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Abstract Interface theories allow system designers to reason about the composability and compat-
ibility of concurrent system components. Such theories often extend both de Alfaro and Henzinger’s
Interface Automata and Larsen’s Modal Transition Systems, which leads, however, to several issues
that are undesirable in practice: an unintuitive treatment of specified unwanted behaviour, a bi-
nary compatibility concept that does not scale to multi-component assemblies, and compatibility
guarantees that are insufficient for software product lines.

In this article we show that communication mismatches are central to all these problems and,
thus, the ability to represent such errors semantically is an important feature of an interface theory.
Accordingly, we present the error-aware interface theory EMIA, where the above shortcomings are
remedied by introducing explicit fatal error states. In addition, we prove via a Galois insertion that
EMIA is a conservative generalisation of the established MIA (Modal Interface Automata) theory.

1 Introduction

Today’s software systems are increasingly composed from off-the-shelf components. Hence, soft-
ware developers desire to detect incompatibilities between components early. This is supported
by interface theories [2,7,8,10,14,15,19,26,30,32], which may serve as specification theories for
component-based design [15,2,9,24], software product lines [26], web services [5] and the Internet5

of Things [29]. Interface theories may also be employed as contract languages or behavioural type
theories when transitioning from software design to implementation [1,20].

Many interface theories [2,7,26,30,32] extend de Alfaro and Henzinger’s Interface Automata

(IA) [14,15] and Larsen’s Modal Transition Systems (MTS) [25,28]. In order to express compatibility
assumptions of components on the communication behaviour of their environment, IA divides an10

interface’s action alphabet into input actions (‘?’), output actions (‘!’) and an internal action τ . A
communication mismatch, or error, arises between parallelly composed components P and Q, if P may
issue an output a! while Q is not ready to receive the input a? in its current state. Orthogonally,
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MTS permits one to specify required and optional behaviour. Taking stepwise decisions on the
optional behaviour allows for a component-based, incremental design, which is supported by a15

compositional refinement preorder.

1.1 Shortcomings of Related Work

Unfortunately, interface theories combining IA and MTS [2,7,26,30,32] have several issues that
impact their practical use.

Issue A: Forbidden inputs are preserved by the resp. refinement preorder but are largely ignored by20

parallel composition, so that behaviour that is forbidden in one component may be re-introduced
in the composed system if another component defies this prohibition. This unintuitive treatment of
communication mismatches and, in particular, unwanted behaviour, is dangerous for safety-critical
applications.

Issue B: Pairwise binary compatibility of multiple components is neither necessary nor sufficient for25

their overall compatibility when being considered as a multi-component assembly, even if parallel
composition is associative. To address this, Hennicker and Knapp [22] have introduced assembly

theories that extend interface theories by a separate level of assemblies where multi-component
compatibility is checked. However, these assemblies have to be re-interpreted as interfaces to be of
further use.30

Issue C: Optional behaviour, modelled via may-transitions as in MTS, may be employed to express
variability inherent in software product lines. In current interface theories, two product families may
be considered compatible only if all products of one family are compatible with all products of the
other. However, one would prefer a more detailed set of guarantees, such that one may distinguish if
all, some or none of the product lines’ products are compatible [26] in order to compute compatible35

subfamilies.

Issue D: MTS and MTS-based interface theories have some subtle differences wrt. their treatment of
modalities, resulting in different composition concepts: in MTS, components unanimously agree on
transitions of their composition; in interface theories, an error arises if the components’ requirements
do not match. Each theory makes a global choice of a composition concept, which is tightly bound40

to a respective compatibility notion and does not allow one to mix different compatibility and
composition concepts that are suitable for the application at hand.

We illustrate the compatibility problems of current interface theories by means of an example
highlighting Issue A; this and the other issues are further discussed in Sec. 3. Consider a driving
assistance system that enables a car to drive into and out of a garage autonomously. Such a system45

must communicate with the garage in order to make it open and close its door.
Fig. 1 shows specifications G and C of the garage’s and the car’s interfaces, resp. In figures, we

use capital letters in italic font followed by a colon to represent (names of) interface specifications,
small letters in italics for states of a specification, and normal font for transition labels. Initial
states are marked by a small arrow usually placed at the top left. The alphabets of transition labels50

are written as A = I/O, where I and O are the sets of input and output labels, resp.
Starting in state g0, the garage is ready to receive a passage request (rqstPass?). After such

a request, the garage opens its door (openDoor!), waits for a car driving in or out (drive?) and,
finally, closes the door (closeDoor!) again. The car starts in state c0 waiting for a user’s request
(rqstCar?). Upon receiving such a request, the car requests passage from the garage (rqstPass!)55

and then drives into or out of the garage (drive!), reaching state c0 again.
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Fig. 1 Example of a driving assistant system including a garage G and a car C, where AG := {drive?, rqstPass?}/
{closeDoor!, openDoor!} and AC := {rqstCar?}/{drive!, rqstPass!}.
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Fig. 2 Parallel product in IA or MIA (left), and parallel composition in IA (middle) and MIA (right) of the
components depicted in Fig. 1, where AG⊗C = AG‖C := {rqstCar?}/{drive!, closeDoor!, openDoor!, rqstPass!}.

Specifications G and C have a communication mismatch due to the drive!-transition at state c2
and the fact that no drive?-transition is specified at state g1. Hence, in the parallel product G⊗C
shown in Fig. 2 (left), state 〈g1, c2〉 is considered illegal. In interface theories with a pessimistic

notion of compatibility, e.g., [2,30], the parallel composition of G and C is undefined, because the60

illegal state 〈g1, c2〉 is reachable from the initial state 〈g0, c0〉. Optimistic theories, e.g., [7,8,10,14,15,
26,30,32], assume a helpful environment that tries to steer away from communication mismatches
by controlling the composed system via its input transitions. A state is optimistically illegal if a
communication mismatch is reachable via uncontrollable actions, i.e., output or τ -transitions. The
parallel composition G ‖ C is obtained from G ⊗ C by removing all illegal states. In our example,65

state 〈g1, c2〉 is illegal, just as state 〈g0, c1〉 from which 〈g1, c2〉 is reachable by an output (rqstPass!).
This pruning leaves a single state 〈g0, c0〉 with no transitions; all other states are unreachable. The
rqstCar?-transition at state 〈g0, c0〉, which would allow one to reach illegal states when triggered
by the environment, is also removed. However, in order to ensure compositionality of refinement,
rqstCar? must be permitted with arbitrary behaviour afterwards (cf. [7]); IA-based refinement [14,70

15,30] allows this implicitly for all unspecified inputs (Fig. 2, middle). In MTS-based interface
theories, where unspecified transitions represent forbidden behaviour, compositionality is achieved
by replacing pruned behaviour by an explicit optional transition to a special, universally refinable
state > (Fig. 2, right) that semantically stands for arbitrary behaviour [7].

Due to this possibility of introducing arbitrary behaviour in case of a communication mismatch,75

stepwise refinement may re-introduce behaviour that has previously been removed due to the
mismatch. Hence, optimistic theories accept a car driving into or out of the garage before the door
is opened as a valid implementation of G‖C. This contradicts G’s sensible constraint that driving in
or out is only permitted after the door has been opened, i.e., the meaning of a car crashing into the
door can simply be ‘refined’ to not being an error. In other words, the assumptions and guarantees80

expressible in current interface theories are insufficient for expressing unwanted behaviour.

Bujtor and Vogler [8] have shown that keeping or removing illegal states on a purely syntactic
level are equivalent for IA wrt. preserving compatibility. In this spirit, current interface theories [2,
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7,8,14,15,26,30,32] eliminate erroneous behaviour either by regarding it as undefined (pessimistic)
or by pruning (optimistic); all errors are considered semantically equivalent. Due to this equivalence,85

theories combining IA and MTS cannot remove illegal states completely but must replace them
by a special, arbitrarily refinable behaviour as mentioned above. However, because optional transi-
tions (i.e., may-transitions) and disjunctive transitions allow for underspecification in MTS-based
interface theories, one may distinguish potential errors that can be resolved by a suitable refine-
ment from actual, unresolvable errors that arise when an output is required and the corresponding90

input is forbidden. That is, specifications based on MTS contain more information wrt. compati-
bility, which we make explicit in Error-aeare Modal Interface Automata (EMIA). EMIA guarantees
that compatible specifications have only compatible implementations, potential errors have both
compatible and erroneous implementations, and actual errors have only erroneous implementations
(cf. Sec. 3.3, Issue C).95

1.2 Contributions and Organisation

This article shows that communication mismatches are central to Issues A–D above. Hence, the
ability to represent such errors semantically is an important feature that is missing in current
interface theories. In Sec. 2 we present the core of our interface theory Error-aware Modal Interface

Automata (EMIA), for which we remedy Issues A–D by making communication mismatches explicit100

in the form of fatal error states and by employing an error-preserving refinement preorder and an error-

aware parallel composition. In contrast, current interface theories [2,7,8,10,14,15,26,30,32] remove
such information about the causes and possible resolutions of communication mismatches.

In Sec. 3 we show that a Galois insertion [13] renders our refined semantics a conservative exten-
sion of the arguably most general interface theory to date, MIA (Modal Interface Automata) [7].105

We also revisit the introductory example in terms of EMIA, and discuss how fatal error states
solve Issues A–D. The resulting specification theory tightly integrates MTS, interface theories and
assembly theories, and allows system designers to combine the different composition concepts of
these theories within a single interface specification.

In Sec. 4 we discuss the logical operators conjunction and disjunction for EMIA, as is typical110

for interface theories. In addition, we introduce an underapproximation of implication for EMIA
and show that implication cannot be fully supported in MTS-based interface theories. We discuss
the Galois insertion between MIA and EMIA wrt. these logical operators and illustrate how they
enable system designers to combine operational and declarative specification styles.

Sec. 5 discusses the standard process algebraic operators hiding, restriction and alphabet ex-115

tension. In addition, we present a quotienting operator that is adjoint to parallel composition and
allows for reasoning in the context of component reuse. The impact of the Galois insertion on these
operators is discussed, and the usage of the operators in the design process is demonstrated by
means of an example.

In summary, EMIA generalises previous interface theories by means of a semantic representation120

of communication mismatches. This results in a better theoretical understanding of the concept of
error and yields a more flexible interface theory that resolves several practical issues (Issues A–D)
with previous interface theories.

1.3 Added Value of this Journal Version

Compared to the extended abstract that appeared in [19], this article contains the proofs of all125

technical results, more explanations and examples as well as extended discussions, e.g., of assembly
theories (cf. Sec. 3).
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In addition, this article covers more operators: (a) a quotient operator adjoint to parallel com-
position, including the consideration of quotienting under the Galois insertion and additional prop-
erties of quotienting when compared to other interface theories such as antitonicity in the divisor130

and a De Morgan-like law (cf. Sec. 5); (b) a hiding and a restriction operator, and (c) a discussion
of implication and negation, which are rarely considered in interface theories, including a proof
that MTS-based interface theories are not closed under implication and negation (cf. Sec. 4).

As another new contribution of this article, we have generalised the main theory EMIA, which
now supports universal states and allows for a more uniform presentation of MIA and EMIA that135

simplifies some of the proofs (cf. Sec. 2). In [19] universal states were not necessary for presenting
the main idea of fatal error states. We now include universal states for several reasons. Firstly,
because we here include the quotient operator //: the quotient P // D is the maximal specification
Q satisfying Q ‖ D v P . An action that is not used by D may be implemented with arbitrary
subsequent behaviour in such a maximal Q. This arbitrary behaviour is exactly the meaning of140

universal states. Secondly, as universal states are already necessary in MIA to make the refinement
preorder compositional when pruning errors, allowing universal states in EMIA yields a more
uniform presentation of the two theories. As a side benefit, the Galois insertion of MIA into EMIA
becomes simpler because an infinite disjunction is not needed anymore (cf. Sec. 3).

2 Error-aware Modal Interface Automata145

Our interface theory Error-aware Modal Interface Automata (EMIA), which we present in this sec-
tion, is equipped with a parallel composition operator modelling concurrency and communication,
a conjunction operator permitting the specification of a component from different perspectives, a
disjunction operator for providing alternatives, a quotienting operator allowing for component reuse,
and a compositional refinement preorder enabling the substitution of an interface by a more concrete150

version. In addition to these standard requirements on interface theories, EMIA solves Issues A–D
of Sec. 1. We achieve this by introducing fatal error states, which represent unresolvable incom-
patibilities between interfaces. This enables EMIA to deal with errors on a semantic level, since
forbidden behaviour can be modelled by input transitions leading to a fatal error state.

Definition 1 (Error-aware Modal Interface Automata) An Error-aware Modal Interface Automa-155

ton (EMIA) is a tuple P := (SP , IP , OP ,−→P , P , S
0
P , EP , UP ), where SP is the set of states, IP ,

OP are the disjoint alphabets of input and output actions not including the silent action τ (we
define AP := IP ∪ OP and ΩP := OP ∪ {τ}), −→P ⊆ SP × (AP ∪ {τ}) ×P(SP ) is the disjunctive
must-transition relation (P denotes the power set operator), P ⊆ SP × (AP ∪ {τ}) × SP is the
may-transition relation, S0

P ⊆ SP is the set of initial states, EP ⊆ SP is the set of fatal error states160

and UP ⊆ SP is the set of universal states, if the following conditions hold:

E1. For all α ∈ AP ∪ {τ} and p
α−→ P ′, we have ∀p′∈P ′. p α

p′, (syntactic consistency)
E2. States in EP ∪ UP have no outgoing transitions, (sink condition)
E3. EP ∩ UP = ∅. (exclusive markings)

If S0
P = ∅, then P is called inconsistent and often denoted as ⊥. An EMIA P is an implementation165

(i.e., an LTS) if |S0
P | = 1, |P ′| = 1 for all p

α−→ P ′ and, for each p
α

p′, there is a transition

p
α−→ {p′}.

In the following we often omit the index P when referring to components of an EMIA P , e.g., we
write I for IP . Similarly, we write, e.g., I1 instead of IP1

for EMIA P1. In addition, we let i, o, a, ω
and α stand for representatives of the alphabets I, O, A, Ω and A ∪ {τ}, resp.; we write A = I/O170

when highlighting inputs I and outputs O in an alphabet A. In the context of weak transitions that
abstract from τs, we use the notation α̂, where α̂ := a if α = a 6= τ and α̂ := ε if α = τ . In figures,
we often refer to an action a as a? if a ∈ I, and a! if a ∈ O. Must-transitions (may-transitions)
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P :

p0 p1 e
a! b?

Q:

q0 q1 q2 q3
a? τ b!

P ⊗Q:

〈p0, q0〉 〈p1, q1〉 〈p1, q2〉 e
a! τ b!

R:

r0 r1 e
a! b?

S:

s0 s1 s2
a? b!

R⊗ S:

〈r0, s0〉 〈r1, s1〉 e
a! b!

Fig. 3 Examples of EMIAs (cf. Def. 1), error-aware modal refinement (cf. Def. 3), parallel composition (cf. Def. 5)
and compositionality (cf. Thm. 6), where AP = AR = {b?}/{a!}, AQ = AS = {a?}/{b!}, AP⊗Q = AR⊗S =
∅/{a!,b!} and R ve P , S ve Q, R⊗ S ve P ⊗Q. States e indicate fatal error states.

p q
a

τ

Fig. 4 Example of a DMTS that may lead to an infinite unfolding.

are drawn using solid, possibly splitting arrows (dashed arrows); any depicted must-transition also
implicitly represents the underlying may-transition(s) due to syntactic consistency. For notational175

convenience, we let p
a−→ p′, p 6 a−→ and p 6 a denote p

a−→ {p′}, @P ′. p a−→ P ′ and @p′. p a
p′,

resp.
Several examples of EMIAs are shown in Fig. 3. We only discuss EMIA P here: starting from

the initial state p0, implementations of P are required to enable action a! as an output. Afterwards,
an optional input b? leading to a fatal error state e is specified, i.e., b? is permitted but not required180

in an implementation.

Definition 2 (Weak Transition Relations) Let P be an EMIA. We define weak must- and may-
transition relations, =⇒ and resp., as the smallest relations satisfying the following conditions,

where we use P ′
α̂

=⇒ P ′′ as a shorthand for ∀p∈P ′. ∃Pp. p
α̂

=⇒ Pp and P ′′ =
⋃
p∈P ′ Pp:

WT1. p
ε

=⇒ {p} for all p ∈ P ,185

WT2. p
τ−→ P ′ and P ′

α̂
=⇒ P ′′ implies p

α̂
=⇒ P ′′,

WT3. p
a−→ P ′ and P ′

ε
=⇒ P ′′ implies p

a
=⇒ P ′′,

WT4. p
ε

p,
WT5. p

ε
p′′

τ
p′ implies p

ε
p′,

WT6. p
ε

p′′
α

p′′′
ε

p′ implies p
α

p′.190

We write
a→ ε⇒ for transitions that are built up according to WT3 and call them trailing-weak must-

transitions. Similarly,
a ε

stands for trailing-weak may-transitions.

This definition is adopted from MIA [7]. Examples of weak transitions may be found in EMIA Q

in Fig. 3; we only highlight two examples here: by Rule WT3, there is a weak must-transition

q0
a?

=⇒ {q2} and, by Rule WT6, a weak may-transition q1
b!

q3.195

Our error-aware modal refinement preorder ve corresponds to standard modal refinement from
MTS [25,28] but reflects and preserves fatal error states. Intuitively, P ve Q for an implementation
P and a specification Q, enforces that P ’s may-transitions are permitted by Q while for any of Q’s
disjunctive must-transitions at least one of the branches is implemented by P .

In contrast to DMTS [28], we require that all branches of a disjunctive transition have the same200

label and call this restricted formalism dMTS. This is sufficient for our purposes and does away
with potential technical complications of parallel composition in the presence of τ -transitions. The
usual way of defining parallel composition on DMTS, e.g., as is done in [3], is by unfolding each
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disjunctive must-transition into its set of possible implementation variants, i.e., selections of transi-
tion branches. The parallel composition of two components is then obtained by forming all pairwise205

products of the components’ implementation variants. The unfolding operation corresponds to a
transformation of a conjunctive normal form into a disjunctive normal form and is, thus, only a
change of representation. However, in order to define weak transitions in the unfolded representa-
tion, one has to unfold the τ -closure of each transition. This might result in an infinite unfolding,
at least when not being careful. For example, consider the DMTS shown in Fig. 4. When unfolding210

state p, we get the possible implementations {{(a, q)}, {(τ, p)}, {(a, q), (τ, p)}}. However, this set is
not necessarily τ -closed, i.e., we replace the τ -transitions by the unfolding of their target states. Due
to the τ -loop, a τ -transition is re-introduced in each unfolding step, yielding an infinite unfolding
process. To our knowledge, it is an open problem whether there is a solution for weak transitions
in DMTS.215

Definition 3 (Error-aware Modal Refinement) Let P and Q be EMIAs with equal alphabets,
i.e., IP = IQ and OP = OQ. A relation R ⊆ SP × SQ is an error-aware modal refinement relation if,
for all 〈p, q〉 ∈ R, q /∈ UQ implies

R1. p ∈ EP iff q ∈ EQ,
R2. p /∈ UP ,220

R3. q
i−→ Q′ implies ∃P ′. p i→ ε⇒ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. 〈p′, q′〉 ∈ R,

R4. q
ω−→ Q′ implies ∃P ′. p ω̂

=⇒ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. 〈p′, q′〉 ∈ R,

R5. p
i
p′ implies ∃q′. q i ε

q′ and 〈p′, q′〉 ∈ R,

R6. p
ω

p′ implies ∃q′. q ω̂
q′ and 〈p′, q′〉 ∈ R.

We write p ve q if there is an error-aware modal refinement relation R with 〈p, q〉 ∈ R, and P ve Q225

if, for each p ∈ S0
P , there is a q ∈ S0

Q with p ve q. If p ve q and q ve p, we employ the symbol
p wve q, and similar for EMIAs P,Q.

In a pure EMIA setting we may relax Rule R5 by permitting leading τ -transitions in Q. Due to the
employed pruning operation this relaxation would break compositionality wrt. parallel composition
when MIA or any other IA-based interface theory is involved [7]. Therefore, we do without this230

relaxation in order to make EMIA and MIA more comparable. In particular, we employ the same
pruning operation for establishing the Galois insertion between these two theories.

In Fig. 3, EMIA R refines EMIA P by implementing the specified b?-may-transition. Because
the target state of this transition is specified as a fatal error state e, R is also required to target a
fatal error state. Analogously, EMIA S refines EMIA Q where, in addition S’s a?-must-transition235

is matched by a weak transition in Q.

Lemma 4 (ve is a Preorder) Error-aware modal refinement ve is reflexive and transitive.

Proof (sketch) Reflexivity is easy because the identity relation is an isomorphism, which trivially
satisfies all refinement conditions. The proof of transitivity closely follows the proof in [7]; therefore,
we only sketch the proof idea: given EMIAs P,Q,R with refinement relationsRPQ andRQR, we have
to show that R := {〈p, r〉 | ∃q∈SQ. 〈p, q〉 ∈ RPQ ∧ 〈q, r〉 ∈ RQR} is an error-aware modal refinement
relation. It is easy to see that conditions R1 and R2 hold transitively. If a relation satisfies conditions
R3 through R6, then it also satisfies the same conditions with weak transitions in the premises,

e.g., a rule R3’ of the form q
i→ ε⇒ Q′ implies ∃P ′. p i→ ε⇒ P ′ and ∀p′∈P ′ ∃q′∈Q′. 〈p′, q′〉 ∈ R. Hence,

these conditions also follow transitively. ut

IA’s parallel composition operator synchronises input and output transitions to τ -transitions. In
contrast, we define a multicast parallel composition, where an output can synchronise with multiple
input transitions as in MI [32] and MIA [7].240



8 Sascha Fendrich, Gerald Lüttgen

Definition 5 (Parallel Composition) Let P and Q be EMIAs. We call P and Q composable if
OP ∩ OQ = ∅. If P and Q are composable, the multicast parallel composition P ⊗ Q is defined by
SP⊗Q := SP × SQ, IP⊗Q := (IP ∪ IQ) \ OP⊗Q, OP⊗Q := OP ∪ OQ, S0

P⊗Q := S0
P × S

0
Q, EP⊗Q :=

(EP ×SQ)∪ (SP ×EQ), UP⊗Q := ((SP \EP )×UQ)∪ (UP × (SQ \EQ)), and the transition relations
are given by the following rules:245

P1. 〈p, q〉 α−→ P ′ × {q} if p
α−→ P ′ and α 6∈ AQ,

P2. 〈p, q〉 α−→ {p} ×Q′ if α 6∈ AP and q
α−→ Q′,

P3. 〈p, q〉 a−→ P ′ ×Q′ if p
a−→ P ′ and q

a−→ Q′ for some a ∈ AP ∩AQ.

P4. 〈p, q〉 α 〈p′, q〉 if p
α

p′ and α 6∈ AQ,

P5. 〈p, q〉 α 〈p, q′〉 if α 6∈ AP and q
α

q′,250

P6. 〈p, q〉 a 〈p′, q′〉 if p
a

p′ and q
a

q′ for some a ∈ AP ∩AQ.

We also write p⊗ q for 〈p, q〉.

Hence, an error in one component implies an error in the overall system, whereas universal behaviour
in one component extends to the overall system only in absence of errors.

Several aspects of parallel composition are illustrated in EMIA P ⊗Q of Fig. 3. Firstly, P and Q255

synchronise on their common actions a and b. Secondly, the τ -transition specified in Q is interleaved
in P ⊗Q. Third, the composition of the fatal error state e with the regular state q2 is again a fatal
error state.

IA-based interface theories usually define a communication mismatch for p at q as a situation
where an action a ∈ OP ∩IQ is permitted at p and not required at q. In EMIA, such an optional input260

transition, which may be refined to required or forbidden behaviour, is expressed as a disjunctive
must-transition containing a fatal error state in its set of target states. For example, optional a?-

transitions from q to states q1 and q2 are modelled as q
a?−→ {q1, q2, q3} for some fatal error state

q3 ∈ EQ.
It is easy to see that parallel composition is associative and commutative. Further, ve is a265

precongruence wrt. ⊗:

Theorem 6 (Compositionality) If P1, P2 and Q are EMIAs such that P1 ve P2 and P2, Q are

composable, then P1 and Q are composable and P1 ⊗Q ve P2 ⊗Q.

Proof We write IP , OP and AP for the equal alphabets of P1 and P2. Composability is trivial.
We show that R := {〈p1 ⊗ q, p2 ⊗ q〉 | p1 ve p2} is an error aware modal refinement relation. For270

〈p1 ⊗ q, p2 ⊗ q〉 ∈ R with p2 ⊗ q /∈ UP⊗Q, we consider the following cases:

R1 p1 ⊗ q 6∈ EP1⊗Q iff (by Def. 5) p1 6∈ EP1
∧ q 6∈ EQ iff (by p1 ve p2 and R1) p2 6∈ EP2

∧ q 6∈ EQ iff
(by Def. 5) p2 ⊗ q 6∈ EP2⊗Q.

R2 We consider two cases:
1. 〈p2, q〉 ∈ EP2⊗Q: As shown for Case R1, we have 〈p1, q〉 ∈ EP1⊗Q and, by Def. 5 and E3,275

〈p1, q〉 /∈ UP1⊗Q.
2. 〈p2, q〉 /∈ EP2⊗Q: By 〈p2, q〉 /∈ UP2⊗Q, we have p2 /∈ UP2

and q /∈ UQ. Then, p1 ve p2 implies
p1 /∈ UP1

, hence, 〈p1, q〉 /∈ UP1⊗Q.

R3 Let p2 ⊗ q
i−→ R due to one of P1, P2 or P3:

P1 R = P ′2 × {q} for some transition p2
i−→ P ′2. By p1 ve p2, there is a p1

i→ ε⇒ P ′1 such that,280

for all p′1 ∈ P ′1, there is a p′2 ∈ P ′2 with p′1 ve p
′
2. Thus, we have 〈p′1 ⊗ q, p′2 ⊗ q〉 ∈ R, and P1

implies p1 ⊗ q
i→ ε⇒ P ′1 × {q}.

P2 R = {p2} ×Q′ for some q
i−→ Q′. By P2 we have p1 ⊗ q

i−→ {p1} ×Q′, and p1 ve p2 implies
〈p1 ⊗ q′, p2 ⊗ q′〉 ∈ R for all q′ ∈ Q′.

P3 R = P ′2 ×Q′ due to p2
i−→ P ′2 and q

i−→ Q′. The argument is analogous to that of case P1,285

when replacing the application of P1 by P3 in the last step.
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R4 Analogous to R3.

R5 Let p1 ⊗ q
i
p′1 ⊗ q′ due to one of the rules P4, P5 or P6:

P4 q′ = q for a transition p1
i

p′1. By p1 ve p2, there is a p2
i ε

p′2 such that p′1 ve p
′
2.

Thus, we have 〈p′1 ⊗ q, p′2 ⊗ q〉 ∈ R, and P4 implies p2 ⊗ q
i ε

p′2 ⊗ q.290

P5 p′1 = p1 for some q
i

q′. By P5, we have p2 ⊗ q
i

p2 ⊗ q′, and p1 ve p2 implies
〈p1 ⊗ q′, p2 ⊗ q′〉 ∈ R.

P6 R = P ′1 × Q′ due to p1
i

P ′1 and q
i

Q′. The argument is similar to that of case P4,
where the application of P4 is replaced by P6 in the last step.

R6 Analogous to R5. ut

Fig. 3 also illustrates compositionality. Because R ve P and S ve Q, we also have R⊗ S ve P ⊗Q.295

3 Relation to other Interface Theories

Because IA-based interface theories prune errors, it is important to investigate the relation be-
tween such error-pruning interface theories and our error-preserving EMIA theory. We do this for
MIA [7] because it is the most general IA-based interface theory to date in that it is nondeter-
ministic rather than deterministic and optimistic rather than pessimistic, thus subsuming MI [32]300

and MIO [2] (wrt. strong compatibility), resp. As an aside, the interface theory MIO [2] employs
standard non-disjunctive modal transitions and departs from IA by supporting pessimistic instead
of optimistic compatibility. Several notions of pessimistic compatibility have been defined for MIO,
e.g., strong compatibility, where an output must be received immediately, and weak compatibility,
where receiving an output may be delayed through unbounded buffered communication channels.305

In this section we establish a Galois insertion between MIA and EMIA, i.e., a Galois connection
〈γ, α〉 for which α ◦ γ = idMIA [13] (up to wve). Recall that states from which a communication
mismatch is reachable via output or τ -transitions are called illegal. Intuitively, α abstracts from
EMIAs by considering all illegal states to be equivalent, and γ concretises MIAs as EMIAs without
any loss of information.310

3.1 Error-abstracted Modal Interface Automata

We slightly generalise the MIA theory given in [7,19] in order to obtain a more uniform presentation
of MIA and EMIA, which also simplifies some of the proofs when compared to the conference version
of this paper [19].

Definition 7 (Error-abstracted Modal Interface Automata [7]) An EMIA P is called an error-315

abstracted Modal Interface Automaton (MIA) if

M1. For all p ∈ SP \ (EP ∪ UP ), i ∈ IP , there is a p′ ∈ SP with p
i
p′, (input enabledness)

M2. If p
i
p′, then there is a P ′ with p′ ∈ P ′ and p

i−→ P ′, (input must)
M3. States EP ∪ UP only appear as target states of input transitions. (error abstraction)

We write EMIA′ for the collection of EMIAs satisfying M1 and M2, and MIA for the collection of320

MIAs. With vm we denote the restriction of ve to MIAs.

Note that input enabledness and the input must condition do not restrict our definition of MIA
because a transition may target states in EP and UP . The purpose of these conditions is to dis-
tinguish the error-aware parallel composition of MIA from the unanimous parallel composition of
MTS in our unified model because the latter mode of composition is not supported by MIA.325

It is easy to see that EMIA′ is closed under ⊗:
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Lemma 8 If P,Q ∈ EMIA′, then P ⊗Q ∈ EMIA′.

Proof As a direct consequence of Def. 5, if p ∈ SP and q ∈ SQ are input enabled and satisfy the
input must condition, then p⊗ q satisfies both conditions, too. ut

In order to make parallel composition on MIA respect error abstraction, we need to consider the
reachability of illegal states:

Definition 9 (Backward Closure) Let P be an EMIA, B ⊆ AP ∪ {τ} and S ⊆ SP . The B-330

backward closure of S in P is the smallest set bclBP (S) ⊆ SP s.t. S ⊆ bclBP (S) and, for all α ∈ B and

p′ ∈ bclBP (S), if p
α

p′, then p ∈ bclBP (S).

Definition 10 (Illegal States) The set of illegal states of an EMIA P is defined as illP := bclΩP (EP ∪
UP ) \ (EP ∪ UP ).

The set illP⊗Q of an EMIA composition P ⊗ Q corresponds to the set of illegal states in IA, MI335

and MIA. In contrast to these theories, EMIA requires one to match transitions of such states
during refinement. The resulting refinement relation is comparable to other refinement preorders
for error-free interfaces, but is more detailed for erroneous ones. Indeed, MIA can be seen as an
abstraction of EMIA, where all states in illP⊗Q are deemed equivalent (cf. Thm. 18). For example,

the interfaces P : p0
i?−→ p1

o1!−→ eP and Q : q0
i?−→ q1

o2!−→ eQ are equivalent in MIA because after340

receiving input i, both may reach an error autonomously, whereas EMIA distinguishes P and Q

according to the different behaviours (o1! vs. o2!) that lead to an error.

Definition 11 (Error Abstraction) The error abstraction of an EMIA P ∈ EMIA′ is the EMIA
α(P ) := (Sα(P ), IP , OP ,−→α(P ), α(P ), S

0
α(P ), EP , Uα(P )) with Sα(P ) := (SP \ illP )]{>α(P )} and

Uα(P ) := UP ] {>α(P )} (where ] denotes the disjoint union). If S0
P ∩ illP 6= ∅, then S0

α(P ) :=345

(S0
P ∩ Sα(P )) ∪ {>α(P )}, else S0

α(P ) := S0
P ∩ Sα(P ). The transitions of α(P ) are obtained from P by

replacing all i?-transitions leading from a state p to states in illP by p
i?−→ >α(P ) and the underlying

may-transition.

Obviously, P ve α(P ) and α(P ) ∈ MIA for all P ∈ EMIA′. Further, α is monotonic:

Lemma 12 (Monotonicity of α) The map α defined in Def. 11 is monotonic wrt. ve.350

Proof Let R be an error-aware modal refinement relation between EMIAs P and Q. We show that
the relation Rα := (R ∩ (SαP × SαQ)) ∪ (SαP × UαQ) is an error-aware modal refinement relation
between αP and αQ. Let 〈p, q〉 ∈ Rα. In case q ∈ UαQ, the definition of refinement is trivially
satisfied, so we can assume q /∈ UαQ. Hence, by definition of Rα, we may assume 〈p, q〉 ∈ R and
distinguish the following cases:355

R1, R2 Because R is an error-aware modal refinement relation, 〈p, q〉 ∈ R implies that R1 and R2
are satisfied trivially.

R3 Let q
i−→αQ Q′α. We consider two cases:

1. The transition is due to a transition q
i
Q q′ with q′ ∈ illQ, i.e., Q′α = {>αQ}: Any P ′α is a

possible implementation of Q′α.360

2. The transition is due to a transition q
i−→Q Q′: Because all transitions into illQ are replaced

in Def. 11, we know that Q′α = Q′ and that none of these target states is in illQ or EQ ∪UQ.

By 〈p, q〉 ∈ R, there is a p
i→ ε⇒P P ′ such that P ′ matches Q′. With the same argument as

before, we may conclude that P ′α := P ′ matches Q′α.

R4 Similar to R3(2), where
i→ ε⇒ is replaced by

ω
=⇒.365



A Generalised Theory of Interface Automata, Component Compatibility and Error 11

R5 Let p
i
αP p′. If p′ 6= >αP , then p

i
P p′ and, due to 〈p, q〉 ∈ R, there is a q

i ε
Q q′ such

that 〈p′, q′〉 ∈ R. There are two cases:

1. ∃q′′ ∈ illQ. q
i
Q q′′: By definition of α we have illQ ∩SαQ = ∅; thus, q′′ 6∈ SαQ. Hence, it

follows from q ∈ SαQ that q
i
Q >αQ by definition of α, and 〈p′,>αQ〉 ∈ Rα is obvious.

2. ∀q′′ ∈ illQ. q 6
i

Qq
′′: The definition of α implies q′ ∈ SαQ and q

i ε
αQ q′. Therefore,370

〈p′, q′〉 ∈ Rα.

If p′ = >αP , then there is a p′′ ∈ illP with p
i
P p′′. By 〈p, q〉 ∈ R, there exists a q′′ ∈ illQ such

that q
i ε

Q q′′ and 〈p′′, q′′〉 ∈ R. Thus, q
i
αQ >αQ, and 〈>αP ,>αQ〉 ∈ Rα is trivial.

R6 Analogous to R5 with
i ε

and
i

replaced by
ω

and
ω

, resp., and where we always have
p′ 6= >αP and only Case 2 applies (otherwise, we would have q ∈ illQ). ut

Now we can define MIA parallel composition and show that it is compositional.

Definition 13 (MIA Parallel Composition [7]) For composable MIAs P and Q, the parallel375

product is given by P ⊗Q as defined in Def. 5. The MIA-parallel composition is defined as the MIA
P ‖Q := α(P ⊗Q).

Due to Lem. 8 and α(P ) being a MIA, P ‖Q is also a MIA.

Lemma 14 (Compositionality of ‖) If P1, P2 and Q are MIAs such that P1 ve P2 and P2, Q are

composable, then P1, Q are composable and P1 ⊗Q ve P2 ⊗Q.380

Proof Composability is obvious. By Thm. 6 and Lem. 12, we have P1‖Q = α(P1⊗Q) ve α(P2⊗Q) =
P2 ‖Q. ut

Lemma 15 (α is Homomorphic wrt. Parallel Composition) The mapping α defined in Def. 11

is homomorphic wrt. parallel composition, i.e., α(P ⊗Q) wvm α(P ) ‖ α(Q).

Proof First, observe that α(P ⊗ Q) and α(P ) ‖ α(Q) have the same state set S := Sα(P⊗Q) =
Sα(P )‖α(Q) because the same pruning operation is used in α and in MIA’s parallel composition
operator (see also [7,8]).385

“vm”: We show that the relation R := idS ∪ (Sα(P⊗Q) × {>α(P )‖α(Q)}) is a MIA-refinement
relation. Let 〈s, t〉 ∈ R. If t = >α(P )‖α(Q), there is nothing to show. Thus, we assume s = t and
distinguish the following cases:

R1, R2 From s = t, one directly concludes R1 and R2.

R3 Let s = 〈p, q〉 ∈ Sα(P‖Q). A transition 〈p, q〉 i−→α(P )‖α(Q) S
′ is due to one of the rules P1, P2390

or P3:
P1 S′ = P ′×{q} for some p

i−→α(P ) P
′ and i 6∈ Aα(Q): because this transition has neither been

pruned nor replaced by a may-transition to >α(P )‖α(Q), the same transition also exists in
α(P ‖Q).

P2 S′ = {p} ×Q′ for some q
i−→α(Q) Q

′ and i 6∈ Aα(P ): Analogous to P1.395

P3 S′ = P ′ ×Q′ for some p
i−→α(P ) P

′ and q
i−→α(Q) Q

′: Similar to P1 and P2.
R4 Analogous to R3.

R5 Let 〈p, q〉 i
α(P‖Q) s

′′. In case s′′ = >α(P )‖α(Q), then this transition is due to a replacement of

a transition 〈p, q〉 i
α(P‖Q) s

′ by >α(P )‖α(Q). In case s′′ 6= >α(P )‖α(Q), by choosing s′ = s′′, we

also have a transition 〈p, q〉 i
α(P‖Q) s

′. In both cases, this transition is due to one of the rules400

P4 through P6, which all result in a similar line of argument. In case of P4 we have s′ = 〈p′, q〉,
p

i
α(P ) p

′ and a 6∈ AQ. By the definition of α, there must be a p′′ such that p
i
P p′′. By P4,

〈p, q〉 i
P‖Q 〈p′′, q〉 and, thus, also 〈p, q〉 i

α(P‖Q) 〈p′′, q〉.
R6 Analogous to R5.

Direction “wm” can be shown dually. ut
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3.2 The Galois Insertion405

The Galois insertion between MIA and EMIA consists of a concretisation γ : MIA → EMIA′ and
an abstraction α : EMIA′ → MIA such that 〈γ, α〉 is a Galois connection and (α ◦ γ)(Q) wvm Q.
As presented in Sec. 3.1, the main idea behind α is to consider the states illP as equivalent.
Each equivalence class of EMIAs resulting from this abstraction has a greatest element wrt. the
refinement preorder, and α assigns each EMIA in such a class the greatest element of the class,410

which turns out to be a MIA. Vice versa, γ is the identical embedding of MIA into EMIA, such
that a MIA represents its equivalence class.

Definition 16 (Concretisation Function from MIA to EMIA′) The concretisation function γ :
MIA→ EMIA′ is defined as γ(P ) := P .

Obviously, γ is monotonic:415

Lemma 17 (Monotonicity of γ) The map γ defined in Def. 16 is monotonic wrt. ve and vm.

The monotonicity of α and γ is key to the proof that α and γ form a Galois insertion:

Theorem 18 (Galois Insertion) The maps α : EMIA′ → MIA and γ : MIA → EMIA′ defined in

Defs. 11 and 16 form a Galois insertion between MIA and EMIA′ up to wvm, i.e., P ve γ(Q) iff

α(P ) vm Q and (α ◦ γ)(Q) wvm Q.420

Proof First, observe that α ◦ γ = idMIA (up to wvm). Second, the extensivity of α implies that
γ ◦ α is extensive, i.e., P ve (γ ◦ α)(P ). Third, we show that α and γ form a Galois connection,
i.e., P ve γ(Q) iff α(P ) vm Q. Direction “⇒” holds due to α ◦ γ = idMIA and the monotonicity
of α: P ve γ(Q) ⇒ α(P ) vm (α ◦ γ)(Q) wvm Q. Direction “⇐” follows from the monotonicity
of γ, the extensivity of γ ◦ α and the transitivity of ve by the following chain of implications:
α(P ) vm Q ⇒ (γ ◦ α)(P ) ve γ(Q) ⇒ P ve γ(Q). ut

The extensivity of α makes γ non-homomorphic wrt. parallel composition; however, γ satisfies the
inequality γ(P ‖Q) we γ(P )⊗γ(Q) for MIAs P,Q. Although this follows directly from the definition
of γ, we can prove a more general fact:

Lemma 19 Let K and L be preorders, · a binary operation on K resp. L. If 〈γ, α〉 is a Galois insertion

between K and L such that α is homomorphic wrt. ·, then γ(k · k′) w γ(k) · γ(k′).425

Proof γ(k) · γ(k′) v (γ ◦ α)(γ(k) · γ(k′)) ≡ γ((α ◦ γ)(k) · (α ◦ γ)(k′)) ≡ γ(k · k′). ut

Corollary 20 Let P and Q be MIAs. Then, γ(P ‖Q) we γ(P )⊗ γ(Q).

Proof By Thm. 18 and Lemma 15, we can apply Lem. 19. ut

3.3 Discussion

In this section we illustrate how the fatal error states employed in EMIA solve Issues A–D pre-
sented in Sec. 1. In particular, we establish that EMIA treats unwanted behaviour more intuitively
(Issue A), that EMIA, in contrast to MIA, is an assembly theory (Issue B), that EMIA provides430

better support for specifying product families (Issue C), and that EMIA unifies the composition
concepts of MTS and interface theories (Issue D). We do this mostly along the example of Sec. 1
and also use this example to demonstrate the Galois abstraction from EMIA to MIA.
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Fig. 5 Driving assistant system in EMIA and its Galois abstraction, where AG′ := {drive?, rqstPass?}/
{closeDoor!, openDoor!} and AG′‖C = Aα(G′‖C) := {rqstCar?}/{closeDoor!,drive!, openDoor!, rqstPass!}.
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Fig. 6 Corrected car C′, user interfaces U, V, and product families D and W, where AC′ := {openDoor?,
rqstCar?}/{drive!, rqstPass!}, AU = AV := ∅/{rqstCar!}, AD := {go?, openDoor?, rqstCar?}/{drive!, rqstPass!}
and AW := ∅/{go!, rqstCar!}.

3.3.1 Issue A: Unwanted Behaviour

In EMIA, the garage’s constraint that a car shall not drive in or out in state g1 would be specified435

by a drive?-transition to a fatal error state e, which represents an unresolvable error as is illustrated
in specification G′ in Fig. 5. In the resulting parallel composition G′‖C, also shown in Fig. 5, driving
in or out too early in state 〈g1, c2〉, when the door is still closed, leads to the fatal error state e,
where the car crashes into the door. This information is not removed and cannot be redefined to
not being an accident by refining G′ ‖C. Keeping this information is essential for pinning down the440

location and the cause of the error within the specification. Because G′ forbids action drive? between
rqstPass? and openDoor! but allows drive? after openDoor!, we can infer that specification C must
be aware of action openDoor! in order to be compatible with G′. This way, a software design tool
based on EMIA can propose possible specification changes to the designer. For example, the tool
may propose to add action openDoor? to the car’s alphabet and to insert an openDoor?-transition445

between rqstPass! and drive!, so as to avoid the fatal error state e that is reachable from 〈g1, c2〉.
The resulting specification is shown as C′ in Fig 6.

As an aside, Fig. 5 (right) illustrates the abstraction function α of the Galois insertion between
MIA and EMIA. We have illG′‖C = {〈g1, c2〉, 〈g0, c1〉} (cf. Sec. 3). The rqstCar?-must-transition
at 〈g0, c0〉 leading to illG′‖C is replaced by a rqstCar?-transition to >α(G′‖C). Due to α being a450

homomorphism wrt. ‖, this result corresponds exactly to the MIA shown in Fig. 2 (right).

3.3.2 Issue B: Multi-component Assemblies

When adding the specification of a simple user interface, shown as U in Fig. 6, as a third component
to the specifications G and C of Fig. 1, the three components G, C and U are pairwise optimistically
compatible. However, the composed system G ‖ C ‖ U is incompatible, because the mismatch for455

action drive! is reachable from the initial state 〈g0, c0, u0〉. A different but related problem arises
in pessimistic theories: the user interface specification V in Fig. 6 promises to never request a car.
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The components G and C are pessimistically incompatible and (G ‖ C) ‖ V is undefined. However,
G ‖ (C ‖ V ) is a perfectly valid composition. In other words, pairwise compatibility is neither
necessary nor sufficient for compatibility of multiple components, i.e., IA, MI, MIO and MIA are460

not by themselves assembly theories.
To lift their interface theory MIO to an assembly theory, Hennicker and Knapp propose an

enrichment EMIO of MIO by error states similar to our fatal errors [22]. However, they do not
develop EMIO into a full interface theory: EMIOs are only employed to describe the result of a
multi-component parallel composition and to check the communication safety of such an assembly,465

i.e., the absence of communication mismatches. In addition, refinement is lifted to assemblies by
providing an error-preserving refinement relation for EMIOs, which is similar to error-aware modal
refinement. However, no further operations like parallel composition or conjunction are defined for
assemblies. Instead, EMIO forms a second layer on top of MIO, and an EMIO is re-interpreted
as MIO via an encapsulation function that removes all error-information. In contrast to this loose470

integration, EMIA provides a uniform and tight integration of interfaces and assemblies by directly
including its canonical assembly theory in the sense of [22]. In particular, EMIA does not need two
separate refinement relations for interfaces and assemblies.

Translating the above examples of assemblies with U and V into EMIA, the composition G′‖C‖U
resembles G′ ‖ C (Fig. 5), except that action rqstCar is an output instead of an input. Further,475

(G′ ‖C)‖V and G′ ‖ (C ‖V ) are equivalent in EMIA. In both examples, compatibility is checked via
reachability of fatal error states in the composed system. However, it is up to the system designer
to decide which error behaviour yields an incompatibility, i.e., compatibility is not necessarily a
global concept as is the case for optimistic and pessimistic compatibility.

In order to establish the above results, we recap the definition of assembly theory by Hennicker480

and Knapp [22], with the following generalisation: in Hennicker and Knapp’s definition of an in-
terface theory, an interface cannot contain errors by itself and, thus, a single interface is always
communication safe. EMIA additionally allows one to specify erroneous interfaces, which should
not be considered communication safe. Therefore, we introduce a communication safety predicate on
interfaces and generalise Conds. A1 and A3 below accordingly.485

Definition 21 (Assembly Theory [22]) Let I := (I, cs, ‖,v) be an interface theory, where I is a
collection of interfaces, cs ⊆ I is a communication safety predicate, ‖ is a (binary) parallel composi-
tion operator, and v is the refinement preorder. A tuple A := (A, cs, ϕ,�) consisting of a collection
of assemblies A := {〈Ik〉k∈K | 0 < |K| < ∞ and Ik, Il ∈ I composable for k 6= l}, a communication

safety predicate cs ⊆ A, a partial encapsulation operation ϕ : A ⇀ I and an assembly refinement490

relation � ⊆ A × A is called an assembly theory over I if, for all A,B,A1, . . . , An, B1, . . . , Bn ∈ A
(where n ∈ N) and I, J ∈ I, we have:

A1. cs(〈I〉) iff cs(I),
A2. if cs(A), then ϕ(A) is defined,
A3. if ϕ(〈I〉) is defined, then ϕ(〈I〉) = I,495

A4. � is reflexive and transitive,
A5. I v J implies 〈I〉 � 〈J〉,
A6. if A = A1 ] · · · ]An and cs(Ak) for k = 1, . . . , n, then 〈ϕ(A1), . . . , ϕ(An)〉 ∈ A,
A7. if A = A1 ] · · · ]An, cs(Ak) for k = 1, . . . , n and cs(〈ϕ(A1), . . . , ϕ(An)〉),

then ϕ(A) = ϕ(〈ϕ(A1), . . . , ϕ(An)〉),500

A8. if A � B and cs(B), then cs(A),
A9. if A � B and cs(B), then ϕ(A) v ϕ(B),

A10. if A = A1 ] · · · ]An, B = B1 ] · · · ]Bn, cs(〈ϕ(B1), . . . ϕ(Bn)〉), as well as cs(Bk) and Ak � Bk
for k = 1, . . . , n, then A � B.

Intuitively, the encapsulation ϕ(A) of an assembly A represents the composition of A’s components505

as an interface. Therefore, an assembly theory is called canonical if there is a strong correspondence
between ϕ and ‖. We write

∏
k∈K for the generalisation of ‖ to assemblies.
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Definition 22 (Canonical Assembly Theory [22]) An assembly theory is called canonical if the
following conditions hold:

1. cs(〈Ik〉k∈K) iff, for all l ∈ K, Il and
∏
k∈K\{l} Ik are compatible,510

2. ϕ(〈Ik〉k∈K) =
∏
k∈K〈Ik〉 if cs(〈Ik〉k∈K), and undefined otherwise.

It is straightforward to define a canonical assembly theory over EMIA:

Definition 23 (Assembly Theory over EMIA) Let IEMIA := (EMIA, cs,⊗,ve) with cs(I) iff
S0
I ∩ bclΩI (EI ∪ UI) = ∅. We define AEMIA := (A, cs, ϕ,�) with A := {〈Ik〉k∈K | 0 < |K| <∞ and
Ik, Il ∈ EMIA composable for k 6= l}, cs(A) iff S0

ϕ(A) ∩ bclΩϕ(A)(Eϕ(A) ∪ Uϕ(A)) = ∅, ϕ(〈I〉) := I and515

ϕ(〈I1, . . . , In〉) := I1 ⊗ · · · ⊗ In, and A � B iff ϕ(A) ve ϕ(B).

Lemma 24 AEMIA is an assembly theory over IEMIA.

Proof A1 holds by definition. A2 is trivial because ϕ is defined for all assemblies. A3 holds by
definition. A4 is trivial because ve is reflexive and transitive. A5 holds by definition. A6 and A7
are trivial due to the associativity of EMIA parallel composition. A8 holds by definition of ve. A9
holds by definition of �. A10 holds due to the compositionality of ve. ut

AEMIA obviously satisfies the first condition of Def. 22. It almost satisfies the second condition,
except that instead of being undefined in the ‘otherwise’-branch, an erroneous interface results
from the composition. We can either artificially set such a result to undefined in order to match520

the definition exactly, or argue that undefinedness is only necessary here because interface theories
in [22] do not support the specification of erroneous interfaces (and, thus, one may change that
definition accordingly). In both cases we have:

Theorem 25 (Assembly Theory) AEMIA is a canonical assembly theory over IEMIA.

Because the encapsulation function φ directly corresponds to ⊗ and � to ve, IEMIA includes its525

own assembly theory AEMIA.
In addition, one can obviously show that EMIA constitutes an assembly theory for MIA:

Definition 26 (Assembly Theory over MIA) Let IMIA := (MIA, cs, ‖,vm) with cs(I) for all
I ∈ MIA. We define AMIA := (A, cs, ϕ,�) with A := {〈Ik〉k∈K | 0 < |K| < ∞ and Ik, Il ∈
MIA composable for k 6= l}, cs(〈Ik〉k∈K) iff S0

I1⊗...⊗IK ∩ bclΩI1⊗...⊗IK (EI1⊗...⊗IK ∪ UI1⊗...⊗IK ) = ∅,530

ϕ(〈I〉) := I and ϕ(〈I1, . . . , In〉) := I1 ‖ · · · ‖ In, and A � B iff ϕ(A) vm ϕ(B).

Lemma 27 AMIA is a canonical assembly theory over IMIA.

3.3.3 Issue C: Software Product Lines

Consider specifications D and W of a car and a user interface product family, resp., both of which
are shown in Fig. 6. These specifications allow product variations of a car and a user interface,535

which enable drivers to initiate the automatic driving assistance manually (go!), e.g., when parking
in a different garage that is not equipped with an automatic door opener. Obviously, a user interface
that provides this feature is incompatible with a car that does not, i.e., although some product
combinations of D and W are compatible, some of them are not. Hence, D and W are incompatible,
and no information that might help finding compatible product combinations is provided in current540

interface theories (see also the discussion about actual and potential errors in Sec. 1). In EMIA,
the optional go?-transition at state d0 would be modelled as a disjunctive go?-must-transition
from d0 to {d3, e}, for a fatal error state e. We refer to this specification as D′. The specified error
information is still present in the parallel composition of D′ and W, so that one may derive additional
conditions on the go-transitions. These conditions result in compatible refinements of D′ and W,545

which describe compatible sub-families of the original product families. For example, refining the
optional go?-transition into a mandatory one in D′, or removing the optional go!-transition in W;
both result in appropriate restrictions to sub-families. The necessary error information is present
in the EMIA parallel composition of D′ and W (cf. Fig. 7).
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D′ ‖W : 〈d0, w0〉 〈d1, w1〉

〈d2, w1〉〈d3, w1〉〈d0, w1〉

e

rqstCar!

rqstPass!

openDoor?drive!

go!
go!

Fig. 7 Composition of product lines D′ and W in EMIA, where AD′‖W := {openDoor?}/{drive!, go!, rqstCar!,
rqstPass!}.

3.3.4 Issue D: Unifying Composition Concepts550

MTS and interface theories combining IA with MTS share many aspects of the modality semantics
wrt. refinement. However, the meaning of may- and must-modalities differs wrt. parallel composi-
tion. Required and forbidden actions never cause an error in a parallel composition in MTS: either
all components unanimously agree on implementing an action, or the action is forbidden in the
composed system. The possibility to disagree on transitions enables an environment to control all555

transitions of an MTS, such that they may be interpreted as input-transitions from an interface
theoretic view. However, the MTS parallel composition is not directly applicable to output actions,
because these cannot be controlled by the environment. Consequently, previous interface theories
have adopted an IA-like error-aware parallel composition that is tightly bound to a global compat-
ibility concept. In contrast, EMIA’s explicit error representation allows for a local description of560

compatibility that is independent of composition. Thus, EMIA unifies unanimous and error-aware
parallel composition, i.e., it permits the mixing of these composition concepts within a specification.
As an aside, note that EMIA collapses to MTS when considering input actions only.

The traditional interface-theoretic notions of optimistic and pessimistic compatibility may still
be expressed in EMIA. Two composable EMIAs P , Q are optimistically compatible if and only if565

S0
P⊗Q ∩ bclΩP⊗Q(EP⊗Q ∪ UP⊗Q) = ∅. Further, P and Q are pessimistically compatible if and only if

S0
P⊗Q∩bcl

A∪{τ}
P⊗Q (illP⊗Q) = ∅. As explained in Issue A, the error-information is not removed, i.e., in

an optimistic variant of EMIA one cannot introduce unwanted behaviour as is the case in previous
optimistic theories.

4 Logical Operators570

Besides parallel composition, EMIA provides logical operators on interfaces, namely conjunction
and disjunction. An implication operator is partially supported, and we show that a full support
is impossible within MTS-based theories.

4.1 Conjunction and Disjunction

Perspective-based specification is concerned with specifying a system component from separate575

perspectives s.t. the component satisfies each of these perspective specifications. For example, each
requirement for a component might describe a perspective. The component’s overall specification
is the most general specification refining all perspective specifications, i.e., it is the greatest lower
bound wrt. the refinement preorder. This conjunction operator is defined in two stages:

Definition 28 (Conjunctive Product) Let P , Q be EMIAs with equal alphabets. The conjunctive580

product of P and Q is P &Q := (SP&Q, I, O,−→P&Q, P&Q, S
0
P&Q, EP&Q, UP&Q) with SP&Q :=
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SP × SQ, S0
P&Q := S0

P × S
0
Q, EP&Q := (EP × (EQ ∪ UQ)) ∪ ((EP ∪ UP )× EQ), UP&Q := UP × UQ,

and the transition relations are given by the following rules:

C1. 〈p, q〉 i−→ {〈p′, q′〉 | p′ ∈ P ′, q i ε
q′} if p

i−→ P ′ and q
i ε

,

C2. 〈p, q〉 i−→ {〈p′, q′〉 | p i ε
p′, q′ ∈ Q′} if p

i ε
and q

i−→ Q′,585

C3. 〈p, q〉 ω−→ {〈p′, q′〉 | p′ ∈ P ′, q ω
q′} if p

ω−→ P ′ and q
ω

,

C4. 〈p, q〉 ω−→ {〈p′, q′〉 | p ω
p′, q′ ∈ Q′} if p

ω
and q

ω−→ Q′,
C5. 〈p, q〉 α−→ P ′ × {q} if p

α−→ P ′ and q ∈ UQ,

C6. 〈p, q〉 α−→ {p} ×Q′ if p ∈ UP and q
α−→ Q′,

C7. 〈p, q〉 i 〈p′, q′〉 if p
i ε

p′ and q
i ε

q′,590

C8. 〈p, q〉 ω 〈p′, q′〉 if p
ω

p′ and p
ω

q′,

C9. 〈p, q〉 τ 〈p′, q〉 if p
τ

p′,

C10. 〈p, q〉 τ 〈p, q′〉 if q
τ

q′,

C11. 〈p, q〉 α 〈p′, q〉 if p
α

p′ and q ∈ UQ,

C12. 〈p, q〉 α 〈p, q′〉 if p ∈ UP and q
α

q′,595

A state 〈p, q〉 of P &Q is a candidate for refining both p and q. Because 〈p, q〉 cannot simultaneously
require and forbid the same action a or be at once fatal and non-fatal, some states p and q do
not have a common refinement. In such cases, 〈p, q〉 is called (logically) inconsistent and has to be
removed from the candidates, including the removal of all states that require transitions leading to
inconsistent states. In order to be the greatest common refinement of p and q, a state 〈p, q〉 may600

only be erroneous if p and q are erroneous or universal. This explains the definition of EP&Q which
obviously must exclude UP&Q.

Definition 29 (Conjunction) The set F& ⊆ SP&Q of logically inconsistent states is defined as the
smallest set satisfying the following rules:

CF1. 〈p, q〉 ∈ (EP × (SQ \ (EQ ∪ UQ))) ∪ ((SP \ (EP ∪ UP ))× EQ) implies 〈p, q〉 ∈ F&,605

CF2. 〈p, q〉 6∈ EP&Q ∪ UP&Q, p
i−→ and q 6 i implies 〈p, q〉 ∈ F&,

CF3. 〈p, q〉 6∈ EP&Q ∪ UP&Q, p 6 i and q
i−→ implies 〈p, q〉 ∈ F&,

CF4. 〈p, q〉 6∈ EP&Q ∪ UP&Q, p
ω−→ and q 6ω implies 〈p, q〉 ∈ F&,

CF5. 〈p, q〉 6∈ EP&Q ∪ UP&Q, p 6ω and q
ω−→ implies 〈p, q〉 ∈ F&,

CF6. 〈p, q〉 α−→ R and R ⊆ F& implies 〈p, q〉 ∈ F&.610

The conjunction P∧Q is obtained from P&Q by deleting all states in F&. This deletes all transitions
exiting deleted states and removes all deleted states from targets of must-transitions.

Fatal error states are excluded in Rules CF2 through CF5 because we do not care about consistency
for these states. Note that the states in E and F& are different in nature: E-states represent states
with possible but unwanted behaviour, whereas F&-states represent contradictory specifications615

that are impossible to implement.
In order to prove that conjunction is the greatest lower bound wrt. the refinement preorder ve,

we need the notion of a witness along the lines of [7]:

Definition 30 (Witness [7]) Let P and Q be EMIAs with equal alphabets. A set W ⊆ SP ×SQ is
a witness of P &Q if, for all 〈p, q〉 ∈W, the following conditions hold:620

W1. p ∈ EP implies q ∈ EQ ∪ UQ,
W2. q ∈ EQ implies p ∈ EP ∪ UP ,

W3. p
o−→P implies q

o
Q or q ∈ EQ ∪ UQ,

W4. q
o−→Q implies p

o
P or p ∈ EP ∪ UP ,



18 Sascha Fendrich, Gerald Lüttgen

W5. p
i−→P implies q

i ε
Q or q ∈ EQ ∪ UQ,625

W6. q
i−→Q implies p

i ε
P or p ∈ EP ∪ UP ,

W7. 〈p, q〉 α−→ R′ implies R′ ∩W 6= ∅.

We instantiate the concept of a witness concretely as follows:

Lemma 31 (Concrete Witness [7]) Let P , Q, R be EMIAs with equal alphabets.

1. For any witness W of P &Q, we have W ∩ F& = ∅.630

2. The set W := {〈p, q〉 ∈ SP × SQ | ∃r∈SR. r ve p and r ve q} is a witness of P &Q.

Proof Claim 1 is obvious, so we only prove Claim 2:

W1 By R1, we get p ∈ EP implies r ∈ ER implies q ∈ EQ ∪ UQ.
W2 Symmetrically to W1.
W3 If q ∈ EQ, then W2 applies and there is nothing to show. Otherwise, let p

o−→P . By r ve p,635

there is a transition r
o−→R and, by syntactic consistency and r ve q, a q

o
Q.

W4 Symmetrically to W3.

W5 Analogous to W3 when replacing
o−→ and

o
with

i−→ and
i ε

, resp.
W6 Symmetrically to W5.
W7 Let 〈p, q〉 ∈W due to r s.t. 〈p, q〉 ω−→ R′ because of C3. By r ve p, there is a matching r

ω
=⇒R R′.

For all r′ ∈ R′, by syntactic consistency, we have a transition r
ω

R r′, such that r ve q implies
the existence of a transition q

ω
Q q′ with r′ ve q

′. Hence, there is a 〈p′, q′〉 ∈ R′ ∩W due to r′.
The case of inputs is shown analogously. ut

Next, we show that ∧ is indeed conjunction:640

Proposition 32 (∧ is And) If P and Q are EMIAs with equal alphabets, then (i) an R with R ve P

and R ve Q exists iff P and Q are consistent. Further, if P and Q are consistent, then, for any R,

(ii) R ve P and R ve Q iff R ve P ∧Q.

Proof (i) “⇒′′ follows from Lemma 31.
(i), (ii) “⇐”: Let R ve P ∧Q. We prove that R := {〈r, p〉 | ∃q. r ve p∧q} is an error-aware modal645

refinement relation. By choosing S0
R :=

{
r ∈ SR

∣∣ ∃p ∧ q ∈ S0
P∧Q. 〈r, p ∧ q〉 ∈ R

}
we may conclude

(i) “⇐”. Let 〈r, p〉 ∈ R due to q. The proof follows closely the lines of [7] and proceeds as follows:

R1 If r ∈ ER, then p ∧ q ∈ EP∧Q; thus, p ∈ EP .

R3, R4 Let p
α−→P P ′, then we have q

α
Q and p∧q α−→ {p′∧q′ | p′ ∈ P ′, q α

Q q′, p′∧q′ defined}.
By r′ ve p

′∧q′ we get a matching r
α−→R R′, i.e., ∀r′ ∈R′ ∃p′ ∈P ′. 〈r′, p′〉 ∈ R. (In case of inputs,650

α
must be replaced by

α ε
.)

R5, R6 Let r
α

r′. By r ve p∧q, there is a p∧q α
p′∧q′ such that r′ ve p

′∧q′; thus, 〈r′, p′〉 ∈ R
due to q′. (In case of inputs,

α
must be replaced by

α ε
.)

(ii) “⇒”: We show that R := {〈r, p ∧ q〉 | r ve p and r ve q} is an error-aware modal refinement
relation.655

R1 Obvious.
R3, R4, R5, R6 As above, the proof closely follows the lines of [7]. ut

It is easy to also define a disjunction operator, which may be employed for specifying alternative
implementations:

Definition 33 (Disjunction) For a family of EMIAs P := (Pj)j∈J with equal alphabets, we define
the disjunction of P as the following EMIA:660 ∨
j∈J Pj := (

⊎
j∈J SPj

, I, O,
⊎
j∈J −→Pj

,
⊎
j∈J Pj

,
⊎
j∈J S

0
Pj
,
⊎
j∈J EPj

).
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Fig. 8 Example of conjunction with the common alphabet {rqstPass?}/{idfy!, openDoor1!, openDoor2!}.

Proposition 34 (∨ is Or) If Pj , for j ∈ J , and R are EMIAs with equal alphabets, then
∨
j∈J Pj ve R

iff Pj ve R for all j ∈ J .

Proof Let Pj (j ∈ J) and R be EMIAs with equal alphabets and w.l.o.g. disjoint state sets Sj and
SR, and let Pj ve R due to the error-aware modal refinement relation Rj . Because, in general,
the union of error-aware modal refinement relations is an error-aware modal refinement relation,
(
⋃
j∈J Rj) ∪RQ is an error-aware modal refinement relation, too. Vice versa, if

∨
j∈J Pj ve R due

to an error-aware modal refinement relation R, then, for any j ∈ J , Rj := R∩(Sj×SR) is a suitable
error-aware modal refinement relation, showing Pj ve R. ut

4.2 Example

In this section we illustrate how conjunction may be employed for perspective-based specification.665

Consider a double garage for which we want to specify a single controller operating both garage
doors appropriately according to an identification of the requesting car. We state two requirements
for such a controller, each of which may be considered as a separate perspective on the controller:

R1: After a passage request, the garage shall identify the car and may then open one of the doors.
R2: After the car is identified, the garage shall open either Door 1 or Door 2.670

A representation of these requirements as EMIAs is shown in Fig. 8. In Specification R1, the
rqstPass?-transition from state 0 to state 1 is the entrance condition that may be triggered by a
car in order to request passage. Upon such a request, the garage must identify (idfy!) the car, and
may then open Door 1 or Door 2. Requirement R2 specifies that after an identification, either Door
1 or Door 2 must be opened, i.e., the choice of door is a result of the identification. The overall675

specification must satisfy both requirements simultaneously; hence, we use conjunction in order
to construct the greatest lower bound R := R1 ∧ R2, which is also shown in Fig. 8. Notably, the
combination of nondeterminism and modalities of action idfy! yields a disjunctive must-transition
in the conjunction.

4.3 Implication and Negation680

In addition to conjunction and disjunction, it would be useful to define further logical operators like
implication and negation. Implication →, as an adjoint to conjunction, is defined by the condition
X ve P → C iff X ∧ P ve C. In particular, we have P ve C iff P → C wve >. Negation arises
as the special case ¬P := P → ⊥. A straightforward way of defining implication is by setting
P→C :=

∨
{X | X ∧P ve C}. However, this declarative definition is impractical due to the infinite685
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disjunction. Unfortunately, we can show that DMTS and, thus, any MTS-based interface theory is
not closed under negation, so that an operational construction of implication and negation in the
spirit of the other operators is impossible (cf. Thm. 35).

In a trace-based setting similar to deterministic IA, Dill argues that safety properties are not
closed under negation and, therefore, a negation operator does not exist in his setting [16]. However,690

it is unclear to what extent this argument applies to an MTS-based setting where must-transitions
express a limited form of liveness.

Gössler and Raclet [21] introduced an underapproximation  of implication for deterministic
MTS. This sub-implication satisfies X v P  C =⇒ X ∧ P v C, but the reverse direction does
not hold in general. Specifications X and P are called non-conflicting—a concept introduced as695

independence in [27]—if F& = ∅. For non-conflicting specifications X and P , Gössler and Raclet
show that the reverse direction also holds, i.e., X ∧P v C =⇒ X v P C. In particular, P v C is
such an X, i.e., P and P v C are non-conflicting. However, they do not consider that non-conflicting
X and P satisfy X ∧ P v C only if P and C, as well as X and C are also non-conflicting. This
undermines the purpose of disjunctive must-transitions to provide a choice between alternatives700

because, in a non-conflicting conjunction, all alternatives must be preserved. Further, as P and
P v ⊥ are non-conflicting, P  ⊥ wv ⊥ for all consistent specifications P , which renders negation
completely useless. These issues significantly restrict the usability of sub-implication.

Gössler and Raclet also show that an implication operator does not exist for MTS. Because
their counterexample does not work in the nondeterministic setting of EMIA, we provide a more705

general argument:

Theorem 35 (DMTS and Negation) Disjunctive Modal Transition Systems (DMTS) are not closed

under negation; hence, conjunction has no adjoint in DMTS.

Proof DMTS have been shown to be equally expressive as Hennessy-Milner-Logic with greatest
fixed points (νHML) if the number of initial states is required to be finite [4]. If DMTS were closed
under negation, then least fixed points would be expressible by defining µX. φ(X) := ¬νX.¬φ(¬X),
and DMTS would be as expressive as the modal µ-calculus, which is strictly more expressive that
νHML. ut

A concrete example that illustrates the difficulty with negation is a specification S over alphabet
{a} with a single state s and a looping transition s

a−→ s. The negation of S comprises all im-710

plementations that are inconsistent with S, i.e., all implementations that include a finite chain of
a-transitions, e.g., T : t0

a−→ t1
a−→ t2. In some sense, sub-implication captures the non-negative

part of implication, which explains the relation to non-conflicting conjunctions.
In order to extend the proposed sub-implication to nondeterministic interfaces, one may employ

an exponential construction similar to the one presented in [4] for the quotient; however, this715

would lead to similar complications (see also Sec. 5). But this would be done for a questionable
underapproximation, so we leave this matter for future work.

4.4 Logical Operators under Galois Insertion

In this subsection we briefly discuss how the Galois insertion relates MIA and EMIA wrt. the logical
operators presented above. First, we show that MIA is closed under conjunction.720

Lemma 36 (MIA-Conjunction [7]) If P and Q are MIAs with equal alphabets, then their conjunction

P ∧Q is also a MIA.

Proof It is easy to see that the conjunctive product & (cf. Def. 28) preserves the properties M1
through M3. Hence, it remains to show that the pruning of inconsistent states also preserves these
properties. A state p ∧ q may only have a disabled input i if all i-may-transitions lead to states in
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∅

α(P ) ∧ α(Q):

〈p0, q0〉

e

a?

Fig. 9 Example of EMIAs P , Q with α(P ∧Q) 6wm α(P ) ∧ α(Q), with the common alphabet {a?}/{b!}.

F&. Then, p ∧ q would be inconsistent due to CF6 because P &Q satisfies M1 and M2. Therefore,
p ∧ q must be input enabled. The same line of reasoning applies to M2. Property M3 is trivial. ut

Hence, conjunction is the greatest lower bound wrt. vm when restricted to MIAs. The map α is
not homomorphic wrt. conjunction: although α(P ∧ Q) vm α(P ) ∧ α(Q) holds for P,Q ∈ EMIA′

because α is monotonic, the converse direction “wm” does not hold in general, because MIA’s725

replacement of illegal states by > must be reproduced by α. An example of EMIAs P and Q with
α(P ∧ Q) 6wm α(P ) ∧ α(Q) is shown in Fig 9. State p1 of specification P is in illP due to the b!-
transition. Therefore, α prunes p1 and replaces it by a universal state > in α(P ). The conjunction
P ∧Q is inconsistent because P ’s regular state p1 is conjoined with Q’s fatal error state e, and the
a?-must-transition propagates this inconsistency back to the initial state. In the abstract setting,730

both the error and the inconsistency are avoided resulting in a regular and consistent initial state
that is trivially refined by P ∧Q.

It is obvious that MIAs are closed under disjunction and that α is homomorphic wrt. disjunction.
Further, α respects implication although we cannot define implication operationally:

Lemma 37 (Abstraction Respects Implication) If X ve P → C, then α(X) ve α(P → C).735

Proof X ve P → C ⇐⇒ X ∧ P ve C =⇒ α(X) ∧ α(P ) ve α(C) ⇐⇒ α(X) ve α(P )→ α(C). ut

5 Quotient and Standard Process Algebraic Operators

In this section, we discuss the quotient operator, which is adjoint to parallel composition, and the
standard process algebraic operations hiding, restriction and alphabet extension.

5.1 Quotient

The quotient operation is adjoint to parallel composition. It equips the theory with the possibility of740

component synthesis which allows for component reuse and incremental, component-based design.
Given EMIAs P and D, the quotient of P over D is the coarsest EMIA Q such that the defining

inequality of the quotient, Q⊗D ve P , holds. We denote the quotient by P // D if it exists. In the
following, P is the dividend (one may think of it as an overall system specification), D the divisor

(an already implemented component) and Q the quotient (the synthesised completion of D).745

We define the quotient for a restricted set of EMIAs, namely where the specification P has
no τs and where the divisor D is may-deterministic and without τs. We call D may-deterministic if
d

α
d′ and d

α
d′′ implies d′ = d′′ for all d, d′, d′′ and α. Due to syntactic consistency, a may-

deterministic EMIA has no disjunctive must-transitions, i.e., the target sets of must-transitions are
singletons. In principle, the determinism requirement on D may be omitted as Beneš et al. [4] do750
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for DMTS. However, this comes with an exponential blowup in the quotient size and significant
complications when adapting to interface theories as we already discuss in [7] for MIA.

Like several other operators, we define the quotient in two stages, where we write mayP (p, α)

for {p′ ∈ P | p α
P p′}. Regarding the choice of the input and output alphabets in the following

definition we adopt the one by Chilton et al. [11] and Raclet et al. [32]. Alternative choices are755

discussed in [7].

Definition 38 (Pre-quotient) Let P and D be τ -free EMIAs with AD ⊆ AP and OD ⊆ OP . The
pre-quotient of P over D is defined as the EMIA P�D := (SP×SD∪{>}, I, O,−→, , S0

P×S
0
D, E, U),

where I := IP ∪OD, O := OP \OD, E := EP × (SD \ED) and U := (UP × SD) ∪ (EP ×ED) ∪ {>}.
The transition relations of a state 〈p, d〉 are defined by the following rules:760

PQ1. 〈p, d〉 a−→ P ′ × {d} if p
a−→ P ′ and a /∈ AD,

PQ2. 〈p, d〉 a−→ P ′ ×D′ if p
a−→ P ′ and d

a−→ D′,

PQ3. 〈p, d〉 a 〈p′, d〉 if p
a

and a /∈ AD,

PQ4. 〈p, d〉 a 〈p′, d′〉 if p
a

and d
a

d′,

PQ5. 〈p, d〉 a > if p 6 a−→ and d 6 a .765

A state q = 〈p, d〉 in P �D encodes the condition that q should be the coarsest state wrt. ve such
that q composed in parallel with d refines p. The purpose of the new state > is to ensure that U is
nonempty, in order to have a universal target state in Rule PQ5. In case U is nonempty anyway,
an arbitrary state from U may replace >. With this in mind, we now justify the choices of E and
U and the rules of Def. 38 intuitively. A formal proof is given in Lem. 40 and Thm. 41 below.770

An error state q ∈ E of the quotient satisfies q ‖ d ve p for some state d ∈ SD if and only if
p ∈ EP ∪UP . However, if d ∈ ED or p ∈ UP , then nothing is required for q to satisfy q ‖ d ve p and,
hence, q has to be universal instead of erroneous in order to ensure the maximality of the quotient.
This justifies the choices of E and U .

Rule PQ1 is necessary due to the following consideration. If P has an a-must-transition where a775

is unknown to D, then this can only originate from an a-must-transition in the quotient Q that
we wish to construct. To be most permissive, each p′ ∈ P ′ must have a match in Q ⊗ D. The
corresponding consideration is true for Rule PQ3, which also ensures syntactic consistency for
Rule PQ1.

Rule PQ2 is obvious in the light of the choice of alphabet in Def. 38. Because P � D has all780

actions of P and D in its alphabet, it also needs an a-must-transition to produce such a transition
at (p, d)⊗ d. Here, Rule PQ4 is the companion rule for guaranteeing syntactic consistency.

Rule PQ5 makes P �D as coarse as possible. The input a-may-transitions introduced here just
disappear in (P �D)⊗D since a is blocked by D.

It is easy to see, that P�D is indeed an EMIA. Up to now we have only defined the pre-quotient.785

Considering a candidate pair (p, d), it may be impossible that p is refined by a state resulting from
a parallel composition with d; this depends, e.g., on the modalities and the labels of the transitions
leaving p and d. We call such pairs divisionally inconsistent states and remove them from the pre-
quotient. For example, consider states p

a−→ and d
a

such that d 6 a−→; no parallel composition
with d refines p. While may-transitions can be refined by removing them and disjunctive transitions790

can be refined to subsets of their targets in order to prevent the reachability of inconsistent states,
all states having a must-transition to only inconsistent states must also be removed.

Definition 39 (Quotient) Let P �D be the pre-quotient of P over D. The set F� ⊆ SP × SD of
divisionally inconsistent states is defined as the least set satisfying the following rules:

QF1. p /∈ UP ∪ EP and d ∈ UD ∪ ED implies 〈p, d〉 ∈ F�,795

QF2. p
a−→P and d 6 a−→D and a ∈ AD implies 〈p, d〉 ∈ F�,

QF3. (p, d)
a−→P�D R′ and R′ ⊆ F� implies 〈p, d〉 ∈ F�.



A Generalised Theory of Interface Automata, Component Compatibility and Error 23

The quotient P // D is obtained from P � D by deleting all states in F�. This also removes any
may- or must-transition exiting a deleted state and any may-transition entering a deleted state; in
addition, deleted states are removed from targets of disjunctive must-transitions. If (p, d) ∈ SP//D,800

then we write p // d. If S0
P//D is empty, then the quotient of P over D is inconsistent.

Rule QF1 captures the division by universal states and error states. A state d ∈ UD∪ED in parallel
with any state is either universal or an error state, and does not refine p /∈ UP ∪ EP . Rule QF2 is
obvious since (p, d) cannot ensure that p

a−→P is matched if d has no a-must-transition, as an a-may-
transition or a forbidden action a at d can in no case compose to a refinement of a must-transition805

at p. Rule QF3 propagates back all inconsistencies that cannot be avoided by refining.
Since P � D is an EMIA and since syntactic consistency and the special states are preserved

by pruning, P // D is an EMIA, too. If the target set of a disjunctive must-transition became
empty due to pruning, i.e., R′ ⊆ F�, Rule QF3 would be applicable and the source state and its
must-transition are deleted.810

We show next that the quotient operation above yields the coarsest EMIA satisfying the defining
inequality. For this proof, the following lemma ensures that errors and inconsistencies of // are
preserved across refinement:

Lemma 40 Let P, D, Q be EMIAs such that P is τ -free, D is τ -free and may-deterministic, AD ⊆ AP ,

OD ⊆ OP , OQ = OP \ OD and IQ = IP ∪ OD. Further, let p, d, q be states in P , D, Q, resp. Then,815

the following statements hold:

1. If q ⊗ d ve p, then 〈p, d〉 /∈ F�.

2. If q ve p // d and p /∈ UP ∪ EP , then q ⊗ d /∈ EQ⊗D.

Proof We write −→⊗, −→� and −→// as shorthands for −→Q⊗D, −→P�D and −→P//D, resp., and
analogously for may-transitions.820

Claim 1: We show that (q ⊗ d ve p) ∧ (〈p, d〉 ∈ F�) implies a contradiction. We prove this
by induction on the rules of Def. 39, where our induction hypothesis is formalised as H(p, d) ≡
∀q. (q ⊗ d ve p ∧ 〈p, d〉 ∈ F�) =⇒ ⊥.

QF1 p /∈ EP ∪ UP and d ∈ ED ∪ UD: By Def. 5, we have q ⊗ d ∈ EQ⊗D ∪ UQ⊗D, and q ⊗ d ve p

implies p ∈ EP ∪ UP which contradicts our assumption.825

QF2 p
a−→, d 6 a−→ and a ∈ AD: By q ⊗ d ve p, we have q ⊗ d a−→⊗, which can only be due to P2

or P3; thus, d
a−→, which is a contradiction.

QF3 (p, d)
a−→� R′ with R′ ⊆ F�: By induction hypothesis H(p′, d′) holds for all (p′, d′) ∈ R′. The

transition is due to one of the rules PQ1 and PQ2:
PQ1 p

a−→ P ′, a /∈ AD and R′ = P ′ × {d}: By q ⊗ d ve p, we have q ⊗ d a−→⊗ Q′ × {d} for830

some Q′ such that ∀q′∈Q′.∃p′∈P ′. q′ ⊗ d ve p
′. Since (p′, d) ∈ R′ ⊆ F�, H(p′, d) implies a

contradiction.
PQ2 p

a−→ P ′, d
a−→ {d′} and R′ = P ′ × {d′}: By q ⊗ d ve p, there is a Q′ with q

a−→ Q′ and
∀q′∈Q′.∃p′∈P ′. q′ ⊗ d′ ve p

′. Due to (p′, d′) ∈ R′ ⊆ F� we can derive a contradiction from
H(p′, d′).835

Claim 2: We show that (q ve p//d)∧(p /∈ EP )∧〈q, d〉 ∈ EQ⊗D implies a contradiction. By Def. 5,
there are two cases for 〈q, d〉 ∈ EQ⊗D:

A 〈q, d〉 ∈ EQ × SD: By q ve p // d, we have p // d ∈ EP//D. Hence, p ∈ EP , which is a contradiction.
B 〈q, d〉 ∈ SQ × ED: By QF1, 〈p, d〉 ∈ F�, which contradicts q ve p // d. ut

Now, we can show that // is indeed a quotient operator wrt. ⊗:

Theorem 41 (// is a Quotient Operator wrt. ⊗) Let P , D and Q be EMIAs such that P is τ -free,840

D is τ -free and may-deterministic, AD ⊆ AP , OD ⊆ OP , OQ = OP \ OD and IQ = IP ∪ OD. Then,

Q ve P // D iff Q⊗D ve P .
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Proof We use the same shorthands as in Lem. 40.

“⇒”: We show that R := {(q⊗d, p) ∈ SQ⊗D × SP | q ve p // d or p ∈ UP } is an error-aware modal
refinement relation. We only have to consider a (q⊗d, p) ∈ R with p /∈ UP . Note that Cases R4845

and R6 are mostly analogous to Cases R3 and R5, resp.
R1 q ⊗ d /∈ EQ⊗D iff (by Def. 5) q /∈ EQ ∧ d /∈ ED iff (by q ve p // d) p // d /∈ EP//D ∧ d /∈ ED.

Def. 38 implies p /∈ EP . Vice versa, p /∈ EP implies p // d /∈ EP//D. Now, q ve p // d implies
that p // d is consistent, hence, d /∈ ED and, due to Def. 5, q ⊗ d /∈ EQ⊗D.

R2 By Def. 38, p /∈ UP implies p // d /∈ UP//D. Due to q ve p // d, we have q /∈ UQ. Now, QF1850

implies d /∈ UD, hence, q ⊗ d /∈ UQ⊗D.

R3 p
i−→ P ′ for i ∈ IP :

1. If i ∈ AD and d
i−→ {d′}, then PQ2 implies (p, d)

i−→� P ′×{d′}. In P //D, the target set

might only be a subset P ′′ × {d′} of P ′ × {d′}. By q ve p // d, we have q
i−→ Q′ for some

Q′ such that ∀q′∈Q′. ∃p′∈P ′′. q′ ve p
′ // d′, whence (q′⊗d′, p′) ∈ R. Now, by P3, there is855

a transition (q, d)
i−→⊗ Q′ × {d′}.

2. If i ∈ AD and d 6 i−→, then (p, d) ∈ F� by QF2, which is impossible since p//d is consistent.
3. If i /∈ AD, the proof is analogous to Case 1 with d = d′, when replacing PQ2 by PQ1

and P3 by P1.
R4 p

o−→ P ′ for o ∈ OP : Here, the same arguments as for R3 apply.860

R5 q ⊗ d i
⊗ q′ ⊗ d′ and i ∈ IP = IQ⊗D: This transition is due to one of the rules P4 or P6.

Rule P5 is impossible as AQ = AP ⊇ AD.

P4 q
i
q′ and i /∈ AD: We have d = d′, and q ve p // d implies p // d

i
// p
′ // d′′ for some

p′, d′′ such that q′ ve p
′ // d′′. Since i /∈ AD, we get d = d′′ and p

i
p′ by PQ3. We

have (q′⊗d′, p′) ∈ R since q′ ve p
′ // d′.865

P6 q
i

q′ and d
i

d′: Since q ve p // d, we conclude p // d
i
// p
′ // d′′ for some p′, d′′

with q′ ve p
′ // d′′. This can be due to PQ3 or PQ4; in both cases we have p

i
p′. Due

to may-determinism, d′′ = d′ and, since q′ ve p
′ // d′, we have (q′⊗d′, p′) ∈ R.

R6 q ⊗ d o
⊗ and o ∈ OP = OQ⊗D: The proof proceeds analogous to the one of R5.

“⇐”: We show that R := {(q, p // d) ∈ Q× (P // D) | q ⊗ d ve p or p // d ∈ UP//D} is an error-aware870

modal refinement relation. It suffices to consider some (q, p // d) ∈ R with p // d /∈ UP//D.
R1 q ∈ EQ implies (by Def. 5) q ⊗ d ∈ EQ⊗D iff (by q ⊗ d ve p) p ∈ EP iff (by Def. 38)

p // d ∈ EP�D. For the reverse direction, it remains to show that the first implication can be
reversed, i.e., that d /∈ ED. By q ⊗ d ∈ EQ⊗D and q ⊗ d ve p, we have p ∈ EP ∪ UP . Hence,
p // d /∈ UP//D implies and d /∈ ED.875

R2 By Def. 38, p // d /∈ UP//D implies p /∈ UP and 〈p, d〉 /∈ EP × ED. There are two cases:
1. p ∈ EP and d /∈ ED: q ⊗ d ve p implies q ⊗ d ∈ EQ⊗D, hence, q ∈ EQ.
2. p /∈ EP : q ⊗ d ve p implies q ⊗ d /∈ EQ⊗D ∪ UQ⊗D.

In both cases we conclude q /∈ UQ.

R3 p // d
i−→// R

′ ⊆ P ′×{d′} for i ∈ IP//D, where (p, d)
i−→� P ′×{d′} is due to one of the rules880

PQ1 or PQ2, and R′ consists of the consistent states of P ′ × {d′}. In the following, we use
AP = AQ throughout.

PQ1 p
i−→ P ′, d = d′ and i /∈ AD: By q ⊗ d ve p, we have a transition q ⊗ d i−→⊗ Q′ × {d′′}

for some Q′, d′′ with ∀q′∈Q′. ∃p′∈P ′. q′⊗ d′′ ve p
′. Since i /∈ AD, this transition can only

be due to Rule P1, hence, q
i−→ Q′ and d′′ = d. By Lem. 40, q′ ⊗ d ve p

′ implies that885

p′ // d /∈ F�, hence, p′ // d ∈ R′.
PQ2 p

i−→ P ′ and d
i−→ d′: By q ⊗ d ve p, we get q ⊗ d i−→⊗ Q′ × {d′} for some Q′ such

that ∀q′∈Q′. ∃p′∈P ′. q′ ⊗ d′ ve p
′. The transition must result from P3, and the rest of

the proof is as in PQ1.
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R4 p // d
o−→// R

′ with o ∈ OP//D = OP \OD: The same arguments as for R3 apply.890

R5 q
i
q′ for i ∈ IQ:

1. i /∈ AD: By P4, we have (q, d)
i
⊗ (q′, d). There is a transition p

i
p′ for some p′

with q′⊗d ve p
′, because of q⊗d ve p. By PQ3, we have (p, d)

i
� (p′, d), and Lem. 40

implies the consistency of p′ // d, hence p // d
i
// p
′ // d.

2. i ∈ AD and d 6 i : Due to d 6 i−→D and QF2, we have p 6 i−→P . Hence, PQ5 yields895

p // d
i >, and 〈q′,>〉 ∈ R is trivial.

3. i ∈ AD and d
i
d′: By P6, a transition (q, d)

i
⊗ (q′, d′) exists. The proof proceeds

as for Case 1, except for using PQ4 instead of PQ3.
R6 q

o
q′ for o ∈ OQ:

1. o ∈ AD, d
o

d′ for some d′: By P6, we have (q, d)
o
⊗ (q′, d′) and, by q ⊗ d ve p, we900

obtain p
o

p′ for some p′ with q′ ⊗ d′ ve p
′. Applying PQ4, we get (p, d)

o
� (p′, d′).

Lem. 40 implies the consistency of p′ // d′, hence, p // d
o
// p
′ // d′.

2. o ∈ AD, d 6 o : Analogous to case R5(2).

3. o /∈ AD: q ⊗ d o
⊗ q
′ ⊗ d by P4. Due to q ⊗ d ve p, there is a p

o
p′ for some p′ with

q′⊗d ve p
′. The rest follows as in the proof of Case 1, applying PQ3 instead of PQ4. ut

From this theorem we may also conclude that // is monotonic wrt. ve in the left argument and
antitonic wrt. the right argument.905

Lemma 42 (Monotonicity to the Left of // wrt. ve) Let P1, P2, D be EMIAs with P1 ve P2. If

P1, P2 are τ -free and D is τ -free and may-deterministic, then P1 // D ve P2 // D.

Proof By Thm. 41, X ve P1 // D implies X ⊗ D ve P1. Applying the assumption P1 ve P2 and
transitivity of ve, we conclude that X ⊗D ve P2. Thm. 41 implies X ve P2 // D. By reflexivity of
ve we may substitute P1 // D for X. ut

Lemma 43 (Antitonicity to the Right of // wrt. ve) Let P , D1, D2 be EMIAs with D1 ve D2. If

P is τ -free and D1, D2 are τ -free and may-deterministic, then P // D1 we P // D2.

Proof By Thm. 41, X ve P //D2 implies X⊗D2 ve P . Our assumption D1 ve D2 and composition-
ality imply X ⊗D1 ve X ⊗D2. Transitivity of ve yields X ⊗D1 ve P which, by Thm. 41, implies
X ve P // D1. By reflexivity of ve, we may substitute P // D2 for X. ut

As a direct consequence of Thm. 32, Thm. 34 and Lem. 43, we get a De Morgan-like law for the910

quotient:

Corollary 44 (De Morgan-like Law for //) Let P , Q and R be EMIAs, then P // (Q ∨ R) ve

(P // Q) ∧ (P // R).

5.2 Hiding, Restriction and Alphabet Extension

We now introduce operators for scoping actions, namely hiding [23] and restriction [31], as is usual915

in process algebra. In our setting, outputs are under the control of the system; when disconnected,
they are still performed but the signal is no longer sent to the outside, i.e., the action is internal. In
contrast, inputs are only performed because of an outside stimulus. Disconnecting an input rather
blocks it and, therefore, we introduce a restriction operator for inputs. The same idea is used in
the IA-setting of [12], but hiding and restriction are combined into a single operation.920
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Definition 45 (Hiding) Let P = (SP , IP , OP ,−→P , P , S
0
P , EP , UP ) be an EMIA and L a set of

actions with L∩ IP = ∅. We define P hiding L as the EMIA P /L := (SP , IP , O \L,−→P/L, P/L,

S0
P , EP , UP ), where all transition labels o ∈ L are replaced by τ .

Definition 46 (Restriction) Let P = (SP , IP , OP ,−→P , P , S
0
P , EP , UP ) be an EMIA and L

a set of actions with L ∩ OP = ∅. We define P restricted in L as the EMIA P \ L := (SP , IP \925

L,OP ,−→P\L, P\L, S
0
P , EP , UP ), where all transitions with a label contained in L are removed.

Observe that hiding and restriction yield well-defined EMIAs.

Lemma 47 (Weak Must-Transitions under Hiding) Let P be a MIA, L∩ IP = ∅ and o ∈ L∩OP .

If p
o

=⇒P P ′, then p
ε

=⇒P/L P
′.

Proof By induction on the definition of p
o

=⇒P P ′. If p
o

=⇒P P ′ is due to WT3 of Def. 2, then the
claim is obvious. Otherwise, p

o
=⇒P P ′ is due to some p

τ−→P P̄ and P̄
o

=⇒P P ′ according to WT2.
By induction hypothesis, we have p̄

ε
=⇒P/L Pp̄ for each p̄ ∈ P̄ and P ′ =

⋃
p̄∈P̄ Pp̄. By WT2, we

obtain p
ε

=⇒P/L P
′. ut

As desired, EMIA-refinement is a precongruence wrt. hiding and restriction:930

Proposition 48 Let P , Q be EMIAs with equal alphabets and P ve Q.

1. P / L ve Q / L for any set L of actions with L ∩ I = ∅.
2. P \ L ve Q \ L for any set L of actions with L ∩O = ∅.

Proof Since P ve Q, there is an EMIA-refinement relation R with 〈p, q〉 ∈ R. We show that R is
also an EMIA-refinement relation for P / L ve Q / L and P \ L ve Q \ L. The only interesting case
concerns hiding and Rule R4 of Def. 3, i.e., q

τ−→Q/L Q
′ due to q

o−→Q Q′ for o ∈ O ∩L. The latter

is matched by a transition p
o

=⇒P P ′ with ∀p′ ∈P ′ ∃q′ ∈Q′. (p′, q′) ∈ R. By Lem. 47, this yields

p
ε

=⇒P/L P
′. ut

Originally, IA employs a parallel composition with immediate hiding [14]. This can easily be
expressed by combining our parallel composition and the hiding operator, such that P | Q = (P ‖935

Q) / S, where S is the set of synchronising actions. However, the immediate hiding weakens the
associativity of this composition operation. We omit the details here, because they are presented
in [7] for MIA and may directly be adopted to EMIA.

We close this section with a remark on alphabet extension. Conjunction, disjunction and re-
finement are defined for EMIAs with equal alphabets. For perspective-based specification, it is of940

interest to consider EMIAs with different alphabets [7]. Following the lines of MI and MIA, the op-
erations on EMIAs can be lifted to different alphabets by extending the alphabets of the operands
by their mutually foreign actions. When a specification’s alphabet is extended, the least possible
assumptions should be made on a new action a, while the same specification wrt. known actions
should hold before and after a. This can be achieved by adding an optional a-loop to each state. For945

output actions this is straightforward, but the exact meaning of optional input transitions depends
on the desired composition concept (cf. Sec. 1, Issue D). Therefore, a separate alphabet extension
operator has to be defined for unanimous, broadcast and error-sensitive parallel composition. Alter-
natively, a mixed extension combining different composition concepts for each state and each new
action is also possible. Besides this, there is nothing surprising to expect from alphabet extension,950

and we leave out the formal definition here for brevity.
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Fig. 10 Synthesis of a user interface Q from a given component D and a global specification P , where AC′ :=
{openDoor?, rqstCar?}/{drive!, rqstPass!}, AD′ = AD := {rqstCar?}/{drive!}, AP := ∅/{rqstCar!, drive!} and
AQ := {drive?}/{rqstCar!}.

5.3 Process Algebraic Operators and Quotient under Galois Insertion

The Galois insertion between MIA and EMIA translates the process algebraic operators presented
above from EMIA to MIA. For hiding and restriction this relation is trivial; therefore, we only
present the translation of the quotient.955

Lemma 49 (Abstraction Respects Quotienting) If Q ve P // D for EMIAs P , Q and D, then

α(Q) ve α(P ) // α(D).

Proof We have Q ve P //D
Def. 41⇐⇒ Q⊗D ve P

Lem. 12
=⇒ α(Q⊗D) ve α(P )

Lem. 15⇐⇒ α(Q) ‖ α(D) ve α(P )
Def. 41⇐⇒ α(Q) ve α(P ) // α(D). ut

Substituting P // D for Q in Lemma 49 yields α(P // D) ve α(P ) // α(D).

Lemma 50 (MIA Quotient) Let P and D be MIAs. We have P //D wve α(γ(P ) // γ(D)), i.e., MIA

is closed under quotienting.960

Proof By Lem. 49, Thm. 18, Def. 16 and extensivity of α (again Thm. 18), we get the following chain
of inequalities: α(γ(P )//γ(D)) ve α(γ(P ))//α(γ(D)) wve P //D wve γ(P )//γ(D) ve α(γ(P )//γ(D)).
By transitivity, all inequalities are equalities. ut

5.4 Example

We reconsider the corrected driving assistant system of Sec. 3.3. For illustration purposes we sim-
plified the user interface U presented in Fig. 6 as much as possible, making it impractical as it may
only be used once. Now, we demonstrate how to employ quotienting in order to synthesise a useful
specification of a user interface.965

Starting with the corrected car C′, which we repeat in Fig. 10, the actions rqstPass and open-
Door are internal to the communication between the car and the garage and are invisible to the user
interface. Hence, from the user interface’s perspective, the car looks like specification D′ wve D,
which is obtained from C′ by hiding actions rqstPass! and openDoor?. We consider specification D

as an already given implementation, which we want to reuse in order to synthesise a specification970

of the user interface. To this end, the composition D⊗U of the car D and its user interface U must
satisfy the global specification P which requires that, after some request, the car may drive and
new requests are blocked until the drive is completed. A specification Q of the user interface may
now be synthesised from P and D by quotienting, i.e., Q := P // D. Note, that drive? is an input
action in Q. The two transitions leading to universal states (drive? in q0 and rqstCar! in q1) are975

only due to the maximality of Q. They disappear in the parallel composition with D. It is easy to
see that the defining inequality Q ⊗D ve P is satisfied. The example also shows that, in general,
we do not have equality of (P // D)⊗D and P .
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6 Conclusions and Future Work

Our interface theory EMIA is a uniformly integrated specification framework that is applicable at980

different levels of abstraction, e.g., component-based design and product line specification. EMIA
bridges the gaps between MTS [28], interface theories [2,6,7,8,10,14,15,26,30,32] and assembly
theories [22]. It is based on a concept of error-awareness, whereby EMIA’s refinement preorder
reflects and preserves fatal error states. While recent interface theories [7,32] considered the problem
of how to enforce required behaviour, our finer-grained error semantics also solves the dual and985

previously open problem of how to forbid unwanted behaviour.
We proved that EMIA is related to the IA-based interface theory MIA [7] via a Galois insertion,

rendering MIA into an abstraction of EMIA. In the abstract theory, errors may be considered as
models of unknown behaviour for which no guarantees can be made, while in EMIA errors model
unwanted behaviour for which we know that it must not be implemented. This difference between990

EMIA and related interface theories can be captured in a more concise way when considering error
states axiomatically. In related theories [7,32], an error state e satisfies the laws e ‖ q = e, meaning
that a composed system is in an erroneous state if a component is, and e v p ⇒ p = e, meaning
that an error cannot be introduced when refining an ordinary state. In EMIA, the additional law
p v e ⇒ p = e is satisfied, i.e., refinement cannot redefine an erroneous situation to be non-995

erroneous.
Regarding future work we intend to add alphabet extension and extend quotienting to nonde-

terministic divisors. Furthermore, we wish to capture the differences and commonalities of different
interface theories via axiomatisations. We also plan to implement EMIA in a formal methods
tool, e.g., Mica [9], the MIO-Workbench [2] or MoTraS [24], and to further develop EMIA as a1000

behavioural type theory for the Go Programming Language [20]. Such tools would enable us to
evaluate EMIA on larger, more realistic examples, e.g., the docking system studied in the context
of IA in [17].
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