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Abstract Over the past two decades, de Alfaro and Henzinger’s Interface Automata
(IA) have become a popular formal framework for the component-based specifica-
tion of concurrent systems. IA’s parallel composition assumes that a component may
wait on inputs but never on outputs, implying that an output must be consumed im-
mediately or a communication error occurs. By now, the literature contains a number
of semantics for IA: linear-time semantics based on traces observing communication
errors, quiescence and/or divergence, as well as branching-time semantics based on
alternating simulation.

This article surveys these semantics from Rob van Glabbeek’s linear-time bran-
ching-time perspective, which does not consider settings with communication errors.
We shed light onto the subtleties implied by IA’s pruning of all behaviour that might
lead a component to autonomously enter an error state, and investigate when exactly
de Alfaro and Henzinger’s restriction of input-determinism is needed. In addition, we
introduce several new semantics for [A, in particular the linear-time ready semantics
and the branching-time ready simulation.
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1 Introduction

Modern software systems are assembled from components that need to interoperate
properly in order to ensure a system’s correctness. Behavioural interfaces allow one
to specify contracts between concurrent components [8] and, thus, to statically reason
about component compatibility. This is of particular relevance during early system
design and also when integrating legacy components.

The theoretical foundations of such interfaces have been studied intensively in
the concurrency theory community [7,13-15,20,27,35,41,44], especially since the
inception of Interface Automata (IA) by de Alfaro and Henzinger [5,6]. These au-
tomata are based on labelled transition systems but distinguish a component’s input
and output actions, and define a parallel composition whereby a component may wait
on inputs but never on outputs. Therefore, a communication error occurs if one com-
ponent receives a message for which it is not ready. In case no potential system envi-
ronment may restrict the system components’ behaviour so that all errors are avoided,
the components are deemed to be incompatible.

Behavioural preorders for IA. Over the years, IA have been equipped with a num-
ber of behavioural relations for interface refinement and implementation. Originally,
de Alfaro and Henzinger presented the IA-setting with branching-time preorders
based on co-inductive notions of alternating simulation [5,6]: a component satis-
fies an interface if it implements all input behaviour prescribed by the interface and
if the interface permits all output behaviour executed by the implementing com-
ponent, thereby preserving compatibility wrt. arbitrary system environments. Later,
Gohrle [27] studied preorders that vary the degree to which internal behaviour sur-
rounding input and output actions is abstracted and that lie in-between the two pre-
orders proposed by de Alfaro and Henzinger.

More recently, various fully-abstract, linear-time preorders based on decorated
traces have been developed for IA: the error semantics of [14,15], the quiescence
and the divergence semantics of [44], and the CJK-semantics of [15]. Strictly speak-
ing, these preorders have been studied in the setting of Error-10 Transition Systems
(EIO) [14,44], which are input-enabled interface automata with explicit error states.
EIO and IA are essentially the same model: the error states in EIO are eliminated
in IA by pruning locally reachable errors, i.e., states from which a component can
autonomously reach some error state via output and internal transitions only.

Contributions. This article surveys and extends the above works and is intended for
concurrency theoreticians to gain an overview and better understanding of the subtle
semantic issues introduced by the notions of communication errors and component
compatibility. We first recall the above preorders on EIO and IA, together with their
precongruence properties and, where applicable, full-abstraction properties. Then,
we study these preorders for a general notion of parallel composition that consid-
ers multicast synchronization and enables action internalisation via a separate hiding
operator, whereas some of the preorders, e.g., the original IA-preorders proposed by
de Alfaro and Henzinger [5, 6] have so far been studied only for a binary, internalising
parallel composition operator.
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As a first contribution, we arrange all these preorders in a linear-time branching-
time spectrum, as inspired by van Glabbeek’s seminal works on the spectrum for
behavioural relations on ordinary labelled transition systems [22-24]. We add to the
[A-spectrum a number of new preorders: ready semantics to the linear-time part, as
well as ready simulation and several bi-variant variations [3] of alternating simu-
lation, including IA-bisimulation, to the branching-time part. Our final IA-spectrum
(see Figs. 6 and 13) depicts all implications between the studied 16 preorders, and
counterexamples are provided wherever implications fail to hold.

As a second contribution, we discuss various design decisions and properties of
the preorders. For the linear-time preorders, we show that the pruning of locally
reachable errors does not change an interface’s semantics. We also take a closer
look at the CJK-semantics and a variation of quiescence semantics. Regarding the
branching-time preorders, we present characterizations of both IA-preorders by de
Alfaro and Henzinger in terms of standard simulations.

The main insight is that the original preorder for IA, to which we refer as IA-
refinement [5], also supports associativity for parallel composition, even for inter-
faces that are not input-deterministic. That associativity fails in [5] is solely owed to
the incomplete notion of pruning employed therein. Hence, there is no need to restrict
IA to input-deterministic interfaces as is done, e.g., in [6], and we recommend future
investigations into IA to be based on the coarser IA-refinement preorder rather than
on the alternating simulation of [6]. For those who prefer the latter preorder, we show
how it can be generalized to arbitrary, i.e., not necessarily input-deterministic IA.

Related work. A linear-time branching-time spectrum for behavioral specification
theories is presented by Fahrenberg and Legay in [19]. They employ disjunctive
modal transition systems [34] to define a spectrum of refinement preorders, including
failure semantics [11] and ready simulation [10], each giving rise to a specification
theory for some equivalence — but not preorder — in van Glabbeek’s Linear-Time
Branching-Time Spectrum I (without internal actions) [22,24]. Moreover, Fahren-
berg and Legay do not specifically consider interface theories: neither IA and its
parallel composition, nor a notion of communication error, nor alternating simulation
and related behavioural relations are studied.

Structure of this article. The next section introduces IA informally, and points out
the main aspects of parallel composition, communication error, pruning and compat-
ibility. Sect. 3 then defines the formal framework considered by us, i.e., Interface Au-
tomata and Error-10 Transition Systems and their parallel and hiding operators. The
subsequent Sects. 4 and 5 develop the linear-time and resp. branching-time part of
our IA-spectrum, as announced above, and explores how exactly these two parts are
connected. Finally, Sect. 6 briefly discusses two fields closely related to IA, namely
interface theories and certain parts of model-based testing, while Sect. 7 presents our
conclusions and suggestions for future work.
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Client TryOnce Client ® TryOnce Client | TryOnce
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nack? ack? nack? ack? ack?

Fig. 1 Example illustrating IA-parallel composition, where component TryOnce has inputs {send, ack,
nack} and outputs {trnsmt, ok, reset, retry}, while Client has inputs {ok, retry} and output {send}.

2 Interface Automata by Example

We introduce IA by an example that demonstrates the utility of de Alfaro and Hen-
zinger’s setting [5,6] for reasoning about component compatibility in concurrent sys-
tems. The essential feature of the setting is that, in the definition of parallel composi-
tion, one identifies error states and removes them in a suitable manner. If this leads to
the removal of the initial state of the composition, the components are deemed to be
incompatible, i.e., they cannot be used in combination in any system environment.
Consider the example depicted in Fig. 1, which is taken from [36] and adapted
from [6]. It shows a simple networking protocol consisting of a Client that repeatedly
sends messages (output action send!) and expects to receive a positive response (input
action ok?). While Client can also listen to retry messages (input retry?), it always
ignores these. The transport layer protocol is modelled by component TryOnce that
receives messages (input send?), sends them over the network (output trnsmt!), and
receives either a positive acknowledgement (input ack?) and relays this (output ok/),
or a negative acknowledgement (input nack?) after which the component resets the
lower layer (output reset!) and sends a retry request to the client (output retry!).

We now consider the parallel composition Client|TryOnce of Client and TryOnce.
For this, one first carries out a standard composition Client ® TryOnce, called prod-
uct, where an output action synchronizes with an equally named input action, result-
ing in the output action. This way, a third component can listen to and synchronize
with the same output, i.e., a multicast synchronization is possible. Then, in our ex-
ample, state E is identified as an error state because TryOnce sends a retry, which
Client refuses to accept. Such a communication mismatch has to be avoided and, be-
cause a component controls its output actions, the source of transition reset! has to
be avoided as well. In general, a state is deemed illegal if it can reach an error state
autonomously, i.e., by locally controlled actions. The idea of pruning in [5,6] is to
obtain Client|TryOnce by removing all illegal states, whereby also the input transi-
tion nack? is cut. The resulting pruned automaton can also be seen as an operating
guideline on how to use the two components working in parallel. Here, the guideline
states that this automaton should not be confronted with input nack? after trnsmt!.

Unfortunately, the pruning of de Alfaro and Henzinger [5] leads to an associa-
tivity problem of parallel composition. To see this, we extend TryOnce to TryOften
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Fig. 2 Component TryOften (with the same inputs and outputs as TryOnce) and its parallel composi-
tion with Client, using the pruning of [5], and component Lower (with inputs {trnsmt, reset} and out-
puts {ack, nack}.

(Client T TryOften)A\ Lower TryOften T Lower Client ® (TryOften? Lower)

ok! ok! ok!
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ack! nack!  ack! nack!  ack!

Fig. 3 Completing our example to illustrate the associativity defect of the pruning of [5].

by adding a second transition nack?, as shown in Fig. 2. Thereby, TryOften can non-
deterministically decide how often to re-transmit a message before forcing a reset.
Furthermore, we add a lower-level component Lower that forwards a transmission
to the communication medium, returns a positive or negative acknowledgement af-
ter some internal activity (non-observable action T), and accepts reset requests in
its initial state. If we compose Client and TryOften, we obtain the same systems as
in Fig. 1 as the product and also as the parallel comp0s1t10n except for the addi-
tional nack?-transition. We use the operator | in Clzent\ TryOften to indicate that this
composition is unsatisfactory. If we further add Lower as third component, there are
no error states (see Fig. 3, left), i.e., Client, TryOften and Lower are deemed to be
compatible. However, when we first compose TryOften with Lower, we obtain the
error-free IA depicted in the middle of Fig. 3 and, then, the product with Client as
shown on the right-hand side of the figure. Here, the initial state can reach the error
state autonomously by local actions; note that 7 is locally-controlled, too. Thus, with
this bracketing, the three components are incompatible and their parallel composition
is undefined. Consequently, | is not associative.

This associativity defect, which was first discovered in [14], is rooted in the non-
deterministic choice on input nack?, which was avoided by de Alfaro and Henzinger
in their later work [6] by restricting the [A-setting to input-deterministic components.
Additionally, they replaced the original refinement relation of [S] by a stricter one,
which is however unrelated to the associativity defect. In fact, the restriction to input-
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deterministic components in [6] is unnecessary, because the conceptual mistake lies
in the notion of pruning. Recall that cutting the nack?-transition in Client ® TryOnce,
and similar in Client ® TryOften (not shown in the figures), should indicate that the
environment must refrain from sending nack in the state after trnsmt!. However, the
pruning of [5] incompletely reflects this requirement, because the second nack?-
transition in Client ® TryOften is not pruned. To obtain a proper pruning, one must
always prune all transitions of an input at a state, if one prunes one transition of
this input at the state. In our example, the nack?-transition remaining in Fig. 2 in the
middle is then also pruned, so that the composition with the third component Lower
is incompatible due to that component’s output nack!. In the following, we use the
ordinary symbol | for the parallel composition with proper pruning. Observe that, in
Fig. 1, the kind of pruning does not matter and one may use either | orl\\there.

To conclude, the above discussion leads to the following understanding of parallel
product and composition. The product of, e.g., Client and TryOnce describes how the
two automata interact with each other, while their composition is more concise and
describes the behaviour only as far as needed. At the same time, the composition
captures more clearly the requirements imposed upon the system environment, in
which the composition may be placed. For fundamental studies of this specification
setting, the EIO variant of IA with explicit error states was introduced (cf. [14, 15]).

3 The Interface Automata Setting

This section presents the formal framework in which the linear-time and branching-
time preorders studied in the literature were developed: the Interface Automata (1A)
of de Alfaro and Henzinger [5] and the equally expressive Error-10 Transition Sys-
tems (EIO) of Bujtor and Vogler [14] (cf. also [15]). A particular focus is placed on
the parallel composition of such automata and the pruning in IA; as just explained,
our pruning subtly but importantly deviates from the one employed in [5]. General-
izing the standard definition, we also equip IA with an associative multicast parallel
operator; our additional hiding operator allows for the internalization of actions that
implicitly occurs in [5,6] when actions synchronize.

Definition 1 (Interface Automata) An Interface Automaton (IA) is a tuple (P, 1,0,
—, Po), Where

— P is the set of states;

— I and O are disjoint sets of input and output actions, resp., not containing the
special, non-observable action 7, where A =4 I U O is called the automaton’s
action set or alphabet and (I, O) its signature;

- —> C P X A; x P is the transition relation, where X; =¢s X U{7} for X C A;

— po € P is the initial state.

An 1A is input-deterministic if (p,i,p’), (p,i,p”) € — with i € I implies p’ = p”.
Note that the IAs studied by us are not by definition input-deterministic. In the fol-

lowing, we denote an IA as above also by P, i.e., we identify an IA by its state set.
We often use p and p’ as representatives of the state set P, as well as i, 0, @, a and o
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as representatives of the action sets I, O, O, A and A, resp. If o = 7, then & =g4s €;
otherwise, & =g 0. In addition, we let p — p’ denote the transition (p, o, p') € —»,
while p —%, means that such a transition exists for some p',ie., ais enabled at p. A
state is stable if it does not enable 7. Unless defined otherwise, an IA P always has
the components P, I, O, —, and py, and similarly P, has components Py, I, etc. In
figures, we sometimes display i? for an input i and o! for an output o.

Extending our transition notation to action sequences, we write p —s p' if there
exists a run p ﬂ>p1 ﬂ>pg--~ %pn = p’ such thatw = @0 - - - O, where o; € A;
for 1 < i < n; analogously, a run can also be infinite. A state p is reachable if py —s p
for some wj it is locally reachable if it is reachable by local actions only, i.e., if
w € O%. The projection w|p of w onto B C A arises by deleting from w all actions

/
that are not in B. Now, p == p’ if w € A* and 3w’ € A% w'[4 =w and p 2= p'; we

say that the run according to p L/> P underlies p == p', or just w if the context is
clear. As above, we write p — for 3p’. p — p’ and p == for 3p’.p == p’. The
language L(P) of P consists of all traces of P and is the set {w € A*| pg ==}.

Error-10 transition systems are input-enabled IA with explicit error states, for
which we adopt the conventions above:

Definition 2 (Error-IO Transition System) An Error-10 Transition System (EIO)
is a tuple (P,1,0,—, po,E), where (P,I,0,—, po) is an IA and E C P is the set
of error states. In addition, we require that P is input-enabled, i.e., for all p € P and

i € I, there exists some p’ € P with p — p'.

In essence, EIO and IA are the same model: a missing input transition at a state
in an IA corresponds in EIO to an input transition to an error state. IA is conve-
nient for simulation-based semantics where, simply, a missing input does not have to
be matched. However, making errors explicit in EIO removes any prejudice present
in the [A-setting as to how exactly error states arising in a parallel composition are
avoided. This is why linear-time semantics with their full-abstraction results have
been based on EIO. Furthermore, adopting input-enabledness in EIO (as in [15])
lends itself to an easier description of linear-time semantics. Observe that input-
transitions to an error state in an EIO do not have to be implemented, and in fact
cannot be implemented; this differs from the treatment of input-enabledness in the
[0-automata model of Lynch [37].

We now introduce (proper) pruning for EIO, which enables one to translate be-
tween EIO and TA:

Definition 3 (Pruning) Let P be an EIO. Then, e € E is canonical if it is the only
error state, has exactly a loop for each input as its outgoing transitions and, if p e,
then a € I and p has no other o -transitions.

A state p is illegal if an error state can be locally reached from p, i.e., reached
via output- and 7-transitions only. We obtain EIO prune(P) from P in two steps:
first, we remove all illegal states and, additionally, each input transition p — p’ for

which there is some illegal state p” with p — p”. Second, we add a new error state e
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with ingoing transitions that ensure input-enabledness and make e canonical. If pg is
illegal, then e is also initial.

In [14], it is shown that, when applying this proper pruning, each EIO P is equivalent
to prune(P) according to our first linear-time refinement (cf. Sect. 4.2). We prove in
Sect. 4 that this also holds for the other linear-time refinements.

Remark 4 (Translating between EIO and IA) 1As can be understood as special EIOs
by adding a canonical error state as above. Thus, an input i missing at some state p of

an IA is translated to the transition p Lse. Conversely, one can normalise an EIO P
to prune(P) and then remove the canonical error state and the adjacent transitions to
get a corresponding IA. If prune(P) only consists of the error state, it corresponds to
the “undefined IA” that arises from an undefined parallel composition.

All previously known linear-time preorders (see Sect. 4) have been defined on
EIOs in the literature, while all branching-time preorders (see Sect. 5) are defined
on [As. By the above remark, we may still compare linear-time to branching-time
preorders, by lifting the preorders from IA to EIO or vice versa.

Definition 5 (Hiding) For an EIO (P,1,0,—, po,E) and H C O, the hiding of H
in P is the EIO P/H =¢¢ (P,I,O\ H,—y, po,E), where

1. p-Zppiftp-% p and a ¢ H;
2. p—sy plif p % p/ for some o € H.

We now define parallel composition on EIO, which is a multicast because an
output of one EIO can synchronize with inputs from several other EIOs in its envi-
ronment. This differs from broadcast in that all potential receivers must be ready to
synchronize. Naturally, the receivers synchronize on their common inputs.

Definition 6 (EIO-Parallel Composition) Two EIOs P, and P, are composable if
01N 0, =0. In this case, the EIO-parallel composition Py =4 P ||P is (S,1,0,—,
50,E), where S =g Py X P>, I =4 (11 \ O2) U (2 \ O1), O =4t 01 UO2, 50 =4t (Po1, P02)
E =4t (E1 X P,) U (P, X E3), and the transition relation — is the least relation satis-
fying the following rules:

(p1,p2) % (P, p2) if p1 —%1 Pl and & & Ay;
(p1,p2) = (p1,ph) if pr —"+2 phand & ¢ Ay;
(p1,p2) =5 (P, pb) if p1 =1 p) and py %+, p) for some a.

We call Py a partner of P> if I C O and O, = I;; intuitively, Py fully synchronizes
with P, but might have additional outputs.

The definition of IA-parallel composition is given in two steps, as usual [5,6]:
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Definition 7 (IA-Parallel Composition) The parallel product ® on composable IAs
Py, P, is defined as the EIO-parallel composition above, except that E =4¢ {(p1, p2) €
P xP |3a c€01Nh.p; ih and p; 7&>2 ordaeliNO;.p; 7&)1 and p; L>2},
i.e., one component of an error state offers an output to the other that the other cannot
receive. The IA-parallel composition P;|P, is obtained by applying the pruning of
Def. 3 without adding an error state. If the initial state is illegal, then the parallel
composition is undefined. Otherwise, we call P; and P, compatible.

The defined parallel operators are obviously commutative wrt. isomorphism, and they
are associative, too:

Proposition 8 (Associativity) (P;||P:)||Ps and Pi||(P.||P;) are isomorphic, for all
pairwise composable EIOs Py, Py, Ps. The analogous holds for | if Py, P, P are IAs
— provided one of the two composed IAs is defined, in which case the other is as well.

Proof Associativity on EIOs can be established by adapting the proof of Thm. 16
in [14]. If the parallel compositions are defined, associativity on IAs is a consequence
of a corresponding result in the setting of Modal Interface Automata (MIA) [13,
Thm. 12]: one translates every [A-transition into a must-transition in the MIA-setting
and adds a disconnected error state. (Note that this does not preserve refinements.)

In more detail, consider (P;|P»)|P; and let P, P, and P} be the resp. translations
to MIA. P]’ |P2’ is the same as P;|P, except for the error state and the fact that, in the
former, if some input i is cut at a state pi|p,, then there is a so-called may-transition
with label i from py|p, to the error state. Thus, we get Pi|P; back from P[|P; by
omitting such may-transitions and the error state.

The same is true for (P;|P,)|Ps, as we argue now. The only additional problem
is that p;|ps has the above i-may-transition in the MIA and no i-transition in the TA.
If state py|p> of P{|P is composed with some p3 of Pj, there are several cases to
consider. First, if i € A3 is not enabled at p3, then (p1|p2, p3) as state of (P{|P;) @ P;
has no i-transition, which fits (P;|P») ® P5. Second, if i € I3 is enabled at p3 or i ¢ A3,
then (pi|p2, p3) has an i-may-transition to the error state, which fits (P;|P) ® Ps after
the translation back. Third, if i € O3 is enabled at p3, then (p1|p2, p3) is an error state
as in the [A-case.

Thus, associativity for IA follows because one can translate the two isomorphic
MIA-compositions back to the two IA-compositions by removing the corresponding
may-transitions and error states, so the latter two are isomorphic as well. O

Remark 9 For all IAs P, P», we have that P; |P;, if defined, is identical to the IA ob-
tained in the following way. First, we consider P;, P as EIOs according to Remark 4,
apply EIO-parallel composition to obtain Pj,, and translate this result back into an TA
by pruning without adding the canonical error state.

To see this coincidence, consider a transition (py, p) — (P, p5) € E1 entering
an error state in Pj». The first case is that a is an input. W.l.0.g. assume p N el € Ey
and either a ¢ A, or a € I. Then, p; cannot perform « in the IA P; and, thus, (p1, p2)
cannot perform a in P; | P,. The same holds in the pruned Pj,. The second case is that a
is an output. W.l.o.g. a € O; Nh, p; — P} and p; 25 e,. In this case, (p1,p2) is



10 Walter Vogler, Gerald Liittgen

illegal in Pj5 and an error in P; @ P». Consequently, the illegal states in the IA-setting
are the illegal states in the EIO-setting without the error states. This shows that || on
EIO coincides with | on the subclass IA of EIO.

In the original papers on IA [5, 6], parallel composition is only applied to strongly
composable 1As Py, P, —i.e., they are composable and I} NI, = @ — and immediately
followed by hiding of the synchronized actions. This can be expressed in our setting
as (P1|P»)/H, where H =4¢ (I; N O2) U (I, N Oy). Thus, the precongruence results for
[A-parallel composition and hiding imply the precongruence property for the original
IA-operator. In contrast to [A-parallel composition, observe that, with the original
operator, only two components synchronize on a common action.

4 Linear-Time Preorders

This section investigates the linear-time spectrum for EIO. We largely follow [44]
by studying the error semantics of [14,15], the quiescence and divergence semantics
of [44] and the CJK-semantics of [15], and we also consider our new ready semantics.
For each case, we show how to determine the semantics for a parallel composition and
for an application of hiding from the semantics of the underlying components. This
implies that the refinement preorders accompanying the semantics are precongru-
ences; indeed, full-abstraction results are known for error, quiescence and divergence
semantics [44]. New contributions by us are, besides the addition of ready semantics
(see Sect. 4.6), the equivalence results on pruning, a closer look at the CJK-semantics
(see Sect. 4.5) and a variation of quiescence semantics (see Sect. 4.3).

4.1 Basic Requirements, Preorders & Properties

The preorders to be considered for our linear-time spectrum compare EIOs having
the same signature and, thus, the same interaction potential. Our basic requirement
of a preorder is that a refinement, i.e., the smaller EIO, avoids errors whenever the
specification, i.e., the larger EIO, avoids errors; here, avoiding an error means that
an error state is not locally reachable, as discussed above. We write EE for the basic
preorder that obeys just this preservation property.

In addition, for a preorder to be practically applicable, one expects that it enables
compositional reasoning, i.e., that it is a precongruence. Ideally, a refinement pre-
congruence does, at the same time, not unnecessarily distinguish EIOs, i.e., it is fully-
abstract wrt. the initial, basic preorder and the EIO operators. Mathematically, this
means with regards to T2 that the desired fully-abstract preorder characterizes the
coarsest precongruence Eg contained in Eg. Below we first establish full-abstraction
wrt. parallel composition, and then show the precongruence property wrt. hiding, i.e.,
full abstraction also holds for full EIO.

While avoiding errors is obviously the basic observable on which a system de-
signer wishes to base a preorder for interfaces, one may also consider two further
observables that are extensively studied in the concurrency literature [23]: quiescence
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and divergence. This leads to the two basic preorders C§,; and Cf, and their fully-

abstract counterparts Egui and Egiv, resp., which are studied below for EIO. Intu-

itively, a state avoids quiescence, if it cannot locally reach a state that has only input
transitions, i.e., in which the system cannot progress on its own. The state avoids di-
vergence, if it cannot locally reach a state that is divergent, i.e., in which an infinite
run of T-transitions starts. Hence, we obtain the following definition [44]:

Definition 10 (Faults & Preorders) In addition to the errors contained in the defini-
tion of EIO, we consider the two following sets of observable faults for an EIO P: the
set Qui(P) of quiescent states given by {p € P | Yo € O;. p £~} and the set Div(P)
of divergent states defined by {p € P | p has an infinite run of 7-transitions}. We say
that P avoids errors/quiescenceldivergence, if no error/quiescent/divergent state is
locally reachable.

For EIOs Py, P» with the same signature, we write (i) P, C2 P, (ii) Py Egui P, and
(>ii1) P Egiv P, whenever P; avoids (i) errors, (ii) errors and quiescence, (iii) errors
and quiescence and divergence, resp., provided P> does. As explained above, Eg,
Egu‘ and C&, are the fully-abstract preorders for EIO-parallel composition and C%,

1
B B
EQui and Cp; , Tesp.

The characterizations of the desired fully-abstract preorders rely on traces that are
often obtained via pruning and continuation operations [14]:

Definition 11 (Pruning & Continuation Functions) Let P be an EIO, ¢ the empty
word and (M) the power set of a set M.

— prune() : A* = A*, uv — u with v € O* and eitheru =g oru € A* - I,

— cont() : A* - P(A*),w— {wu|u e A*};

- cont() : P(A*) — P(A*), L— {cont(w)|w € L}.

Intuitively, pruning is needed because a trace reaching an error state directly is as
good as a trace that reaches a state that can locally reach an error state. Another
operation on traces required in the sequel is parallel composition:

Definition 12 (Parallel Composition on Action Sequences) Let P;, P, be EIOs.

— The parallel composition wi||w, of words wi € A} and wy € A} is defined to be
the set {W S (A] UAQ)* | W|A1 =w; and W|A2 = Wz}.

— The parallel composition Wi ||W» of two languages, i.e., sets of words, Wi C A}
and W, C Aj is the set J{w1||w2 | wi € W} and wr € W>}.

Obviously, the traces of a parallel composition are in close correspondence with the
traces of each parallel component:

Lemma 13 Let P;, P> be composable EIOs and Py, be their parallel composition.

1. Let w € A}y, wi = wla,, wo = Wla,, and consider (p1,p2), (p},p5) € Pia. Then,
(p1,p2) == (p},p}) if and only if py == p| and pr = p);

2. L(Pip) =L(P) || L(P).

We call the second and third (underlying) run in the above first part the projections
of the first run.
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4.2 Preserving Freedom from Errors

Our technical considerations start off with the basic case of error avoidance, reciting
the results of [44] and [14] (cf. also [15]). The following trace languages are required
for characterizing the fully-abstract precongruence Eg:

Definition 14 (Error Semantics) Let P be an EIO. We define the following:

— Strict error traces: StET(P) =4 {w € A*|3p'. po == p' €E};
— Pruned error traces: PrET(P) =4t {prune(w) |w € StET(P)};
— Error traces: ET(P) =q; cont(PtET(P));

- Error-flooded language: EL(P) =4 L(P) UET(P).

We call (ET(P),EL(P)) the error semantics of P. For EIOs Pj, P, with the same
signature, we write Py Cg P, if ET(P;) C ET(P;) and EL(P;) C EL(P,). From the se-
mantics’ name, we derive that P; is an error-refinement of P>, and EIOs error-refining
each other are error-equivalent, and similarly for the other linear-time semantics.

The error semantics adds to the error traces only the error-flooded language. Thus, Cg
corresponds to language inclusion in the standard linear-time branching-time spec-
trum [22-24]. As a purely denotational model, error semantics has already been in-
troduced by Dill in [17]. Note that Cf strictly refines Qg: on the one hand, we show
below that Eg and Cg coincide. On the other hand, consider the EIO consisting of a
single, initial, non-error state with an o-loop and a similar EIO without any transition.
Obviously, the former is related to the latter according to Qg but not according to Cf.

The above definition reflects our intuitive understanding of a refinement seman-
tics that preserves error avoidance, where both the direct reachability of errors (cf.
strict error traces) and their indirect reachability via states that can locally reach er-
ror states (cf. pruned error traces) are relevant. Once some error manifests itself, any
further behaviour does not matter, so that all continuations of error traces must also
be considered to be error traces, leading to an error-flooded language and a notion of
error semantics for which the following properties and, in particular, full-abstraction
hold [14]:

Theorem 15 (Error Semantics for EIO-Parallel Composition) For composable
EIOs Py, P, and their parallel composition Pyy:

1. ET(P13) = cont(prune((ET(P))||[EL(P;)) U (EL(P)||ET(P))));
2. EL(PIQ) = (EL(P1)||EL(P2)) UET(PIQ).

Hence, Cf is a precongruence wrt. EIO-parallel composition. Furthermore, Cg is
fully-abstract, i.e., it coincides with Eg.

The precongruence result is implied by the first two items since cont(), prune() and ||
are monotonic on languages. The same argument applies in analogous situations be-
low. We leave out the full-abstraction proof here; an example of such a proof is given
below for the more involved quiescence semantics (see Thm. 21).

Theorem 16 (Error Precongruence for Hiding) Let P be an EIO and H C O. Then,
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1. L(P/H) ={w e (A\H)"|3w € L(P). W|p\g = w};
2. ET(P/H) ={we (A\H)*|3w € ET(P). W'|qs\u =W},
3. EL(P/H) ={w € (A\H)*|3w € EL(P). W'|s\g = w}.

Hence, CF is a precongruence wrt. hiding, too.

This precongruence result is implied by the fact that hiding turns outputs into internal
Ts and, thus, preserves local reachability. The next theorem has been shown in [14];
we prove it here for the present variant of EIOs that requires input-enabledness:

Theorem 17 (Pruning) Each EIO P is error-equivalent to prune(P).

Proof Assume that py is not illegal; otherwise, the claim is clear. To show ET(P) C
ET(prune(P)), it suffices to consider a prefix-minimal w € ET(P), because both sides
are continuation-closed. Obviously, w € PrET(P) and a suitable underlying run ends

with p LN p', wherei € I and p' is illegal while p is not. Because all i-transitions exit-

ing p are removed to obtain prune(P), we get a new p —s e. Thus, w € ET(prune(P))
and the first inclusion is established. Next, consider some w € L(P). Either, some run
underlying w is still in prune(P) and w € L(prune(P)). Or, some transition of the
run is missing and redirected to e; then, some prefix of w and, thus, also w is in
EL(prune(P)).

For the reverse inclusions, first consider a prefix-minimal w € ET(prune(P)). An
underlying run ends with p — e, where i € I and p # e. This run also exists in P up

to the last transition and p — p’ for some illegal p’, implying w € ET(P). Second,
each run of prune(P) exists in P as well, except if some transition along the run ends
in e in prune(P) and in some illegal p’ in P. This implies L(prune(P)) CEL(P). O

Consequently, we may essentially work on EIOs without error states.

We conclude by remarking on how component compatibility is reflected in linear-
time semantics. In fact, this notion is not so relevant for EIO, because parallel com-
position is always defined for composable EIOs. In Sect. 2, we have explained that
components are incompatible if the initial state of their composition is illegal. Here,
we have that the initial state of an EIO P is illegal if and only if € € ET(P). Error-
refinement preserves compatibility: if P, Cg P, and P, Q are compatible, then € ¢
ET(P||Q) 2 ET(P||Q); hence, P, Q are compatible, too.

4.3 Preserving Freedom from Quiescence

This section adds quiescence as an observable fault [44], which requires us to extend
error semantics by quiescence traces, or gsc-traces for short. Analogous to our vari-
ous kinds of error traces, we consider strict qsc-traces and error-flooded gsc-traces:

Definition 18 (Quiescence Semantics) Let P be an EIO. We define the following:

— Strict gsc-traces: StQT(P) =g {w € A*|3p’. po == p’ € Qui(P)};
— (Error-flooded) gsc-traces: QET(P) =4t StQT(P) UET(P).
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We call (ET(P),QET(P),EL(P)) the quiescence semantics of P. For EIOs Py, P, with
the same signature, we write P| Cqyi P> if Py Cg P> and QET(P;) C QET(P,).

For this refinement preorder, we now show some details how to prove full abstraction.
The following lemma is easily seen with Lemma 13. Observe that if, say, p; enables
an output o, so does (pj, p2) by input-enabledness.

Lemma 19 Let Py, P, be EIOs and Py, be their parallel composition.

1. A state (p1,p2) in the parallel composition Py is quiescent if and only if the
states p1 and p; are quiescent in P; and P, resp.

2. Let w € A},, as well as wi = w|a, and wr = w|a,. Then, w € StQT(P12) if and
only ifwy € StQT(P;) and wy € StQT(P).

This lemma is essential for proving that Eq,; is compositional for parallel composi-
tion [44]:

Theorem 20 (Quiescence Semantics for EIOQ-Parallel Composition) For compos-
able EIOs Py, P, and their composition Py):

1. ET(P12) = cont(prune((ET(P,)||EL(P2)) U (EL(Py)
2 QET(P) = (QET(P)|QET(Py)) UET(Py);
3. EL(P2) = (EL(P1)||[EL(P2)) UET(Py2).

[ET(P2)))):

Hence, Cgy is a precongruence wrt. EIO-parallel composition.

Proof The first and the third part have been shown already for the previous setting
in [44]; we recall the proof for the second part and note that ET(P;,) is contained
in both sides. For the inclusion, we only have to consider some w € StQT(P;2), and
this is in QET(P;)||QET(P,) by Lemma 19(2). For the reverse inclusion, it suffices
to consider some wy € QET(P;) and wy € QET(P,). If wy, say, is an error trace, then
wi||wy is in ET(P)||EL(P>) C ET(Py3) by the first part. Otherwise, wy||wy consists
of strict gsc-traces, again by Lemma 19(2).

The precongruence result follows by monotonicity of cont(), prune() and ||. O

It is relatively easy to show that Cq; is as fine as Egui, see the treatment of
the reverse implication in the next proof. What is missing then is a proof that a pre-
congruence wrt. EIO-parallel composition that refines Egui is as fine as Cqu, i.€.,
that Cq; is fully-abstract. What we prove is actually stronger: it suffices to be inter-
ested in a relation that is compositional wrt. || just for partners and that refines Egui
just on systems without inputs. On such systems, which result from the composition
with a partner, local reachability coincides with reachability. That we do not want
to introduce a reachable error or quiescence in a refinement step if there was none
initially, is possibly even more convincing than the same for local reachability. To
prove the implication, we only use that Egui has the two properties just declared to
be sufficient [44]:

Theorem 21 (Full Abstraction for Quiescence Semantics) For EIOs P, P> with
the same signature, (1) P Egui P, if and only if Pl Egu; P>. Further, (2) P Egui P>
holds if U||Py T8, U||P, for all partners U.
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q in Quiy

a?inly, o!

Fig. 4 Partner EIO U in the proof of Thm. 21, where a? # q; represents all a € Iy \ {a;} and g is the only
quiescent state.

Proof (1) “«<=":1f P Cqui P> and P; can reach an error locally, we have € € ET(P));
hence, € € ET(P,) and P, can reach an error locally. If P, Equi P and P; can reach
a quiescent state locally with some w € QET(P;), i.e., w € O7, then w € QET(P,)
and P can reach a quiescent or error state locally. Thus, Eqy; is contained in Egui.
Because T, is a precongruence wrt. || and Egui is the coarsest precongruence wrt. ||,
Equi is contained in Egui.

(1) “=": For this part, we use the second statement, which we prove below.

Due to Egui being a precongruence, we have U||P Egui U||P, for all partners U.

Because Egui is contained in qui, this implies U||P; C5 ui U||P> for all partners U.
With the second statement, we get P Eqy; P.

(2) Next, we give an impression of how to prove the second statement. We restrict
ourselves to partners with Iy = O; and Oy = I; U{o} for a fresh action o. This action
allows the partner to prevent quiescence. In fact, ET(P;) C ET(P,) and EL(P;) C
EL(P,) are shown in [44] with partners that enable o in each state such that quiescence
does not play a role. We only recall the proof for QET(P;) C QET(P,) [44]:

Due to ET-inclusion, it suffices to prove that any w = a; ---a, € StQT(P;) with
n > 01is also in QET(P,). We construct the partner EIO U as shown in Fig. 4, where
Ey = 0. Clearly, w reaches a quiescent state in U ||P; and consists of outputs only. By
assumption, also U ||P; can locally reach an error state or quiescent state.

(a) If an error is reached locally, U and P, each perform some a; - - -a;u with some
u € Ij; = O] in the respective run. With this, P reaches a state in E;, because U
does not have any errors. Thus, prune(a; - - - a;u) = prune(a; - --a;) € PrET(P,) C
ET(P,). This implies that a; - - - @; and also w are in ET(P,) C QET(P,).

(b) If a quiescent state is reached locally, P> performs w and reaches a quiescent state
itself. Hence, w € StQT(P,) C QET(P,). O

Quiescence is the counterpart of deadlock in standard LTS, and quiescence se-
mantics and failure semantics [11] are just right to avoid these in the resp. settings.
Hence, we can regard the former semantics as the counterpart of the latter. In failure
semantics, each trace is combined with a set of visible actions that are impossible in
some state that can be reached by the trace. Such a set is not needed here, because
synchronization is of a different nature in the IA-setting. More precisely, the above
semantics corresponds to stable failures, where sets are only considered for stable
states. Quiescence semantics can also be seen as the counterpart of completed traces
as defined by van Glabbeek in [23].
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<<T
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Fig. 5 EIO demonstrating the precongruence defect wrt. hiding for the alternative quiescence semantics.

Because hiding transforms one local action to another, the quiescence status of a
state is not changed. Therefore, the following result holds (cf. Thm. 17 and [44]):

Theorem 22 (Quiescence Precongruence for Hiding) For EIO P and H C O:

1. ET(P/H) ={w € (A\H)"| 3w € ET(P). W'|s\y = W},

2. EL(P/H) ={w e (A\H)*|3w € EL(P). W'|qs\u =W},

3. S1QT(P/H) = {w € (A\H)*|3w' € StQT(P). W'|s\pg = W},
4. QET(P/H) = {w € (A\H)* |3 € QET(P). w'|s\5 = w}.

Hence, T, is a precongruence wrt. hiding.

Analogous to the situation in error semantics, we add to the results of [44] that
pruning an EIO preserves its quiescence semantics:

Theorem 23 (Pruning) Each EIO P is quiescence-equivalent to prune(P).

Proof In view of Thm. 17, we only have to deal with the QET-sets. As in the proof of
that theorem, we assume that py is not illegal. For a strict gsc-trace w of P, a suitable
underlying run still exists in prune(P), or it is cut because a prefix of w can lead to an
illegal state. Thus, w € QET (prune(P)). Conversely, a run in prune(P) underlying a
strict gsc-trace w ¢ ET (prune(P)) also exists in P. O

The authors of [15] use the same definition of quiescent state as we do, but regard
it as necessary to consider divergence when dealing with quiescence. Their intuition
could be that a system can be stuck in a divergent state, just as it can be in a state with
only inputs. This view could be supported by the notion of complete traces in [25],
which includes strict div-traces. With such a view, divergence and our quiescence are
regarded as faults, and the coarsest precongruence is Cp;y, presented in Sect. 4.4.

Another variant is to define a state p € P as quiescent if there is no output o with
p ==. Due to 7-transitions, such a p might not be quiescent in our sense, so we call
it weakly quiescent. Let wQui(P) be the set of these states. Starting from wQui(P),
we can modify the definitions of StQT(P), QET(P) and Cq,; to obtain wStQT(P),
WQET(P) and Cy,qy- Similarly, we can define weak versions of Egui and Egui. Be-
cause we have given all quiescence-relevant proofs for Thms. 20 and 21, it should
not be hard to check that the easy Lemma 19 as well as the ‘weak versions’ of the
two theorems hold. Thus, we have also a full-abstraction result for this variant of
quiescence. Unfortunately, this is not really satisfactory, because Cyqy; is not a pre-
congruence for hiding, as can be seen from P, P’ in Fig. 5. Both EIOs have no errors
and the same traces, as well as wStQT(P) = wStQT(P'). After hiding o, however,
€ € wStQT(P) but € ¢ wStQT(P'). Developing a fully-abstract precongruence for
parallel composition and hiding with this variant of quiescence is an open problem.
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4.4 Preserving Freedom from Divergence

Lastly, we add divergence as a third observable for a fault in EIO and, therefore,
consider divergent traces, too [44]. Note that divergent behaviour of some component
cannot be prevented when placing the component in any environment and, thus, not
only errors but also divergences are catastrophic. Consequently, in addition to strict
divergent traces, their pruned and continuation variants are also of interest:

Definition 24 (Divergent Traces) Let P be an EIO. We define the following:

— Strict div-traces: StDT(P) =g {w € A*|3p'. po == p' € Div(P)};
— Pruned div-traces: PtDT(P) =4 {prune(w)|w € StDT(P)};
— Div-traces DT(P) =g4¢ cont(PrDT(P)).

This leads to the definition of divergence semantics [44], for which the quiescence
semantics from above needs to be modified by flooding with div-traces:

Definition 25 (Divergence Semantics) Let P be an EIO. We define the following:

— Error-div-traces: EDT(P) =4t DT(P) UET(P);
— Flooded gsc-traces: QDT(P) =4¢ StQT(P) UEDT(P);
— Flooded language: EDL(P) =4 L(P) UEDT(P).

We call (EDT(P),QDT(P),EDL(P)) the divergence semantics of P. For EIOs Py, P,
with the same signature, we write P Cpy, P if EDT(P;) C EDT(P,), QDT(P;) C
QDT(P,) and EDL(P,) C EDL(P,).

The divergence semantics here is the counterpart to the failure-divergence semantics
of [11]. Although the new refinement is closely related to the previous ones, the
sets in the semantics above are all different from the previous sets because of the
flooding due to divergence. We now report on compositionality and full abstraction
for Cpiy [44]:

Theorem 26 (Divergence Semantics for EIO-Parallel Composition) For compos-
able EIOs Py, P, and their composition Py,:

1. EDT(Py3) = cont(prune((EDT(P,)||[EDL(P,)) U (EDL(P,)||[EDT(P))));
2. ODT(Pi3) = (ODT(P1)||QDT(P;)) UEDT(Py2);
3. EDL(Py) = (EDL(P,)||[EDL(P,)) UEDT(Pyy).

Hence, Cp, is a precongruence wrt. EIO-parallel composition. Furthermore, Cp;,
is fully-abstract, i.e., it coincides with Egiv'

In a divergence-sensitive setting, precongruence for hiding usually needs some
finiteness condition. For simplicity, we restrict ourselves to finite EIOs and to the
hiding of single outputs as in [44]. Hiding of finite sets can be obtained by re-
peating such hiding. We write P/o for P/{o}, where o € O. Note that, in the fol-
lowing result, EDT(P/0) is obtained from EDL(P); it is larger than just {w|3w’ €
EDT(P).w'|4\ {0} = w}. Due to the latter, the other two sets need a new flooding:



18 Walter Vogler, Gerald Liittgen

Theorem 27 (Divergence Precongruence for Hiding) Let P be a finite EIO and
o€ 0. Then,

1. EDT(P/o0) = cont(prune({w|3w'. w'|5\ (o} = w and ¥n > 0. w'o" € EDL(P)}));
2. EDL(P/o) = {w|3w’ € EDL(P). w|4\{o} = w} UEDT(P/0);
3. ODT(P/o) = {w|3w' € QDT(P). w'|\(o} = w} UEDT(P/o0).

Hence, Cp;, is a precongruence wrt. hiding.

The finiteness requirement on EIO P in this theorem may be replaced by the weaker
requirement that P is image-finite. We have chosen finiteness because this is also
assumed in [44] and, throughout, in [15].

Divergence semantics yields a new, analogous theorem regarding pruning insen-
sitivity as above for error semantics and quiescence semantics:

Theorem 28 (Pruning) Each EIO P is divergence-equivalent to prune(P).

Proof Again, we assume that gg is not illegal. For the EDT-semantics, we already
know that pruning preserves the ET-semantics. For a prefix-minimal w € DT(P), a
suitable underlying run still exists in prune(P), or it is cut because a prefix of w can
lead to an illegal state. Thus, w € EDT(prune(P)). A run in prune(P) underlying a
strict div-trace w ¢ ET(prune(P)) also exists in P. Together, pruning preserves the
EDT-semantics.

For a strict gsc-trace w of P, we can argue as in the proof of Thm. 23 that w €
QET(prune(P)) C QDT(prune(P)). A run in prune(P) underlying a strict gsc-trace
w & ET(prune(P)) also exists in P, and preservation of the QDT-semantics follows.

The arguments for preservation of the L-semantics are the same as in the proof of
Thm. 17, again because the ET-semantics is contained in the EDT-semantics. O

We end this section by discussing the implications of the weak quiescence variant
on the divergence semantics; recall the definitions at the end of Sect. 4.3.

Remark 29 Adapting the divergence semantics to this weak variant, we let QDT(P)
be built upon wStQT(P) instead of StQT(P), resulting in wQDT(P). This semantics
can only differ from divergence semantics, if there is some w € wStQT(P) \ StQT(P)
due to some pg == p € wQui(P). Because p ¢ Qui(P) by choice of w, it has a 7-
transition to some p’. However, due to p € wQui(P), it cannot reach by 7-transitions a
state that enables an output. The same applies to p/, so we have pg == p’ € wQui(P).
Repeating this argument, p is seen to be divergent. We conclude that w € QDT(P), so
the weak variant of divergence semantics coincides with the one of Def. 25. Similarly,
CB., does not change for weak quiescence, and full abstraction holds for the variant
because we would only change the text of the definitions but not the relations.

4.5 CJK-Semantics

Another quiescence- and divergence-sensitive precongruence is presented by Chilton
et al. in [15] and denoted here by Ccyk. This is based on sets like ET(-) and EL(-),
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too, but ET(-) is not closed under pruning, and this difference carries over to the
other semantic sets like EL(-). To compensate this, refinement is not component-
wise inclusion. Here, we give a new characterization of Cyk in the style of the above
precongruences:

Definition 30 (CJK-Semantics) Let P be an EIO. We define the following:

— Error-flooded strict div-traces: ESDT(P) =4 StDT(P) UET(P);
— ESD-flooded strict gsc-traces: ESDQ(P) =4¢ StQT(P) UESDT(P).

(ET(P),ESDT(P),ESDQ(P),EL(P)) is the CJK-semantics of P. For EIOs Py, P, with
the same signature, we write P Ccyg P» for the resp. component-wise inclusion.

Observe that, as CJK-refinement works with strict div-traces, it is finer than Cp;y
where div-traces are closed under pruning and continuation. Our new characterization
leads to new equations in the next theorem; they look quite similar to those in [15],
but the proof obligations are a bit different so that we provide the theorem’s proof.

Theorem 31 (CJK-Semantics for EIOQ-Parallel Composition) For two compos-
able EIOs Py, P, and their composition Py):

1. ESDT(Pyy) = (ESDT(P,)||EL(Py)) U (EL(P,)||[ESDT(Py)) UET(Py5);
2. ESDQ(P1>) = (ESDQ(P1)||[ESDQ(P,)) UESDT(Py3).

Hence, Ccyk is a precongruence wrt. EIO-parallel composition.

Proof We start with the first equation and note that both sides contain ET(P;,). For
inclusion, consider a strict div-trace of Py ||P,. It projects to a strict div-trace of one
component and a trace of the other, so it is contained in the right-hand side. For the
reverse inclusion, consider w.l.o.g. some w € ESDT(P,)||[EL(P,) that is not an error
trace. Then, w| A, 1s a strict div-trace and w] A, 1s a trace, so w is a strict div-trace. The
proof of the second equation is similar, except that a strict gsc-trace projects to two
strict gsc-traces, and w is not an error trace or a strict div-trace. O

At this stage, we can discuss the patterns that appear when determining the se-
mantic sets of a parallel composition. A strict error trace (div-trace) of the com-
position projects to a strict error trace (div-trace) of one component and a trace
of the other. This explains subsets such as ET(P;)||EL(P,), EDT(P;)||[EDL(P;) and
ESDT(P;)||[EL(P,). The resulting sets are not necessarily closed under pruning, so
EDT(Pi2) and ET(Pj2) have to be closed under pruning and then under continuation.
For a trace or strict gsc-trace, both projections must be traces or strict gsc-traces, lead-
ing to EL(Py)|[EL(P,), EDL(P,)[EDL(P2), QET(P,)||QET(P»), QDT(P,)|QDT(P)
and ESDQ(P,)||[ESDQ(P,).

The resp. semantic sets are flooded with the pruning- and continuation-closed
sets ET(-) or EDT(-). But though, e.g., EL(P,)||[EL(P,) contains (ET(P,)||EL(P,))U
(EL(P)||[ET(P,)), it might fail to contain all pruned error traces of the composition.
Hence, ET(Pj;) (EDT(Pj3)) has to be added to get EL(P;2) (EDL(P;2)), and the
case of ESDT(Py5) is similar. For QET(P,) and QDT(P};), even some strict error or
div-traces may be missing, because these semantic sets might not cover the language.
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The same argument (for strict div-traces) shows that, for ESDQ(P),), adding ET(Py)
might not suffice.

Hiding can be handled similarly to the resp. results above; see [15] for details.
Again, pruning of an EIO preserves the semantics. For the proof, one can argue for
strict div- and gsc-traces as for strict gsc-traces in the proof of Thm. 23.

Theorem 32 (Pruning) Each EIO P is CJK-equivalent to prune(P).

4.6 Ready Semantics

This section adds to the class of linear-time refinements for IA a counterpart to stan-
dard ready semantics [23]. In that semantics, for each run, its trace is combined with
the set of visible actions offered in the state that is reached by the run. Due to input-
enabledness, only local actions are relevant here. But also without the assumption,
one should proceed this way: inputs that are missing in a state give rise to error traces
and, thus, have some visibility already. Inputs that are possible in a state but missing
in another state reached by the same trace, are not so relevant, because the environ-
ment would risk an error when providing such an input; we assume that the environ-
ment does not do this. Thus, and consistent with the above notion of quiescence, we
include all actions that, in the resp. state, can prevent such a quiescence.

Definition 33 (Ready Semantics) Let P be an EIO. We define the following:

— Strict ready pairs: StRP(P) =g {(w,X) € A* x 2(0;)|3p'.po == p' and X =
R(p')}, where R(p') =4t {@ € O | p' —2+} is called the ready set of p';
— (Error-flooded) ready pairs: RP(P) =4t StRP(P)U{(w,X) |w € ET(P), X C O¢}.

We call (ET(P),RP(P)) the ready semantics of P. Note that EL(P) can be derived
as {w € A*|3X C O;.(w,X) € RP(P)}. For EIOs Py, P, with the same signature, we
write Py Crq P> if ET(P;) C ET(P,) and RP(P;) C RP(P,).

Ready semantics allows for compositional reasoning, too:

Theorem 34 (Ready Semantics for EIO-Parallel Composition) For composable
EIOs Py, P, and their composition P»:

1. ET(Py2) = cont(prune((ET(P,)||EL(P>)) U (EL(P)|ET(P))));
2. RP(Pi2) = ET(Pi2) U{(w,X)|3X;,X5. X = X; UX;, (W|A1 ,X1) € RP(Py) and
(W‘AQ,XZ) S RP(Pz)}.

Hence, Cpry is a precongruence wrt. EIO-parallel composition.

Proof For the second equation, consider some (w,X) in the left-hand side and the
projections w; and wy of w. If w € ET(Py5), all possible pairs with w are contained in
both sides. Otherwise, (w,X) € RP(Py2) due to some (por, po2) == (p1,p2). Then,
Po1 = p; and poy == ps by Lemma 13. Because the ready set X of (py, pa) is the
union of the ready sets of p; and p, by input-enabledness, (w,X) is contained in the
right-hand side as well.
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IA—simulation ready simulation
(see upper spectrum) (see upper spectrum)
¥
CJK-semantics ! ready semantics
divergence semantics ! quiescence semantics

; /
error semantics

Fig. 6 Linear-time spectrum: lower half of the IA-spectrum.

If (w1,X;) and (w,,X5) satisfy the conditions on the right-hand side, each w; is
contained in the resp. flooded language. If one of them is an error trace, then w is as

well. Otherwise, there are suitable runs py; =L p1 and po =2 p2 and, in both cases,
we are done as above. O

Because only outputs are hidden when applying our hiding operator, each ready
set is modified by deleting hidden outputs and adding 7 if some output is deleted.
This also works for a ready pair in which the trace is an error trace; adding 7 is not
necessary here.

Theorem 35 (Ready Precongruence for Hiding) Let P be an EIO and H C O. Then,

1. ET(P/H) = {w € (A\H)" | 3w € ET(P). W'|s\yg = W},

2. RP(P/H) = {(w,X)|3(w,X") € RP(P).W |p\ug =W, and X = (X' \ H) U {1}, if
X'NH #0, and X = X'\ H, otherwise}.

Hence, Cgy is a precongruence wrt. hiding.
Again, pruning of an EIO preserves the semantics:
Theorem 36 (Pruning) Each EIO P is ready-equivalent to prune(P).
Proof Analogously to above, we just have to deal with the strict ready pairs and
assume that p is not illegal. Also, it suffices to consider a pair in which the trace is

not an error trace. The underlying runs are the same in both EIOs, and the transitions
exiting from the reached state are only modified if they are inputs. g

4.7 The Linear-Time IA-Spectrum
The resulting overall spectrum of linear-time preorders on EIO is shown in Fig. 6:

Theorem 37 (Linear-Time IA Spectrum) All inclusions between Tg, Toui, Tpiy,
Ccyk and Cgy are depicted in Fig. 6 as arrows; note that these inclusions are strict.
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Ql | QzLO 0,0’ Q@%@ 0 Q@%@ 0

Qs@ T QT -

Fig. 7 Example EIOs for comparing the linear-time preorders. (No state above is an error state.)

Proof The inclusions of the preorders except for Crq have been established in [44].
In case an inclusion holds, this is because the semantic sets needed in the larger
preorder can be determined from the sets employed by the smaller preorder. This is
also the case for the inclusion of Cry in Cqyi: from RP(P), one can read off EL(P)
as noted above, and QET(P) = {w|(w,0) € RP(P)}.

The proofs that the missing inclusions fail to hold, are by example. In particular,
Equi is not included in Crq as can be seen from EIOs Q) and Q> in Fig. 7, for which
01 Coui Q2 but Q1 Zrg 0> due to the ready pair (£,{o}). Observe that no state is
quiescent or an error. To check that no other preorder implies Cgy, it suffices to show
that Cyk is not included in Cgy. Consider EIOs Q3 and Q4 in Fig. 7, for which
03 Ccyjk Q4 because the additional strict quiescent trace € in Q3 is covered by the
divergence €. However, Q3 [Zrq Q4 due to the ready pair (&,0). It remains to show
that Crq is not included in Cp;,. For this, we refer to the EIOs Qs and Qg in Fig. 7,
where Qs Crg Qg but Os Zpiy Q. Note that Qg also has the ready pair (¢,{7}) by
staying in its initial state.

The other counterexamples for failing inclusions are given in [44]. It might be
instructive to recall why Cp;, is not included in any of the other preorders. Simply
take Qs and the div-equivalent EIO consisting of a single, initial error-state. O

5 Branching-Time Preorders

This section develops the branching-time spectrum for IA. It first recalls de Alfaro
and Henzinger’s original TA-refinement [5], as well as their notion of alternating
simulation that they adopted four years later in [6]. Whereas the former preorder
is defined on general 1A, the latter requires input-determinism in order to be a pre-
congruence for parallel composition. Possibly, the former preorder was abandoned
by de Alfaro and Henzinger as parallel composition is not associative in the setting
of [5], unless our proper pruning is applied or, alternatively, the setting is restricted
to input-deterministic IA as in [6] (cf. Sect. 2). Below, we first characterize both pre-
orders in terms of standard simulations (see Thms. 42 and 45), discuss a couple of
preorders studied by Gohrle [27] that lie in-between, and adapt ready simulation to
the IA-setting. We then introduce several bi-variant variations [3] of alternating sim-
ulation, including IA-bisimulation. We conclude this section by proving that (almost)
all considered preorders are precongruences for IA, possibly under some restrictions,
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and by presenting the branching-time IA-spectrum, for which we also study its rela-
tionships with the linear-time spectrum of Sect. 4.

We start off by introducing several kinds of initial action set for a state p in a
given IA P, which are needed in the definitions of the branching-time preorders:

I(p) =as {icl|p —}
Iy(p) =ar {i €1|Vp. p= p' implies p' —}:
@3(}7) =df {0 €0 | ﬂp/. p— p/ and p/ L)}

Intuitively, Iy (p) and O3(p) capture the guaranteed inputs and possible outputs of p,
resp., while I(p) 2 Iy(p) contains all inputs that are immediately enabled at p.

5.1 Original TA-Refinement

We revisit the first refinement preorder devised by de Alfaro and Henzinger for IA [5],
which we call IA-refinement <j5. Our definition adopts the phrasing employed by
Chilton et al. in [15]:

Definition 38 (IA-Refinement) For IAs P, Q with the same signature, Z C P x Q
is an IA-simulation if the following conditions hold for all (p,q) € Z:

1. Iy(q) € Iv(p);
2. O3(p) € O3(9);
3. p=-5 p/implies 3¢'. g =+ ¢ and (p',¢') € Z, for all a € Ty(q) UO3(p).

P IA-refines Q, in signs P <ia O, if (po,qo) € Z for some IA-simulation Z.

[A-refinement is a preorder and defined on the basis of a simulation with a couple
of non-standard features. First, the step of the implementation side requires one to
also consider steps with leading Ts; although 7-transitions do not have to be matched
explicitly, in general many more matches have to be found than is usual for a sim-
ulation. Furthermore, the step on the specification side does not allow trailing 7s.
Second, there is an unusual superset inclusion on Iy(-). The idea is that Iy(-) contains
the guaranteed inputs, and only the guaranteed inputs in the specification are simu-
lated. This is because the environment cannot rely on other inputs, i.e., those that can
be dropped after some t-transitions. The environment does not send such an input in
order not to cause an error and, thus, the implementation does not have to provide
it. Finally, observe that the second condition follows from the third, so we ignore
the former in the following. We can also ignore Q3(p), replacing it by the output
alphabet O in the third condition.

Next, we define a standard simulation combined with the idea of guaranteed in-
puts, called (input) acceptance refinement <,.., which turns out to characterize IA-
simulation. Our definition closely resembles I4-refinement <% .. of Gohrle’s Master’s
thesis [27]. Indeed, his definition differs only in the first condition from ours, where
he demands Iy(q) C I(p).
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Definition 39 (Acceptance Refinement) For IAs P, Q with the same signature, % C
P x Q is an (input) acceptance simulation if the following conditions hold for all

(p,q) € %#:

1. Ty(q) € Iv(p); .
2. p— p/implies 3¢'. g == ¢’ and (p/,q') € %, for all i € Iy(q);
3. p -2 p/ implies 3¢. g — 23— ¢ and (p',q') € #, for all ® € 0.

P acc-refines Q, in signs P <u¢c O, if (po,qo) € Z for some acceptance simulation Z.

The term acceptance refinement uses acceptance sets, which is the name Hennessy
adopted for ready sets in the following context with standard labelled transition sys-
tems [29]: he requires that an implementation state has a larger ready set than the
specification state that it refines. Hence, if the implementation refuses an action set,
then the specification also refuses this action set. This leads to a compact representa-
tion for checking failures inclusion [11].

For the proof of the coincidence of [A-refinement and acceptance refinement, we
employ a saturation on simulation relations:

Definition 40 (Saturation) For IAs P, Q and %Z C P x Q, we define:

2L =4 {(P",q) | p=p" and (p,q) € Z#};
Hr =at {(p.4") | 4" = q and (p,q) € #}.

Zy, and Xy are called the left-saturation and right-saturation of %, resp.
Lemma 41 If Z is an IA-simulation, then so are Z;, and Zg.

Proof Regarding %y, consider: (1) Iy(g) C Iy(p) C Iy(p"); (3) if p”" =>— p/, then
p =—=-" p’. An analogous proof works for Zx. O

We can now prove the desired characterization result, which was not noticed by
Gohrle [27]:

Theorem 42 (Coincidence I) <;4 = <, -

Proof For inclusion “C”, consider some IA-simulation & and its saturation 4} ac-
cording to Def. 40. Assume (p”,q) € % due to (p,q) € Z and further p” -5 p’. For
a # 7, a suitable match exists due to the third condition of Def. 38. If & = 7, then
p=p' and (p',q) € %, by saturation. Hence, % is an acceptance simulation.
Regarding inclusion “27”, let Z be an acceptance simulation and consider its
right-saturation %Zg. Assume (p,q") € %r due to (p,q) € Z. First, we note that
Iy(q") € Iy(q) C Iy(p). Now, let p = p" % p/ for a € Iy(g) U O. By repeated
application of acceptance simulation, one obtains ¢ = ¢/ =" ¢"" = ¢/ for
some ¢, ¢"" and ¢’ with (p"”',q""),(p',q') € %. Note that a € Ty(q") if a € Ty(q).
Hence, ¢" = ¢""" and (p',q"") € g, and Z is an IA-simulation. O
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P i ol 0 i? R il

Fig. 8 Example illustrating the need for input-determinism in alt-refines. P and Q have the input alpha-
bet {i} and the output alphabet {0}, and the converse for R.

5.2 Standard IA-Refinement

Today’s understanding of the IA-setting considers alternating simulation =, [6] as
the refinement preorder on IA:

Definition 43 (Alternating Simulation) For input-deterministic 1As P, Q with the
same signature, % C P X Q is an alternating simulation if the following conditions
hold for all (p,q) € %:

1. g BN ¢ implies 3p’. p —i>p’ and (p',q') € Z, foralli eI,
2. p-2 pimplies 3¢. g =2+ ¢’ and (p,¢') € Z, for all ® € O;.
P alt-refines Q, in signs P <, O, if (po,qo) € Z for some alternating simulation %.

Note that this preorder is only defined on input-deterministic IA. This is because,
otherwise, alt-refines is not a precongruence for parallel composition, independent of
the pruning used. As an example, consider the IAs P, O, R in Fig. 8 (cf. [36]), where
P violates input-determinism in its initial state. We would have P <, Q because P
can obviously match Q’s i?-transition. However, the additional i?-branch of P means
that P|R is undefined due to backward propagation, whereas Q|R is defined.

We show how compositionality can be fixed by providing an alternative defi-
nition, which yields a preorder that coincides with alternating simulation on input-
deterministic IAs, but is a precongruence for all IAs. The trick is to define a pure
simulation that matches only the inputs that are enabled in the specification, as de-
manded by the first condition of alternating simulation. Our resulting strict accep-
tance refinement =g, does this by adding a condition on initial input action sets,
this time concerning all initial input actions I(-) instead of only the guaranteed input
actions Iy(-) as above. We call our preorder strict, because more inputs have to be
matched than in acceptance refinement.

Definition 44 (Strict Acceptance Refinement) For IAs P, Q with the same signa-
ture, Z C P x Q is a strict acceptance simulation if the following conditions hold for
all (p,q) € Z%:

L. I(q) C1(p); '
2. p— p/implies 3¢'. ¢ — ¢’ and (p',q') € %, for all i € I(q);
3. p-2 pl implies 3¢'. g ="+ ¢ and (p',q') € Z, for all w € O;.

P sacc-refines Q, in signs P <gcc O, if (po,qo) € Z for some strict acceptance simu-
lation Z.

This definition was studied by Gohrle [27] under the name /]-refinement, where also
the desired coincidence result was proved:
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Theorem 45 (Coincidence II) <, = <4 on input-deterministic 1As.

Proof We show that the two types of simulations are the same. For establishing in-
clusion “C”, the first condition of alternating simulation implies the first condition

of strict acceptance simulation. Further, let p — p’ be the i-transition of p for some
i € I(g); this transition is unique due to input-determinism. Then, ¢ has a unique i-

transition ¢ — ¢. Hence, the first condition of alternating simulation also implies
the second condition of strict acceptance simulation.

Regarding inclusion “D”, let ¢ — ¢’ be the unique i-transition of g. The first
condition of strict acceptance simulation implies that p has a (unique) i-transition

p SLIN p’; these match each other by the second condition. a

5.3 Further Simulations: 12-, I3-Refinement & Ready Simulation

Gohrle also introduced the preorders I2-refinement and 13-refinement [27], which lie
in-between I1- and I4-refinement. In the definitions of his refinements, he succes-
sively replaced the conditions of I1 (sacc-simulation) by those of 14 (acc-simulation).
This time, a more generous use of Ts when matching a transition makes a difference.

Definition 46 (I12-Refinement) For IAs P, Q with the same signature, % C P X Q is
an 12-simulation if the following conditions hold for all (p,q) € Z:

1. 1(q) € I(p); .
2. p— p/implies 3¢'. ¢ — ¢’ and (p',q') € %, for all i € I(q);
3. p -2 p/ implies 3¢. g — 23— ¢ and (p',q') € #, for all ® € Ox.

P I2-refines Q, in signs P <2,.. Q, if (po,qo) € % for some I12-simulation Z.

—sacc

Hence, 12-refinement is defined analogously to sacc-simulation, but it allows an ®-
transition to be matched by a weak w-transition that does not only permit leading
but also trailing 7s. [3-refinement now relaxes the matching of inputs by permitting
leading and trailing 7s:

Definition 47 (I3-Refinement) For IAs P, Q with the same signature, Z C P x Q is
an I3-simulation if the following conditions hold for all (p,q) € Z:

1. () C1(p); _

2. p— p/implies 3¢'. g == ¢’ and (p,q') € Z, for all i € I(q);

3. p-2 pimplies 3. g == ¢  and (p/,¢') € Z, for all ® € O;.

P I3-refines Q, in signs P <3,.. O, if (po,qo) € Z for some I3-simulation Z.

The following result was established in [27], when considering the coincidence
of <ace With <% (cf. Thm. 58 below):

—sacc

Theorem 48 <. C <2 C=3 C=

—sacc = —sacc -+ —sacc - —acc-
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Fig. 9 Example illustrating the strict inclusion of I3-refinement in I4-refinement [27].

Gohrle showed that all these inclusions are indeed strict. Most important for our
branching-time spectrum is the fact that <g,cc & <acc. To demonstrate this, we state in
Fig. 9 an example that highlights the difference between 13- and I4-refinement; note
that I(go) = {l} and Iy(qo) = 0.

Finally, we adapt ready simulation <. [10] to our IA-setting, which requires
related states to have the same ready sets. In particular, all branching-time preorders
discussed so far allow one to omit any specified output in an implementation. This
is often unsatisfactory in practice, and ready simulation is our first proposal of a
preorder that remedies the shortcoming:

Definition 49 (Ready Simulation) For IAs P, Q with the same signature, Z C P x Q
is a ready simulation if the following conditions hold for all (p,q) € Z:

1. Iy(g) € Iy(p);

2. R(p) = R(q); |

3. p— p/implies 3¢'. g == ¢’ and (p,q') € %, for all i € Iy(q);
4. p -2 pimplies 3¢ . g == ¢ and (p,¢') € Z, for all ® € O.

P rs-refines Q, in signs P <5 O, if (po,qo) € Z for some ready simulation Z.

This preorder refines acc-refinement by adding the condition on ready sets, which are
defined as in Sect. 4. So far, outputs could be removed in a refinement step, whereas
here we require the same outputs (and 7s) to be enabled, without insisting that all
subsequent behaviour is preserved. Inclusion of 7 in a ready set fits our notion of
quiescence, so that rs-refinement refines the linear-time ready semantics.

5.4 Bivariant Simulations & IA-Bisimulation

In the t-free setting of [3], simulations are studied where some actions are simulated
in one direction, some in the opposite direction, and others in both directions; the
latter are called bivariant. As another proposal for not losing desired outputs dur-
ing refinement, we define the new preorders (strict) output-bivariant refinement that
strengthen (strict) acceptance refinement by requiring that specified outputs are kept;
in contrast to rs-refinement, also their subsequent behaviour must be preserved. Ob-
serve that strict output-bivariant refinement differs from output-bivariant refinement
in the same way that sacc-refinement differs from acc-refinement.

Definition 50 (Output-Bivariant Refinement) For IAs P, Q with the same signa-
ture, Z C P x Q is an output-bivariant simulation if the following conditions hold for
all (p,q) € %:

1. Iy(q) € Iy(p);
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2.p LAY p' implies 3¢. ¢ SN ANEEN q and (p'.q") € Z, for all i € Ty(q);
3. p-2 p'implies 3. g =—"+= ¢/ and (p',¢') € Z, for all w € Ox;
4. ¢ -2 ¢ implies 3p'. p == p’ and (p',¢') € Z, for all ® € O..

P obs-refines Q, in signs P =<gps O, if (po,qo) € Z for some output-bivariant simula-
tion Z.

Definition 51 (Strict Output-Bivariant Refinement) For [As P, O with the same
signature, Z C P x Q is a strict output-bivariant simulation if the following condi-
tions hold for all (p,q) € %:

L. I(q) C1(p); _

2. p— p/implies 3¢. ¢ — ¢ and (p',q') € #, for all i € I(q);

3. p-2 p/ implies 3¢. ¢ -2 q and (p',q") € Z, forall ® € Og;
4. g2 ¢ implies 3p'. p — 2 pand (p'.q") € Z, forall o € O.

P sobs-refines Q, in signs P <sops O, if (po,qo) € Z for some strict output-bivariant
simulation Z.

In [43], sobs-refinement was studied in a restricted Petri net setting, which adopts cer-
tain determinism requirements, and was called correct STG-decomposition. This de-
composition allows efficient asynchronous circuits to be developed from large, mono-
lithic specifications. Here, the compatibility as in IA is crucial, because asynchronous
circuits cannot deal with unexpected inputs [17].

Analogously to output-bivariance, we define a version where inputs are bivariant.
This is essentially sacc-refinement with the additional condition on matching a spec-
ification’s inputs. Because the matching of such inputs should be direct, i.e., without
leading and trailing 7s, we only define a strict variant, called input-bivariant refine-
ment <ips. Note that the added condition is stronger than the condition I(¢) C I(p) of
sacc-refinement, which can thus be omitted. Obviously, <ibs C <sacc-

Definition 52 (Input-Bivariant Refinement) For IAs P, O with the same signature,
Z C P x Q is an input-bivariant simulation if the following conditions hold for all

(p,q) € %

1. p BEIN p' implies 3¢. g BEIN q and (p',q") € Z, foralli € 1(q);
2. p-2 p implies 3¢'. g ="+ ¢’ and (p',¢) € Z, for all w € O;
3. g — ¢ implies 3p’. p — p' and (p',q') € #, for all i € I.

P ibs-refines Q, in signs P =<ibs O, if (po,q0) € # for some input-bivariant simula-
tion Z.

Observe that allowing trailing 7s in the third condition above would not only deviate
from alternating simulation, the resulting refinement would also fail to be transitive
and, thus, to be a preorder. Consider the example in Fig. 10: input i of P matches the
first i of O, and Q matches with the lower branch of R. Now, the first i in the upper
branch of R is matched by i7 in Q, but cannot be matched in P. Hence, if additional s
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Fig. 10 Problem regarding the allowance of trailing s in the third condition of Def. 52.

are allowed to match some action in one direction, also single 7s should be matched
in this direction.

The strongest behavioural relation typically studied in a linear-time branching-
time spectrum [23] is the equivalence bisimilarity a.k.a. observation equivalence [38,
40], i.e., a mutually recursive simulation. Our variant ~ of bisimilarity does not per-
mit extra Ts when matching inputs and only leading 7s when matching outputs, so
that ~ refines sacc-refinement and our bivariant refinements:

Definition 53 (IA-Bisimilarity) For IAs P, Q with the same signature, Z C P x Q
is an IA-bisimulation if the following conditions hold for all (p,q) € %:

1. p BEIN p' implies 3¢. g BEIN q and (p',q') € %,

2. p-2 p implies 3¢'. ¢ LN q and (p',q) € %,

3. ¢q SN q' implies 3p’. p - pand (p',q) € Z.

4. q -2 ¢ implies 3p’. p =2, pand (p'.q') € Z.

P is IA-bisimilar to Q, in signs P = Q, if (po,qo) € Z% for some [A-bisimulation Z.

5.5 Precongruence Results

We now give a concise proof that the branching-time preorders presented above are
(mostly) precongruences. The precongruence results for de Alfaro and Henzinger’s
preorders were stated in [5] and [6], resp., for a binary parallel composition where
synchronized actions are hidden. The precongruence proofs can be found, e.g., in
Gohrle’s work [27] for a slightly different but equivalent characterization of IA-
refinement (cf. Thms. 42 and 58), and in [36] for alternating simulation. These results
are re-proved here for our multicast parallel operator |, and the result for alternating
simulation is extended to our notion of sacc-refinement (cf. Thm. 45). Because of
Thms. 42 and 45, we do not consider IA-refinement and alternating simulation in the
following theorem:

Theorem 54 (Precongruence for IA-Parallel Composition) Let < be any one of
the preorders except for =<3 ... and = 5. Then, for all IAs P, Q, R, where Q, R are
composable and compatible and P < Q, we have that P, R are composable and com-

patible and that P|R =< Q|R. For =, this only holds if Q is input-deterministic.

Before proving this theorem, we first note that Gohrle also showed that I12- and 13-
refinement are precongruences for the binary parallel operator [27]. However, 13-
refinement is only a precongruence, if the pruning involved is further strengthened



30 Walter Vogler, Gerald Liittgen

‘o y o
P i Q i i’ R,
T: i? o!
P|R_i? QIR _i? i’?
T

Fig. 11 Example illustrating the precongruence defect for I3-refinement for general IAs, where the only
action in the alphabet of R is output o.

P a? b! Q1 a? b! R a/
a? :
PR _a! b! Q1|R al b!
al
Q2 a? T b! Q3 T a? b!

Fig. 12 Example illustrating the precongruence defects for the output-bivariant preorders.

(cf. also [12]); it also fails to be a precongruence for the operator | studied here. This
can be seen in Gohrle’s example that is reproduced in Fig. 11, where P <3, . Q since
P’s i?-transition can be matched by the 7- and the i-transition of Q. However, when
composing both IAs with TA R that has no behaviour but input alphabet {0}, the
o!-transition raises an error and, thus, the preceding i?-transition is cut by pruning.
Hence, P|R 3. OIR.

Regarding our output-bivariant preorders, the example IAs P, Q;, R in Fig. 12 tes-
tify to the precongruence defect of =<ops (and <qps) in the general case. The problem
is that the choice between the initial a?-transitions of Q; does not matter for <qyps
(and =,ps); however, after synchronization, these inputs are essentially turned into
outputs and the lower a!-transition has to be matched. While this defect disappears
for <4obs When restricting the specification side to input-deterministic IAs, the same
is not true for <. This can be seen (a) from IAs P, O, R, where O, matches P’s a?-
transition by the a- and the upper trailing 7-transition of Q,, and (b) from IAs P, O3,
R, where Q3 matches P’s a?-transition by the leading 7- and the upper a-transition
of 03. To avoid this problem, one would need to significantly change the second
condition of Def. 50, which seems to be too drastic to us.

The proof of Thm. 54 makes use of the following two lemmas. The first lemma
collects properties that are shared among several preorders, for ease of reference:

Lemma 55 Let < be any one of the preorders except for jg’m and = yps, and let X#
be a <-simulation for IAs P, Q such that (p,q) € %.
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1. 1fp—>p then, in all cases, 3q'. q:>—>:>q with (p'.q') € 2.
2. If p— p' then, in all cases, 3q'.q =>——=—= ¢ with (p,q') € % or; alterna-

tively, 3¢ .q = q 7L>

3. pr7L> then3¢'.q = ¢q 7L>

4. If Lis jmcc or requires one to match p 2, p' with some q -2, q', then it
also requires one to match p LN p' with g SEIN q foriel(q).
If Xis not j%aw and the first match is some q — q', then the second one
is some g =>——s== ¢ fori € Iy(q).

S5 IfTy(Y) matters, then a transition p BEIN p' with i € Iy(g) is matched with some

q SRR IR q'; otherwise, the match is some q BRI q fori€l(q).

Proof Let <, Z and (p,q) € % be as stated in the lemma.

1. Obvious. (Note that this claim also holds for the preorders that do not allow trail-
ing 7Ts.)

2. We could have i ¢ I(g) if I(-) matters, or i ¢ Iy(q) if Iy(-) matters. In both cases,
the second alternative holds. Otherwise, there exists some ¢’ such that g BRI q or
q ==l q with (p',q') € #, so the first alternative holds.

3. We have ¢ 7L> if I(q) C I(p) or Def. 52(3) or 53(3) applies. Otherwise, we get
qg=4q 7L> for some ¢’ due to Iy(q) C Iy(p).

4. For = and the first part of the statement, observe that p LN p' implies i € I(g) by

Def. 53(1).
5. See the proof for (4). O

Lemma 56 Let < be any one of the above preorders except for <3... and =,ps,
and let P, Q, R be IAs with P < Q due to the =<-simulation % and such that Q, R

are composable. If (p,7),(q,7)) € Z =4 {((p,7),(0,7)) | (p,q) € %} and (p,r) is
illegal, then so is (q,r).

Proof First observe that P, R are composable because P, Q have the same signa-
ture (1,0). We now proceed by induction on the length of a run from (p,r) to an
error state of P® R. In the base case, (p,r) is an error state and there are two sub-
cases to distinguish:

- p—5 and r/~ witha € ONlIg: Then, g = ¢ L, for some ¢' by Lemma 55(1).
Hence, (q,r) = (¢/,r) and (¢, r) is an error. Thus, (¢,r) is illegal.

- p/A5 and r % with a € IN Og: By Lemma 55(3), there exists some ¢’ such that
qg=4q 7L?>, and (q,r) is illegal as above.
For the induction step, consider the first transition (p,r) — (p/,#) of a run of

local transitions to an error state, i.e., ( p,r ) is illegal due to a shorter run. There are
three sub-cases:

-p-%p ¥ =rand o € O;\ Ag: Then, q=>—>:>q foraq' with (p',q') e Z

q
by Lemma 55(1). Hence, (g, ):>—>:> (¢',r) with ((p',r),(d,r)) € € Z. State
(¢, r) is illegal by induction hypothesis, and so is (g, r).
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~

-p=pr%rYandowec Ogrz \A: Then, (g,r) BN (g,¥)and ((p,r),(q,r)) € %,
and we are done as above.
- p-5p, r—5 ¥, a € OUOg: Here, we have to distinguish two sub-cases.

—-a€O0NIlg q —_ ¢ for some ¢’ and (p',q') € Z by Lemma 55(1).
Hence, (q,r) NN (¢',r)and ((p',r),(q,r)) € 2, so we are done as
above. )

- a € INOg: By Lemma 55(2), we might have ¢ = -“+= ¢’ and (p/,q') € #
for some ¢'. Then, (g,r) — (¢,r) with ((p',"),(d,r')) € Z. and
we are done. Otherwise, g = ¢/ £ for some ¢/, and (g, r) is illegal as in the
second base case. g

Proof (of Thm. 54) The following proof mainly works for <yps and <o, too. In
each of these cases, one proof part fails as indicated below; for <o, the defect dis-
appears when requiring input-determinism of the specification Q. Now, let < be one
of the refinements mentioned in the theorem and consider % and % as in Lemma 56.
The theorem’s statement on composability is trivial because P, Q have the same sig-
nature (1,0). Further, we write (Ipr,Ogr) for the signature of Q ® R. Lemma 56
shows the theorem’s statement regarding compatibility.

Now, we restrict Z to those pairs ((p,r),(g,r)) where g|r, and hence p|r, is de-
fined; we call the restriction Z%’. The sequel considers some ((p,r),(g,r)) € %' and
has a sub-case for each requirement appearing in the definition of at least one of our
relations:

(P®) Assume p|r —= p'|r’. Then, < requires g|r — 2 q'|r (or q|r —_
q'|r’, which can mostly be handled analogously) for some ¢’ with (p’,¢") € Z.
There are four sub-cases needed to show this: X

- p-2%p. ¥ =rand ® ¢ Ag: Then, we have g =>—— ¢ for some ¢’ with
(P',q') € Z, implying q|r —-2, ¢ |r, where all states on this run are defined
since g|r is.

- r-2/, p' = pand o ¢ A: Easier.

- p—>p, r2 ¥ and ® € ONI: Similar to the first sub-case.

-p-5p r% Y and o € INOg: If g = ¢’ 2>, then we would have
(g,r) = (¢',r). The latter state would be an error, contradicting that g|r is
defined. Thus, ® € Iy(q) C I(g).

By Lemma 55(4), there is ¢ — ¢ with (p/,¢') € %. Hence (also for <2,_.),
we have g|r 0, q'|r (cf. the first sub-case) and are done.

In the case in brackets, there is some ¢’ with g =>—+=> ¢/ and (p',¢') € %.
Thus, we obtain g|r SEEGLUNEEN q'|r’ (cf. the first sub-case).

(Iy(-)) Assume that < requires Iy(g|r) C Iy(p|r). In a product like P ® R, we have
Iy((p,r)) = ((Iy(p) \ Ir ULy(r) \ I) Nigr) U (Iy(p) N Iy(r)); in particular, note
that some i € Iy(p) \ Ig could be an output of the composition, so we need to
intersect with Igg. Therefore, Iy(g|r) C Iy(p|r) could only fail for some i € Ipg

if plr = p'|¥ 7L> due to pruning, although i € Iy((p,r)) C Ly((p',r)). This
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only happens if (p’,r') SN (p",¥") for some illegal (p”,"). From (Pw), we get
qlr = ¢'|¥ with (p’,q') € %. Further, consider the following three sub-cases:

— If the i-transition is due to # only, we have p” = p’ and (¢',7) —= (¢',7").
Because (p/,r") is illegal and ((p',7"),(q’,r")) € Z, the latter pair is also
illegal and also i ¢ Ly(g|r).

— If the i-transition is due to p’ only, i.e., if 7/ = # and p’ — p”, we may have
¢ = q" /= by Lemma 55(2). Then, ¢'|/ = ¢"|r’ /= and i ¢ Iy(q|r).
Otherwise, ¢ === ¢" and (p",q") € %. Hence, (¢,r) —=—>—
(q",r)and ((p",r"),(q",r)) € Z. Again, (¢",r) is illegal, and so is the state
after the i-transition. The state before the i-transition is not illegal because
q'|r is defined. Thus, i ¢ Ty(g]|r).

- If p’ = p” and ¥ — /", we can argue as in the previous sub-case.

(I(+)) Assume =< requires I(g|r) C I(p|r). This case is similar but much simpler than
Case (Iy(+)) above, because p = p', r =7 and, in the second and third sub-case
of (Iy(-)), one just has to apply Lemma 55(5) instead of (2), leading directly to
the “otherwise” case. )

(Pi) Let p|r — p'|r’, and assume that < requires the proof that g|r = ——=—=>¢/|r’
for i € Ty(g|r) (or just glr — |’ for i € I(g|r)) by Lemma 55(5), for some ¢’
with (p,q’) € %. There are three sub-cases:

- p—p, ¥ =randi¢ Ag: We have i € Ty(q) by i € Iy(g|r), and further
g == ¢ with (p',¢') € %. Then, q|r = —+= ¢/|r. The states be-
fore the i-transition exist because g|r is defined, and the states after because
i € Iy(q|r). .

The other variant with g|r — ¢'|r is easier, where the latter state exists by
i €I(glr).

—-r— 7, p'=pandig¢A: Then, (q,r) — (q,7’) and state g|r’ is defined by
i €1(qlr) 2 Iy(q|r).

— p — p' and r = ¥': Essentially as in the first sub-case.

(Q®) Assume g|r —=+ ¢/|r and that, as in <, preorder < requires p|r =>—s=—

P|F (or plr =25 |/, for <gops and =) for some p’ with (p',q') € Z#. We
distinguish four sub-cases:

- g2 ¢,V =rand © ¢ Ag: Then, p SN p with (p',q') € # (the
other case is almost the same). Thus, p|r — plrand (p'|rq'|r) € Z',
and all states are defined since p|r is.

- r-% 7, ¢ =qand ® ¢ A: Easier.

- q-2¢, r-% ¥ and ® € ONIx: As in the first sub-case.

- ¢ ¢, r=2 v and ® € IN Og: For ~, we have p — p with (p/,q') € %;
hence, p|r 2, P |r’ as above. For <ops, in case that P is input-deterministic,

p has an w-transition, and this must match g =2 ¢ in the same way. (Note
that this sub-case fails for <y in general and also for <ps.)
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(Qi) Let g|r LI ¢'|r' and assume, as is the case for =<jps and =, that < requires
plr BLIN p'|r for some p’ with (p’,q") € Z. Hence, we have three sub-cases:
-q BRI g, ¥ =randi¢ Ag: Then, there exists some p’ such that p BN p’ and
(¢'.q) € #. Thus, p|r — p/|r' and the latter state is defined by Lemma 56.
-y q = qandi¢ A: Obvious.
-q SN q,r s ¥ and i € INI: Similar to the first sub-case.
(R(-)) For =, observe that R(g|r) = R(g) UR(r) because, if an output o of, say, O

is in R(g) and I(r), then r must provide its input o; otherwise, (¢g,r) would be an
error state. Now, R(g|r) = R(g) UR(r) = R(p) UR(r) = R(p|r). O

We finish this section by establishing the precongruence property for hiding:

Theorem 57 (Precongruence for Hiding) Let < be any one of the above branching-
time preorders. Then, P/H =< Q/H for all IAs P, Q with P < Q and all H C O.

Proof Assume that P < Q holds due to <-simulation %. We show that Z is also
suitable to prove the theorem’s statement. First observe that all conditions, except for
condition Iy(g) C Iy(p), are obviously preserved. Hence, we establish this remaining
condition:

If i € Iy(p) is lost in P/H, then there is some run in P from p to p’ with actions

in HU {1} such that p /. This run is matched by g to reach some state ¢’ with

(p',q') € Z. By Lemma 55(3), there exists some ¢” such that ¢ = ¢ 7L> Thus,
¢ Ty(q) in O/H. 0

5.6 The Branching-Time IA-Spectrum

Overall, our spectrum of branching-time preorders on IA is as shown in Fig. 13;
again, arrows display inclusions between the preorders. I4-refinement is not depicted,
because it coincides with acc-refinement. Recall that the definition of Gohrle’s <2

[27] only differs from <, in the first condition, where he demands Iy(q) C I(p).

Theorem 58 <% —==,.. on all IAs.

—sacc

Proof Clearly, each acceptance simulation is an I4-simulation. Conversely, consider
some I4-simulation Z with (p,q) € % and some input i € Iy(q) \ Iy(p). Then, there

is some p’ such that p = p’ but p’ /~. Now, p = p’ can be matched according
to I4-simulation by g =>= --- = ¢’ for some ¢’ satisfying (p’,q’) € #. Hence,
i € Iy(q) CIy(q") buti ¢ I(p'), which is a contradiction to the first condition of 14-
simulation. Thus, Z is an acceptance simulation. a

The strict inclusions between sacc- and acc-refinement have been the subject of
Thm. 48 above. The other implications follow because, in each case, a condition
is added for the finer refinement. The only exception is the implication from sobs-
refinement to obs-refinement:
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Fig. 13 Branching-time spectrum: upper half of the IA-spectrum.
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Fig. 14 Example IAs for comparing the branching-time preorders.

Theorem 59 =5 C=<ops-

Proof For the proof, we define an OB4-simulation just as an output-bivariant simu-
lation, except that we require Iy(g) C I(p) in the first condition. Clearly, each strict
output-bivariant simulation & is an OB4-simulation, because the allowed matchings
are more generous and Iy(g) C I(g); the latter also implies that fewer inputs have
to be matched in the OB4-simulation. Now, we repeat the arguments in the proof of
Thm. 58 for OB4 in place of 14, obtaining that Z is an output-bivariant simulation.
Inequality follows from Lemma 60 (d) below. O

Also the other inclusions omitted in Fig. 13 fail:

Lemma 60 (Failing Implications) The following properties hold:

(a) = is not included in <3,..;
(b) =y is not included in = ,ps;
(¢) = is not included in =,

(d) =pps is not included in <3

—SllCC’
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(e) =ips is not included in = ,py;
(f) =sobs is not included in <.

Proof First, we prove Parts (a)—(c): (a) Consider P, Q of Fig. 9, where P <5 Q due
to i ¢ Iy(qo), such that the i-transition of py does not have to be matched. However,
P ﬁacc 0, as pointed out before. (b) Let P;, P> as in Fig. 14. Then, P; <5 P» due
to the upper branch of P, but P; A, P> since the lower branch cannot be matched.
(c) For IAs Ps, Py in Fig. 14, P3 = Py, but Py A5 P4 because o ¢ R(py).

Second, we consider Parts (d) and (e): (d) The same example as in Part (a) applies;
P <opbs O holds for the same reason. (e) Consider the example of Part (b) again, which
does not have any inputs.

Last, for Part (f) and Ps, Ps in Fig. 14, obviously Ps <s.ps Ps, but Ps Aips Ps due to
the lower branch of Fs. O

The above properties of our preorders yield the branching-time spectrum for IA:

Theorem 61 (Branching-Time IA Spectrum) All inclusions between our branch-
ing-time preorders are depicted in Fig. 13 as arrows; in particular, these inclusions
are strict.

Proof We have shown above that the indicated implications hold. Parts (a)—(c) of
Lemma 60 settle the missing implications around <. Parts (d) and (e) testify to
the missing implications for =<y, but Part (e) also shows that <, is not included
in =<sobs- By Part (f), the proof is finished. O

Finally, we remark that, when restricting ourselves to input-deterministic 1As,
strict acceptance refinement and input-bivariant refinement coincide:

Proposition 62 =<;,.. = =ps on input-deterministic IAs.

5.7 Completing the Spectrum

We conclude the technical part of this article by connecting our branching-time spec-
trum for IA to the linear-time spectrum studied in Sect. 4, recalling that any IA can
be understood as an EIO (see Remark 4).

Theorem 63 <,..C Cg.

Proof Let P, Q be IAs satisfying P <acc O, and let P’, Q' be the corresponding EIOs
with an additional, canonical error state. Consider a prefix-minimal error trace wi
of P/, which must end with an input transition to the error state. The same run exists
in P, except for the last i-transition. In principle, due to acc-refinement, a run with the
same w exists in Q. This fails only if an intermediate '-transition along the run in P
is not matched in Q because it is not guaranteed in the resp. state g in Q. In this case,
we extend the run in Q from ¢ to a state ¢’ that does not enable i’. Thus, ¢’ has an
i’-transition to the error state of Q’, and we have a prefix w’ of w that is an error trace
in Q'. If the translated run exists, i cannot be guaranteed in the last state, because i is
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Fig. 15 Example IAs (EIOs) for comparing the linear-time and branching-time preorders.

missing in P. Now, we repeat the argument for this last state and obtain that wi is an
error trace of Q'.

A similar argument holds for the languages: for a trace w in P, we either find the
same trace in Q' or an error trace that is a prefix of w. a

Next, we consider our two ready preorders:
Theorem 64 (IA-Spectrum) <, C Cpry.

Proof Let P < Q due to %, and consider wi € StET(P) = PrET(P) due to py ==
P e We proceed by induction on the length of the underlying run. Assume
that pg == p’ due to a prefix of this run, and we have gy == ¢’ for some ¢’ with
(p',q') € Z due to induction or because p’ = pg and ¢’ = go. Let p’ — p”’ be the next
transition. If o € O, then ¢’ N q" for some ¢” satisfying (p”,q") € %. The same
holds for o € I, except if & ¢ Iy(q’). In the latter case, voe € ET(Q) for the prefix vor
of w, and we are done. If the latter never happens, we get go == ¢ with (p,q) € %,
and i ¢ Ty(q) due to i ¢ Iy(p). Thus, g — s eandwie ET(Q). Now, it suffices to
consider some (w,X) € StRP(P) due to pg == p. As above, (w,X) € RP(Q) due to
flooding or gg == ¢ with (p,q) € # and R(q) = R(p) = X. O

However, many inclusions between the preorders presented in this article are in-
valid, due to following lemma:

Lemma 65 (Failing Implications) The following properties hold:

(a) =5 is not included in Cp;,;
(b) = is not included in Cp;,;
(¢) = is not included in Cgy;;
(d) Ccyk is not included in <.,
(e) Cry is not included in < 4cc.

Proof Regarding Parts (a)—(c), consider IAs Rj, R, in Fig. 15. These are bisimilar,
and R| <5 R, due to R; staying put in the initial state. However, R| [Zpjy Ry due to R
being divergent, and R, Zqy; R1 because only R, has a quiescent trace.
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Regarding Part (d), examine [As R3, R4 of Fig. 15. They have the same language
and quiescent traces, no (strict) divergent traces, and the same error traces due to
the missing input transitions to the implicit canonical error state. Hence, they are
CJK-equivalent, but the i-transition of R3 cannot be properly simulated by Ry, i.e.,
R3 ﬁacc R4-

Regarding Part (e), the IAs Rs, Rg in Fig. 15 satisfy Rs Crq Rg but Rs Zacc R,
analogous to the argument above for Part (d). a

This lemma now allows us to conclude this section with the desired theorem for
corroborating our IA-spectrum:

Theorem 66 (IA-Spectrum) All inclusions between the linear-time and branching-
time refinement are depicted using dashed arrows in Fig. 6, in particular, these in-
clusions are strict.

Proof The positive statements are proved in Thms. 63 and 64. Furthermore, <5 does
not imply any other linear-time preorders by Lemma 65(a). The other branching-
time preorders do not imply any linear-time preorder except Cg, and the linear-time
preorders do not imply any branching-time preorder. g

6 Discussion

De Alfaro and Henzinger’s IA-setting and its preorders IA-simulation and alternating
simulation have influenced the field of interface theories and are closely related to a
research direction in model-based testing. In the former field, the majority of recent
interface theories are based on Modal Transition Systems (MTS) and the modal re-
finement preorder [34], which is more expressive than IA [35]. In the latter field, the
ioco approach [45] uses a trace-comparing relation not unlike alternating simulation.

MTS-based interface theories. Refinement in the IA-setting is characterized by al-
lowing the addition of inputs and the removal of outputs, which implies that, e.g., the
single-state interface with a self-loop for every input action and no further transition
refines any interface. Thus, output actions in IA specify permitted but not required
behaviour. This is why recent research [7,13,20,35,41] has focused on combining
IA [6] and Modal Transition Systems (MTS) [34]; MTS allows one to specify re-
quired and optional behaviour, for any action. Taking stepwise decisions on the op-
tional behaviour permits a component-based, incremental design, which is supported
in MTS by the compositional modal refinement preorder.

This research on combining IA and MTS has led to Modal Interface Automata
(MIA) [13], which resolves the conflict between unspecified inputs being allowed
in IA but forbidden in MTS and does away with the input-determinism requirement
of TA. MIA fixes various shortcomings of earlier works: modal refinement in the
IOMTS-setting of Larsen et al. [35] is not a precongruence for parallel composition;
the Ml-setting of Raclet et al. [41] considers deterministic interfaces only; the MIO-
setting of Bauer et al. [7] adopts pessimistic compatibility that deems a composition
undefined as soon as some error can potentially occur in some system environment.
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Not unlike EIO [14,44], there is also an error-aware variant EMIA [20] of MIA,
which leaves error states explicit and does not prune them away. Thereby, one may
distinguish potential errors that can be resolved by refinement, from actual, unre-

solvable errors that arise when an output is required but the corresponding input is
forbidden.

Finally, it should be noted that all MTS-based theories mentioned above are in-
terface theories in the sense that they are equipped also with a conjunction and a
quotienting operator. Conjunction is necessary when reasoning about a component
that must satisfy several interfaces, while quotienting enables one to calculate resid-
ual interfaces when given some partial system implementation.

The ioco approach. This approach [45] for model based testing is somewhat related
to interface automata, because it allows one to implement unspecified inputs and to
ignore specified outputs, at least to some degree. One difference is that the ioco-
relation compares an implementation to a specification, i.e., the approach does not
aim at stepwise refinement. Furthermore, an implementation is required to be input-
enabled. Another and essential difference is that it suffices to provide an input via
some preceding Ts; there is no concept of communication error and, in particular, no
concern about an input not being provided immediately (cf. [9]).

An additional feature of the ioco-setting is that each quiescent state is decorated
with a d-labelled loop. (Usually, these loops are left implicit.) For §-decorated mod-
els without 7, it is shown in [1], for an input-deterministic implementation P and a
deterministic specification Q, that P ioco-implements Q if and only if P <y Q. Con-
ceptually, the ioco-relation compares traces of P and Q and, under the restrictions
mentioned, it coincides with quiescence-, divergence- and CJK-refinement due to the
O-transitions. This does not hold without determinism, because our strict quiescence
traces just end in a quiescent state, whereas a trace in the ioco-approach can addition-
ally inform about quiescent states passed along the way.

Motivated by the ioco-approach, a refinement based on alternating simulation is
introduced in [28] under the name of iocos, which stands for ioco-simulation. The
referenced paper considers §-decorated IAs without T as models (and without distin-
guishing implementations and specifications) and defines a natural variation of ioco
for these models. The new iocos coincides with <, except for the additional dis-
crimination due to 8. It is shown in [28] that iocos is finer than ioco and that it can
be characterized with a testing scenario; a general parallel composition is not consid-
ered.

The very recent paper [32] also looks at stepwise refinement in relation to the
ioco-approach and alternating simulation in a setting without parallel composition,
precongruence results and internal actions. It introduces input-failure refinement,
which is another characterization of error-refinement as in [14, 15], although this re-
sult is not formally stated or proven. Taking also & into account, this refinement fits
another variant of ioco in the literature called uioco.
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7 Conclusions and Future Work

De Alfaro and Henzinger’s Interface automata (I1A) [5] are a popular framework for
formally reasoning about the compatibility of concurrently interacting components,
for which a sizeable number of behavioural preorders have been proposed in the
literature over the years. In this article, we characterized and compared these pre-
orders, both trace-based and simulation-based preorders, so as to arrive at a linear-
time branching-time spectrum for IA, in analogy to the linear-time branching-time
spectrum of van Glabbeek for ordinary labelled transition systems [23]. This was
done via a uniform and general notion of parallel composition that constitutes a mul-
ticast communication mechanism for synchronizing components, as well as a hiding
operator for action scoping. Alongside, we also explored several new preorders for
IA, based on ready semantics, ready simulation and bi-variant simulation.

An important insight obtained by our work was that the problem in the original
publication on IA [5], namely that parallel composition is not associative, disappears
if a proper pruning of states that can locally reach an error state is applied, even for
interfaces that are not input-deterministic. Complementing the work of Gohrle [27],
we characterized this original preorder of [5], which is coarser than strict accep-
tance refinement, as a simulation-preorder called acceptance refinement. Thereby,
our framework of general interface automata and acceptance refinement paves the
way for further investigations into semantic theories for interface automata, without
the need for input-determinism.

Future work. We propose to complete the presented IA-spectrum by using van Glab-
beek’s Linear-Time Branching-Time Spectrum II [23] as guidance. Our spectrum is
currently missing, among other behavioural relations, ready trace semantics [39] and
possible futures semantics [42] in the lower, linear-time half and branching bisimu-
lation [26] in the upper, branching-time half. These have not yet been considered in
the IA-literature.

Some of the linear-time preorders studied in this article, namely error semantics,
quiescence semantics and divergence semantics, are supported by full-abstraction re-
sults. Such results are closely related to observational justifications via testing or but-
ton pushing scenarios [16,22,23], which are missing for the remaining linear-time
and all branching-time preorders. It would be nice to improve the situation, e.g., us-
ing ideas of Abramsky [2].

Concerning the applicability of interface theories, we note that reasoning about
communication errors is already employed in the design of asynchronous circuits,
which are vulnerable to unexpected inputs (see, e.g., [17, 18]). We suggest that IA is
developed further towards practical applications in software engineering, for which
one would need to consider at least extensions of the model with data (see, e.g., [4,
21,30]). As a final note, programming languages such as Go have been extended with
session types; these check for communication safety, which is related to communica-
tion error in IA [31,33].

Dedication. We dedicate this article to Rob van Glabbeek, an exceptional researcher
and outstanding colleague, on the occasion of his 60th birthday. Foremost, we thank
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theory. We are also grateful for Rob’s strong dedication to the scientific community,
which led him to establish, with his own time and financial resources, the Electronic
Proceedings in Theoretical Computer Science (EPTCS) series, an international, ref-
ereed open access venue for the rapid electronic publication of workshop and confer-
ence proceedings and other scientific works.
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