
Bamberger Beiträge zur

Wirtschaftsinformatik und Angewandten Informatik

ISSN 0937-3349

Nr. 85

Symbolic Object Code

Analysis

Jan Tobias Mühlberg und Gerald Lüttgen

Februar 2010

Fakultät Wirtschaftsinformatik und Angewandte Informatik

Otto-Friedrich-Universität Bamberg

Symbolic Object Code Analysis

Jan Tobias Mühlberg and Gerald Lüttgen

Software Technologies Research Group
University of Bamberg, 96045 Bamberg, Germany.

{jan-tobias.muehlberg, gerald.luettgen}@swt-bamberg.de

Abstract Current software model checkers quickly reach their limit
when being applied to verifying pointer safety properties in source code
that includes function pointers and inlined assembly. This paper intro-
duces an alternative technique for checking pointer safety violations,
called Symbolic Object Code Analysis (SOCA), which is based on bounded
symbolic execution, incorporates path-sensitive slicing, and employs the
SMT solver Yices as its execution and veri�cation engine. Extensive ex-
perimental results of a prototypic SOCA Veri�er, using the Verisec suite
and almost 10,000 Linux device driver functions as benchmarks, show
that SOCA performs competitively to current source-code model check-
ers and that it also scales well when applied to real operating systems
code and pointer safety issues. SOCA e�ectively explores semantic niches
of software that current software veri�ers do not reach.

Keywords: model checking; symbolic execution; program slicing;
object code analysis; linux device drivers

1 Introduction

One challenge in verifying complex software is the proper analysis of pointer op-
erations. A recent study shows that a majority of errors found in device drivers
involve memory safety [9]. Writing software that is free of memory safety con-
cerns, e.g., free of errors caused by pointers to invalid memory cells, is di�cult
since many such issues result in program crashes at later points in execution.
Hence, a statement causing a memory corruption may not be easily identi�-
able using conventional validation and testing tools, e.g., Purify [36] and Val-
grind [33].

Current static veri�cation tools, including software model checkers such as
[4,10,12,17], are also not of much help: they either assume that programs do
�not have wild pointers� [3], perform poorly in the presence of pointers [31], or
simply cannot handle certain software. A particular challenging kind of software
are operating systems (OS) components such as device drivers, which are usually
written in C code involving function pointers, pointer arithmetic and inlined
assembly. Further issues arise because of platform-speci�c and compiler-speci�c
details concerning memory layout, padding and o�sets [2]. In addition, several
approaches to model checking compiled programs given in assembly or bytecode

[6,29,38,40], and also to integrating symbolic execution [23] with model checking
[15,16,22,35,39] have recently been presented. However, these are tailored to
exploit speci�c characteristics of certain programming paradigms such as object-
oriented programming, or lack support for data structures, function pointers and
computed jumps, or require substantial manual modelling e�ort (cf. Sec. 5).

Our contributions presented in this paper are as follows. We introduce a novel,
automated technique to identifying memory safety violations, called Symbolic
Object Code Analysis (SOCA), which is based on the symbolic execution [23]
of compiled and linked programs (cf. Sec. 2). In contrast to other veri�cation
techniques, SOCA requires only a minimum of manual modelling e�ort, namely
the abstract, symbolic speci�cation of a program's execution context in terms
of function inputs and initial heap content. The SOCA technique traverses the
program's object code in a systematic fashion up to a certain depth and width,
and calculates at each assembly instruction a slice [41] required for checking the
relevant pointer safety properties. It translates such a slice and properties into
a bit-vector constraint problem and executes the property checks by invoking
the Yices SMT solver [14] (cf. Sec. 3). To the best of our knowledge, SOCA
is the only program veri�cation technique available that features full support
for pointer arithmetics, function pointers and computed jumps. While SOCA
is based on existing and well-known techniques, combining and implementing
these for object code analysis is challenging. Much engineering e�ort went into
our SOCA implementation, so that it scales to complex real-world OS code such
as Linux device drivers. We believe that our experience gained will be helpful for
future developers of program analysis and program veri�cation tools (cf. Sec. 3).

The particular combination of techniques in SOCA is well suited for checking
memory safety. Analysing object code is bene�cial in that it inherently considers
compiler speci�cs such as results of code optimisations, makes memory layout
obvious, and does away with the challenge of handling mixed input languages
involving assembly code. Symbolic execution, rather than the concrete execution
adopted in testing, can handle software functions with many input parameters,
whose values are typically not known at compile time. It is the existence of
e�cient SMT solvers that makes the symbolic approach feasible. Symbolic exe-
cution also implies a path-wise exploration, thus reducing the aliasing problem
and allowing us to handle even complex pointer operations and computed jumps.
In addition, slicing can now be conducted at path-level instead of at program-
level, resulting in drastically smaller slices to the extent that abstraction is not
necessary for achieving scalability. However, the price of symbolic execution is
that it must be bounded and can thus only analyse code up to a �nite depth
and width.

Interesting questions regarding the SOCA technique are whether it is compet-
itive to state-of-the-art model checking on programs with �well-behaved� pointers
such as [4,12,17], and whether it scales when applied to �dirty� programs such
as device drivers, which cannot be properly analysed with source-code model
checkers. To answer these questions, we have implemented a prototypic SOCA
tool for programs compiled for the 32-bit Intel Architecture (IA32), the SOCA

2

Veri�er, and performed extensive experiments (cf. Sec. 4). Using the Verisec
benchmark [27] we show that the SOCA Veri�er performs on par with the model
checkers LoopFrog [25] and SatAbs [12] with regards to performance, error detec-
tion and false-positive rates. We then apply the SOCA Veri�er to 9296 functions
taken from 250 Linux device drivers. Our tool is able to successfully analyse 95%
of these functions and, despite the fact that SOCA performs a bounded analysis,
28% of the functions are analysed exhaustively. Therefore, SOCA proves itself
to be a capable technique when being confronted with checking pointer-complex
software such as OS components. It e�ectively explores semantic niches that
neither current testing tools nor current software model checkers reach.

2 Pointers, Aliasing & Intermediate Representation

The veri�cation technique developed in this paper aims at ensuring that every
pointer in a given program is valid in the sense that it (i) never references a
memory location outside the address space allocated by or for that program,
and (ii) respects the usage rules determined by the Application Programming
Interfaces (APIs) employed by the program. There exist several categories of
memory safety properties � (1) dereferencing invalid pointers: a pointer may
not be NULL, shall be initialised, and shall not point to a memory location out-
side the address space allocated by or for the program; (2) uninitialised reads:
memory cells shall be initialised before they are read; (3) violation of memory
permissions: when the program is loaded into memory, the segments of the pro-
gram �le are assigned with permissions that determine whether a segment can be
read, written or executed; (4) bu�er over�ows: out-of-bounds read and write op-
erations to objects on the heap and stack, which may lead to memory corruption
and give way to various security problems; (5) memory leaks: when a program
dynamically allocates memory but loses the handle to it, the memory cannot
be deallocated anymore; (6) proper handling of allocation and deallocation: OSs
usually provide several APIs for the dynamic (de)allocation of memory, whose
documentation speci�es precisely what pairs of functions are to be employed
how.

01 #include <stdio.h>

02 #include <sys/types.h>

03

04 int main (void) {

05 int32_t i, *p2=&i;

06 int16_t *p1=&((int16_t*) &i)[0];

07

08 for (*p1=0; *p1<10; (*p1)++)

09 { *p2=0; }

10

11 printf ("%08x: %d\n", p1, *p1);

12 printf ("%08x: %d\n", p2, *p2);

13 printf ("%08x: %d\n", &i, i);

14 return (0); }

Figure 1. Example of pointer aliasing in C: e_loop.c.

Aliasing in source code and object code. Amajor issue for analysing pointer
programs is aliasing. Aliasing means that a data location in memory may be ac-

3

cessed through di�erent symbolic names. Since aliasing relations between sym-
bolic names and data locations often arise unexpectedly during program exe-
cution, they may result in erroneous program behaviours that are particularly
hard to trace and debug. To illustrate this, the C program given in Fig. 1 shows
a complicated way of implementing an endless loop.

$ gcc -O2 e_loop.c

$./a.out

bfc76f2c: 10

bfc76f2c: 0

bfc76f2c: 0

$ gcc -O2 e_loop.c

$./a.out

bfc7428c: 10

bfc7428c: 10

bfc7428c: 10

$ gcc -O1 e_loop.c

$./a.out

-> does not terminate

Figure 2. Output of the program given in Fig. 1 when compiled with (a) gcc version
4.1.2 (left) and (b,c) gcc version 4.3.1 (middle and right).

80483ba: xor %eax,%eax ;; eax := 0;

80483c4: lea -0xc(%ebp),%ebx ;; ebx := ebp - 0xc

80483c8: add $0x1,%eax ;; eax := eax + 0x00000001

80483cb: cmp $0x9,%ax ;; (ax = 9)?

80483cf: movl $0x0,-0xc(%ebp) ;; *p2 (= ebp - 0xc) := 0

80483d6: mov %ax,(%ebx) ;; *p1 (= ebx = ebp - 0xc) := ax

80483d9: jle 80483c8 ;; if (ax <= 9) goto 80483c8

Figure 3. Excerpt of the disassembled program compiled in Fig. 2(b).

As depicted in Fig. 2, three di�erent outcomes of the program's execution
can occur as a result of varying assumptions made about pointer aliasing by
the developer and the compiler, as well as compiler optimisations applied to the
code. More surprises are revealed when studying the excerpt of the corresponding
assembly code displayed in Fig. 3, which was obtained by disassembling the
program that produced the output shown in Fig. 2(b). One can see at instructions
80483cf and 80483d6 that p1 and p2 are pointing to the same location in memory,
and that *p2 is actually written before *p1. This is unexpected when looking at
the program's source code but valid from the compiler's point of view, since it
assumes that the two pointers are pointing to di�erent data objects. As another
consequence of this assumption, register eax is never reloaded from the memory
location to which p1 and p2 point.

This example shows that source-code-based analysis has to decide for a par-
ticular semantics of the source language, which may not be the one that is used
by a compiler. Hence, results obtained by analysing the source code may not
meet a program's runtime behaviour. While this motivates the analysis of com-
piled programs, doing so does not provide a generic solution for dealing with
pointer aliasing, as aliasing relationships may depend on runtime conditions.

Intermediate representation. A program under analysis is stored by us in
an intermediate representation (IR) borrowed from Valgrind [33], a framework
for dynamic binary instrumentation. The IR consists of a set of basic blocks
containing a group of statements such that all transfers of control to the block

4

are to the �rst statement in the group. Once the block has been entered, all of
its statements are executed sequentially until an exit statement is reached. An
exit is always denoted as goto <target>, where <target> is either a constant
or a temporary register that determines the next program location to be exe-
cuted. Guarded jumps are written as if (<condition>) goto <target>, where
<condition> is a temporary register of type boolean, which has previously been
assigned within the basic block.

IA32 Assembly IR Instructions

xor %eax,%eax t9 = GET:I32(0) ;; t9 := eax

t8 = GET:I32(0) ;; t8 := eax

t7 = Xor32(t9,t8) ;; t7 := t9 xor t8

PUT(0) = t7 ;; eax := t7

lea -0xc(%ebp),%ebx t42 = GET:I32(20)

t41 = Add32(t42,0xFFFFFFF4:I32)

PUT(12) = t41

Figure 4. First two instructions of Fig. 3 and their respective IR instructions.

Fig. 4 depicts an example for assembly statements and their corresponding
IR statements. It shows how, e.g., the xor statement is decomposed into explic-
itly loading (GET) the source register 0 into the temporary registers t8 and t9,
performing the xor operation into the temporary register t7, followed by storing
(PUT) the result back to the guest state. All operands used in the �rst block of
the example are 4 bytes, or 32 bits, in size.

As can be seen, the IR is essentially a typed assembly language in static-
single-assignment form [28], and employs temporary registers, which are denoted
as t<n>, and the guest state. The guest state consists of the contents of the
registers that are available in the architecture for which the program under
analysis is compiled. While machine registers are always 8 bits long, temporary
registers may be 1, 8, 16, 32 or 64 bits in length. As a result of this, statement t9
= GET:I32(0) means that t9 is generated by concatenating machine registers
0 to 3. Since each IR block is in static-single-assignment form with respect to
the temporary registers, t9 is assigned only once within a single IR block. As a
valuable feature for analysing pointer safety, Valgrind's IR makes all load and
store operations to memory cells explicit.

3 SOCA � Symbolic Object Code Analysis

This section introduces our novel approach to verifying memory safety in com-
piled and linked programs, to which we refer as Symbolic Object Code Analysis
(SOCA). The basic idea behind our approach employs well-known techniques
including symbolic execution [23], SMT solving [26] and program slicing [41].
However, combining these ideas and implementing them in a way that scales

5

to real applications, such as Linux device drivers, is challenging and the main
contribution of this paper.

Starting from a program's given entry point, we automatically translate each
instruction of the program's object code into Valgrind's IR language. This is done
lazily, i.e., as needed, by iteratively following each program path in a depth-�rst
fashion and resolving target addresses of computed jumps and return statements.
We then generate systems of bit-vector constraints for the path under analysis,
which re�ect the path-relevant register content and heap content of the pro-
gram. In this process we employ a form of program slicing, called path-sensitive
and heap-aware program slicing (cf. p. 8), which is key to SOCA's scalability
and makes program abstraction unnecessary. Finally, we invoke the SMT solver
Yices [14] to check the satis�ability of the resulting constraint systems and thus
the validity of the path. This approach allows us to instrument the constraint
systems on-the-�y as necessary, by adding constraints that express, e.g., whether
a pointer points to an allocated address.

SOCA leaves most of a program's input and initial heap content unspeci�ed
in order to allow the SMT solver to search for subtle inputs that may reveal
pointer errors. Obviously, our analysis by symbolic execution cannot be com-
plete: the search space has to be bounded since the total number of execution
paths and the number of instructions per path may be in�nite. Our experimental
results (cf. Sec 4) show that this boundedness is not a restriction in practice:
many interesting programs, such as Linux device driver functions, are relatively
�shallow� and may still be analysed either exhaustively or to an acceptable ex-
tent.

Translating IR into Yices constraints. To translate IR statements into
bit-vector constraint systems for Yices, we have de�ned a simple operational
semantics for Valgrind's IR language. Due to space constraints we cannot present
this semantics here and refer the reader to [30] instead. Instead, we focus directly
on examples illustrating this translation.

As a �rst example we consider the PUT(0) = t7 statement from Fig. 4. Intu-
itively, the semantics of PUT is to store the value held by t7 to the guest state,
in register 0 to 3 (i.e., r0 to r3 below):

IR Instruction Constraint Representation

PUT(0) = t7 (define r0::(bitvector 8)(bv-extract 31 24 t7))

(define r1::(bitvector 8)(bv-extract 23 16 t7))

(define r2::(bitvector 8)(bv-extract 15 8 t7))

(define r3::(bitvector 8)(bv-extract 7 0 t7))

Here, the bv-extract operation denotes bit-vector extraction. Note that the
IA32 CPU registers are assigned in reverse byte order, while arithmetic expres-
sions in Yices are implemented for bit-vectors that have their most signi�cant
bit at position 0. Since access operations to the guest state may be 8, 16, 32
or 64 bit aligned, we have to translate the contents of temporary register when
accessing the guest state.

6

Similar to the PUT instruction, we can express GET, i.e., loading a value
from the guest state, as the concatenation of bit-vectors, and the Xor and Add
instructions in terms of bit-vector arithmetic:

IR Instruction Constraint Representation

t9 = GET:I32(0) (define t9::(bitvector 32) (bv-concat

(bv-concat r3 r2) (bv-concat r1 r0))

t7 = Xor32(t9,t8) (define t7::(bitvector 32) (bv-xor t9 t8))

t41 = Add32(t42,

0xFFFFFFF4:I32)

(define t88::(bitvector 32)

(bv-add t87 (mk-bv 32 4294967284)

More challenging to implement are the IR instructions ST (store) and LD
(load) which facilitate memory access. The main di�erence of these instructions
to PUT and GET is that the target of ST and the source of LD are variable and
may only be computed at runtime. To include these statements in our framework
we have to express them in a �exible way, so that the SMT solver can identify
cases in which safety properties are violated. In Yices we declare a function heap
as our representation of the program's memory. An exemplary ST statement
ST(t5) = t32 can be expressed in terms of updates of that function:

IR Instruction Constraint Representation

ST(t5) = t32 (define heap::(-> (bitvector 32) (bitvector 8)))

(define heap.0::(-> (bitvector 32) (bitvector 8))

(update heap ((bv-add t5 (mk-bv 32 3)))

(bv-extract 7 0 t32)))

(define heap.1::(-> (bitvector 32) (bitvector 8))

(update heap.0 ((bv-add t5 (mk-bv 32 2)))

(bv-extract 15 8 t32)))

(define heap.2::(-> (bitvector 32) (bitvector 8))

(update heap.1 ((bv-add t5 (mk-bv 32 1)))

(bv-extract 23 16 t32)))

(define heap.3::(-> (bitvector 32) (bitvector 8))

(update heap.2 ((bv-add t5 (mk-bv 32 0)))

(bv-extract 31 24 t32)))

Since the above ST instruction stores the content of a 32-bit variable in four
separate 8-bit memory cells, we have to perform four updates of heap. Byte-
ordering conventions apply in the same way as explained for PUT. Constraints
for the LD instruction are generated analogous to GET.

Encoding pointer safety assertions. Being able to translate each object
code instruction into constraints allows us to express the safety pointer properties
given in Sec. 2 in terms of assertions within the constraint systems. The simplest
case of such an assertion is a null-pointer check. For the ST instruction in the
above example, we state this assertion as (assert (= t5 (mk-bv 32 0))).

7

If the resulting constraint system is satis�able, Yices will return a possible
assignment to the constraint system variables representing the program's input.
This input is constructed such that it will drive the program into a state in which
t5 holds the value null at the above program point.

However, many memory safety properties require additional information to
be known about the program's current execution context. In particular, answer-
ing the question whether a pointer may point to an �invalid� memory area re-
quires us to know which cells are currently allocated. We retain this information
by adding a function named heaploc to our memory representation:

(define heaploc::(-> (bitvector 32) (record alloc::bool init::bool

start::(bitvector 32) size::(bitvector 32))))

This allows us to express assertions stating that, e.g., pointer t5 has to point
to an allocated address at the program location where it is dereferenced, as:

(assert (= (select (heaploc t5) alloc) false))

All other pointer safety properties mentioned in Sec. 2 may be encoded along
the lines of those two examples. Most of them require further additional infor-
mation to be added to the heaploc function. To reduce the size and search space
of the resulting constraint systems we check assertions one-by-one with a spe-
cialised heaploc function for each property. The full details on our generation of
constraint systems can be found in [30].

Path-sensitive slicing. To ensure scalability of our SOCA technique, we do
not run Yices on an entire path's constraint system. Instead we compute a slice
[41] of the constraint system containing only those constraints that are relevant
to the property to be checked at a particular program location.

The approach to path-sensitive program slicing in SOCA employs an algo-
rithm based on system dependence graphs as introduced in [19]. Our slices are
computed using conventional slicing criteria (L, var) denoting a variable var
that is used at program location L, but over the single path currently being
analysed instead of the program's entire control �ow. The slice is then com-
puted by collecting all statements on which var is data dependent by tracing
the path backwards, starting from L up to the program entry point. While col-
lecting �ow dependencies is relatively easy for programs that do only use CPU
registers and temporary registers, it becomes di�cult when dependencies to the
heap and stack are involved.

Handling memory access in slicing. Consider the following two IR state-
ments: 01 ST(t5) = t32; 02 t31 = LD:I32(t7). To compute a slice for the
slicing criterion (02, t31) we have to know whether the store statement ST may
a�ect the value of t31, i.e., whether t5 and t7 may alias. We obtain this infor-
mation by using Yices to iteratively compute the potential address range that
can be accessed via t5. This is done by making Yices �nd a satisfying model e
for t5. When reading a model, which is represented by Yices by a bit-vector, we
compute its integer representation. We then compute further satisfying models

8

e′ such that e > e′ or e < e′ holds, until the range is explored. The compu-
tation is done by stepwise adding or retracting constraints so as to use Yices
as e�ciently as possible. However, sometimes complex constraint systems arise
that require the power and e�ciency of modern SAT solvers. Since we remember
only the maximal and minimal satisfying models for a given pointer, this is an
over-approximation as not the entire address range may be addressable by that
pointer. However, using this abstraction presents a trade-o� concerning only the
size of the computed slices and not their correctness, and helps us to keep the
number of Yices runs and the amount of data to be stored small.

By computing the potential address range accessed by a pointer used in a
load statement, e.g., t7 in our case, and looking for memory intervals overlapping
with the range of t7, we can now determine which store operations may a�ect
the result of the load operation. Despite being conservative when computing
address ranges, our experience shows that most memory access operations end
up having few dependencies; this is because most pointers evaluate to a concrete
value, i.e., the constraint system has exactly one satisfying model, rather than a
symbolic value.

Handling computed jumps. A major challenge when analysing compiled
programs arises from the extensive use of function pointers and jump target
computations. While most source-code-based approaches simply ignore function
pointers [4,12,17], this cannot be done when analysing object code since jump
computations are too widely deployed here. The most common example for a
computed jump is the return statement after a function call. To perform a re-
turn, the bottom element of the stack is loaded into a temporary register, e.g.,
t1, followed by a goto t1 statement, which e�ectively sets the value of the pro-
gram counter to t1. Further examples for computed jumps are jump tables and
function pointers.

In our approach, jump target addresses are determined in the same way as
addresses for load and store operations, i.e., by computing a slice for each jump
target and then using Yices to determine satisfying models for the target register.

Optimising GET and PUT statements. A problem with respect to the
scalability of our approach arises from the vast number of GET and PUT state-
ments in IR code. In particular, the frequent de-/re-composing of word-aligned
temporary registers into guest registers and back into temporary registers in-
troduces lots of additional variables in the SMT solver. These GET and PUT
statements are introduced into our IR in order to make the IR block generated
for a single CPU instruction reentrant with respect to the guest state. Thereby
we avoid the need to repeat the translation from object code to IR whenever an
instruction is used in a di�erent execution context, at the expense of having to
deal with larger constraint systems.

An e�cient way around this issue is to optimise unnecessary GET and PUT
operations away, based on a reaching de�nition analysis for a given register and
path. Practical results show that this simple optimisation greatly reduces the
memory consumption of Yices for large constraint systems. We can apply the

9

same optimisations to memory accesses in cases where the address arguments
to LD and ST evaluate to constant values. From our experience, dealing with
unnecessary GET, PUT, LD and ST statements, by performing the above op-
timisations on IR level for an entire execution path, results in more e�cient
constraint systems and shorter runtimes of SOCA and Yices than by allowing
Valgrind to perform similar optimisations at basic-block level.

Determining a valid initial memory state. Another challenge when imple-
menting symbolic execution as an SMT problem is given by the enormous search
space that may result from leaving the program's initial memory state unde�ned.
OS components, including functions taken from device drivers, make regularly
use of an external data environment consisting of heap objects allocated and
initialised by other modules of the OS. Hence, this data environment cannot be
inferred from the information available in the program binary. In practice, data
environments can often be embedded into our analysis without much e�ort, by
adding a few lines of C code as a preamble, as is shown in [32].

4 Experimental Results

To evaluate our SOCA technique regarding its ability to identify pointer safety
issues and to judge its performance when analysing OS components, we have
implemented SOCA in a prototypic tool, the SOCA Veri�er. The tool comprises
15,000 lines of C code and took about one person-year to build; details of its ar-
chitecture can be found in [30]. This section reports on the extensive experiments
we conducted in applying the SOCA Veri�er to a benchmark suite for software
model checkers and to a large set of Linux device drivers. All experiments were
carried out on a 16-core PC with 2.3 GHz clock speed and 256 GB of RAM,
running 16 instances of the SOCA Veri�er in parallel. However, an o�-the-shelf
PC with 4 GB of RAM is su�cient for everyday use, when one must not verify
thousands of programs concurrently to meet a deadline.

4.1 Experiments I: The Verisec Benchmark

To enable a qualitative comparison of the SOCA Veri�er to other tools, we
applied it to the Verisec benchmark [27]. Verisec consists of 298 test programs
(149 faulty programs � positive test programs � and 149 corresponding �xed
programs � negative test programs) for bu�er over�ow vulnerabilities, taken from
various open source programs. These test cases are given in terms of C source
code which we compiled into object code using gcc, and provide a con�gurable
bu�er size which we set to 4. The bounds for the SOCA Veri�er were set to a
maximum of 100 paths to be analysed, where a single instruction may appear at
most 500 times per path. Yices was con�gured to a timeout of 300 seconds per
invocation. Of these bounds, only the timeout for Yices was ever reached.

In previous work [25,27], Verisec was used to evaluate the C-code model
checkers SatAbs [12] and LoopFrog [25]. To enable a transparent comparison, we

10

Table 1. Comparison of SatAbs, LoopFrog and SOCA

R(d) R(f) R(¬f |d)

SatAbs (from [27]) 0.36 0.08 n/a
LoopFrog (from [25]) 1.0 0.26 0.74

SOCA 0.66 0.23 0.81

adopt the metrics proposed in [45]: in Table 1 we report the detection rate R(d),
the false-positive rate R(f), and the discrimination rate R(¬f |d). The latter is
de�ned as the ratio of positive test cases for which an error is correctly reported,
plus the negative test case for which the error is correctly not reported, to all
test cases. Hence, tools are penalised for not �nding bugs and for not reporting
a sound program as safe.

Figure 5. Performance results for the Verisec benchmark. (a) Numbers of test cases
veri�ed by time (left). (b) Numbers of constraint systems solved by time (right).

As Table 1 testi�es, the SOCA Veri�er reliably detects the majority of bu�er
over�ow errors in the benchmark, and has a lower false-positive rate and a bet-
ter discrimination rate than the other tools. Remarkable is also that the SOCA
Veri�er failed for only 4 cases of the Verisec suite: once due to memory exhaus-
tion and three times due to missing support for certain IR instructions in our
tool. Only, our detection rate is lower than the one reported for LoopFrog. An
explanation for this is the nature of Verisec's test cases where static arrays are
declared globally. This program setup renders Verisec easily comprehensible for

11

source-code veri�cation tools since the bounds of data objects are clearly identi-
�able in source code. In object code, however, the boundaries of data objects are
not visible anymore. This makes the SOCA Veri�er less e�ective when analysing
programs with small, statically declared bu�ers.

Hence, despite having used a benchmark providing examples which are in
favour of source code analysis, our results show that object code analysis, as im-
plemented in the SOCA Veri�er, can compete with state-of-the-art source-code
model checkers. However, as our tool analyses object code, it can be employed in
a much wider application domain. Unfortunately, benchmarks that include dy-
namic allocation and provide examples of pointer safety errors other than bu�er
over�ows are, to the best of our knowledge, not available.

Table 2. Performance statistics for the Verisec suite
average standard min max total

deviation

per test case

total runtime 18m30s 1h33m 162ms 15h21m 91h54m
slicing time 28s150ms 41s808ms 28ms 5m15s 2h19m
Yices time 17m59s 1h33m 110ms 15h20m 89h19m
no. of CS 4025.11 173.76 11 8609 11994834
pointer operations 8.73 37.74 4 242 2603

per Yices invocation

runtime 267ms 4s986ms 1ms 5m 88h59m
CS size 891.64 7707.95 0 368087
memory usage 6.82MB 46.54MB 3.81MB 2504.36MB

Fig. 5(a) gives details on run times; it shows the CPU times consumed for
analysing each test cases in the Verisec benchmark. The vast majority of test
cases is analysed by the SOCA Veri�er within less than three minutes per case.
As presented in Table 2, the average computation time consumed per test case is
18.5 minutes. In total, about 92 CPU hours were used. The memory consumption
of both, the SOCA Veri�er and Yices together, ammounts to an average of only
140 MBytes and a maximum of about 3 GBytes, which is a memory capacity
that is typically available in today's PCs. Notably, Ku reported in [27] that
the SatAbs tool crashed in 73 cases and timed out in another 87 cases with a
timeout of 30 minutes. The runtime of the SOCA Veri�er exceeds this time in
only 7 cases.

In Fig. 5(b) we show the behaviour of Yices for solving the constraint sys-
tems generated by the SOCA Veri�er. For the Verisec suite, a total of 11,994,834
constraint systems were solved in 89 hours. 2,250,878 (19%) of these constraint
systems express veri�cation properties, while the others were required for com-
puting control �ow, e.g., for deciding branching conditions and resolving com-
puted jumps. With the timeout for Yices set to 5 minutes, the solver timed out
on 34 constraint systems, and 96% of the constraint systems were solved in less
than one second. Thus, the SOCA Veri�er's performance is on par with state-
of-the-art software model checkers. Especially, it is e�cient enough to be used

12

as an automated debugging tool by software developers, both regarding time
e�ciency and space e�ciency.

4.2 Experiments II: Linux Device Drivers

To evaluate the scalability of the SOCA Veri�er, a large set of 9296 functions
originating from 250 Linux device drivers of version 2.6.26 of the Linux kernel
compiled for IA32 was analysed by us. Our experiments employ the Linux utility
nm to obtain a list of function symbols present in a device driver. By statically
linking the driver to the Linux kernel we resolved unde�ned symbols in the driver,
i.e., functions provided by the OS kernel that are called by the driver's functions.
The SOCA technique was then applied on the resulting binary �le to analyse
each of the driver's functions separately. The bounds for the SOCA Veri�er were
set to a maximum of 1000 paths to be analysed, where a single instruction may
appear at most 1000 times per path, thereby e�ectively bounding the number of
loop iterations or recursions to that depth. Moreover, Yices was con�gured to a
timeout of 300 seconds per invocation.

Table 3. Performance statistics for the Linux device drivers
average standard min max total

deviation

per test case

total runtime 58m28s 7h56m 21ms 280h48m 9058h32m
slicing time 8m35s 2h13m 0 95h39m 1329h46m
Yices time 48m36s 7h28m 0 280h30m 7531h51m
no. of CS 3591.14 9253.73 0 53449 33383239
pointer operations 99.53 312.64 0 4436 925277
no. of paths 67.50 221.17 1 1000 627524
max path lengths 727.22 1819.28 1 22577

per Yices invocation

runtime 845ms 8s765ms 1ms 5m2s 8295h56m
CS size 4860.20 20256.77 0 7583410
Memory usage 5.75MB 14.76MB 3.81MB 3690.00MB

Our obtained results are summarised in Table 3 and show that 94.4% of the
functions in our sample could be analysed by the SOCA Veri�er. In 67.5% of
the functions the exhaustion of execution bounds led to an early termination of
the analysis. However, the analysis reached a considerable depth even in those
cases, analysing paths of lengths of up to 22,577 CPU instructions. Interestingly,
27.8% of the functions could be analysed exhaustively, where none of the bounds
regarding the number of paths, the path lengths, or the SMT solver's timeout
were reached. As depicted in Fig. 6(a), the SOCA Veri�er returns a result in less
than 10 mins in the majority of cases, while the generated constraint systems
were usually solved in less than 500 ms. The timeout for Yices was hardly ever
reached (cf. Fig. 6(b)).

As an aside, it should be mentioned that in 0.98% (91 functions) of the sample
Linux driver functions, the SOCA Veri�er may have produced unsound results

13

Figure 6. Performance results for the Linux device drivers. (a) Numbers of test cases
veri�ed by time (left). (b) Numbers of constraint systems solved by time (right).

due to non-linear arithmetic within the generated constraint systems, which
is not decidable by Yices. In addition, our veri�er failed in 5.6% of the cases
(522 functions) due to either memory exhaustion, missing support for particular
assembly instructions in our tool or Valgrind, or crashes of Yices.

Our evaluation shows that the SOCA Veri�er scales to real-world OS software
while delivering very good performance. Being automatic and not restricted to
analysing programs available in source code only, the SOCA Veri�er is an e�-
cient tool that is capable of aiding a practitioner in debugging pointer-complex
software such as OS components. The application of the SOCA Veri�er is, how-
ever, not restricted to verifying memory safety. In [32] we presented a case study
on retrospective veri�cation of the Linux Virtual File System (VFS) using the
SOCA Veri�er for checking violations of API usage rules such as deadlocks caused
by misuse of the Linux kernel's spinlock API.

5 Related Work

A survey on automated techniques for formal software veri�cation can be found
in [13]. By having the potential of being exhaustive and fully automatic, model
checking, in combination with abstraction and re�nement, is a successful tech-
nique used in software veri�cation [11].

Model checking bytecode and assembly languages. In recent years, sev-
eral approaches to model checking compiled programs by analysing bytecode

14

and assembly code have been presented. In [40], Java PathFinder (JPF) for
model checking Java bytecode is introduced. JPF generates the state space of
a program by monitoring a virtual machine. Model checking is then conducted
on the states explored by the virtual machine, employing collapsing techniques
and symmetry reduction for e�ciently storing states and reducing the size of the
state space. These techniques are e�ective because of the high complexity of JPF
states and the speci�c characteristics of the Java memory model. In contrast,
the SOCA technique to verifying object code involves relatively simple states
and, in di�erence to Java, the order of data within memory is important in IA32
object code. Similar to JPF, StEAM [29] model checks bytecode compiled for
the Internet C Virtual Machine.

BTOR [6] and [mc]square [34,38] are tools for model checking assembly code
for micro-controllers. They accept assembly code as their input, which may ei-
ther be obtained during compilation of a program or, as suggested in [38], by
disassembling a binary program. As shown in [18], the problem of disassembling
a binary program is undecidable in general. The SOCA technique focuses on
the veri�cation of binary programs without the requirement of disassembling a
program at once.

All the above tools are explicit model checkers that require a program's entire
control �ow to be known in advance of the analysis. As we have explained above,
this is not feasible in the presence of computed jumps. The SOCA technique has
been especially designed to deal with OS components that make extensive use
of jump computations.

Combining model checking with symbolic execution. Symbolic execution
was introduced by King [23] as a means of improving program testing by cov-
ering a large class of normal executions with one execution, in which symbols
representing arbitrary values are used as input to the program. This is exactly
what our SOCA technique does, albeit not for testing but for systematic, pow-
erful memory safety analysis. A recent approach using symbolic execution to
derive inputs that make a given program crash has been proposed in EXE [7].
In contrast to our work, EXE relies on manual annotations, is not focused on
memory safety, and works at source code level.

Several frameworks for integrating symbolic execution with model checking
have recently been presented, including Symbolic JPF [35] and DART [16]. Sym-
bolic JPF is a successor of the previously mentioned JPF. DART implements
directed and automated random testing to generate test drivers and harness
code to simulate a program's environment. The tool accepts C programs and
automatically extracts function interfaces from source code. Such an interface is
used to seed the analysis with a well-formed random input, which is then mu-
tated by collecting and negating path constraints while symbolically executing
the program. Unlike the SOCA Veri�er, DART handles constraints on integer
types only and does not support pointers and data structures.

A language agnostic tool in the spirit of DART is SAGE [15], which is used
internally at Microsoft. SAGE works at IA32 instruction level, tracks integer
constraints as bit-vectors, and employs machine-code instrumentation in a sim-

15

ilar fashion as we do in [32]. SAGE is seeded with a well-formed program input
and explores the program space with respect to that input. Branches in the con-
trol �ow are explored by negating path constraints collected during the initial
execution. This di�ers from our approach since SOCA does not require seed-
ing but explores the program space automatically from a given starting point.
The SOCA technique e�ectively computes program inputs for all paths explored
during symbolic execution.

A bounded model checker for C source code based on symbolic execution
and SAT solving is SATURN [43]. This tool is specialised on checking locking
properties and null-pointer de-references and is thus not as general as SOCA.
The authors show that their tool scales for analysing the entire Linux kernel.
Unlike the SOCA Veri�er, the approach in [43] computes function summaries
instead of adding the respective code to the control �ow, unwinds loops a �xed
number of times and does not handle recursion.

Concolic testing. An area of research closely related to ours is that of concolic
testing [22,39]. This technique relies on performing concrete execution on random
inputs while collecting path constraints along executed paths. The constraints
are then used to compute new inputs driving the program along alternative
paths. In di�erence to this approach, SOCA uses symbolic execution to explore
all paths or, at least orders of magnitude more paths, and concretises only for
resolving computed jumps.

Program slicing. An important SOCA ingredient other than symbolic exe-
cution is path-sensitive slicing. Program slicing was introduced by Weiser [41]
as a technique for automatically selecting only those parts of a program that
may a�ect the values of interest computed at some point of interest. Di�erent
to conventional slicing, our slices are computed over a single path instead of an
entire program, similar to what has been introduced as dynamic slicing in [24]
and path slicing in [20]. In contrast to those approaches, we use conventional
slicing criteria and leave a program's input initially unspeci�ed. In addition,
while collecting program dependencies is relatively easy at source code level, it
becomes di�cult at object code level when dependencies to the heap and stack
are involved. The technique employed by SOCA for dealing with the program's
heap and stack is an variation of the recency abstraction described in [1].

Alternative approaches. Alternative, recent approaches to proving memory
safety are shape analysis [42] and separation logic [37]. All recent work in this
area [21,8] is based on analysing the source code of a program, and calls to li-
brary functions and programming constructs such as function pointers are simply
abstracted using non-deterministic assignments.

Techniques applying theorem proving to verify object code and assembly
code are presented in [5,44]. In [5] the Nqthm prover is employed for reasoning
about the functional correctness of implementations of well-known algorithms.
[44] proposes a logic-based type system for concurrent assembly code and uses

16

the Coq proof assistant to verify programs. In contrast to our work, both tech-
niques do not support �higher-order code pointers�, including return pointers in
procedure calls.

Testing pointer safety. Finally, validation and testing tools such as Purify [36]
and Valgrind [33] must be mentioned since they have been applied successfully
to identifying memory safety problems in application software, rather than OS
software. They execute an instrumented version of a given program in a pro-
tected environment in which various invalid pointer operations can be detected.
However, they are meant for manual testing and do not provide means for au-
tomatically, and potentially exhaustively, exploring all program behaviour.

6 Conclusions and Future Work

This paper presented the novel SOCA technique for automatically checking mem-
ory safety of pointer-complex software. Analysing object code allows us to handle
software, e.g., OS software, which is written in a mix of C and inlined assembly.
Together with SOCA's symbolic execution, this simpli�es pointer analysis when
being confronted with function pointers, computed jumps and pointer aliasing.
SOCA achieves scalability by adopting path-sensitive slicing and the e�cient
SMT solver Yices. While the SOCA ingredients are well-known, the way in which
we integrated these for automated object code analysis is novel. Much e�ort went
into engineering our SOCA Veri�er, and extensive benchmarking showed that
it performs on par with state-of-the-art software model checkers and scales well
when applied to Linux device driver functions. Our veri�er explores semantic
niches of software, especially OS software, which current model checkers and
testing tools do not reach.

Future work shall be pursued along several orthogonal lines. Firstly, since
device driver functions may be invoked concurrently, we plan to extend SOCA
to handle concurrency. To the best of our knowledge, the veri�cation of concur-
rent programs with full pointer arithmetic and computed jumps is currently not
supported by any automated veri�cation tool. Secondly, we intend to evaluate
di�erent search strategies for exploring the paths of a program, employing heuris-
tics based on, e.g., coverage criteria. Thirdly, as some inputs of device drivers
functions involve pointered data structures, we wish to explore whether shape
analysis can inform SOCA in a way that reduces the number of false positives
raised. Fourthly, the SOCA Veri�er shall be interfaced to the gnu debugger so
that error traces can be played back in a user-friendly form, at source code level.

Acknowledgements We would thank Jim Woodcock and Daniel Kroening for
their insightful comments made at the �rst author's PhD examination.

References

1. Balakrishnan, G. and Reps, T. Recency-abstraction for heap-allocated storage. In
SAS '06, vol. 4134 of LNCS, pp. 221�239. Springer, 2006.

17

2. Balakrishnan, G., Reps, T., Melski, D., and Teitelbaum, T. WYSINWYX: What
You See Is Not What You eXecute. In VSTTE '08, vol. 4171 of LNCS, pp. 202�213.
Springer, 2008.

3. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S. K., and Ustuner, A. Thorough static analysis of device
drivers. SIGOPS Oper. Syst. Rev., 40(4):73�85, 2006.

4. Ball, T. and Rajamani, S. K. Automatically validating temporal safety properties
of interfaces. In SPIN '01, vol. 2057 of LNCS, pp. 103�122. Springer, 2001.

5. Boyer, R. S. and Yu, Y. Automated proofs of object code for a widely used
microprocessor. J. ACM, 43(1):166�192, 1996.

6. Brummayer, R., Biere, A., and Lonsing, F. BTOR: Bit-precise modelling of word-
level problems for model checking. In SMT '08/BPR '08, pp. 33�38. ACM, 2008.

7. Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and Engler, D. R. EXE:
Automatically generating inputs of death. In CCS '06, pp. 322�335. ACM, 2006.

8. Calcagno, C., Distefano, D., O'Hearn, P., and Yang, H. Compositional shape
analysis by means of bi-abduction. SIGPLAN Not., 44(1):289�300, 2009.

9. Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. R. An empirical study
of operating system errors. In SOSP '01, pp. 73�88. ACM, 2001.

10. Clarke, E., Kroening, D., and Lerda, F. A tool for checking ANSI-C programs. In
TACAS '04, vol. 2988 of LNCS, pp. 168�176. Springer, 2004.

11. Clarke, E. M., Grumberg, O., and Peled, D. A. Model checking. MIT Press, 2000.
12. Clarke, E. M., Kroening, D., Sharygina, N., and Yorav, K. SATABS: SAT-based

predicate abstraction for ANSI-C. In TACAS '05, vol. 3440 of LNCS, pp. 570�574.
Springer, 2005.

13. D'Silva, V., Kroening, D., andWeissenbacher, G. A survey of automated techniques
for formal software veri�cation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(7):1165�1178, 2008.

14. Dutertre, B. and de Moura, L. The Yices SMT solver. Technical Report 01/2006,
SRI, 2006. Available at http://yices.csl.sri.com/tool-paper.pdf.

15. Godefroid, P., de Halleux, P., Nori, A. V., Rajamani, S. K., Schulte, W., Tillmann,
N., and Levin, M. Y. Automating software testing using program analysis. IEEE
Software, 25(5):30�37, 2008.

16. Godefroid, P., Klarlund, N., and Sen, K. DART: Directed automated random
testing. In PLDI '05, pp. 213�223. ACM, 2005.

17. Henzinger, T. A., Jhala, R., Majumdar, R., Necula, G. C., Sutre, G., and Weimer,
W. Temporal-safety proofs for systems code. In CAV '02, vol. 2402 of LNCS, pp.
526�538. Springer, 2002.

18. Horspool, R. N. and Marovac, N. An approach to the problem of detranslation of
computer programs. Computer J., 23(3):223�229, 1980.

19. Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence
graphs. ACM TOPLAS, 12(1):26�60, 1990.

20. Jhala, R. and Majumdar, R. Path slicing. SIGPLAN Not., 40(6):38�47, 2005.
21. Josh Berdine, C. C. and O'Hearn, P. W. Symbolic execution with separation logic.

In APLAS '05, vol. 3780 of LNCS, pp. 52�68. Springer, 2005.
22. Kim, M. and Kim, Y. Concolic testing of the multi-sector read operation for �ash

memory �le system. In SBMF '09, vol. 5902 of LNCS, pp. 251�265. Springer, 2009.
23. King, J. C. Symbolic execution and program testing. Commun. ACM, 19(7):385�

394, 1976.
24. Korel, B. and Laski, J. Dynamic slicing of computer programs. J. Syst. Softw.,

13(3):187�195, 1990.

18

25. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., and Wintersteiger, C. M.
Loop summarization using abstract transformers. In ATVA '08, vol. 5311 of LNCS,
pp. 111�125. Springer, 2008.

26. Kroening, D. and Strichman, O. Decision Procedures. Springer, 2008.
27. Ku, K. Software model-checking: Benchmarking and techniques for bu�er over�ow

analysis. Master's thesis, University of Toronto, 2008.
28. Leung, A. and George, L. Static single assignment form for machine code. In PLDI

'99, pp. 204�214. ACM, 1999.
29. Leven, P., Mehler, T., and Edelkamp, S. Directed error detection in C++ with

the assembly-level model checker StEAM. In Model Checking Software, vol. 2989
of LNCS, pp. 39�56. Springer, 2004.

30. Mühlberg, J. T. Model Checking Pointer Safety in Compiled Programs. PhD thesis,
Department of Computer Science, University of York, 2010. Examined, available
at http://swt.uni-bamberg.de/soca/soca_thesis.pdf.

31. Mühlberg, J. T. and Lüttgen, G. BLASTing Linux code. In FMICS '06, vol. 4346
of LNCS, pp. 211�226. Springer, 2006.

32. Mühlberg, J. T. and Lüttgen, G. Verifying compiled �le system code. In SBMF
'09, vol. 5902 of LNCS, pp. 306�320. Springer, 2009.

33. Nethercote, N. and Seward, J. Valgrind: A framework for heavyweight dynamic
binary instrumentation. SIGPLAN Not., 42(6):89�100, 2007.

34. Noll, T. and Schlich, B. Delayed nondeterminism in model checking embedded
systems assembly code. In Hardware and Software: Veri�cation and Testing, vol.
4899 of LNCS, pp. 185�201. Springer, 2008.

35. P�as�areanu, C. S., Mehlitz, P. C., Bushnell, D. H., Gundy-Burlet, K., Lowry, M.,
Person, S., and Pape, M. Combining unit-level symbolic execution and system-
level concrete execution for testing NASA software. In ISSTA '08, pp. 15�26. ACM,
2008.

36. Rational Purify. IBM Corp., http://www.ibm.com/software/awdtools/purify/.
37. Reynolds, J. C. Separation logic: A logic for shared mutable data structures. In

LICS '02, pp. 55�74. IEEE, 2002.
38. Schlich, B. and Kowalewski, S. [mc]square: A model checker for microcontroller

code. In ISOLA '06, pp. 466�473. IEEE, 2006.
39. Sen, K., Marinov, D., and Agha, G. CUTE: A concolic unit testing engine for C.

In ESEC/FSE-13, pp. 263�272. ACM, 2005.
40. Visser, W., Havelund, K., Brat, G., Park, S. J., and Lerda, F. Model checking

programs. FMSD, 10(2):203�232, 2003.
41. Weiser, M. Program slicing. In ICSE '81, pp. 439�449. IEEE, 1981.
42. Wilhelm, R., Sagiv, M., and Reps, T. Shape analysis. In CC '00, vol. 1781 of

LNCS, pp. 1�16. Springer, 2000.
43. Xie, Y. and Aiken, A. SATURN: A scalable framework for error detection using

boolean satis�ability. ACM TOPLAS, 29(3):16, 2007.
44. Yu, D. and Shao, Z. Veri�cation of safety properties for concurrent assembly code.

In ICFP '04, pp. 175�188. ACM, 2004.
45. Zitser, M., Lippmann, R., and Leek, T. Testing static analysis tools using ex-

ploitable bu�er over�ows from open source code. SIGSOFT Softw. Eng. Notes,
29(6):97�106, 2004.

19

Bamberger Beiträge zur Wirtschaftsinformatik

Nr. 1 (1989) Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universität Bamberg (Nachdruck Dez.
1990)

Nr. 2 (1990) Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle für PROLOG

Nr. 3 (1990) Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Nr. 4 (1990) Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Nr. 5 (1990) Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Nr. 6 (1991) Augsburger W., Rieder H., Schwab J.: Systemtheoretische Repräsentation von
Strukturen und Bewertungsfunktionen über zeitabhängigen betrieblichen numeri-
schen Daten

Nr. 7 (1991) Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell für eine modulare
Bewertung von Kennzahlenwerten für den Endanwender

Nr. 8 (1991) Schwab J.: Ein computergestütztes Modellierungssystem zur Kennzahlenbewertung

Nr. 9 (1992) Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell
in das Strukturierte Entity-Relationship-Modell

Nr. 10 (1992) Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Nr. 11 (1992) Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Nr. 12 (1992) Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Nr. 13 (1992) Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Nr. 14 (1992) Esswein W.: Das Rollenmodell der Organsiation: Die Berücksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Nr. 15 (1992) Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Nr. 16 (1992) Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Nr. 17 (1993) Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stützten Bürovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Überwachung von Vorgängen. Dissertation

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1st
edition, June 1994

 Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2nd edition, November 1994

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschäftsprozessen

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universität als Instrument zur zielgerichteten
Lenkung von Universitätsprozessen

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsräume. Ein Ansatz für ver-
teilte Führungsinformationssysteme

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschäftsprozessen auf der Grundlage
des SOM-Ansatzes

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestützten kooperativen Arbeit

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschäftsprozesse

Nr. 32 (1995) Gunzenhäuser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Nr. 33 (1995) Sinz, E.J.: Kann das Geschäftsprozeßmodell der Unternehmung das unterneh-
mensweite Datenschema ablösen?

Nr. 34 (1995) Sinz E.J.: Ansätze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstützung
durch workflow-orientierte Anwendungssysteme

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichwörter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Düsseldorf 1996

Nr. 37 (1996) Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Nr. 38 (1996) Ferstl O.K., Schäfer R.: Eine Lernumgebung für die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Nr. 39 (1996) Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten für Portfolio-Ansätze

Nr. 40 (1997) Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, München 1997

Nr. 41 (1997) Sinz E.J.: Analyse und Gestaltung universitärer Geschäftsprozesse und Anwen-
dungssysteme. Angenommen für: Informatik ’97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft für Informatik, Aachen 24.-26.9.1997

Nr. 42 (1997) Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects –
fachliche Bausteine für die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen für: HMD – Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Nr. 43 (1997): Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) – A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz
J., Schmidt G., and Shaw M., Volume I, Springer 1997

 Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2nd Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer
1998

Nr. 44 (1997) Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin – Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. – 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Nr. 45 (1998) Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, München 1998

Nr. 46 (1998) Sinz E.J.: Prozeßgestaltung und Prozeßunterstützung im Prüfungswesen. Erschie-
nen in: Proceedings Workshop „Informationssysteme für das Hochschulmanage-
ment“. Aachen, September 1997

Nr. 47 (1998) Sinz, E.J.:, Wismans B.: Das „Elektronische Prüfungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Nr. 48 (1998) Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering

Nr. 49 (1998) Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems

Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel,
July, 1999 (Springer, Lecture Notes)

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems – ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Nr. 52 (1999) Sinz E.J., Böhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems für Hochschulen. Angenommen für: Workshop „Unternehmen Hoch-
schule“ im Rahmen der 29. Jahrestagung der Gesellschaft für Informatik, Pader-
born, 6. Oktober 1999

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfü-
gig modifizierter Fassung angenommen für: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, München
1999

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Nr. 55 (2000) Böhnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen für Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Nr. 57 (2000) Böhnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Nr. 59 (2001) Sinz E.J., Böhnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems für das Hochschulwesen. Angenommen für:
WI-IF 2001, Augsburg, 19.-21. September 2001

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen für: Workshop „Unternehmen Hochschule 2001“ im Rahmen der
Jahrestagung der Gesellschaft für Informatik, Wien 25. – 28. September 2001

Änderung des Titels der Schriftenreihe Bamberger Beiträge zur Wirtschaftsinformatik in Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Note: The title of our technical report series has been changed from Bamberger Beiträge zur
Wirtschaftsinformatik to Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik
starting with TR No. 61

Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik

Nr. 61 (2002) Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Nr. 62 (2002) Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System für das Hochschulwesen. Erscheint
in: Beiträge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut für
Hochschulforschung und Hochschulplanung, München 2002

Nr. 63 (2005) Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Nr. 64 (2005) Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 – 263; Reihe education quality forum, herausgegeben durch
das Centrum für eCompetence in Hochschulen NRW, Band 2, Münster/New
York/München/Berlin: Waxmann 2005

Nr. 65 (2006) Schönberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Nr. 66 (2006) Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Röglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Nr. 67 (2006) Marco Fischer, Andreas Grünert, Sebastian Hudert, Stefan König, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems,
April 2006

Nr. 68 (2006) Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the
Exactness of Ternary Simulation

Nr. 69 (2007) Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol
Framework . February 2007

Nr. 70 (2007) Thomas Meins: Integration eines allgemeinen Service-Centers für PC-und
Medientechnik an der Universität Bamberg – Analyse und Realisierungs-
Szenarien. Februar 2007

Nr. 71 (2007) Andreas Grünert: Life-cycle assistance capabilities of cooperating Software Agents
for Virtual Enterprises. März 2007

Nr. 72 (2007) Michael Mendler, Gerald Lüttgen: Is Observational Congruence on μ-Expressions
Axiomatisable in Equational Horn Logic?

Nr. 73 (2007) Martin Schissler: out of print

Nr. 74 (2007) Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
74, Bamberg University, October 2007. ISSN 0937-3349.

Nr. 75 (2008) Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing
Technologies Convention (PET-CON 2008.1). Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University,
April 2008. ISSN 0937-3349.

Nr. 76 (2008) Gregor Scheithauer and Guido Wirtz: Applying Business Process Management
Systems? A Case Study. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-
3349.

Nr. 77 (2008) Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for
Abstraction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN
0937-3349.

Nr. 78 (2008) Gregor Scheithauer and Matthias Winkler: A Service Description Framework for
Service Ecosystems. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349.

Nr. 79 (2008) Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better
Performancs. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349.

Nr. 80 (2009) Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger, Guido Wirtz: QoS Enabled
B2B Integration. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 80, Bamberg University, May 2009. ISSN 0937-3349.

Nr. 81 (2009) Ute Schmid, Emanuel Kitzelmann, Rinus Plasmeijer (Eds.): Proceedings of the
ACM SIGPLAN Workshop on Approaches and Applications of Inductive
Programming (AAIP'09), affiliated with ICFP 2009, Edinburgh, Scotland,
September 2009. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 81, Bamberg University, September 2009. ISSN 0937-3349.

Nr. 82 (2009) Ute Schmid, Marco Ragni, Markus Knauff (Eds.): Proceedings of the KI 2009
Workshop Complex Cognition, Paderborn, Germany, September 15, 2009.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
82, Bamberg University, October 2009. ISSN 0937-3349.

Nr. 83 (2009) Andreas Schönberger, Christian Wilms and Guido Wirtz: A Requirements Analysis
of Business-to-Business Integration. Bamberger Beiträge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 83, Bamberg University, December 2009. ISSN
0937-3349.

Nr. 84 (2010) Werner Zirkel and Guido Wirtz: A Process for Identifying Predictive Correlation
Patterns in Service Management Systems. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 84, Bamberg University,
February 2010. ISSN 0937-3349.

Nr. 85 (2010) Jan Tobias Mühlberg und Gerald Lüttgen: Symbolic Object Code Analysis.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
85, Bamberg University, February 2010. ISSN 0937-3349.

