UNIVERSITAT AUGSBURG

Bisimulation on Speed:
A Unified Approach

Gerald Littgen and Walter Vogler

Report 2004-15 December 2004

|nst|tut ;
mformatlk

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright (©) Gerald Liittgen and Walter Vogler
Institut fiir Informatik
Universitdt Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE
— all rights reserved —

Bisimulation on Speed: A Unified Approach

Gerald Liittgen' and Walter Vogler?

! Department of Computer Science, University of York, York YO10 5DD, U.K.,
luettgen@cs.york.ac.uk
2 Institut fiir Informatik, Universitit Augsburg, D-86135 Augsburg, Germany,
vogler@informatik.uni-augsburg.de

Abstract. Two process—algebraic approaches have been developed for
comparing two bisimulation—equivalent processes with respect to speed:
the one of Moller/Tofts equips actions with lower time bounds, while the
other by Liittgen/Vogler considers upper time bounds instead.

This paper sheds new light onto both approaches by testifying to their
close relationship and brings the research into bisimulation—based faster—
than preorders to a close. We introduce a general, very intuitive concept
of “faster—than”, which is formalised by a notion of amortised faster—than
preorder. When closing this preorder under all contexts, exactly the two
faster—than preorders investigated by Moller/Tofts and Littgen/Vogler
arise. For processes incorporating both lower and upper time bounds
we also show that the largest precongruence contained in the amortised
faster—than preorder is not a proper preorder but a timed bisimulation. In
the light of this result we systematically investigate under which circum-
stances the amortised faster-than preorder degrades to an equivalence.

Keywords. Asynchronous systems, timed process algebra, time bounds,
faster—than relation, amortised faster—than preorder, bisimulation.

Correspondence. Gerald Liittgen

Address: Dept. of Computer Science, The University of York
Heslington, York YO10 5DD, UK

E-mail: luettgen@cs.york.ac.uk

Phone: +44 190 443-4774

Fax: +44 190 443-2767

1 Introduction

Process algebras provide a popular framework for modelling and analysing the
communication behaviour of asynchronous systems [7]. Various extensions of
classical process algebras, such as Milner’s Calculus of Communicating Systems
(CCS) [18], are also well established in the literature, including timed process
algebras [6]. Timed process algebras add constructs for modelling timeouts and
delays of actions, and thus enable one to reason not only about the communica-
tion, or functional, behaviour of processes but also about their timing behaviour.
Despite the vast literature on timed process algebra, most of which has concen-
trated on capturing behaviour in terms of process equivalence and refinement,

there is relatively little work on relating functionally equivalent processes with
respect to speed. This is surprising since designers of distributed algorithms are
very interested which one out of several possible solutions to a given problem
is the most time efficient one. Indeed, time efficiency is not something that can
only be decided once an algorithm is implemented — often lower and/or upper
time bounds on the algorithm’s actions are known at design time [17].

Within timed process algebra, the idea of “faster—than” was first addressed
by Moller and Tofts [20] who studied an extension of CCS, called TACS'® in this
paper, that allows for specifying lower time bounds of actions. They proposed the
MT-preorder which refines bisimulation [18] and has recently been put on firm
theoretical grounds via a full-abstraction result established by us in [15]. Previ-
ously, we had also investigated an analogous approach to extending CCS with
upper time bounds of actions, which resulted in the calculus TACS" and the
LV-preorder [16]; this preorder was also justified intuitively by a full-abstraction
result. That latter work complements research in various Petri—net [14, 23] and
process—algebra [9] frameworks that are equipped with a testing semantics [11]
rather than a bisimulation semantics. The main shortcoming of our previous
research is that the reference preorders for the two full-abstraction results —
though similar in spirit — are quite different in detail and indeed somewhat
tuned towards the desired outcomes. In addition, we have not explored, and nei-
ther have others in the literature, the consequences of combining both lower and
upper time bounds in a single setting.

Contributions. This paper presents a unified approach to studying faster—than
preorders for asynchronous processes. It unifies the previously known results on
faster—than preorders in two ways. Firstly, it proposes a very natural reference
preorder for relating two processes with respect to speed: the amortised faster—
than preorder. This preorder formalises the intuition that the faster process must
execute each action no later than the slower process does, while both processes
must be functionally equivalent in the sense of strong bisimulation [18]; here,
“no later” refers to absolute time as measured from the system start, as opposed
to relative time which is used in our operational semantics and describes the
passing of time between actions. Although the amortised faster—than relation is
more abstract than the reference preorders considered in [15, 16], we show that
both the MT—preorder and the LV—preorder remain fully—abstract in TACS'"
and TACS™, respectively.

Secondly, this paper characterises the largest precongruence contained in
the amortised faster-than preorder when combining the calculi TACS'™ and
TACS"™, so as to being able to specify both lower and upper time bounds of
actions. This is an important open problem in the literature, and it turns out
that the resulting precongruence is not a proper preorder but a variant of timed
bisimulation [19]. The concluding part of this paper systematically investigates
under which circumstances a proper preorder is obtained, and when exactly the
amortised faster—than preorder degrades to an equivalence. For example, we get
a positive result as in [16] when we extend TACS" by actions that may be

delayed arbitrarily long; such lazy actions are useful for, e.g., modelling system
errors that are not bound to occur within some fixed time interval.

The full-abstraction results of this paper complete the picture of faster—than
preorders within bisimulation—based process algebras. On the one hand can the
various published faster—than preorders be traced back to the same notion of
“faster—than”, which is rooted in the concept of amortisation. On the other
hand does the amortisation approach highlight the limits for defining a useful
faster—than preorder that fully supports compositionality.

Organisation. The next section presents our process—algebraic framework of
Timed Asynchronous Communicating Systems (TACS), of which both TACS!"
[15, 20] and TACS"" [16] are sub—calculi. Sec. 3 then introduces the amortised
faster—than preorder and generalises the full-abstraction results of [15] and [16].
For the full TACS calculus, Sec. 4 shows that the amortised faster—than pre-
order degrades to a congruence rather than a precongruence, when closed under
all contexts, while Sec. 5 sheds further light onto the borderline between precon-
gruence and congruence results. Finally, Secs. 6 and 7 discuss related work and
present our conclusions, respectively.

2 Timed Asynchronous Communicating Systems

Our process algebra TACS combines the timed process algebras TACS'® [15]
and TACS" [16], both of which extend Milner’s CCS [18] by permitting the
specification of lower and respectively upper time bounds for the execution of
actions and processes. These time bounds will be used in the next sections for
comparing processes with respect to speed. Syntactically, TACS includes two
types of actions: lazy actions a and urgent actions a; the idea is that the former
can idle arbitrarily, while the latter have to be performed immediately. It also
includes one clock prefixing operator “c.”, called must—clock prefiz, for speci-
fying minimum delays and another “c.”, called can—clock prefix, for specifying
maximum delays. Semantically and as in CCS, an action a or ¢ communicates
with the complements @ or @, irrespective of whether either action is urgent. This
communication results in an urgent internal action, if both participating actions
are urgent, and a lazy internal action otherwise. Moreover, TACS adopts a con-
cept of global, discrete time that behaves as follows: process 0.P must wait for at
least one time unit before it can start executing process P (lower time bound),
while process o.P can wait for at most one time unit (upper time bound); thus,
o can be understood as a potential time step. Upper time bounds are technically
enforced by the concept of mazimal progress [13], such that time can only pass
if no urgent internal computation can be performed.

Syntax. The syntax of TACS is identical to CCS, except that we include the
two clock—prefixing operators and distinguish between lazy and urgent actions,
as discussed above. Formally, let A be a countably infinite set of lazy actions not
including the distinguished unobservable, internal action 7. With every a € A
we associate a complementary action @, and define A =4¢ {@|a € A}. Each lazy

action a € A (a € A, 7) has an assoclated urgent variant, i.e., an action a (@,
7). We define A =q4¢ {a|a € A} and A =45 {@|a € A}, and take A (A) to denote
the set AUAU{7} (AU AU {r}). Complementation is lifted to AU A (AU A)

by defining @ =q¢ a (@ =qt a). We let a,b, ... (a,b,...) range over AU A (AU A)
and a, 3,... (a,3,...) over A (A). The syntax of TACS is defined as follows:

P:=0|z|aP|aP|oP|aP|P+P|PP|P\L]|Pf]| pz.P,

where z is a wvariable taken from a countably infinite set V of variables, L C
A\{7} is a restriction set, and f : A — Ais a finite relabelling. A finite relabelling
satisfies the properties f(7) = 7, f(a) = f(a), and [{a] f(a) # a}| < co. The
set of all terms is abbreviated by 73, and we define L =q; {@|a € L}. We use
the standard definitions for the semantic sort sort(P) C AU A of some term P,
open and closed terms, and contexts (terms with a “hole”). A variable is called
guarded in a term if each occurrence of the variable is within the scope of an
action— or o—prefix. Moreover, we require for terms of the form px.P that z is
guarded in P. Note that, since g only denotes a potential time step, ¢.P can
perform the actions of P immediately, whence ¢ does not count as a guard.
We refer to closed and guarded terms as processes, with the set of all processes
written as P, and let = stand for syntactic equality.

Semantics. The operational semantics of a TACS term P € P is given by a
labelled transition system and an urgent action set. The labelled transition sys-
tem has the form (P, AU {c}, —, P), where P is the set of states, AU {c} the
alphabet, — C P x (AU{c}) x P the transition relation, and P the start state.
Transitions labelled with an action a are called action transitions that, like in
CCS, are either internal activities or local handshake communications in which
two processes may synchronise to take a joint state change together. Transitions
labelled with the clock symbol o are called clock transitions representing a re-
current global synchronisation that encodes the progress of time. Note that the
transition relation is labelled by ordinary (lazy) actions only. Urgency is dealt
with in an orthogonal fashion by a predicate on processes, the urgent action set.
The urgent action set of some term P is defined by the rules shown in Table 2
and contains exactly the urgent actions in which P can initially engage. Note
that the communication of two complementary actions results in an urgent silent
action only if the two participating actions are urgent.

According to our operational rules, the action—prefiz terms «.P and «. P may
engage in action « and then behave like P. The processes a.P (a € A) and a.P
(a € AU A) may also idle, i.e., engage in a clock transition to themselves, as
process 0 does; the rationale is that even an urgent communication action may
have to wait for a communication partner; see also below. The must—clock prefix
term 0.P can only engage in a clock transition to P; thus, o stands for a delay
of exactly one time unit, and it can be used to define lower time bounds, since P
may perform further time steps due to clock prefixes, lazy actions or waiting for
a communication. The may—clock prefix term o.P can additionally perform any
action transition that P can engage in; in this sense, g represents a delay of at
most one time unit and can be used to define arbitrary upper time bounds.

Table 1. Operational semantics for TACS (action transitions)

Act 'a uAct ————— uPre iaP/
a.P — P a.P— P og.P— P’
Suml P i,ap/ Sum?2 M Rec lzi) L
P+Q - P P+Q—Q px.P — P'pz.P/z]
Coml # Com2 ﬂ Com3 P P/T Q¢
P|Q — P'|Q P|Q — P|Q’ P|Q — P'|Q’
Rel e Res PT—P/ a¢ LUL
P12 prip) P\L—= P\L
Table 2. Urgent action sets
Z/{(OLP) —df @ Z/I(gP) =df {OL} Z/[(O) =df @
U(o.P) =ar B U(g.P) =as D U(x) =ar 0
UPN\L) =aUP)\(LUL) UP[f]) =as {f(a)|a €eUP)} U(pz.P) =ar UP)
UP+ Q) =at UP) UU(Q) UPIQ) =ar UP)VUQ) U{T [UP) NUQ) # 0}

Table 3. Operational semantics for TACS (clock transitions)

tNil

tPre

PP Q-LqQ

tSum =
P+Q L P 4@
P P

tRel ———
P[f] = P'[f]

tAct —————
a.P — a.P

tuPre

ag.P -2

— P

P P
tCom -

Q—q

tuAct

aP -2 aP

P P

tRec =
ux.P — P'[ux.P/x)

T ¢ U(PIQ)

PlQ — P'|Q'

o ’
tRes P—P

P\L-Z P\ L

The term P|Q stands for the parallel composition of P and @ according to
an interleaving semantics with synchronised communication on complementary
actions resulting in the internal action 7. Time has to proceed equally on both
sides of the operator. The side condition of Rule (tCom) ensures that P|Q can
only progress on o, if it cannot engage in any urgent internal computation, in
accordance with our notion of maximal progress. Thus, due to the urgency of
the actions, a.P|@.Q cannot perform a time step. On the other hand, a.P | b.Q
or a.P|a.Q) can, since communication is not possible or can at least be delayed;
thus, a is urgent but also patient. Note that predicates within structural opera-
tional rules, such as 7 ¢ U(P|Q) in Rule (tCom), are well understood [22].

The summation operator + denotes nondeterministic choice such that P+ @
may behave like P or (). Again, time has to proceed equally on both sides of
summation, whence P+ @ can engage in a clock transition and delay the nonde-
terministic choice if and only if both P and @ can. The restriction operator \L
prohibits the execution of actions in L U L and, thus, permits the scoping of ac-
tions. P[f] behaves exactly as P where actions are renamed by the relabelling f.
Finally, px. P denotes recursion, i.e., px. P behaves as a distinguished solution
of the equation x = P.

The rules for action transitions are the same as for CCS, with the exception
of the rule for the new may—clock prefix and the rule for recursion; however,
the latter is equivalent to the standard CCS rule over guarded terms [5]. It
is important to note that both faster-than settings previously investigated by
us in [15, 16] can be found within TACS. The sub-calculus obtained when
considering only lazy actions (urgent actions) and only must—clock prefixing
(can—clock prefixing) is exactly the calculus TACS" (TACS™) studied in [15]
([16)). For improving readability we also write P'* (PUt) for the set of processes
in TACS'" (TACS").

The operational semantics for TACS possesses several important proper-
ties [13]. Firstly, it is time—deterministic, i.e., progress of time does not resolve
choices. Formally, P -2+ P' and P -Z> P" implies P’ = P" forall P, P, P" € P,
which can easily be proved by induction on the structure of P. This property
is very intuitive, as only actions can resolve choices, and also technically con-
venient. Secondly, by our variant of mazimal progress, a guarded term P can
engage in a clock transition exactly if it cannot engage in an urgent internal
transition. Formally, P -7 if and only if 7 ¢ U(P), for all guarded terms P.
In particular, processes in TACS' satisfy laziness: they can always engage in
a clock transition. Last, but not least, it is noted that the sort sort(P) of any
process P is finite. This is because we only allow finite relabellings.

3 Generalised Full-Abstraction Results

This section presents our unified approach to “faster-than” by introducing a
very simple and intuitive preorder, the amortised faster—than preorder, which
captures the essence of faster—than within a bisimulation—based setting, as dis-
cussed below. Using this preorder as a reference preorder, we show that the LV—

preorder [16] and the MT—preorder [20] are fully—abstract within the TACS"
and TACS' sub—calculi of TACS, respectively.

Definition 1 (Amortised faster—than preorder). A family (R;);en of rela-
tions over P, indexed by natural numbers (including 0), is a family of amortised
faster—than relations if, for all i € N, (P, Q) € R;, and a € A:

P =% P implies 307, k, 1. Q " 7' @ and (P, Q') € Rippsi.

. Q - @ implies 3P, k, 1. k+1<i, P 2" 2. P and (P, Q') € Ri_i.
. P -Z P’ implies 3Q’, k>1—i. Q ot Q' and (P, Q') € Ri—1+k-

. Q -% @ implies 3P/, k<i+1. P -%" P’ and (P, Q') € Rip1p.

=W N =

We write P 2, Q if (P, Q) € R; for some family (R;)ien of amortised faster—than
relations, and call 7 the amortised faster-than preorder.

Here, Lk stands for k consecutive clock transitions. It is easy to show that J is
indeed a preorder. While reflexivity is obvious, transitivity follows immediately
from the property 3,03, C 3, , for any i, j € N. Furthermore, (2,)ien is the
(componentwise) largest family of amortised faster—than relations.

Intuitively, the above definition reflects our intuition that processes that per-
form delays later along execution paths are faster than functionally equivalent
ones that perform delays earlier; this is because the former processes are ex-
ecuting actions at earlier absolute times (as measured from the start of the
processes) than the latter ones. As a simple example, consider the processes
P =4 a.b.0.0.c.0 and QQ =4¢ 0.a.0.b.c.0. Roughly speaking, in process P, ac-
tions a,b are executed at absolute time 0 and action ¢ at absolute time 2. In
process), analogously, action a is executed at absolute time 1 and actions b, ¢
at absolute time 2. Hence, every action in P is executed earlier than, or at the
same absolute time as in), whence P is strictly faster than @. This idea is for-
malised in the above definition as follows:) is permitted to match an a from P
by oa; the additional time step is saved as a credit by increasing the index of R
such that P can perform this time step when needed, i.e., after its b. Thus, in
Def. 1, an action or clock transition is matched by allowing the matching process
fewer or more clock transitions as far as this is allowed by the available credit;
the difference in the number of clock transitions is added to or subtracted from
the credit. In this sense, our definition is a canonical translation of the idea of
amortisation.

The remainder of this paper is concerned with the characterisation of the
largest precongruence contained in 2, for various sub—calculi of TACS, in par-
ticular TACS™ and TACS'". We will also discuss below, which variants of =0

have been used for TACS" and TACS! in [15, 16], and for notational conve-

. . . ut 1t . . .
nience we will write J," and J,” when restricting <, to processes in TACS™

and TACS!, respectively. The technical development of our characterisations
will rely on the following well-known result from universal algebra.

Theorem 2 (Universal Algebra). For every preorder X over TACS pro-
cesses, there exists a largest precongruence X ¢ in X satisfying

X ={(P,Q)|(C[P],C[Q)) € X for all contexts C[]}.

If Y is a further TACS preorder such that X CY C X, then X¢=Y°.

3.1 The LV—Preorder is Fully Abstract in TACS"*

TACS" is the sub-calculus of TACS that emerges when restricting ourselves
to urgent actions o and can—clock prefixing ¢ only, i.e., disregarding lazy actions
and must—clock prefixing. We start off by recalling some definitions and a key
result of [16].

Definition 3 (LV—preorder [16]). A relation R over P" is an LV-relation
if, for all (P,Q) € R and « € A:

1. P -% P implies 3Q". Q > Q' and (P',Q') € R.
2. Q % Q" implies AP’. P % P’ and (P, Q') € R.
3. P - P’ implies U(Q) CU(P) and 3Q".Q - Q' and (P',Q’) € R.

We write P 3, Q if (P,Q) € R for some LV-relation R, and call J, the LV-
preorder.

This definition is of an elegant simplicity, since an LV-relation essentially com-
bines bisimulation on actions with simulation on clock steps; the condition on the
inclusion of urgent sets had to be added to obtain a precongruence for parallel
composition.

We also introduced in [16] an amortised variant of the LV-preorder which,
in contrast to the amortised faster—than preorder of Def. 1, does not allow for
leading and trailing clock transitions when matching action transitions — just
as for the LV—preorder. Also, for matching clock transitions, the increase or
decrease of the credit is restricted.

Definition 4 (Amortised LV—preorder [16]). A family (R;);en of relations
over P is a family of amortised LV-relations if, for all i € N, (P, Q) € R;, and
a € A

1. P-% P implies 3Q". Q - Q' and (P',Q') € R;.

Q % @' implies IP". P %= P’ and (P',Q’) € R;.

P % P implies (a) 3Q". Q -~ Q’ and (P, Q") € R;, or
(b) i>0 and < ,Q) €ERiq.

4. Q@ % Q' implies (a) IP. P %5 P and (P',Q') € R, or
(b) (P,Q') € Riya.

(P,

w N

We write P2\ Q if

relations, and call 3 the amortised LV—preorder.

Q) € R; for some family (R;);eny of amortised LV—

An important result of [16] that relates the above preorders is the following.

Theorem 5 (Full abstraction [16]).
The LV—preorder 3, is the largest precongruence contained in mig

S~y ~0 °

The next theorem is the main result of this section and, because of 53’ C ggt,
generalises the above theorem.

Theorem 6 (Generalised full abstraction in TACS"").

The LV-preorder 3, is the largest precongruence contained in Egt.

Proof. According to Thms. 2 and 5 it is sufficient to establish (2")¢ C ¢

0 ~o =
Egt. The inclusion Elov - ,%gt is obvious from the definition of both preorders.
For proving (2p°)° C 2, we show that 22" =4 {(P, Q) | Cpa[P] 21" CrolQ]},

for i € N, Cpg[] =af -| px.7.(c.7.¢ + d.0) and a ‘fresh’ action d that is not
in the sorts of P and @), defines a family of amortised LV-relations. Note that,

. utyc aux
obviously, (Z,)° € 2, -

Let PE?UXQ, for some 7 € N. We have to check the four conditions of Def. 4:

1. P2 P R
Hence, Cpg[P] N Cpg[P']. Since Cpg|P] Ert Cpo|Q), there exist Q', k,1

such that Cpg[Q] 2fha, o Q' and Cpg[P] E?ikﬂ Q'. We observe that
CpolQ)] always offers an initial urgent 7, i.e., 7 € U(Cpg[Q)]), and that
— to deal with the case @« = 7 — the 7-derivative of the context enables
the distinguished urgent action d, which is not offered by Cpg[P’]; we con-
clude that k=I=0 and Q' = CpolQ'] for some Q' with Q %+ @Q'. In ad-
dition we obviously have sort(P’) C sort(P) and sort(Q’) C sort(Q), which
means by construction of the context Cpg[-] that Cpg[P’] E:t CpolQ’] im-
plies Cprg/[P’] E?t Cpio[Q']- In summary we have established the existence
of a @ such that @ - Q" and P’ 37" Q'
2. Q 5 Q"
Hence, CpglQ] —— Cpg|Q']. Because of Cpg[P] 2;.“ CpglQ] we know of

[e3 o l

the existence of ﬁ’, k.l such that k+i<i, Cpg[P)] o e, 13', and
P 5;{ w1 CPqlQ']. Again, due to the 7—derivative in the context enabling
the distinguished action d and since 7 € U(Cpg|.]), we have k=1=0 and P =
Cpq[P'] for a P' with P —* P'. As above we infer Cpio/[P'] 31" Cpry [Q].
Summarising, there exists some P’ satisfying P —~ P’ and P’ 27" Q.

3. P-% P
Hence, Cpg[P] can engage in the following three—step sequence of transi-
tions: Cpg[P] — P|(c.7.Hpg +d.0) -Z» P' | (.Hpg +d.0) —— Cpg[P'],
where Hpg =qf px.7.(c.7.x + d.0).
Starting with the premise Cpq[P] 2} Cpo|Q)] and the first step of Cpq[P]
above, as well as considering the urgent 7—actions in Cpg[-] and d being a
distinguished action, we find ourselves in one of the following two cases:

10

(a) CpolQ] -2+ Q' | (z.Hpg + d.0) for some Q' such that Q > Q' and
Pl(e.r.Hpg+d0)2}}, Q| (z.Hpq + d.0)
(b) CpqlQ] — Q| (g.1.Hpg + d.0) and, moreover, P | (o.7.Hpg —|—c_l.0),€l.lt
Q| (c.t.Hpg + d.0).
We consider each case in turn.
(a) The second step of Cpg[P], i.e., the clock transition, must be trivially
matched by Q' | (z.Hpg + d.0) since 7 € U(Q' | (z.Hpg + d.0)). Hence,
P’ | (r.Hpg + d.0) must have used one credit when performing its clock
transition and P’ | (z.Hpg + d.0) 5;.“ Q' |(z.Hpg + d.0).
(b) The second step of Cpg[P] can only be matched by either
i. a single clock transition Q | (¢.7.Hpg + d.0) L Q| (r.Hpg +d.0),
for some Q' with Q@ ™ @', and P’ | (z.Hpg +d.0) 3" Q' | (z.Hpg +
d.0); note that further clock transitions are impossible since the first
one makes the second urgent 7—action of the context available; or
ii. consuming one credit (only applicable if i>0), i.e., P'|(z.Hpg +
d.0) 3" Q| (c.x.Hpq +d.0).

3

In Cases (3a) and (3(b)i), the third step of Cpg[P] above can only be

matched by Q' | (1.Hpg +d.0) —— Cpg[Q'] such that Cpg[P’] E?t CpqlQ'],

because of the distinguished d-action and the r—actions of the context.

In Case (3(b)ii), the third step of Cpg[P] above implies, due to the dis-

tinguished d-action and the urgent r—actions offered by the context, that

either

1. Q|(g.1.Hpg + d.0) % Q'|(r.Hpg + d.0) —— CpglQ'] for some Q'
such that Q 2> Q' and Cpg[P’] E:t CpglQ']; or
2. Q|(e.1.Hpg + d.0) — Cpq|Q] and Cpq[P'] 2", Cpq|Q]. The latter

implies C'prg[P’] E?il Cpq|Q) since sort(P’) C sort(P).

Summarising, for Cases (3a), (3(b)i) and (3(b)ii.1), we have established the

existence of a Q' satisfying Q —— Q' and P’ E?UX Q’. For Case (3(b)ii.2) we

have i>0 and P’ 3*" Q.

Q-5 Q:

Hence, Cpg|[Q)] can engage in the following three-step sequence of transi-

tions: Cpo[Q] — Q| (¢.1.Hpq +d.0) =~ Q' | (z.Hpq +d.0) — CpqlQ'],

where Hpg is defined as above. Considering the first step of this sequence

and the premise Cpg[P] E?t CpglQ], we find ourselves in one of the following

two cases, again due to the 7— and d—actions of the context:

(a) Cpq[P] —— P|(c.r.Hpg + d.0), for which P|(c.r.Hpg + d.0) 2"
Q|(¢.z.Hpg +d.0).

(b) Cpg[P] consumes one additional credit after 7 (only applicable if i>0),
i.e. Cpg[P] — P|(a.7.Hpg + d.0) -2 P'|(1.Hpg + d.0) as well as

P'|(1.Hpg+d.0) 2", Q| (c.7.Hpq +d.0), where P’ is such that P "

P

We consider each case in turn.

(a) For matching the second step of the above three—step sequence, there
exist two possibilities:

11

i. P|(c.z.Hpg+d.0) does nothing and gains one credit, which leads to
P|(c..Hpo+d.0) 2}, Q'| (z.Hpg+d.0). The third step of Cpq[Q)]
is then matched by either

1. P|(¢.r.Hpg + d.0) = P'|(r.Hpg + d.0) —— Cpg[P'] and
CpqlP'] 3" Cpq|Q'], where P' is such that P ~" P’; note that
the 7—step can only be performed by the context as action d is
distinguished; or

2. P|(g.7.Hpg + d.0) —— Cpg[P] and Cpg[P] E?LCPQ[Q']; we
get Cpo/ [P] E?il Cpg[Q’] because of sort(Q') C sort(Q).

ii. P|(g.r.Hpg+d.0) 5P| (r.Hpg+d.0), where P -2, P’ such that
P'|(r.Hpg +d.0) 3" Q| (t.Hpg + d.0). Note that P | (c.7.Hpg +
d.0) cannot engage in more than one clock transition, due to the
availability of an urgent 7 in the context after the first clock transi-
tion. The third step of C'pg[Q)] can only be matched by P’ | (r.Hpg+
d.0) -~ Cpg[P’], because of the urgent T—actions and the distin-
guished action d in the context.

Summarising, in Cases (4(a)i.1) and (4(a)ii) we have shown the existence
of some P' with P = P’ and P’ 27" Q'. In Case (4(a)i.2) we have
established P Ejﬁ Q.

(b) Since P'|(z.Hpg + d.0) cannot perform any time step, it must match
the second step of Cpg[Q] by doing nothing; thus, we find ourselves in
Case (4(a)ii) again, which we had just settled. O

3.2 The MT—Preorder is Fully Abstract in TACS'

We turn our attention to the TACS sub-calculus TACS" in which only lazy
actions a and the must—clock prefix o are available, but not urgent actions and
the can—clock prefix. Although a o—prefix corresponds to exactly one time unit,
these prefixes specify lower time bounds for actions in this fragment, since ac-
tions can always be delayed arbitrarily. We first recall the faster—than preorder
introduced by Moller and Tofts in [20], to which we refer as Moller—Tofts pre-
order, or MT—preorder for short.

Definition 7 (MT-preorder [20]). A relation R over P is an MT-relation
if, for all (P,Q) € R and o € A:

. P - P’ implies 3Q/, k, P".Q 5" o, PP %" P and (P7,Q') € R.
. Q % @ implies IP'. P % P" and (P, Q') € R.
. P % P implies 3Q". Q - Q' and (P', Q') € R.
. Q@ % Q" implies IP'. P %5 P" and (P, Q") € R.

=W N

We write PJ_ Q if (P,Q) € R for some MT-relation R, and call 2 . the
MT-preorder.

12

It is easy to see that 2 . is indeed a preorder and that it is the largest MT—
relation. We have also proved in [15] that 3 . is a precongruence for all TACS"
operators. The only difficult and non—standard part of that proof concerned
compositionality regarding parallel composition and was based on the following

commutation lemma.

Lemma 8 (Commutation lemma [15]). Let P, P’ € P! and w € (AU{c})*.

If P— — P', for keN, then 3P".P — — P" and P' 3 P".

This lemma holds as well within the slightly more general setting of Sec. 5.2, in
which also can—clock prefixes are allowed. We also introduced in [15] an amortised
variant of the MT—preorder, which is however less abstract than the amortised
faster—than preorder of Def. 1.

Definition 9 (Amortised MT—preorder [15]). A family (R;);cy of relations
over P!t is a family of amortised MT-relations if, for all i € N, (P, Q) € R;, and
a € A
«@ . . o k; (07
. P — P’ implies 3Q",k.Q — — Q" and (P",Q’) € Ritk-
(07 . . . g k; o
. Q@ — Q' implies 3P’ k<i. P — — P’ and (P, Q') € R;_.
g . . . o k
. P — P’ implies 3Q’, k>0. k>1—i, Q — @', and (P, Q") € Ri—11k.
g . . . [eg k
. Q@ — Q' implies 3P, k>0. k<i+1, P — P’ and (P",Q’) € Rit1—k-

- W N

We write ng’t Q if (P,Q) € R; for some family (R;);en of amortised MT—
mt

relations, and call 2

the amortised MT—preorder.

When comparing Defs. 9 and 1, it is obvious that Eglt C Eg. While Conds. (3)
and (4) coincide in Defs. 9 and 1, Conds. (1) and (2) do not allow clock transitions
to trail the matching a—transition — just as it is the case in Cond. (1) in Def. 7.
We recall the following full-abstraction result from [15].

Theorem 10 (Full abstraction [15]).
The MT—-preorder 3., is the largest precongruence contained in o

~mt ~0 -
We generalise this full-abstraction result here by replacing Eront by ,%lot.

Theorem 11 (Generalised full abstraction in TACS').
The MT—-preorder 3., is the largest precongruence contained in m e

~mt ~0-

The proof of this theorem requires the following proposition, which closes the
gap between Conds. (1) of Defs. 9 and 1.

Proposition 12. In a setting with lazy actions only, Cond. (1) of our definition
of 2, (cf. Def. 1) can be replaced by

(1) P — P implies 3Q", k.Q — — Q' and (P',Q’) € Riyk.

13

without changing the preorder, i.e., 3, = 56, when referring to the family of
faster—than relations using Cond. (1°) instead of Cond. (1) as (Ez)ieN.

Proof. The inclusion 56 C <, is obvious, as Cond. (1) is less stringent than
Cond. (17). For establishing the other inclusion we show that (2,)ien is an amor-
tised faster—than family in the sense of Cond. (1°). It suffices to consider the case
P3,Q and P 5 P’ for some P’ and a, as Conds. (2)—(4) are the same for
both faster—than families. R

In this case, the definition of 3, yields the existence of Q’,Q’, k,l such that
Q o,k Q - o) Q" and P'2, , Q" The commutation lemma, Lemma 8,

then provides a Q" satisfying @' 2% Q" and Q' 3, Q" Since T =

(e € g%, by Thm. 10, and 35° C 3, we have Q' 2, Q". Further,

by the property &, o<, C Rntn for any m,n € N, we conclude from

PR @ Q" that P, Q". Summarising we have established the ex-

K+l
istence of a Q” such that Q —— - Q" and P’ 5i+(k+l) Q" as desired. O

For the purposes of this section we only consider 26 on processes in TACS!,
We are now able to prove Thm. 11.

Proof. [of Thm. 11] Because of Thm. 10 and Prop. 12, it suffices to show
(Eg’t)c = (56)6. According to Thm. 2 this can be done by establishing (Eg)c C
,%gnt C 2’0. The inclusion ,%glt C 3’0 is obvious since Cond. (2) of Ezr.“t is stronger
than Cond. (2) of 2;, for any i € N. The other inclusion (Eg)c C Eglt follows
from the fact that 27" =a¢ {(P,Q) | Cpq[P] 2, CpolQ]|11'd.0} is a family of
amortised MT-relations in the sense of Def. 9. Here, Cpg[-] =ar - | pz. 0.(d.0 | z),
with d being a distinguished action not in the sorts of P and @Q. Moreover, IT%d.0
denotes 7 replications of the parallel component d.0; for notational convenience
we will identify some process _| 0 with _ in the remainder of this paper. Again,
(,%lo)C C 25 is obvious.

We now prove that (Ejux)ieN is indeed a family of amortised MT-relations.
Let P E,?ux @ be arbitrary; we have to check the four conditions of Def. 9:

1. P P ' R
Hence, Cpg[P] = Cpg[P']. Since P 37" Q we know of some @', k such

. o ko A
that Cpo[Q] | I1'd.0 ="~ Q' and Cpq[P') 3.,
~ . ok«

struction, this implies Q' = Cpg[Q’] | IT'T*d.0, for a Q" with Q —— - Q.
Because of sort(P’) C sort(P) and sort(Q’) C sort(Q), it also follows that
Prarn Q.

2. Q -5 Q"
Hence, Cpq[Q] | IT'd.0 & Cpo[Q] - CpolQ']. Since (i) P 33 Q, (ii) d is
a distinguished action, and (iii) Cpg[P] has only ¢ credits available, Cpg[P]

@’. By the context’s con-

can only match the ¢ d-transitions by Cpg [P](LiﬂiCPQ [P"] (essen-
tially), where P 2. P" and CpglP"] 56 CprolQ]-

14

Since Cpg[P”] has no credits available, the a—transition above must be
matched by an a-step of P” without any preceding or trailing clock tran-
[e3

sitions, i.e., Cpg[P"] - Cpg[P'] for some P’ such that P” - P’ and
Cpq[P'] 2 CpolQ']. As above we may conclude P o te, P’, for some P’
with P’ 257 Q.

3. P %L P
Hence, Cpg[P] %> Cpg[P']|d.0 4, Cpq[P']. Because of P 3" Q, the

) o k ~ ~
clock transition must be matched by Cpg[Q]|II'd.0 — Q' for some Q’
and k>1—i such that Cpg[P’]|d.0 5;71“6 Q’'. Due to the construction of

~ . k
the context, Q' = Cpq[Q"]| IIT*d.0, for some Q” with Q Q.
For matching the d—transition above we know of the existence of)", such

~ i ~ ~
that @' ~=-% Q" and CpqlP'| 2] _,,,,, @". Considering the definition

. o 1 ,
of the context, this implies Cpg[Q"] | II'T*d.0 = Cpq[Q']| T+ *!d.0 -,

. k !
CpolQ']| T F+1=14.0, for some process Q' satisfying Q@ 2 Q" % Q'

and P’ E?E){+(k+l) Q@'. Moreover, k+1 > 1—i since k > 1—i.

4. Q-5 Q"

Hence, CpolQ]|IT'd.0 -5 CpolQ] = CpolQ']]d.0 -5 CpolQ'). As

we have PJY™Q, the i d-transitions must (essentially) be matched by

CpQ[P](L»i»)i Cpo[P"], for some P” which satisfies P -%' P” and

CpglP"] 3’0 Cpg|Q)]. Note that d is a distinguished action and that Cpg[P]

has only ¢ credits available. The clock transition above can potentially be

matched in two ways:

(a) Cpo[P"] -%5 Cpq[P']|d.0, for a process P’ such that P” "5 P’ and
CpqlP']|d.0 ,%IO CpqlQ']]1d.0. Due to the lack of credits, the final d-

transition above must be matched by Cpg[P’]|d.0 <, Cpg[P’'] such
!/
that CPQ [Pl] 50 CPQ [QI]

(b) Cpq [P”],%/lC’pQ [@Q']]d.0, i.e., the left-hand side decides to do nothing
and thus gain one credit. This credit must be spent immediately when
matching the final d-transition above, since d is a distinguished ac-
tion. Hence, Cpg[P"] - Cpq[P']|d.0 4, Cpg[P'], for some P’ with
P" %5 P' and Cpq[P'] 3’0 CpglQ']. Note that Cpg[P"] cannot engage
in more than one clock transition since it has only a single credit avail-
able.

Summarising, we have shown in both cases the existence of some P’ such

that P -2~ P’ and, because of sort(P’) C sort(P) and sort(Q") C sort(Q),
P 3MQ. O

Thms. 6 and 11 testify not only to the elegance of the amortised faster—than
preorder as a very intuitive faster—than preorder, but also as a unified starting
point to approaching faster—than relations on processes.

15

4 Full Abstraction in TACS

Having identified the largest precongruence contained in the amortised preorder
for the sub—calculi TACS" and TACS!" of TACS, it is natural to investigate
the same issue for the full calculus.

For a calculus with must—clock prefixing and urgent actions, Moller and Tofts
informally argued in [20] that a precongruence relating bisimulation—equivalent
processes cannot satisfy a property one would, at first sight, expect from a faster—
than preorder, namely that omitting a must—clock prefix should result in a faster
process. This intuition can be backed up by a more general result within our
setting, which includes must—clock prefixing and urgent actions, too. Our result
is not just based on a specific property; instead, we have a semantic definition
of an intuitive faster—than as the coarsest precongruence refining the amortised
faster—than preorder, and we will show that this precongruence degrades to a
congruence, rather than a proper precongruence. This congruence turns out to
be a variant of timed bisimulation, whence we start off by recalling the standard
definition of timed bisimulation [6, 18] first.

Definition 13 (Timed bisimulation). A relation R over P is a timed bisim-
ulation relation if, for all (P, Q) € R and « € A:

1. P-% P’ implies 3Q".Q % Q" and (P',Q’) €
2. P -Z P implies 3Q". Q %> Q' and (P', Q') € R.
3. Q % Q" implies AP’. P % P’ and (P, Q') €
4. Q@ % Q' implies 3P'. P %5 P’ and (P, Q') €

We write P ~; Q if (P,Q) € R for some timed bisimulation relation R, and
call ~; timed bisimulation.

It is obvious that timed bisimulation ~; is an equivalence and that it refines the
amortised faster—than preorder J,. However, ~ is not a congruence for TACS
since it is not compositional for parallel composition. To see this, consider the
processes a.0+b.0 2 0.a.0+0.0. When putting them in parallel with process b.0
the relation ~o
transition while (¢.a.0 + 5.0)|b.0 cannot, as the clock transition that would
enable action a is preempted by the urgent communication on b. We thus have

to refine timed bisimulation and take initial urgent action sets into account.

is no longer preserved since (a.0 + b.0) | 5.0 can engage in an a—

Definition 14 (Urgent timed bisimulation). A relation R over P is an
urgent timed bisimulation relation if, for all (P,Q) € R and a € A:

1. P-% P’ implies 3Q".Q % Q" and (P',Q’) € R.

2. P -Z P implies U(Q) CU(P) and 3Q’.Q = Q" and (P, Q') € R.

3. Q@ % Q" implies IP’. P % P’ and (P, Q') € R.

4. Q@ %5 Q' implies U(P) CU(Q) and IP'. P %5 P’ and (P', Q') € R.
We write P ~¢ Q if (P,Q) € R for some urgent timed bisimulation relation R,
and call ~ urgent timed bistimulation.

16

We have used set inclusion in Conds. (2) and (4) above in analogy to Def. 3. Tt
is important to note the following: if P 2> P’, then Q@ -~ @’ by Cond. (2),
so that Cond. (4) becomes applicable. Therefore, we could just as well require
equality of urgent sets in Conds. (2) and (4).

Urgent timed bisimulation is the desired refinement of timed bisimulation,
as the following theorem shows.

Theorem 15 (Full abstraction).
Urgent timed bisimulation =~ is the largest congruence contained in ~y.

Proof. The proof follows line-by-line a similar proof in our previous work (cf.
Theorem 19 in [16]), where we showed such a statement for a notion of faster—
than precongruence (the LV—preorder of Def. 3) and faster—than preorder. Their
definitions coincide with Defs. 13 and 14, respectively, except that they leave out
Cond. (4). However Cond. (4) is fully symmetric to Cond. (3) and thus poses no
problem for adopting the proof of [16].

We first convince ourselves that ~; is indeed a congruence. All operators
of TACS are as in the setting of [16], with exception of the must—clock and
lazy—action prefix operators, for which we need to show that P ~; @ implies
o.P ~ 0.Q and a.P ~; «.Q. This is obvious, however, since, e.g., in the
first case, the initial clock transition of o.P can be matched by the initial clock
transition of ¢.Q), and since no action transitions can be performed.

Establishing that ~ is the largest congruence contained in ~; now follows
exactly the lines of [16]. In a nutshell, because ~; is a congruence contained in ~y,
we have ~; C ~¢{. It remains to show that P ~; @, for processes P,) € P,
whenever C[P] ~¢ C[Q)] for all TACS contexts C[.]. To do so, it suffices to
consider the relation

~E =gt {{P,Q) | C[P] ~t C,[Q] for some finite £ 2 sort(P) U sort(Q)}.

Here, Cglz] =ar x| He and Hp =qf p.(e.04+) {7.(>4c, d.0+dyp.x) | L C L}).
Note that H. is well-defined due to the finiteness of £. The actions e and d; and
their complements are taken to be ‘fresh’ actions not in the sorts of P and Q.
The proof now proceeds as in [16] by establishing that ~2"* is an urgent timed

bisimulation relation. ad
We can now state and prove the main result of this section.

Theorem 16 (Full abstraction in TACS).
Urgent timed bisimulation ~ is the largest (pre—)congruence contained in ~o-

Proof. By Thms. 15 and 2, it is sufficient to show that 58 C~; C 2, Since the
inclusion ~¢ C 3 immediately follows from Defs. 13 and 1, it remains to show
that 35 C~¢. To do so, we prove that ~* =4 {(P,Q)|Cpq[P] 2, CrqlQ]},
where Cpq[-] =at (-[Hpq) \sort(PQ), Hpq =dt k. 3 4cson(pg) &-(T-+dy-7)+
7.(d.x + o.1.x), and sort(PQ) =a¢ sort(P) Usort(Q) with d,,d ¢ sort(PQ), is a
timed bisimulation relation. (Again, (3,)¢ € ~*"* is obvious.) Let P ~*"* () be
arbitrary; we consider the following cases:

17

1. P P
Hence, Cpq[P] —— (P'|(z.Hpq + dy.-Hpq)) \ sort(PQ) —— Cpg[P’]. Since
CpqlP] 2, CprqlQ], there exist @”,kz,l such that CpglQ] o,) @”
and (P'|(z.Hpq + dy-Hpq)) \ sort(PQ),, ;@ Due to the placement
of urgent 7’s in the context and the fact that d, is a distinguished action,
we conclude k=I=0 and Q —— Q’, for some Q' with @” = (Q'|(z.Hpg +

QQ.HPQ)) \ sort(PQ).
For matching the 7—transition of (P’ | (r.Hpq +d,-Hpq)) \ sort(PQ) above

~ ~ k U~
we similarly know of the existence of Q’, k', !’ such that Q" - — % Q'

and Cpq[P'] 2, @’. Again, because of the placement of urgent 7’s in the
context and the fact that d, is a distinguished action, we may infer k'=1'=0
and Q' = Cpp[Q'].
Further, CPQ [P/] 50 CPQ [Ql] implies OP/Q/ [P/] ,.%0 CP/Q/ [Ql], when consid-
ering sort(P’) C sort(P), sort(Q’) C sort(Q), and the construction of the
context. Note that additional summands in Hpg cannot influence transi-
tions due to the restriction. Hence, we have shown the existence of a @’
satisfying Q —— Q' and P’ ~2"x Q.
2. P P
Hence, Cpg[P] —— Cpg[P']. Since the context has an urgent 7 enabled
and since d and the d, are distinguished actions, the premise P ~*"* ()
implies that Cpg[Q] —— CplQ'] and Cpq[P'] 2,Cpq|Q'], for some Q'
with Q@ — Q’. As above, Cpg[P’] 2o Cpq[Q'] implies P" ~¥ Q'
3. P2 P
Hence, Cpg[P] —— (P|(d.-Hpg + 0.7.Hpg)) \ sort(PQ) — (P'|(d.-Hpq +
T.Hpgq)) \ sort(PQ) —— Cpg[P'] by our operational rules.
Because of Cpq[P] 2, Cpq[Q] we know of the existence of @”, k, 1 satisfying
CrolQ) =" ' " and (P| (d-Hpo+0.7.Hpg)) \sort(PQ) 2y, 11, Q-
Taking into account the urgent 7’s initially enabled by the context and after
the context’s o—prefix (and action d), we may infer k = 0 and [€ {0,1},
respectively. For matching the above second step, i.e., the clock—transition,
we distinguish the cases I =1 and [= 0.
(a) Casel=1:Here, Q - Q' and Q" = (Q'| (d.-Hpg+1.Hpg)) \sort(PQ)
for some Q.
While @” cannot match the second step of the left hand-side, i.e., the
clock transition, there is one credit available. Hence, (P’|(d.-Hpg +

£.Hpo)) \ sort(PQ) 3 (@' | (d-Hp +1.Hpq)) \ s0rt(PQ).
(b) Case l =0: Here, Q" = (Q|(d.Hpg + 0.7.Hpg)) \ sort(PQ).
The matching of the clock transition of the left—hand side implies the

1"

~ ~ [N
existence of Q" and I’ such that Q" > Q" and (P'|(d.Hpg +
1.Hpq)) \ sort(PQ) 2, Q. Since the context has an urgent 7-action

enabled after performing its o—prefix we may further conclude "’ = 1.
Hence, Q 2> Q' and Q" = (Q'| (d.-Hpg +1.Hpg)) \sort(PQ) for a suit-

18

able Q" and again (P'|(d.-Hpq + 7.Hpq)) \ sort(PQ) 2, (Q" | (d-Hpq +

7.Hpg)) \ sort(PQ).
When matching the third step above, i.e., the second 7—transition, and since

(P'|(d-Hpq+1.Hpq)) \sort(PQ) 2, (Q' | (d-Hpq +1.Hpq)) \ sort(PQ), we
may infer Q' &’,0' such that (Q'|(d.Hpo + 7.Hpq)) \ sort(PQ) —2" T

g

ot Q' and CpqlP'] 2, Q'. Note that the placement of urgent r’s in the
context necessarily implies k'=I'=0, whence @’ = Cpg|Q’] due to action d.
Summarising, we have established the existence of a Q' such that Q -2 Q’
and P/~ Q).

4. Q 5 Q"
Hence, Cpq|Q] —— (Q' | (z.Hpo + d,-Hpg)) \ sort(PQ) —— Cpq[Q']. Since
Cpq[P]2,CprqlQ] and thus no credits are available to Cpq[P], we have
CpglP] = P" and P 2o Q' (z.Hpg +d,.-Hpq)) \ sort(PQ). Because Qs
move to)’ enables the distinguished action d, within the context, we may
further infer P" = (P'|(z.Hpq + d,-Hpq)) \ sort(PQ), for some P’ with
PP

The second step of the right—hand side, i.e., the 7—transition, can only be
T

matched as follows: P —— P’ and P’ 2, CpqlQ'], where P = Cpo[P'].
This is due to the fact that no credits are available to P and that d, is a
distinguished action. Summarising, we have established the existence of a P’
such that P - P’ and P’ ~*"* ().

5.Q Q"
Hence, Cpq[Q] —— Cpq|Q']. Because Cpg[P] 3, CpqlQ)], ie., no credits are
available to Cpq[P], and because d, d, are distinguished actions, we know
of the existence of some P’ satisfying CpqlP] — P, P 2o Crq(Q'], and
P = Cpg[P'] for some P’ such that P —— P’. Thus, P’ ~" (', too.

6. Q= Q"
Hence, Cpg[Q] —— (Q| (d-Hpg + 0.1.Hpg)) \ sort(PQ) — (Q' | (d.-Hpg +
7.Hpq)) \ sort(PQ) — Cpq[Q'].
Since Cpq[P] 2, Crq[Q]; i-e., Cpq[P] has no credits available, we know of
the existence of a P such that Cpg[P] — P" and P"” 20 (Q(d-Hpg +
o.1.Hpg)) \ sort(PQ). Moreover, P" = (P| (d.Hpg +o0.2.Hpq)) \ sort(PQ)
since d is a distinguished action.
For matching the second step of Cpg[Q)] above, i.e., the clock transition, the

following two possibilities arise:
(a) The left-hand side process does nothing and gains one credit, whence

P’ =4t (P|(d.-Hpg+o0.7.Hpqg)) \sort(PQ) 2, (Q'| (d.-Hpqg +1.Hpg)) \
sort(PQ).

When matching the third step of Cpg|[Q] above and noting that d is a
distinguished action and that one credit is available, we obtain some P
satisfying P” -Z» T P/, P/ 2o CrqlQ], and P = CpglP'], for a P’
such that P %5 P’.

19

(b) The left-hand side engages in a clock transition, too, whence P -

P" = (P'|(d.Hpqg +1.Hpq)) \ sort(PQ), for a P’ such that P~ P,
Matching the third step of C'pg[Q] above and observing that the left—

hand side has still no credit available, there must exist a P satisfying
P’ PP 20 CrqlQ], and P’ = Cpq[P'], for some P’ with P RN

P
Summarising, we have established in both cases the existence of a P’ such
that P -2 P’ and P’ ~2" (). 0

Hence, not all faster-than settings on the basis of the amortised faster—than
preorder admit a faster—than precongruence that is a proper precongruence. As
shown for the full TACS calculus, it is possible that the obtained fully—abstract
precongruence degrades to a congruence.

5 Discussion

The aim of this section is to investigate when exactly the amortised faster—than
preorder, when closed under all contexts, collapses from a proper precongruence
to a congruence.

We have shown in the TACS sub—calculus with only must—clock prefixing
and lazy actions (cf. Sec. 3.1) and in the sub—calculus with only can—clock pre-
fixing and urgent actions (cf. Sec. 3.2) that indeed proper precongruences are
obtained: the MT—preorder and the LV—preorder, respectively. However, when
combining both clock prefixes as well as lazy and urgent actions, then the result
is a congruence: urgent timed bisimulation (cf. Sec. 4). We desire to explore
where exactly this borderline lies, by charaterising the largest precongruence
contained in the amortised faster—than preorder for other combinations of can—
/must—clock prefixes as well as urgent/lazy actions. While some of the resulting
settings might not appear natural, others are clearly practically relevant, and
this will be pointed out when analysing each combination in turn.

5.1 Can—Clock Prefixing and Urgent+Lazy Actions

Here we find ourselves in the sub-calculus TACS"" investigated in Sec. 3.1,
where additionally lazy actions may be present. Lazy actions might be used
for modelling the potential of errors: many errors in practice can occur at any
moment and thus cannot be associated with maximal delays.

Corollary 17 (Full-abstraction in the can/urgent+lazy setting).
The LV-preorder 2, is the largest precongruence contained in 2, when con-
sidering TACS processes with can—clock prefixes only.

Hence, Thm. 6 of Sec. 3.1 remains valid in the presence of lazy actions. This can
be seen by checking the proof of Thm. 6 as well as all the proofs of [16] on which
it depends.

20

5.2 Must— and Can—Clock Prefixing and Lazy Actions

The setting here is the one of TACS", where can—clock prefixes are added. This
does not change the result we obtained for the TACS™" setting (cf. Thm. 11 in
Sec. 3.2), when extending the definition of the MT-preorder 2 . (cf. Def. 7)
from processes in P'* to the class of processes considered here.

Theorem 18 (Full abstraction in the must+can/lazy setting).
The MT-preorder 3, is the largest precongruence contained in 2, when con-
sidering TACS processes with lazy actions only.

This statement can be deduced by inspecting the proofs of Sec. 3.2, i.e., the
proof of Thm. 11 and the proofs of the underlying statements adopted from [15],
in the presence of g—prefixes. The only parts that are not straightforward con-
cern checking whether the MT-preorder 2, is also compositional for can—clock
prefixes and whether the commutation lemma, Lemma 8, still holds. To do so
we first need to adapt the syntactic faster—than preorder > of [15] by adding the
clause P = ¢.P.

Definition 19 (Syntactic Faster—Than Preorder). The relation > C PxP
is defined as the smallest relation satisfying the following properties, for all
PP,Q.Q €P.

Always: (1) P> P (2) (@) P> o.Pand (b) P> o.P
P ~P Q +Q: (3) P|Q - P|lQ 4) P+Q ~P+Q
(5) PP\ L > P\ L (6) P'[f] = P[f]
P’ > P, z guarded: (7) P'[pz. P/x] > px. P

This syntactic faster—than relation possesses the following important property
which is adopted from Lemma 5(2) of the full version of [15] and also used in
the next section.

Lemma 20. For any P,P’, if P -2 P’ then P' = P.

The proof of this lemma is by a straightforward induction on the structure
of P. Also the other parts of Lemma 5 of the full version of [15] hold under the
modified syntactic faster—than preorder, in particular P’ = P implies P’ P
for processes P’, P in the TACS fragment we consider in this subsection. For
the proof of Lemma 5 it is important, that these processes satisfy the laziness
property, i.e., each of them can perform a time step. We can now prove that the
MT-preorder is compositional for can—clock prefixes, in the TACS sub—calculus

that is restricted to lazy actions only.

Lemma 21. Let P,Q be TACS processes with lazy actions only. Then P 3 Q
implies o.P 3. 0.Q).

21

Proof. The only nontrivial case concerns o.P —— P’ for some action o and
process P. By our operational rules we know that this can only be the case if

k
P % P'. Since P2 . Q, there exists some Q', P”, k such that Q 5 Q)

k k1
P 2" P’ and P”2 . Q. Hence, 0.Q - - @Q'. Further, due to the
mt
laziness property, there exists a process P” such that P” —Z» P". As seen

above (cf. Lemma 20 and the property that R’ >~ R implies R’ J . R for any

.. . k+1 .
processes R', R), this implies P J = P". Hence, P’ 277" P" and, by transi-

tivity, P 2 Q" ad
Moreover, since the correctness of the commutation lemma is only based on
Lemma 5 of the full version of [15], the laziness property as well as the time—
determinism property, the commutation lemma obviously remains valid even in
the presence of can—clock prefixing.

5.3 Can—Clock Prefixing and Lazy Actions

This combination is one that does not appear to be intuitive. If every action can
delay its execution, additional potential delays specified by can—clock prefixes
seem irrelevant and can be omitted (cf. Prop. 22). Further, if every delay specified
by a clock prefix can indeed be omitted, then it appears that delays are not
relevant at all and may thus be safely ignored (cf. Thm. 24).

Proposition 22. P ~; 0.P for all TACS processes P with can—clock prefizes
and lazy actions only.

Proof. Since P > ¢.P according to Def. 19(2b), it is sufficient to show that >,
when restricted to processes, is a timed bisimulation relation. This is done by
induction on the length of inference over >. The only interesting case concerns
P> o.P:

P -2 P’ implies ¢.P -*+ P’ by Rule (uPre) and P’ = P’ by Def. 19(1).
o.P -2 P implies P -+ P’ by Rule (uPre) and P’ = P’ by Def. 19(1).

P -Z P’ implies ¢.P %+ P by Rule (tuPre) and P’ = P by Lemma 20.
o.P —Z P. Because of the laziness property, there exists some P’ with
P % P'. By applying Lemma 20 we obtain P’ > P.

= =

All other cases only involve a straightforward application of the induction hy-
pothesis. a

Because of the irrelevance of timed behaviour, timed bisimulation ~ coincides
with standard bisimulation ~ [18] — where clock transitions are ignored — in
the setting considered in this section.

Lemma 23. ~ = ~; on TACS processes P with can—clock prefizes and lazy
actions only.

22

Proof. The proof of the non—trivial inclusion “P ~ @ implies P ~; Q7 is
straightforward when first stripping the processes P, Q off their o—prefixes while
preserving timed bisimulation, and thus standard bisimulation, according to
Prop. 22. a

As expected, the amortised faster—than preorder, when closed under all contexts,
degrades to standard bisimulation in this setting.

Theorem 24 (Full abstraction in the can/lazy setting).
Standard bisimulation ~ is the largest precongruence contained in 2., when

~Q’

considering TACS processes with can—clock prefizes and lazy actions only.

Proof. The inclusion ~ C 58 is obvious since ~ = ~ C ~o and since ~ = ~y
is a (pre—)congruence. To prove the inverse inclusion 58 C ~ we establish the
stronger statement 50 C ~.

Let P2, Q. Because of Prop. 22 we can remove all g—prefixes of P and Q
to obtain P ~¢ P and @ ~¢ @, respectively, implying]350 @ Now, p ~t @
follows since | ;o 2, is a timed bisimulation relation on processes without can-—
clock prefixes and only lazy actions; this property is straightforward since time
steps are always possible and do not change process terms other than unfolding
recursion. N N

Summarising, we have P ~; P ~; Q ~; @, i.e., P ~¢ Q. Lemma 23 now

yields P ~ @, as desired. a

To conclude, it should be noted that Prop. 22 does not hold in the presence
of must—clock prefixes. For example, 0.0.a.0 —— ¢.a.0 and 0.a.0 - a.0, but
obviously ¢.a.0 # a.0.

5.4 Must—Clock Prefixing and Urgent Actions, & More

For the full algebra TACS, we have shown in Sec. 4 that the largest precongru-
ence contained in the amortised faster—than preorder is urgent timed bisimula-
tion (cf. Thm. 16). Full TACS combines must— and can—clock prefixing with lazy
and urgent actions. When leaving out either lazy actions, or can—clock prefixes,
or both, the result remains valid, as can be checked by inspecting the proofs of
Sec. 4. Essentially, the reason is that the context constructed within this proof
uses neither lazy actions nor can—clock prefixes.

Most interesting is the case when we are left with must—clock prefixing and
urgent actions only. This setting coincides with the one of Hennessy and Regan’s
well-known Timed Process Language [13], TPL, in terms of both syntax and op-
erational semantics, when leaving out TPL’s timeout operator; we refer to this
calculus as TPL™. It is important to note that, for TPL™, urgent timed bisim-
ulation is the same as timed bisimulation; this is because all actions are urgent,
and the bisimulation conditions on actions imply that equivalent processes have
the same initial (urgent) actions.

However, adding either can—clock prefixing or lazy actions to TPL™ leads to
a more expressive calculus than TPL™. For example, the process ¢.7.P in the

23

setting must+can—clock prefixing and urgent actions can engage in both a clock
transition and a 7-transition, and the same applies to process 7.P. This semantic
behaviour is incompatible with the maximal-progress property in TPL™, and
indeed in full TPL, bearing in mind that every action is urgent.

6 Related Work

Relatively little work has been published on theories that relate processes with
respect to speed. This is somewhat surprising, given the wealth of literature on
timed process algebras [6] and the importance of reasoning about time efficiency
in system design [17].

Early research on process efficiency compares untimed CCS-like terms by
counting internal actions either within a testing—based [21] or a bisimulation—
based [3, 4] setting. Due to interleaving, e.g., (7.a.0 | 7.@.b.0) \ {a} is considered
to be as efficient as 7.7.7.0.0, whereas (0.a.0 | 0.a.b.0)\{a} ((¢.a.0 | 0.@.b.0)\{a})
is strictly faster than 0.0.7.6.0 (¢.0.7.b.0) in our setting.

The most closely related research to ours is obviously the one by Moller and
Tofts on processes equipped with lower time bounds [20] and our own on pro-
cesses equipped with upper time bounds [16]. The work of Moller and Tofts has
recently been revisited by us [15] and completed by adding an axiomatisation
for finite processes, a full-abstraction result, and a “weak” variant of the MT—
preorder that abstracts from the unobservable action 7. Our work on upper time
bounds [16] features similar results for the LV—preorder. In both papers [15, 16],
the chosen reference preorders for the full-abstraction results are less abstract
than the amortised faster—than preorder advocated here. Although a couple of
these reference preorders borrowed some idea of amortisation (cf. Defs. 4 and 9),
they were somewhat tweaked to fit the LV—preorder and the MT-preorder, re-
spectively. Thus, Thms. 6 and 11 are indeed significant generalisations of the
corresponding theorems in [16] and in [15] (cf. Thms. 5 and 10), respectively.

Most other published work on faster—than relations has focused on settings
with upper time bounds and on preorders based on De Nicola and Hennessy’s
testing theory [11]. Initially, research was conducted within the setting of Petri
nets [23, 24], and later for the Theoretical-CSP-style process algebra PAFAS [9].
An attractive feature when adopting testing semantics is a fundamental result
stating that the considered faster—than testing preorder based on continuous—
time semantics coincides with the analogous testing preorder based on discrete—
time semantics [24]. It remains to be seen whether a similar result holds for our
bisimulation—based approach.

Last, but not least, Corradini et al. [10] have introduced the ili-timed-but—-
well-caused approach for relating processes with respect to speed [2, 12]. This
approach allows system components to attach local time stamps to actions. How-
ever, as a byproduct of interleaving semantics, local time stamps may decrease
within action sequences exhibited by concurrent processes. The presence of these
“ill-timed” runs makes it difficult to relate the faster—than preorder of Corradini
et al. to ours.

24

7 Conclusions and Future Work

In this paper we proposed a general amortised faster—than preorder for uni-
fying bisimulation—based process theories [15, 16, 20] that relate asynchronous
processes with respect to speed. Our amortised preorder ensures that a faster
process must execute each action no later than the related slower process does,
while both processes must be functionally equivalent in the sense of strong bisim-
ulation [18].

Since the amortised faster—than preorder is normally not closed under all
system contexts, we characterised the largest precongruences contained in it for a
range of settings. The chosen range is spanned by a two—dimensional space, with
one axis indicating whether only must—clock prefixes, only can—clock prefixes, or
both are permitted, and the other axis determining whether only lazy actions,
only urgent actions, or both kinds of actions are available. In this space, the
settings of Moller/Tofts [20], which is concerned with lower time bounds, and
of Luttgen/Vogler [16], which is concerned with upper time bounds, can be
recognised as “must/lazy” and “can/urgent” combinations, respectively. Since
all reference preorders chosen in [15, 16] are less abstract than the amortised
faster—than preorder, the results of this paper strengthen the ones obtained for
both the Moller/Tofts and the Liittgen/Vogler approach. The following table
summarises our findings for each combination of clock prefix and action type,
i.e., each entry identifies the behavioural relation that characterises the largest
precongruence contained in the amortised faster—than preorder.

Lazy Urgent Lazy+Urgent
Must |MT-preorder| Timed bisimulation |[Urgent timed bisimulation
Can Bisimulation LV-preorder LV-preorder
Must+Can|MT—preorder|Urgent timed bisimulation|Urgent timed bisimulation

The table shows that the amortised faster—than relation degrades to timed
bisimulation as soon as must—clock prefixes and urgent actions come together.
In this case, which includes the established process algebra TPL [13], one may
express time intervals by equipping actions with both lower and upper time
bounds. Moreover, when extending the Moller/Tofts approach by can—clock pre-
fixing or the Liittgen/Vogler approach by lazy actions, the MT—preorder and the
LV—preorder, respectively, remain fully—abstract.

Future work shall investigate decision procedures for the MT—preorder and
the LV—preorder, respectively, in order for them to be implemented in automated
verification tools, such as the Concurrency Workbench NC [8]. This is of partic-
ular interest since bisimulation semantics lends itself to more efficient algorithms
than testing semantics [1], bearing in mind that most related work on faster—
than relations had focused on testing—based, rather than bisimulation—based,
preorders.

25

References

(1]
2]
3]
[4]

[5]
[6]

[7]
8]

[9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]
21]
22]
[23]

24]

S. Abramsky. Observation equivalence as a testing equivalence. T'CS, 53:225-241,
1987.

L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inform.,
33(4):317-350, 1996.

S. Arun-Kumar and M.C.B. Hennessy. An efficiency preorder for processes. Acta
Inform., 29(8):737-760, 1992.

S. Arun-Kumar and V. Natarajan. Conformance: A precongruence close to bisim-
ilarity. In STRICT 95, Workshops in Comp., pp. 55-68. Springer-Verlag, 1995.
E. Badouel and P. Darondeau. On guarded recursion. 7'C'S, 82(2):403-408, 1991.
J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Monographs
in Theoret. Comp. Sc. Springer-Verlag, 2002.

J.A. Bergstra, A. Ponse, and S.A. Smolka, eds. Handbook of Process Algebra.
Elsevier Science, 2001.

R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In CAV 96,
vol. 1102 of LNCS, pp. 394-397. Springer-Verlag, 1996.

F. Corradini, M. Di Berardini, and W. Vogler. PAFAS at work: Comparing the
worst-case efficiency of three buffer implementations. In APAQS 2001, pp. 231—
240. IEEE Computer Society Press, 2001.

F. Corradini, R. Gorrieri, and M. Roccetti. Performance preorder and competitive
equivalence. Acta Inform., 34(11):805-835, 1997.

R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. TCS,
34(1-2):83-133, 1984.

R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with dura-
tional actions. T'C'S, 140(1):73-94, 1995.

M.C.B. Hennessy and T. Regan. A process algebra for timed systems. Inform.
and Comp., 117(2):221-239, 1995.

L. Jenner and W. Vogler. Fast asynchronous systems in dense time. T'CS, 254(1-
2):379-422, 2001.

G. Littgen and W. Vogler. Bisimulation on speed: Lower time bounds. In FOS-
SACS 2004, vol. 2987 of LNCS, pp. 333-347. Springer-Verlag, 2004. Full version
available as TR-2004-1 at Universitdt Augsburg, Germany.

G. Liittgen and W. Vogler. Bisimulation on speed: Worst—case efficiency. Inform.
and Comp., 191(2):105-144, 2004.

N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

F. Moller and C. Tofts. A temporal calculus of communicating systems. In
CONCUR ’90, vol. 458 of LNCS, pp. 401-415. Springer-Verlag, 1990.

F. Moller and C. Tofts. Relating processes with respect to speed. In CONCUR 91,
vol. 527 of LNCS, pp. 424-438. Springer-Verlag, 1991.

V. Natarajan and R. Cleaveland. An algebraic theory of process efficiency. In
LICS 96, pp. 63-72. IEEE Computer Society Press, 1996.

C. Verhoef. A congruence theorem for structured operational semantics with
predicates and negative premises. Nordic J. of Comp., 2(2):274-302, 1995.

W. Vogler. Efficiency of asynchronous systems, read arcs, and the MUTEX-
problem. T'CS, 275(1-2):589-631, 2002.

W. Vogler. Faster asynchronous systems. Inform. and Comp., 184(2):311-342,
2003.

26

