Q,1,0,—,--+¢) be Relaxed MIAs with common alphabets. The conjunctive product
P&Q =gt (P x Q,1,0,—,--+) is defined by the following operational transition rules:

(Mustl ) (pyq)L{(p’vq’)lp’éP’yngqu’} if p%pP’andq:ng
(Mus2) (p,q) <5 {(p/,d)|p=23pp/,d €Q} if p=23, andq -0 Q'
(Mayl)  (p,q) - (P',q) it plapp
(May2)  (p,q) - (p.q) if g-23,4
(May3)  (p.q) - (P4 if p=23,p and g-23,4

Conjunction on Relaxed MIAs with the same alphabets — including the set F' of inconsistent
states — is now defined identically to these notions on MIA (Def. 14), but replacing o € O
with a € A; the same applies to the notion of witness (Def. 16). In analogy to Lemma 17, we
obtain the following concrete witness lemma for our pessimistic setting:

Lemma 28 (Concrete Witness for Relaxed MIAs) Let P, Q and R be Relaxed MIAs with
common alphabets.

(i) For any witness W of P&Q, we have FNW = 0.
(ii) The set {(p,q) € Px Q|3r €R.rC p and r C g} is a witness of P&Q.

Proof While the first statement of the lemma is quite obvious, we prove here that W =g4¢
{(p,q) ePxQ|3rc€R.rt pandrC g} is a witness of P&Q:

(W1) p—%5p P implies r :asR R'by rC p.Choose some ¥’ € R'. Then, r 23 g’ by syntactic
consistency and g :i;Q byrtgq.

(W2) Analogous to (W1).

(W3) Consider (p,q) € W due to r, with (p,q) - §' because of p ——p P’ and §' =

{p'.d)|p eP, q:g,;Qq’} by Rule (Mustl). By r C p we get some R’ C R such that
r=a>RR’ (recall that r=i¢=>RR’ implies r=i$RR’) and Vr'eR'3p'eP’.r' C p'. Choose
r € R'; now, r:gg &1’ due to syntactic consistency, and q:g:) 0 g with ' S ¢’ by rc q.

Thus, we have p’ € P' and ¢ such that (p’,q') e WN S due to r. O

On the basis of this lemma we can now establish the desired greatest lower bound result
for A, which implies the compositionality of & wrt. A:

Theorem 29 (A is And) Let P and Q be Relaxed MIAs with common alphabets. Then,
(i) (GRandr € R. v C p and r E q) iff p A q is defined. Further, in case p \q is defined and
forany Randr € R: (ii) rC pand r C q iff rC pAgq.

Note that R is implicitly required to have the same alphabets as P and Q by our definition
of C.

Proof (i)”=": This follows from Lemma 28.

(i), (ii)”<=": It suffices to show that Z =4 {(r,p) | 3g.r C p Aq} is a modal refinement
relation. Then, in particular, (i)”<=" follows by choosing r = p A g. We check the conditions
of Def. 24:
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- Letp i>p P'; then q:gz) 0 since otherwise & # 7, and p A ¢ would not be defined due
to (F1). Hence, by Rule (Mustl), pAg —2 {p'Aq | p' € P', q:‘gng’, p'Aq defined}.
By rC pAg, we get rzagRR’ suchthatVr' € R' 3p'Ag'. p' € P/, q:(z#qu and ' C p'Aq.
Hence, V¥ e R'3p' e P'.(Y,p') € Z.

S implies 3p’ Aq'.pA g :‘33 P/ Nq and ¥ € p’ Aq'. The contribution of p in this

.. . (04
weak transition sequence gives p==3, p, and we have (', p') € Z due to ¢'.

(ii)”==": Here, we show that # =q; {(r,pAq) | rC pand r C g} is a modal refinement
relation. By Part (i), p A g is defined and (r,p A q) € % whenever r C p and r © g. We now
verify the conditions of Def. 24:

- Let pAg - 8, wlo.g. thisis due to p ——sp P and ' = {p' Aq' | p' € P/, q:‘i‘ng/,
p' Nq' defined}. Because of r = p, we have r :%R R’ sothat Vr'eR'3p’eP’. ¥ C p'. Con-
sider some arbitrary 7 € R’ and the resp. p’ € P'. Then, r:‘z:) r!’ by syntactic consistency
and, due to r C g, there exists some ¢’ with ¢ :lz:) Qq’ and ' C ¢'. Thus, p’ Aq’ € S’ and
(r,p'ng) e .

— Let 7 -2+ ¥ and consider p:gspp’ and q:gsgq’ satisfying /' C p’ and ' € ¢. Thus,
(r',p'Nq') € Z. Further, if a # 1, we have pAg 2% p' Aq’ by Rule (May3). Other-
wise, either p:z:)Pp’ and q:;)Qq’ and we are done by Rule (May3) again, or w.l.o.g.

p:;)Pp’ and g = ¢’ and we are done by Rule (Mayl), or p=p’ andg=¢'. O
Corollary 30 Modal-refinement is compositional wrt. conjunction.

We now turn our attention to disjunction V on Relaxed MIAs with the same alphabets,
which is defined as in Def. 19 for MIA and for which we obtain, in analogy to Thm. 20 and
Cor. 30:

Theorem 31 (V is Or) Let P, Q and R be Relaxed MIAs with common alphabets, disjoint
state sets and states p, q and r, resp. Then, pN qC riff pCrand g Cr.

Proof “=>": We establish that % =g {(p,r) | 3g.pV ¢ C r}U C is a modal-refinement
relation. To do so, we let (p,r) € Z due to ¢ and check the conditions of Def. 3:

(i) Let r —g R'. Because of pV ¢ C r and by the only initially applicable Rule (IMust),
pVg—3P' UQ dueto p:ljzppP’, q=l>=)Q Q' such that Vp'eP'UQ' 3r'eR’. p' t /;
recall PN Q = 0. Hence, Vp'eP'3reR’. p' C v and, thus, (p,r) € Z.

(i) Let r —%5 R'. The proof in this case is identical to the corresponding case in the proof
of Thm. 20.

(iii) Let p —‘}-ND p'. Then, pVgq N p and, due to pV g C r, we apply Def. 3(iii) twice to

. . a
obtain some ' with r==3,7" and p' C /.

“<=":Weprove that Z =gt {(pV q,7) | pE r and ¢ C r} U C is a modal-refinement relation.
Let (pV q,r) € Z and consider the following cases:
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(i) Letr L>R R'.By pt randgC r, we have P’ and Q' satisfying p:i>:>PP’, q:i>:>Q 04

such that Vp'eP'3r'eR’. p' C ¥/ and V¢'€eQ'3reR’. ¢' C ¥'. Thus, p Vg—3P UQ us-
ing Rule (IMust) and interleaving the replacements involved in the weak transitions

p 0 pP and g :ZHQ Q'; recall again that PN Q = 0. Now we are done.

(i) Let r %5 R'. The proof in this case is identical to the corresponding case in the proof
of Thm. 20.a .
(iii) Let pVg--».If @ = 7, then w.l.o.g. we must only consider pV g --+ p. This transition

is matched with r:i:}Rr since p C r. If & # 7, then w.l.o.g. we must only consider

W o« ’ @ oy I entiofus e
pVq--+»p dueto p--+pp and g--+¢. Then, r==3,+" for some r' satisfying p' C r’,
duetopCr. O

Corollary 32 Modal-refinement is compositional wrt. disjunction.

3.3 Alphabet Extension

As motivated in Sec. 2.4, we introduce alphabet extension as an operation on Relaxed MIA
and employ this to lift modal-refinement to Relaxed MIAs with dissimilar alphabets. In
contrast to MIA-refinement, we are now interested in extending input and output alphabets
in a refinement step.

Definition 33 (Alphabet Extension and Refinement) Given a Relaxed MIA (P,1,0,—,
--+) and disjoint action sets I’ and O’ satisfying I' NA =0 = O’ NA, where A =4 [UO. The
alphabet extension of P by I' and O’ is given by [P]y o =gt (P,IUI',OU0',—, --»") for
~—' =gt U{(p,a,p)|p € P,ac I'UO'}. We often write [p]y o — or conveniently [p] in
case I, O' are understood from the context — for p as state of [P) ro-

For Relaxed MIAs P, Q with p € P, g € Q, Ip 2 Ip and Op 2 Ogp, we define p E’ q if
Pt [q] Ip\lp,0p\Og* Since E’ extends = to Relaxed MIAs with different alphabets, we write C
for C’. We also abbreviate [q}IP\IQ;OP\OQ by [g]p-

Our compositionality result regarding parallel composition of Thm. 26 immediately carries
over to the alphabet extension situation, if we require that alphabet extension does not yield
new communications:

Theorem 34 (Compositionality of Parallel Composition) Let Py, P>, Q be Relaxed MIAs
as well as p1 € Py, py € P, q € Q such that, for I' =4 1) \ Ig and O' =4 O \ Og, we have
(I'U0')NA, = 0. Assume further that Q and P, are composable and p; C q. Then:

(a) Py and P are composable.
(b) If g and py are compatible, then so are py and py and py @ p2 & g pa.

Note that the requirement (I’ U 0’) N A, = @ above is equivalent to (A; NA2) = (AgNA2)
(cf. Thm. 12).

Proof Itis easy to see that [Q] v and P, are composable and that [Q] o ® P, is isomorphic
to [Q® Py ¢ via mapping [g] ® p2 — [q® p2]. This follows from Rule (Mayl) in the
definition of ® since we only add “fresh” may-transitions to each ¢ € Q. The mapping also
respects error states; in particular, new may-transitions with label 0 € O’ cannot create new
errors since o ¢ I>. Thus, [g] and p, are compatible if g and p; are; moreover, p; C [g]. Now,
the result follows from Thm. 26. O
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The conjunction operator in the presence of alphabet extension can now be lifted from
Sec. 3.2 in a straightforward manner:

Definition 35 (Conjunction Operator) Let P, O be Relaxed MIAs, p € P and ¢ € Q such
that Ir N Og = 0 = Ip N Op. Then, p N g =4t [plo A [g]p- Again, we simply write p A g
for pN'gq.

To be able to lift our main result, Thm. 29, we only need to establish that the alphabet
extension operation is a homomorphism for conjunction:

Lemma 36 Let P with p € P and Q with g € Q be Relaxed MIAs with common alphabets.
Consider the alphabet extensions by some I' and O'. Then:

(a) p and q are consistent iff [p] and [q] are.
(b) Given consistency, [pAq] E3 [p] Alq].

Proof For proving Part (a), consider the mapping 8 : (p,q) — ([p],[q]), which is a bijec-
tion between P&Q and [P]&[Q]. We have (p,q) € Fpgg due to a € A and (F1) or (F2) iff
([p):[q]) € Fipi&jg) due to a € A and (F1) or (F2). Observe that (F1) and (F2) never apply
to ([p],[q]) and a € I' U ', because there are no must-transitions labelled a. For the same
reason, Rules (Must1) and (Must2) are never applicable for a and, thus, f3 is an isomorphism
regarding must-transitions; hence, (F3) is applicable exactly in the corresponding cases ac-
cording to f3. Therefore, f3 is also a bijection between Fpgo and Fipg[g)-

Concerning Part (b), we can regard f3 also as a bijection between [P A Q] and [P] A [Q],
and establish each direction of =2 separately:

— “C”: We show that 8 is a modal refinement relation, for which we consider [p A g]
and [p] A[g]. Conds. (i) and (ii) of Def. 24 are clear, because f is still an isomorphism
on must-transitions. Regarding Cond. (iii), we only have to consider Rule (May3) for

o el' U0, where [pAg] s riffr= [p Ag]. This transition can be matched by the
transition [p] A [q] -2 [p] A [q], which exists by Rule (May3).

— “27: We show that also B! is a modal refinement relation. Take [p] A [¢] and [p Aq];
again, Conds. (i) and (ii) are clear. Thus, we only have to consider o € I' U O’ for es-

tablishing Cond. (iii), so that [p] A [q] -2 r iff r = [p/| A[¢] for p=S3 p/ and g=34.
This transition can be matched by the transition [p A ¢] -2 [pAg] -5y [P’ Aq'], where

the weak may-transition exists by either Rule (May1), (May2) or (May3), or because
p=p andqg=¢. O

Theorem 37 (A is And) Let P with p € P, Q with q € Q, and R with r € R be Relaxed MIAs
such that IpNOg =0 =1pNOp, Ig 2 IpUlp and Or 2 OpU Og. Then, (i) there exists such
an R and r € Rwith r & p and r & q iff p A q is defined. Further, in case p \ q is defined:
(ii)rEpandrC qiffrc pAg.

Proof Recall that we denote by []p an extension with the additional actions of P, and
similarly for Q and R. Also note that, in the context of this theorem, [[p]p]r = [p]r and
[[glp]x = [g]x-

@) If  © [p]r and r C [g]r, then [p]g A [g]r is defined by Thm. 29. The latter conjunction
equals [[plo|r A [[¢]p]r; hence, [p]p A [g]p is defined by Lemma 36, and this conjunction
is p A q by definition. If [p]o A [g]p is defined, there exists R with the common alphabets
of [P]p and [Q]p as well as r € R with r C [p]p and r E [g]p by Thm. 29. For this R, we
have [p]o = [p]r and [g]p = [g]r; thus, r C p and r C ¢ by definition.
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(i) Let p A g be defined. We reason as follows:
rCpandrCgq
iff  rC[plrandrC [g]g (by definition)

it rC [plrA gl (by Thm. 29)
iff rE [[plo A lglplr (by Lemma 36 and note above)
iff rcphg (by Defs. 33 and 35) a

The situation for disjunction under alphabet extension is analogous to the one above, but
exploiting monotonicity of the alphabet extension operation wrt. C:

Definition 38 (Disjunction Operator) Let P, Q be Relaxed MIAs with disjoint state sets,
p € Pandge QsuchthatpNOg =0 =1IpNOp. Then, pV' q =4 [plo V [g]p. Once again,
we simply write pV g for pV'q.

Lemma 39 Let P with p € P and R with r € R be Relaxed MIAs having the same alphabets,
as well as I' and O' be suitable action sets for extending them. Then, p C r iff [p] C [r].
Proof Since we only add may-loops with a fresh label a for the extension, it suffices to
observe for Direction =" and p T r that each may-transition [p] -%5 [p] can be matched
by [1] -=» [1] o
Theorem 40 (V is Or) Let P with p € P, Q with q € Q, and R with r € R be Relaxed MIAs

with disjoint state sets such that [pNOg =0 =1IpNOp, Iz CIpUlp and Or C Op U Og.
Then, pVqEriff pCrandqtCr.

Proof The proof proceeds along the following chain of equivalences:

pVqtr
iff [p]Q \Y [q]p c [[V}P]Q (by definition)
iff  [plo = [[r]ploand [qlp = [[1]plo  (by Thm.31)
iff  pClrlpandgC [rlp (by Lemma 39)
iff pCrandgCr (by definition) ad
3.4 Example

We now return to our example of Fig. 6 and cast this into the pessimistic MIA setting as
shown in Fig. 9. The major difference to the optimistic version is that we can now specify
component Sender A Resetter perspective-based, i.e., we do not need the must-loops for
inputs ack, nack and get in the conjuncts. This directly reflects that Resetter is not con-
cerned with ack and get at all. Similarly, we do not need the may-loops for outputs msg
and nxt since in Relaxed MIA we may extend output alphabets. The conjunction operator
of Relaxed MIA now takes care of unknown actions; for example, the get-transition leaving
state Aa in the conjunction results from the implicit get-may-loop at state a in Resetter.

In Fig. 9 we have also changed the two nack-labelled must-transitions of Resetter
to just may-transitions. Hence, an implementation of Resetter may decide, e.g., to ini-
tiate a reset after exactly n negative acknowledgments, showing the utility of may-inputs
for specification and the modal-refinement preorder. Moreover, we are now able to sig-
nal failure in state 4 of Medium explicitly via an output must-loop labelled failed; this
is, again, because Relaxed MIA permits adding outputs in a refinement step. Concretely,
Design = (Sender AResetter)|Medium C Spec with the same relation % as in Sec. 2.3.
In particular, observe that, for (Ca4,V) € %, the failed-loop of Ca4 is matched by V due
to our implicit alphabet extension in modal-refinement (cf. E’ of Def. 33).
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Fig. 9 Example in the pessimistic MIA setting: Design = (Sender AResetter)|Medium and Spec.

4 Conclusions & Future Work

Interface theories are an important tool for reasoning about component-based systems. This
article advanced the state-of-the-art of both the optimistic school [6,9,10,1,15,16,19] and
the pessimistic school [3,4] on interface theories:

Regarding the optimistic school, we repaired a shortcoming of the refinement preorder
introduced in [15], which ignored internal must-transitions, thereby leading to unintuitive
refinements. For the first time in the literature on modal transition systems, we dealt with
weak transitions in the presence of disjunctive T-must-transitions. We also extended our
MIA framework [16] so as to handle alphabet modification during refinement along the lines
of de Alfaro and Henzinger [1] and of Chilton et al. [9]. This is non-trivial since changing
the refinement preorder has direct consequences for the definition of conjunction.
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Regarding the pessimistic school, we showed how its approach may be extended by
conjunction and disjunction operators; conjunction is a key operator in any component-
based setting, which enables engineers to express that some component is required to satisfy
several interfaces. In comparison to the optimistic setting, conjunction in the pessimistic
setting is better suited for perspective-based specification.

Regarding future work, we wish to investigate whether there are suitable interface theo-
ries in-between the optimistic and pessimistic approaches. This might fix their current lim-
itations, namely by allowing may-inputs as in the pessimistic approach while maintaining
the truly open systems view of the optimistic approach.

We also wish to add a quotienting operator to MIA. In the literature, quotienting has
so far only been studied for deterministic interfaces [19,9, 10] or nondeterministic systems
without internal transitions and input/output-distinction [20, 11]. Extending quotienting to
our MIA setting will likely be technically challenging. We have done a first step towards this
in [7], but for the multicast parallel operator of [19] rather than MIA’s handshake parallel
composition and for quotients where the divisor — but not the dividend — is still required to
be deterministic.
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A Proof of Lemma 4(b)—(e)

Proof of Part (b). We show by induction on k that there exists a Py such that p zw}ﬁk -
(P'\{p1,...,pc}) UUL, P. Part (a) implies the case k = 1. Assume the claim holds for .
Now, there are two cases: if py11 ¢ Py, then Py = Pr C (P'\{p1,..., prs1) U U P. Oth-

. o — — —
efl\(?Vlse,P=$Pk+1 C (Pe\{Pr+1})UPes1 by Part (a{- I]{ence, Pt S (((P'\{p1,- s i 1)U
Uizt P)\ a1 }) UPeit S (P\{p1s-- o o) U UL P O

Proof of Part (c). The proof proceeds by induction on the overall number of applications of
Def. 2(a’). If this is 0, then P =4¢ [, P,. Otherwise, assume w.l.o.g. that P :E;Pl”, p1EP,
p1 — P" and P, = (P"\ {p1}) UP". By induction hypothesis, there exists a P such that

p =w>f’ CP'UUL,P.1f p; ¢ P, then P C |J | P! and we are done. Otherwise, p =w¢ﬁ =4f
(f’\ {p1})UP". Since P C P/'UJ., P! implies P\ {p1} C (P \ {p1}) U U", P!, we obtain
PCULP. O

Proof of Part (d). The proof is by induction on the derivation of P =8> P'.For P=P', choose
P =4 P". Otherwise, assume P— P, p € P, p —— P’ and P' = (P\ {p}) UP'. By induction
hypothesis, there exists a P such that P” ZS;FI CPIfp¢ P, then P’ C P and we are done.
Otherwise, P =g (P \ {p}) UP' C P'. ]

Proof of Part (e). For 1 < i< n, we have p; —3 P = {p};--, P} such that p’ AN P; for
1 < j <k;, and can derive p; =0;Pi from p; ;)3 U];’: 1 Pj’: by repeated application of Def. 2(a),
ie., Uf’:l Pj’: =£;Pi. By Part (d), we get for each Pj’: a le»" such that Pj’f =8}P}i CPRCUL,P.
When applying Part (b), we obtain some P such that p=— P C |J}, P/. With Def. 2(b)
we get p :0; U, where U is the union of some of the PJ’ Taking these P; as the P; in Part (¢)
yields p ;;F such that P is contained in the union of the resp. P;i and, thus, in J?_; P. O



