
Improving Variable Ordering for Saturation by
Learning from Small Problem Instances

Johannes Gareis1, David White1

Gerald Lüttgen1 and Gianfranco Ciardo2,3

1 Software Technologies Research Group, University of Bamberg,
96045 Germany

2 Computer Science & Engineering Dept., University of California,
Riverside, CA 92521 (until Dec 2013)

3 Department of Computer Science, Iowa State University,
Ames, IA 50011-1040 (from Jan 2014)

Abstract. In the domain of symbolic model checking, Saturation is a
popular exploration strategy for building a system’s state space. A deci-
sion diagram is employed to encode the state space; however, its resulting
size and thus time taken to build is highly dependent on the ordering
of the system’s variables. Heuristics for determining good orderings have
thus far focused on the static, structural properties of the model. How-
ever, a system often exhibits complex dynamic behavior that is difficult
to estimate statically.
In this work we propose that variable orderings be learnt from multiple
executions of the Saturation algorithm on small problem instances, with
the expectation that learnt variable orderings will also perform well when
the problem is scaled up. The benefits are twofold: firstly, by learning
orderings through executing the algorithm, we expect to capture some of
the dynamic behavior, and secondly, as Saturation has proven difficult to
parallelize, a machine learning step could prove an easy route to paral-
lelization. To this end we detail two approaches, one for models that are
of fixed-size and only scale in terms of the information passed between
model components, and one for models with topologies that grow in a
regular manner when scaled.

Keywords: Symbolic Model Checking, Machine Learning, Decision Di-
agrams, Variable Ordering, Saturation Algorithm

1 Introduction

As systems become more complex, it is increasingly important to ensure their
correct operation. A common approach to this problem is to first construct a
model describing the underlying problem in a formal notation. One such notation
are Petri nets [10], which consist of a set of places connected by transitions. The
behavior is modeled by conditionally permitting tokens to flow between places
in the net. The potential state space of the model can then be explored by a
symbolic model checking algorithm to ensure that the model does not display



2 Gareis, White, Lüttgen and Ciardo

any undesirable behavior. However, when models are scaled to realistic scenarios
they can exhibit prohibitively large state spaces and thus make model checking
infeasible. Model scaling in a Petri net can take one of two forms, either through
the addition of model components, e.g., adding additional philosophers in the
Dinning Philosophers problem [8], or in terms of the information flowing between
model components, e.g., the number of parts to be manufactured in the Finite
Manufacturing System [8].

One approach to tackle large state spaces is to choose an efficient encoding,
such as that offered by decision diagrams. The places of a Petri net, i.e., the
variables of the system, are assigned to levels in the decision diagram and then
information is propagated by firing events until a fixed point is reached. The
time taken to reach a fixed point is highly dependent on the strategy selected
to perform the propagation. The Saturation algorithm [8] has been shown to be
a good approach, despite being difficult to parallelize [9]. However, it is highly
dependent on selecting a good variable ordering, i.e., an ordering of the places of
the Petri net; badly chosen variable orderings can result in increased time and
memory requirements of multiple orders of magnitude. Unfortunately, finding
the best order is an NP-hard problem [8].

Heuristics thus far have focused on determining good orderings statically by
looking only at the structure of the net, for example, by grouping places via
invariants [7]. These static approaches are limited as Saturation often displays
much more complex dynamic behavior at runtime, which is very difficult to
predict statically. Thus, in this work, we consider a very different approach to
the problem; we wish to learn good orderings for nets via observing the runtime
performance of the Saturation algorithm in terms of the key user observable
measurements, time and space. We expect that good orderings learnt on small
problem instances, which have state spaces that can be explored quickly, will
also turn out to be good orderings when the problem is scaled up. Essentially
we are trying to learn a correlation between variable ordering and the execution
time/space requirement with the goal of extrapolating this correlation to larger
problem instances. This type of approach has two potential advantages, the first
is that by actually solving realistic, but small, versions of the problem we hope
to handle some of the dynamic behavior that static approaches find hard to
predict. Secondly, as Saturation has proven difficult to parallelize internally, an
embarrassingly parallel machine learning approach that produces good variable
orderings as a pre-processing step could provide an easy route for Saturation to
benefit from modern multicore architectures.

In this paper we describe two possible solutions to learning the desired cor-
relations. The first applies to fixed-size nets, i.e., the problem scales based on
the number of tokens present in the net, rather than adding additional places
and transitions (Sec. 2). Since the number of tokens does not alter the set of
variables, any observations we learn for small problem instances will be directly
applicable to large instances. The second approach applies to variable size nets,
i.e., the problem scales by adding additional places and transitions to the net
(Sec. 3). Therefore, the challenge here is to correlate regularities in good vari-



Improving Variable Ordering for Saturation by Learning 3

able orderings with changes in topology for small problem instances. Such learnt
regularities can then be extrapolated from in order to directly construct good
quality orderings for large scale versions of the problem.

2 Learning Variable Orderings for Fixed Size Nets

As stated above, for fixed-size nets where the problem instance size only varies in
the number of tokens N , projecting learnt variable orderings onto more complex
nets is trivial as the set of places does not change. Our learning approach is to
treat the evaluation of the problem as a black box, which means we may only vary
the input and observe differences in the output. For this approach to be successful
it will be necessary to evaluate a large number of small problem instances to
produce sufficient data for any potential patterns to be learnt. However, we must
select a suitably high N such that all behaviors of the net under analysis are
exercised. Since this will likely result in a problem instance that is too complex
to generate a sufficiently large set of training data, we must find an alternative
method for generating the small problem instances.

If we may not reduce N below a certain level then the only other way to
reduce the size of the problem is to reduce the size of the net. However, the result
of arbitrarily removing places from the net would be one that likely no longer
displays any functionality present in the original net, and thus, any information
learnt regarding variable orderings would likely be useless.

The solution to reducing the size of a net in a sensible manner lies in its
invariants. Net invariants describe a relationship between a set of places in terms
of the number of tokens shared between them. Thus they typically describe some
small-scale functionality of the net. If we retain the elements of an invariant in
the reduced net then it will also maintain the associated functionality. However,
due to the tight relationship between the places of an invariant, orderings of
just those places from one invariant will likely be of similar quality. Thus if we
are to learn information regarding variable ordering from a reduced net, it must
consist of at least two invariants. Furthermore, for the reason outlined above,
the selected invariants must share at least one place otherwise again the ordering
becomes trivial.

2.1 Approach

The goal of our learning algorithm is to determine the preference for two variables
of the original net to be placed near to each other in the ordering. This preference
data will then be used to find the ordering which maximizes all preferences for
variable pair proximities.

Our approach (see Fig. 1) commences with the construction of a large number
of reduced nets as described above. Two or more invariants of the original net
which share at least one place are randomly selected and are used to form a
reduced net. For each reduced net a set of random permutations of the places
present in that net is chosen. Given that the places of an invariant interact very



4 Gareis, White, Lüttgen and Ciardo

Original 
Net

Reduced
Net 1

Ordering +
Permuted 
Ordering

Adjacency 
Preference 

Matrix

Evaluate and store 
adjacency preferences 
for best ordering

Genetic
Algorithm Best 

Global 
Ordering

Reduced
Net 2

… …

…

Fig. 1. An overview of the approach proposed in Sec. 2.

tightly with each other, it makes sense to keep them adjacent in the ordering
wherever possible. Thus the places of an invariant which are not shared with
any other invariant are always kept contiguous. For each random permutation, a
second permutation is created by making a minor modification to the first. This
modification exchanges the position of two places in the ordering while respecting
the preference for the non-shared places of an invariant to be kept contiguous.
The reduced net is then evaluated with both orderings and the best ordering
is selected based on lowest peak-memory performance. Finally, the preference
for the two variables that were exchanged to be adjacent to their neighbors is
recorded for the best ordering.

The result of performing the above procedure for all reduced nets and their
associated orderings is a symmetric matrix which aggregates the learnt adja-
cency preferences, i.e., how important it is for two variables to be placed in
close proximity in the final ordering. This matrix will likely express many mu-
tually exclusive preferences and thus the optimal is not trivial to find. We solve
this problem via a genetic algorithm which evolves a population consisting of
individuals (variable orderings) according to a fitness measure (the sum of the
adjacency preferences). A mutation operator allows individuals to change by
flipping the position of two variables in the ordering (again, subject to keeping
the non-shared places of an invariant contiguous).

2.2 Implementation

Our approach is implemented in Python and employs the external tools Great-
SPN [2] to compute the invariants and SMART [5] to compute the state-space
of a Petri net. Python was chosen due to its suitability for rapid prototyping
of a new tool and the ease of integration with pre-existing applications. The
evaluation of the reduced nets is an embarrassingly parallel problem and thus
we employ multicore parallelism to speed up the process. We avoid any global
synchronization by storing each result independently and then aggregating the
information in the adjacency preference matrix afterwards. We employ DEAP [1]
(Distributed Evolutionary Algorithms in Python) to provide the genetic algo-
rithm framework which also provides built-in support for multicore parallelism.

The Python program takes a Petri net as input in the SMART tool’s native
format. We extend this format to directly include the invariants computed by



Improving Variable Ordering for Saturation by Learning 5

GreatSPN. The net is then disassembled into invariants and the reduced nets
are produced. A reduced net is passed to SMART by constructing a suitable
file and invoked via the subprocess functionality of Python. The memory results
are then read from the standard output and recorded. We found that the inter-
nal time measurement of SMART did not accurately reflect the runtime, so we
implemented an external timer and used this value instead.

2.3 Evaluation

We evaluated our approach on two fixed size nets: Flexible Manufacturing Sys-
tem (FMS) and Kanban. The success of a learnt ordering is evaluated by applying
it to the original complete net. Since we wish to show that the learnt ordering
scales, we perform the evaluation for multiple values of N set by the parameter
Net parameters for evaluation. Due to the random nature of the training data,
it is necessary to sample the results over multiple runs of the approach. For
each run, the full approach is performed and the best learnt ordering is evalu-
ated (Parameter: Number of runs). There are a number of additional parameters
involved in the approach which are discussed below:

– Net parameter for learning: There is a tradeoff to be considered when se-
lecting the value of N for which learning takes place. As discussed, if N is
set too low then the behavior of the system is not realistic and the orderings
we learn will not be of use. However, a small value of N is advantageous
as these problem instances may be explored quickly and we can generate
more data points to learn from in a specified time than for a higher value of
N . Interestingly there is also an argument for learning with a large value of
N . Since the measurements have exponential tendencies with respect to N ,
the differences between good and bad orderings become exaggerated which
creates richer training data.

– Number of reduced-net problems: The number of reduced net problems gen-
erated for learning.

– Max selected invariants: Limits the number of invariants that may be se-
lected for generating a reduced net. If set too high then it allows the original
net to be generated, thus the set of reduced-net problems might include
many versions of the original net.

– Time-out for SMART during learning: Since the reduced nets and applied
orderings are generated randomly, it is quite possible there will exist some
that take a very long time to solve. We impose a time-out to prevent such
problems unnecessarily increasing the runtime.

– Time-out for SMART during evaluation: For the same reason we also impose
a time-out on the evaluation of learnt orderings, however, this is significantly
longer than the learning time-out.

Flexible Manufacturing System. The Flexible Manufacturing System de-
scribes a system where three different types of parts are processed by three



6 Gareis, White, Lüttgen and Ciardo

Fig. 2. The Petri net for the Flexible Manufacturing System problem [8]

different machines. The total number of all parts is N which comprises the net
scaling parameter. Machine 1 can only work on parts of type 1. Machine 2 ma-
chines parts of type 2 and parts of type 3, if there are no parts of type 2 left.
After the processing on machine 1 and 2 the parts can be shipped or joined to
the parts of machine 3. If the parts are shipped, machine 1 and 2 get new raw
parts of their corresponding type. The three machines and the processing of the
parts are modeled by a Petri net, which is shown in Fig. 2 [8, 6].

The following parameters were used on this problem:

– Net parameters for evaluation: 10, 20, 30, 40, 50
– Number of runs: 50
– Net parameter for learning: 15
– Number of reduced-net problems: 10000
– Max selected invariants (MSI): 1, 2 or 3
– Time-out for SMART during learning: 400s
– Time-out for SMART during evaluation: 4000s

We began the evaluation by setting Max selected invariants (MSI) to 2. As
discussed earlier, we are interested in learning orderings from reduced nets which
display some interaction between the places of two invariants, otherwise we end
up with trivial problems. The time and memory results of this experiment can
be seen in Fig. 4. The results are encouraging and show when evaluated using
memory the learnt orderings are always better than the ordering proposed by
the domain expert for all evaluation N ’s. When evaluated using execution time,
both orderings have similar performance.

We wanted to see what effect adding some complete versions of the origi-
nal net to the set of reduced problems would have, so we increased MSI to 3.
The results are shown in Fig. 5. Interestingly, this change significantly reduces
the quality of the learnt ordering both in terms of memory and time require-
ments. This means that the addition of some complete versions of the original
net reduces the suitability of the training data.



Improving Variable Ordering for Saturation by Learning 7

0

5

10

15

20

25

30

10 20 30 40 50

M
em

o
ry

 (
M

B
)

Net Parameter

Mean Domain Expert

0

1

2

3

4

5

6

7

8

10 20 30 40 50

Ti
m

e
 (

s)

Net Parameter

Mean Domain Expert

Fig. 3. FMS: peak memory usage (left) and time (right) for MSI = 1.

0

5

10

15

20

25

30

10 20 30 40 50

M
em

o
ry

 (
M

B
)

Net Parameter

Mean Domain Expert

0

1

2

3

4

5

6

7

10 20 30 40 50

Ti
m

e 
(s

)

Net Parameter

Mean Domain Expert

Fig. 4. FMS: peak memory usage (left) and time (right) for MSI = 2.

0

5

10

15

20

25

30

35

40

10 20 30 40 50

M
em

o
ry

 (
M

B
)

Net Parameter

Mean Domain Expert

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50

Ti
m

e
 (

s)

Net Parameter

Mean Domain Expert

Fig. 5. FMS: peak memory usage (left) and time (right) for MSI = 3.



8 Gareis, White, Lüttgen and Ciardo

Fig. 6. The Petri net for the Kanban problem [8]

This was a surprising result and led us to consider what information was
actually being learnt when MSI=2. Thus we reduced MSI to 1 and reran the
evaluation. The results are shown in Fig. 3 and surprisingly are almost identical
to those of MSI=2. Since these results stem from reduced nets consisting of the
places of only one invariant, we can draw only one unfortunate conclusion: that
all our approach really learns is that the places of one invariant must be kept in
close proximity. Regarding the set of places shared between invariants, there are
two possibilities: a) their order is unimportant or b) our approach is incapable
of learning good orderings for the shared places. Lastly, we note that different
values for the other parameters were tested, but we observed no difference in the
overall data trends.

Kanban. Given the disappointing results for the FMS problem, it is important
to see if this trend continues to other problems. Thus we evaluated the approach
on the other fixed-size net available to us, Kanban, which models an assembly line
consuming tokens, i.e. the kanbans, and consists of 4 sub-machines. After a token
is machined at sub-machine 1 it divides into two parts, which go to sub-machine
2 and 3. Before entering sub-machine 4, the two parts are rejoined and machined
before finally leaving the whole system. It is important to note that a kanban
can only enter a sub-machine if there is another machined kanban that can
leave, since it might happen that a machined kanban has to be reprocessed. This
means, for example, that a kanban can only leave sub-machine 1 if there exist
kanbans at sub-machines 2 and 3 that can also leave. The system is parametrized
by the number of kanbans N being available at each sub-machine. Fig. 6 shows
the Petri net of the Kanban problem [8, 6].

The parameters are set identically to those of the FMS problem with the
exception of the Net parameters for evaluation. These ranged from 10 to 100 as
the Kanban problem typically requires less time to solve than FMS. Again other
parameter values were tested but with no differences in the data trends.



Improving Variable Ordering for Saturation by Learning 9

The results of the approach on the Kanban problem are given in Fig. 7
for MSI=1 and Fig. 8 for MSI=5 and display two interesting characteristics.
Firstly, the learnt orderings outperform the one chosen by the domain expert by
a significant amount, both in terms of memory and time requirements. Secondly,
the performance of the learnt orderings is identical (within experimental error)
for all values of MSI, which is very different to the FMS problem. This behavior
is illustrated clearly in Fig. 9.

To understand these characteristics, we must look at the invariants of the
model (see Fig. 6) which are as follows:

1. {m1, re1, kan1, out1}
2. {m2, re2, kan2, out2}
3. {m3, re3, kan3, out3}
4. {m4, re4, kan4, out4}
5. {m2, re2, out2, kan3}
6. {m3, re3, out3, kan2}

Invariants 1 – 4 each correspond to a sub-machine, and invariants 5 and 6
relate sub-machine 2 to sub-machine 3. The first four invariants completely cover
the places of the net without intersecting, which we term the non-intersecting
set.

The ordering proposed by the domain expert groups the places by sub-
machine, corresponding to the first four invariants, and these are placed in order
in the MDD with the places of sub-machine 1 at the bottom and the places of
sub-machine 4 at the top. This appears to be a perfectly logical ordering, how-
ever, the ordering of sub-machines in the learnt orderings seems arbitrary. To
discover how an arbitrary order could be out-performing an apparently logical
one, we enumerated all possible orderings of the non-intersecting set of invari-
ants. Note that this was not possible for the FMS problem as it did not have a
non-intersecting set of invariants which completely covered the places of the net.

The data from this experiment is given in Table 1 and shows the peak memory
required for increasing values of the net parameter N . The ordering4 is given in
terms of the indexes of the non-intersecting set of invariants as given above. It is
clear that the order in which the invariants of the non-intersecting set are placed
makes an enormous different to the required memory. The best performance is
obtained with a reverse ordering modulo the position of sub-machines 2 and 3.
Note that the ordering proposed by the domain expert, marked with (DE), is
ranked rather low in the table. With this insight both observations raised earlier
for the Kanban problem can now be explained. Since our approach forces the
non-shared places of an invariant to remain adjacent in an ordering, the quality
of an ordering becomes dominated by the order of the non-intersecting set of
invariants. Thus if our approach randomly picks an ordering for this set, then
on average it will be better than the domain expert’s ordering (see Table 1).
We expect that this random-like behavior is occurring when MSI=1. Since we

4 In Table 1 and the following, the first item in an ordering is always placed at the
bottom of the decision diagram and the last item at the top (see Sec. 3.3 of [4]).



10 Gareis, White, Lüttgen and Ciardo

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100

M
em

o
ry

 (
M

B
)

Net Parameter

Mean Domain Expert

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

Ti
m

e
 (

s)

Net Parameter

Mean Domain Expert

Fig. 7. Kanban: peak memory usage (left) and time (right) for MSI = 1.

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100

M
em

o
ry

 (
M

B
)

Net Parameter

Mean Domain Expert

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

Ti
m

e
 (

s)

Net Parameter

Mean Domain Expert

Fig. 8. Kanban: peak memory usage (left) and time (right) for MSI = 5.

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100

M
em

o
ry

 (
M

B
)

Net Parameter

Mean MSI=1 Mean MSI=5

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Ti
m

e
 (

s)

Net Parameter

Mean MSI=1 Mean MSI=5

Fig. 9. Kanban: comparison for MSI=1 and MSI=5 for memory usage and time.



Improving Variable Ordering for Saturation by Learning 11

Table 1. Peak memory results for all ordering permutations based on the non-
intersecting set of invariants. Orders are described using the invariant indexes above.
Values are in MBs and TO indicates the timeout of 15s was reached. The columns
are labeled by increasing value of net size parameter so scaling performance can be ob-
served. Permutations are sorted for N=40 and the domain expert’s ordering is indicated
by (DE).

Ordering 10 20 30 40 50 60 70 80 90 100

4, 2, 3, 1 0.28 0.74 1.48 2.08 2.70 3.25 4.00 4.66 5.75 5.64
4, 3, 2, 1 0.28 0.74 1.48 2.08 2.70 3.25 4.00 4.66 5.75 5.64
4, 1, 2, 3 0.33 1.06 1.82 2.46 2.98 3.45 4.16 4.47 5.06 TO
4, 1, 3, 2 0.33 1.06 1.82 2.46 2.98 3.45 4.16 4.47 5.06 TO
4, 2, 1, 3 0.34 1.09 2.05 3.35 4.36 6.42 8.48 11.03 TO TO
4, 3, 1, 2 0.34 1.09 2.05 3.35 4.36 6.42 8.48 11.03 TO TO
1, 4, 2, 3 0.44 1.49 2.94 3.69 5.20 7.11 9.07 TO TO TO
1, 4, 3, 2 0.44 1.49 2.94 3.69 5.20 7.11 9.07 TO TO TO
2, 4, 3, 1 0.48 2.05 2.89 3.93 5.07 6.75 TO TO TO TO
3, 4, 2, 1 0.48 2.05 2.89 3.93 5.07 6.75 TO TO TO TO
2, 4, 1, 3 0.55 2.21 3.23 4.41 6.21 7.97 TO TO TO TO
3, 4, 1, 2 0.55 2.21 3.23 4.41 6.21 7.97 TO TO TO TO
2, 3, 4, 1 0.43 1.60 4.23 5.39 13.52 15.26 23.75 TO TO TO
3, 2, 4, 1 0.43 1.60 4.23 5.39 13.52 15.26 23.75 TO TO TO
2, 1, 4, 3 1.01 3.59 4.96 6.63 TO TO TO TO TO TO
3, 1, 4, 2 1.01 3.59 4.96 6.63 TO TO TO TO TO TO
2, 3, 1, 4 0.46 1.94 4.76 7.08 13.93 21.66 TO TO TO TO
3, 2, 1, 4 0.46 1.94 4.76 7.08 13.93 21.66 32.31 TO TO TO
1, 2, 3, 4 (DE) 0.48 2.02 4.79 8.47 15.77 27.19 TO TO TO TO
1, 3, 2, 4 0.48 2.02 4.79 8.47 15.77 TO TO TO TO TO
2, 1, 3, 4 0.96 3.57 6.61 8.68 TO TO TO TO TO TO
3, 1, 2, 4 0.96 3.57 6.61 8.68 TO TO TO TO TO TO
1, 2, 4, 3 0.54 2.18 4.29 10.50 TO TO TO TO TO TO
1, 3, 4, 2 0.54 2.18 4.29 10.50 TO TO TO TO TO TO



12 Gareis, White, Lüttgen and Ciardo

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100

M
em

o
ry

 (
M

B
)

Net Parameter

Domain Expert

Learning MSI=1

Learning MSI=5

Best Invariant Permuation

Best Invariant+Internal Permutaion

Fig. 10. Comparison of the best ordering from each source: the domain expert, the
learning approach for two values of MSI, the enumeration of invariants and the enu-
meration of internal order within an invariant.

observe the same performance when MSI=5, the learnt data for the places shared
between invariants must be poor or obfuscated such that the learnt ordering acts
like a random choice as well.

To show how much improvement could still be obtained over our approach,
we have plotted the performance of the best ordering from Table 1 in the series
Best Invariant Permutation of Fig. 10. Given the improvement, it is interesting
to consider if this enumeration approach has merit. While it is true that this
approach is only feasible for nets where the non-intersecting set is small, by
looking at the data it is clear that bad orderings could be quickly eliminated
and only promising orderings explored further. It is important to state that
the relative ordering of places within an invariant was kept constant at m, re,
kan, out, and it might be that opportunities for further optimization exist by
exploring permutations of the internal invariant ordering.

In the Kanban domain this process is simple as all invariants from the non-
intersecting set have a regular structure. Thus we ran a second enumeration
experiment to vary the internal order of places inside a machine and then apply
this to each invariant. The best order for invariants from the previous experi-
ment was used. The results are reported in Table 2 and again show improvement
is possible, although not as drastic as before. Note that again the internal order
suggested by the domain expert is low in the ranking, which gives further evi-
dence to the argument explaining the performance of the learnt orderings. The
best internal ordering in combination with the best invariant ordering is shown
in Fig. 10.



Improving Variable Ordering for Saturation by Learning 13

Table 2. Peak memory results for internal permutation of the places of each invariant.
Values are in MBs. The columns are labeled by increasing value of net size parameter
so scaling performance can be observed. Permutations are sorted for N=100 and the
domain expert’s ordering is indicated by (DE).

Ordering 10 20 30 40 50 60 70 80 90 100

out, re, m, kan 0.20 0.50 0.88 1.34 1.71 2.32 2.63 3.08 3.12 3.54
re, out, m, kan 0.21 0.51 0.90 1.35 1.73 2.35 2.64 3.10 3.10 3.56
re, m, out, kan 0.22 0.55 1.03 1.35 1.73 2.03 2.50 2.70 3.20 3.72
out, re, kan, m 0.21 0.52 0.98 1.39 1.79 2.42 2.75 3.15 3.15 3.74
re, out, kan, m 0.21 0.53 1.00 1.40 1.81 2.45 2.76 3.16 3.22 3.77
out, m, re, kan 0.23 0.58 1.08 1.46 1.90 2.40 2.75 2.90 3.35 3.86
re, m, kan, out 0.23 0.57 1.06 1.40 1.80 2.12 2.60 2.86 3.37 3.91
out, m, kan, re 0.24 0.61 1.14 1.56 2.17 2.58 2.96 3.05 3.60 4.17
kan, out, re, m 0.24 0.65 1.28 2.02 2.70 3.28 3.52 3.83 4.93 4.68
kan, re, out, m 0.25 0.66 1.30 2.02 2.71 3.28 3.52 3.83 4.93 4.69
re, kan, out, m 0.23 0.58 1.12 1.57 2.21 2.84 2.94 3.47 4.02 4.72
kan, re, m, out 0.25 0.67 1.31 2.04 2.73 3.50 3.56 3.97 5.21 4.74
kan, out, m, re 0.25 0.68 1.32 2.07 2.77 3.80 3.61 4.01 5.19 4.74
re, kan, m, out 0.23 0.59 1.14 1.58 2.22 2.85 2.98 3.50 4.05 4.77
m, re, out, kan 0.27 0.71 1.39 1.92 2.47 2.92 3.51 4.14 5.13 4.92
m, out, re, kan 0.27 0.72 1.40 1.93 2.48 2.93 3.54 4.15 5.13 4.93
m, kan, re, out 0.27 0.69 1.30 1.80 2.53 3.26 4.12 4.56 5.31 5.55
m, kan, out, re 0.27 0.70 1.31 1.81 2.54 3.27 4.13 4.57 5.32 5.57
m, re, kan, out (DE) 0.28 0.74 1.48 2.08 2.70 3.25 4.00 4.66 5.75 5.64
m, out, kan, re 0.28 0.76 1.51 2.28 2.78 3.34 4.09 4.78 5.92 5.72
out, kan, re, m 0.23 0.62 1.20 1.75 2.49 3.15 3.45 4.35 5.05 5.75
out, kan, m, re 0.24 0.64 1.24 1.92 2.54 3.22 3.53 4.43 5.16 5.88
kan, m, re, out 0.28 0.76 1.48 2.38 3.23 4.45 5.69 6.41 6.98 8.22
kan, m, out, re 0.28 0.76 1.49 2.39 3.24 4.46 5.70 6.42 7.00 8.23



14 Gareis, White, Lüttgen and Ciardo

2.4 Conclusion

In this section we proposed an approach for determining good variable orderings
based on learning ordering behavior from reduced versions of the original prob-
lem. It is necessary to use invariants to reduced the original problem in a sensible
way, but unfortunately this seems to result in the approach only being capable of
learning that proximity between the places of an invariant is important, which
is trivial and not of interest. Regrettably the interesting information of good
orders over the places shared between invariants is not learnt. This behavior was
shown on two domains, the Flexible Manufacturing System and Kanban. We
also wanted to evaluate it on the n-queens problem instantiated with a reason-
ably high n, e.g. 9, which would result in a net with many invariants and could
potentially show the worth of the net reduction strategy. However, unfortunately
we were unable to obtain the set of invariants as GreatSPN timed out.

While investigating the results observed from the Kanban problem, we dis-
covered that a exhaustive multi-stage search guided by invariants might be suit-
able for nets with an appropriate set of invariants, and might even be feasible
if that set is not too large and non-promising orderings can be quickly pruned.
However, with regard to the original approach proposed in this section it is clear
that the preexisting static ordering heuristics would perform just as well and
undoubtedly be far quicker to compute.

3 Learning Variable Orderings for Variable Size Nets

In this section we consider domains for which additional places and transitions
are added to the Petri net representation as the problem scales. In contrast to the
domains considered in the previous section, good quality variable orderings for
one value of N (the net scaling parameter) are now no longer trivially applicable
to another value of N. The key observation to enable a transfer of information
between models for different values of N is that the topology of the model grows
with structural regularities. The examples we consider in this section have ring
topologies, i.e., the model is scaled from N to N + 1 through the addition of
a node to the ring, as is the case in the Dinning Philosophers problem. It is
important to note that a node will likely contain multiple places and transitions;
however, we will abstract from this and only consider problem scaling at the
level of nodes.

Therefore, the goal here is to learn regularities in good orderings for small
sizes of the ring topology. By extrapolating from these learnt regularities we
hope to directly produce high quality orderings for large scale versions of the
problem. This approach is much more speculative in nature and, thus, we first
wish to discover if such an approach has merit and should be continued in future
work.

3.1 Approach

Since we have no intuition as to what good orderings would be for ring networks,
and we can produce small instances of the problem easily when compared to



Improving Variable Ordering for Saturation by Learning 15

fixed-size nets, then the obvious starting point for this approach is an exhaustive
enumeration of all variable orderings. We aim to perform this for as many small
instances of the problem as is computationally feasible in order to maximize the
number of data points available for learning regularities. To reduce the number
of permutations, and thus increase the number of data points, we will keep the
places of a single node adjacent in the ordering. Thus, for n nodes, we have n!
permutations. Clearly this will quickly grow infeasible; however, by that point
we hope to have collected enough data to find the desired regularities in the
orderings. With the data from the exhaustive enumeration to hand, we can
quickly locate the best quality orderings for each value of N and try to learn
the desired regularities between orderings. We will initially learn the regularities
and apply them to large scale problem instances by hand. If the approach shows
merit, we will then consider learning approaches that are able to discover the
regularities automatically.

3.2 Implementation

As before, the approach is implemented in Python and uses SMART [5] to com-
pute the state space of a Petri net. Given the enormous number of problems
to be solved in this enumeration approach, parallelization is of key importance.
To prevent synchronization issues we attempted to store a description of each
problem and its result separately, but it soon became apparent that this was out
of scope for Python’s lists. Thus the permutations, and hence problem instances,
are generated on demand by an in-place algorithm. Initially, we handed out the
problems to workers from a thread pool; however, due to Python’s global inter-
preter lock this resulted in poor performance. To overcome this restriction we
switched to using Python’s multiprocessing tool, and all threads were replaced
by processes.

3.3 Proof of Concept

We will apply the proof of concept implementation to two domains, which both
have variable size nets and scale by the addition of a node in a ring topology.

Dining Philosophers. We begin by considering the classical concurrency
problem of the Dinning Philosophers [8]. The model consists of N philosophers,
where each is represented by a sub-model that comprises one node in a ring
topology. Philosophers attempt to eat by acquiring two resources, namely the
fork to their left and right, one at a time. However, since the model only contains
one fork between each philosopher, deadlock can arise. The Petri net for the i-th
dining philosopher is shown in Fig. 11. Note that the two places representing
forks are shared between philosophers.

We found it feasible to evaluate all permutations of the ordering until 9!. The
data gathered from this exploratory experiment is shown in Tables 3 and 4. They



16 Gareis, White, Lüttgen and Ciardo

Fig. 11. The Petri net for a single philosopher in the Dinning Philosophers problem [8].

show the top five best performing orderings for N = 4 through N = 9 when eval-
uated in terms of the peak memory requirement of SMART. Note that only per-
mutations of the node ordering in the ring were considered; the ordering of places
comprising a philosopher were held constant at 〈Idlei,WaitLi,WaitRi, HasLi,
HasRi, Forki〉. The orderings are given by the ordering of the places for sub-
script i.

Even for this small range of values of N , clear patterns emerge from the data.
The subscript ordering 〈N−2, N−3, . . . , 0, N−1〉 (highlighted in blue) performs
best for N = 4 and N = 5; however, from N = 6 its ranking drops. Starting at
N = 6, the best ordering is 〈N − 3, N − 4, . . . , 0, N − 1, N − 2〉 (highlighted in
orange), and this trend continues until N = 9. There exist other high quality
orderings which repeat in the data of Table 3.

Given this strong preference for permutations where only a cyclic shift takes
place, we decided to explore such permutations for larger values of N . It is
necessary to generate all cyclic shift permutations of both normal and reverse
orderings, and hence the number of permutations to be enumerated reduces to
a much more manageable N ∗ 2. We will not show the data here for the sake of
space; however, we found that the ordering 〈N − 3, N − 4, . . . , 0, N − 1, N − 2〉
(shown in orange) continues to perform best until at least N = 100.

This ordering is slightly surprising and does not seem very logical, which is
again exactly the type of interesting information we hoped the approaches of this
paper would bring to light. However, the ordering proposed by the domain expert
〈0, 1, 2, . . . ,N〉, which seems more logical, does not perform significantly worse.
In fact, we only noted a 22% difference between the best and worse peak memory
requirements for all cyclic permutations when N = 500. We would postulate that
any ordering that is close to a cyclic permutation performs quite well. Before
considering how the regularities of the orderings observed in this section can be
discovered automatically, we turn to a second domain to see whether regularities
are also present.

Slotted Ring Transmission Protocol. This domain considers the problem
of arbitrating access to a single shared resource. Nodes are arranged in a ring
topology, where a token is passed between them; if a node has the token, then



Improving Variable Ordering for Saturation by Learning 17

Table 3. Top five permutations in the Dinning Philosophers problem for small values
of N . Permutations are shown in order of peak memory requirement, with the best
performing at the top. Colors are used to indicate instances from the same pattern.

N=4 N=5 N=6
2, 1, 0, 3 3, 2, 1, 0, 4 3, 2, 1, 0, 5, 4
1, 0, 3, 2 2, 1, 0, 4, 3 4, 3, 2, 1, 0, 5
3, 2, 1, 0 2, 1, 0, 3, 4 3, 2, 0, 1, 5, 4
0, 1, 3, 2 3, 1, 0, 2, 4 3, 2, 1, 0, 4, 5
1, 0, 2, 3 3, 2, 0, 1, 4 3, 1, 0, 2, 5, 4

N=7 N=8 N=9
4, 3, 2, 1, 0, 6, 5 5, 4, 3, 2, 1, 0, 7, 6 6, 5, 4, 3, 2, 1, 0, 8, 7
5, 4, 3, 2, 1, 0, 6 5, 4, 3, 2, 0, 1, 7, 6 6, 5, 4, 3, 2, 1, 0, 7, 8
4, 3, 2, 1, 0, 5, 6 6, 5, 4, 3, 2, 1, 0, 7 7, 5, 4, 3, 2, 1, 0, 6, 8
5, 3, 2, 1, 0, 4, 6 5, 4, 3, 2, 1, 0, 6, 7 7, 6, 5, 4, 3, 2, 1, 0, 8
4, 3, 2, 0, 1, 6, 5 5, 4, 3, 1, 0, 2, 7, 6 6, 5, 4, 3, 2, 0, 1, 8, 7

Table 4. Peak memory requirements for the Dinning Philosophers permutations of
Table 3. Values are in kB.

N=4 N=5 N=6 N=7 N=8 N=9
27.51 33.39 39.21 49.35 55.05 60.99
27.54 33.51 39.58 49.66 55.85 61.56
27.71 34.11 40.01 49.92 55.86 61.73
28.32 34.19 40.05 50.09 55.89 61.74
28.36 34.24 40.13 50.16 56.00 61.80

it may access the shared resource. The internal places of a node are always kept
in the following order 〈Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi〉. The Petri net for a node in
the Slotted Ring Protocol is shown in Fig. 12.

As before, we present the best five permutations for small values of N in
Table 5, with the associated memory results being displayed in Table 6. The
regularities are even more striking for this domain, where the relative quality of
each permutation remains constant as N increases. The best permutation states
that the nodes of the ring should be ordered in reverse, and this is the same
permutation as that proposed by the domain expert. In contrast to the Dinning
Philosophers problem, only the best ranked permutation is cyclic, the others are
all reverse orderings with small changes to the order of the first few subscripts.
Nevertheless, we exhaustively explored all cyclic permutations until N = 15 and
found that the simple reverse ordering is always the best permutation.

3.4 Applying Machine Learning to Locate Regularities

We showed in the previous section that there exist regularities in high-quality
orderings over small values of N . If the ordering determined from such a set of



18 Gareis, White, Lüttgen and Ciardo

Fig. 12. The Petri net for a single node in the Slotted Ring Protocol [8].

regularities is applied to large scale instances of the problem, then we also ob-
served good performance, at least for the two ring-based topologies investigated.
Thus, the key question is how the regularities can be extracted automatically.

The difficulty arises from the fact that, in general, the orderings that cor-
respond to a regularity could be ranked differently over the values of N used
for enumeration. We saw this type of behavior in the permutation rankings of
the Dinning Philosophers, but not in those of the Slotted Ring Protocol. When
all instances of a regularity appear at the same position in the ranking, then
the problem becomes significantly easier. One possibility would be to apply ap-
proaches from the domain of inductive learning, which synthesize programs from
input/output examples. By phrasing the problem as a program that generates
the N + 1th ordering from the Nth ordering, we could provide the appropriate
input/output pairs from which to learn. An approach such as Igor [11] might be
able to learn the required function if suitable background knowledge of integers
were given, and potentially the approach of the Magic Haskeller [3] could learn
this with no background knowledge.

Returning to the problem in its complete form, as would be required to learn
the patterns observed in the Dinning Philosophers data, the scheme is less clear.
One possibility would be to define an edit distance in terms of the cost of trans-
forming an ordering for a problem of size N into one for N + 1. The only two
transformations required would be move (from index to index) and insert ele-
ment N . For example, taking the permutations for N = 6 and N = 7 from the
Dining Philosophers problem, 〈3, 2, 1, 0, 5, 4〉 and 〈4, 3, 2, 1, 0, 6, 5〉, the sequence
of transformations could be (a) move element at index end to the front of the
list, then (b) insert N at position end− 1. The learning problem would then be
to search for the edit distance that minimized the following two criteria: firstly,
the cost of the edit distance in terms of operations, and secondly, the memory
required by the permutation instances described by that edit distance. Unfortu-
nately, such an approach would likely be very expensive, and even more so when
combined with the cost of generating the training data through enumeration.



Improving Variable Ordering for Saturation by Learning 19

Table 5. Top five permutations in the Slotted Ring Protocol for small values of N .
Permutations are shown in order of peak memory requirement, with the best performing
at the top. Colors are used to indicate instances from the same pattern.

N=4 N=5 N=6
3, 2, 1, 0 4, 3, 2, 1, 0 5, 4, 3, 2, 1, 0
3, 2, 0, 1 4, 3, 2, 0, 1 5, 4, 3, 2, 0, 1
3, 1, 0, 2 4, 3, 1, 0, 2 5, 4, 3, 1, 0, 2
2, 3, 1, 0 4, 3, 0, 1, 2 5, 4, 3, 0, 1, 2
0, 3, 2, 1 4, 2, 1, 0, 3 5, 4, 2, 1, 0, 3

N=7 N=8
6, 5, 4, 3, 2, 1, 0 7, 6, 5, 4, 3, 2, 1, 0
6, 5, 4, 3, 2, 0, 1 7, 6, 5, 4, 3, 2, 0, 1
6, 5, 4, 3, 1, 0, 2 7, 6, 5, 4, 3, 1, 0, 2
6, 5, 4, 3, 0, 1, 2 7, 6, 5, 4, 3, 0, 1, 2
6, 5, 4, 2, 1, 0, 3 7, 6, 5, 4, 2, 1, 0, 3

Table 6. Peak memory requirements for the Slotted Ring Protocol permutations of
Table 5. Values are in kB.

N=4 N=5 N=6 N=7 N=8
75.74 127.53 193.83 313.83 460.86
76.34 128.24 194.55 314.55 461.58
78.17 132.21 196.85 317.07 464.11
78.44 133.58 198.14 318.30 465.34
78.92 133.70 206.45 323.79 467.80

Lastly we note that if domain knowledge were included, such as the fact
that the topology was a ring, and valid solutions were limited to only cyclic
permutations, then the search for the best permutation becomes trivial and
is specified only by the node at which the ring is cut. Thus, for all possible
cut points, the set of permutation instances in the training data can be found
and their overall performance measured; the cut point with the lowest memory
requirement for the set of instances would be selected.

4 Conclusions & Future Work

This paper considered the problem of model scale encountered by symbolic model
checking approaches which use decision diagrams for state space encoding. We
presented two approaches to learn regularities in good variable orderings from
small problem instances, which could then be applied to larger instances. The
first approach is applicable for problems in which the underlying model consists
of a fixed number of components, i.e., the model grows in complexity only in
terms of the information flow between components. We proposed a method of



20 Gareis, White, Lüttgen and Ciardo

generating small problem instances by partitioning the model and then solving
these to learn patterns. However, this approach appeared to only learn that the
places of an invariant should be kept adjacent, which is trivial information and,
given the time needed to create the training data, has little advantage over the
best static ordering heuristics. Nevertheless, this result serves to strengthen the
argument to use static heuristics which employ invariant information such as the
one advocated in [7].

A second, more speculative approach was designed to consider problems for
which the number of elements in the model scales with the problem’s size. Thus,
the goal was to learn how the structural changes due to model scale correlate with
good orderings. By investigating classic concurrency problems such as Dining
Philosophers, we discovered correlations between topology and ordering quality
at small scale, which we successfully applied to scaled up versions of the problem.
Finally, we proposed various machine learning approaches that could potentially
discover these correlations automatically.

Of the two approaches, we feel that only the second would be of interest to
pursue in the future. The key factor in determining its worth would be if more
problem domains could be found where a good ordering is very unclear, i.e.,
domains that do not display a ring-based topology. For the two domains consid-
ered in this paper, any cyclic permutation has performance in the same order; as
discussed earlier, the difference between the best and worst cyclic permutations
for the Dining Philosophers was only 22%. A domain such as n-queens which
displays a grid topology could be a good starting point.



Improving Variable Ordering for Saturation by Learning 21

References

1. DEAP: Distributed Evolutionary Algorithms in Python. https://code.google.

com/p/deap/. Last accessed 14/12/2014.
2. GreatSPN. http://www.di.unito.it/~greatspn/index.html. Last accessed

14/12/2014.
3. MagicHaskeller: An Inductive Functional Programming System for Casual/Be-

ginner Haskell Programmers. http://nautilus.cs.miyazaki-u.ac.jp/~skata/

MagicHaskeller.html. Last accessed 14/12/2014.
4. SMART User Manual. https://web.archive.org/web/20100707064932/http://

www.cs.ucr.edu/~ciardo/SMART/SMARTman.pdf. Last accessed 14/12/2014.
5. Ciardo, G., Jones, R., Miner, A., and Siminiceanu, R. Logical and Stochastic

Modeling with Smart. In Computer Performance Evaluation. Modelling Techniques
and Tools, vol. 2794 of LNCS, pp. 78–97. Springer, 2003.

6. Ciardo, G., Lüttgen, G., and Miner, A. S. Exploiting interleaving semantics in
symbolic state-space generation. Formal Methods in System Design, 31(1):63–100,
2007.

7. Ciardo, G., Lüttgen, G., and Yu, A. J. Improving static variable orders via invari-
ants. In ICATPN 2007, vol. 4546 of LNCS, pp. 83–103. Springer, 2007.

8. Ciardo, G., Zhao, Y., and Jin, X. Ten Years of Saturation: A Petri Net Perspective.
In Transactions on Petri Nets and Other Models of Concurrency V, vol. 6900 of
LNCS, pp. 51–95. Springer, 2012.

9. Ezekiel, J., Lüttgen, G., and Siminiceanu, R. To Parallelize or to Optimize? Journal
of Logic and Computation, 21(1):85–120, 2011.

10. Ogata, S., Tsuchiya, T., and Kikuno, T. SAT-Based Verification of Safe Petri
Nets. In Automated Technology for Verification and Analysis, vol. 3299 of LNCS,
pp. 79–92. Springer, 2004.

11. Schmid, U. and Kitzelmann, E. Inductive rule learning on the knowledge level.
Cognitive Systems Research, 12(3–4):237 – 248, 2011.


