
Non-monotone Fixpoint Iterations

to Resolve Second Order E�ects

Alfons Geser1, Jens Knoop1, Gerald L�uttgen2 ?,
Oliver R�uthing3, and Bernhard Ste�en1

1 Fakult�at f�ur Mathematik und Informatik, Universit�at Passau,
Innstra�e 33, D{94032 Passau, Germany

2 Dept. of Computer Science, N.C. State University, Raleigh, NC 27695-8206, USA
3 Institut f�ur Informatik und Praktische Mathematik, Christian-Albrechts-Universit�at,

Preu�erstra�e 1{9, D{24105 Kiel, Germany

Abstract. We present a new �xpoint theorem which guarantees the exis-
tence and the �nite computability of the least common solution of a count-
able system of recursive equations over a wellfounded domain. The functions
are only required to be increasing and delay-monotone, the latter being a
property much weaker than monotonicity. We hold that wellfoundedness is a
natural condition as it guarantees termination of every �xpoint computation
algorithm. Our �xpoint theorem covers, under the wellfoundedness condition,
all the known `synchronous' versions of �xpoint theorems. To demonstrate its
power and versatility we contrast an application in data
ow analysis, where
known versions are applicable as well, to a practically relevant application in
program optimization, which due to its second order e�ects, requires the full
strength of our new theorem. In fact, the new theorem is central for establish-
ing the optimality of the partial dead code elimination algorithm considered,
which is implemented in the new release of the Sun SPARCompiler4 language
systems.

1 Motivation and Related Work

Many practically relevant problems in computer science can be characterized by
means of the least common solution of a system of recursive equations

x = f1(x)

...

x = fn(x)

where F=df ffk : D ! D j 1 � k � ng is a family of monotone functions on a well-
founded partial order hD;vi. Solving this system of equations is equivalent to the
computation of a �xpoint of F , i.e. a common �xpoint x = fk(x) of all fk. A typical

? The author is supported by the German Academic Exchange Service under grant
D/95/09026 (Doktorandenstipendium HSP II/ AUFE).

4 SPARCompiler is a registered trademark of SPARC International, Inc., and is licensed
exclusively to Sun Microsystems, Inc.

iteration algorithm starts with the initial value ?, the smallest element of D, and
successively updates the value of x applying the functions fk in an arbitrary order,
so as to approximate the least �xpoint of F . People speak of a chaotic iteration.

The origin of �xpoint theorems in computer science dates back to the funda-
mental work of Tarski [Tar55]. Tarski's theorem considers a monotone function and
guarantees the existence of its least �xpoint with respect to a complete partial order.
This setup, however, turned out to be too restrictive for a lot of practically relevant
applications which led to a number of generalizations. See [LNS82] for a survey of
the history of �xpoint theory.

Vector iteration [Rob76] provides such a generalization, where one computes the
least �xpoint x = (x1; : : : ; xm) 2 Dm of a monotone vector function f =(f1; : : : ; fm).
Liberalizing Tarski's iteration x0 = ?;x1 = f(x0);x2 = f(x1); : : : , where xi denotes
the value of x after the i-th iteration, one may choose x0 = ?;x1 = fJ0 (x0);x2 =
fJ1(x1); : : : , where Ji � f1; : : : ; ng and the k-th component fJi (xi)

k of fJi (xi) is
fk(xi) if k 2 Ji and xki otherwise. Intuitively, at each step i the set Ji denotes
the indices k of the components which are updated. It is known that a fairness
condition for the Ji is mandatory. Considering the vectors x as objects and the
update operations fJ as functions, we have a clear instance of the chaotic iteration
above (see also Section 3). Recent contributions to �xpoint theory provide e�cient
strategies for vector iteration, e.g. by using demand driven evaluation strategies (cf.
[VWL94, J�r94]).

The vector approach has been further generalized towards asynchronous itera-
tions [Bau78, Cou77, �UD89, Wei93], where fJi may use components of a choice of
earlier vectors xj, with j � i, of the iteration.

Despite its power the vector iteration approach turns out too restrictive in two
aspects. First, the functions involved in the �xpoint iteration may be such that they
cannot be regarded as components of a single function f . To our knowledge, the
only serious attack to this problem has been made by the Cousots [CC79]. The
common �xpoints of a family F =df (fk)k2IN of monotonic functions are described
by iterations, given that each pair fk, fk0 commutes: fk(fk0(x)) = fk0(fk(x)) for all
x 2 D.

Second, and even worse, program transformations may have what Rosen, Weg-
man and Zadeck [RWZ88] call second order e�ects. Typically, program transfor-
mations are not idempotent; one transformation may have a strong impact on the
pro�tability of another transformation; often the transformation functions involved
are no longer monotone. Then none of the known �xpoint theorems apply.

In this paper we o�er a new �xpoint theorem which does without monotonicity.
Given d v d0, monotonicity amounts to show fk(d) v fk(d0). Instead, we allow
that the expression fk(d0) may be replaced by fj(d0) for any j, and even by some
arbitrary composition of functions applied to d0. If the functions are increasing, this
task becomes the easier to solve, the longer the compositions are.

We require only two very weak conditions for technical convenience. First, we
require that the underlying domain is wellfounded, a condition which is reasonable
in practice, because it means termination of the iteration. In fact we are con�dent
that wellfoundedness is not essential if one can a�ord nontermination. Second, we

require that all functions in F are increasing, i.e. x v fk(x) holds for all k 2 IN .
This condition is not really restrictive, as we will show (cf. Section 2 and 3).

Our �xpoint theorem is applicable to an arbitrary countable family of functions
F =df ffk : D ! D j k 2 INg on a wellfounded partial order hD;vi: Under the above
mentioned premises our theorem guarantees the existence of a least common �xpoint
of F , which is reached eventually by any fair chaotic iteration.

The remainder of the paper is structured as follows. We present the new �xpoint
theorem in Section 2. In Section 3 we show that vector iterations are a special case
of chaotic iterations. Section 4 demonstrates the power of our theorem by giving a
classical application in terms of a data
ow analysis algorithm, and by treating a
problem beyond the scope of classical �xpoint theorems: the proof of the optimality
of a program optimization for partial dead code elimination (cf. [KRS94b]), which
is composed of program transformations with second order e�ects. This algorithm
is implemented in Version 4.0 of the Sun SPARCompiler language systems to be
released at the end of 1995, which underlines the practical relevance of the new
�xpoint theorem. Section 5 contains our conclusions and directions to future work.

Appendix A �nally contains all technical proofs of the paper.

2 The Fixpoint Theorem

In this section we present our new �xpoint theorem guaranteeing that a family of
functions, F =df (fk)k2IN , has a least common �xpoint �F , together with a corre-
sponding `generic' terminating algorithm. This requires the following basic notions.

A partial order hD;vi is a set D together with a re
exive, antisymmetric, and
transitive binary relation v �D�D. A sequence (di)i2IN of elements di 2 D is called
an (ascending) chain if 8i 2 IN: di v di+1. A chain T =df (di)i2IN is stationary if
fdi j i 2 INg is �nite. The partial order relation v is called wellfounded if every
chain is stationary. A function f : D ! D on D is increasing if d v f(d) for all
d 2 D, and monotone if 8d; d0 2 D: d v d0) f(d) v f(d0). If F =df (fk)k2IN is a
family of functions and s = (s1; : : : ; sn) 2 IN� then fs is de�ned by the composition
fs=df fsn � � � � � fs1 .

The following notions are central for dealing with �xpoint iterations of a family
of functions.

De�nition1 Strategy, Chaotic Iteration Sequence and Fairness. Let hD;vi
be a partial order and F =df (fk)k2IN be a family of increasing functions fk : D ! D.
A strategy is any function
 : IN ! IN . A strategy
 and an element d 2 D induce a
chaotic iteration f
 (d) = (di)i2IN of elements di 2 D inductively de�ned by d0 = d

and di+1 = f
(i)(di). A strategy
 is called fair i�

8i; k 2 IN: (fk(di) 6= di implies 9j > i: dj 6= di)

Fixpoint theorems usually require that the considered functions are monotone. In
practice, however, functions are often not monotone, but satisfy the following weaker
notion.

De�nition2 Delay-Monotonicity. Let hD;vi be a partial order andF =df (fk)k2IN
be a family of functions fk : D ! D. Then F is called delay-monotone, if for all
k 2 IN :

d v d0 implies 9s 2 IN�: fk(d) v fs(d
0)

If every fk is a monotone function in the usual sense, then F is delay-monotone.
But note that delay-monotonicity in general does not carry over to proper subsets
of F .

Now we are prepared for our main result, which, in particular, yields that
F
f
 (?)

is independent of the choice of
.

Theorem3 Chaotic Fixpoint Iterations. Let hD;vi be a wellfounded partial
order with least element ?, F =df (fk)k2IN a delay-monotone family of increasing
functions, and
 : IN ! IN a fair strategy. Then the least common �xpoint �F of F
exists and is given by

F
f
 (?). In particular, �F is always reached within a �nite

number of iteration steps.

Note that the following counterexample shows that \increasing" is essential. Let
? @ a, and f1(?)= f1(a)=?, f2(?)= f2(a)= a, both monotone, but f1 not in-
creasing. Indeed, f1 and f2 have no common �xpoints.

Theorem 3 suggests an iterative strategy for computing the least �xpoint of F .
One de�nes
(i) at step i during the run of the algorithm. Whenever di is not
yet a �xpoint of F , i.e. there is some k 2 IN where fk(di) is strictly greater than
di, one chooses
(i) = k for an arbitrary such k. This idea is illustrated in the
nondeterministic skeleton algorithm presented in Figure 1.

d := ?;
while 9 k 2 IN: d 6= fk(d) do

choose k 2 IN where d @ fk(d) in
d := fk(d)

ni

od

Fig. 1. The Nondeterministic
Skeleton Algorithm

3 Special Case: Vector Iterations

Let hC;vCi be a wellfounded partial order and D = Cn for some n 2 IN , ordered by
the pointwise extension v ofvC . Now let f : D ! D be a monotone function. Instead
of iterating d1 = f(?); d2 = f(d1); : : : according to Tarski's theorem, one may pass
over to a dissection of f to its components, fk, i.e. f(d) = (f1(d); : : : ; fn(d)) and
perform selective updates. Here and in the sequel we use an upper index i at a vector
of length n to select its i-th component. A vector iteration is an iteration of the form
d1 = fJ0 (?); d2 = fJ1(d1); : : : , where Ji � f1; : : : ; ng and

fJ (d)
i=df

�
f i(d) if i 2 J

di otherwise

performs a selective update of the components speci�ed by J . The set of common
�xpoints of the function family F =df ffJ j J � f1; : : : ; ngg is equal to the set of
�xpoints of f . Note that each fJ is monotone since f is monotone.

Now let us demonstrate that the vector approach is modelled conveniently in our
setting. To this end, we generalize the notion of a strategy to that of a set strategy.
A set strategy is any function
 : IN ! P(f1; : : : ; ng). The intended meaning being
that
(i) yields a set Ji of indices in f1; : : : ; ng of components to be updated at step
i. A set strategy is called fair, i�

8i 2 IN; J � IN:(fJ (di) 6= di implies 9j > i: dj 6= di)

The following result shows that for a monotone vector function f , every chaotic
iteration sequence is a chain.

Lemma4 Vector Iterations. Let hC;vCi be a wellfounded partial order with
least element ?C, let n 2 IN , and let D = Cn be ordered by the pointwise ex-
tension v of vC . Let f = (f1; : : : ; fn) be a monotone function on D, and let
F =df ffJ j J � f1; : : : ; ngg with functions fJ : D ! D as de�ned above and

 : IN ! P(f1; : : : ; ng) be a set strategy. Then every chaotic iteration f
 (?) is
a chain.

Without loss of generality we may assume that D is the smallest set that contains
? and is closed under F and

F
. Then increasingness means exactly that every itera-

tion yields a chain. In other words, for vector iterations the increasingness property
is no real restriction.

The following corollary is a special case of Theorem 3 for vector iterations and a
consequence of Lemma 4. In particular, if jFj = 1 our corollary reduces to Tarski's
theorem in the case of wellfounded partial orders.

Corollary5 Chaotic Vector Iterations. Let hC;vCi be a wellfounded partial or-
der with least element ?C , let n 2 IN , and let D = Cn be ordered by the pointwise
extension v of vC . Let f = (f1; : : : ; fn) be a monotone function on D, and let
F =df ffJ j J � f1; : : : ; ngg, and
 be a fair set strategy. Then

F
f
 (?) is the least

�xpoint �F of F . In particular, �F = �f , and it is always reached within a �nite
number of iteration steps.

4 Applications

In this section we demonstrate our Fixpoint Theorem 3 by proving the correctness
and termination of a workset algorithm for data
ow analysis, and by establishing
terminating optimal program optimization on the basis of program transformations
with second order e�ects. Whereas the �rst application can already be handled by
Corollary 5, which re
ects the scope of classical vector iteration approaches as they
are common in practice, the second application requires the full strength of our main
Theorem 3, as the component transformations of the optimization, the algorithm for
partial dead code elimination of [KRS94b], are not even monotone on the relevant
domain. Here, the new theorem is central for establishing the optimality of this
algorithm, which is implemented in Version 4.0 of the Sun SPARCompiler language
systems to be released at the end of 1995.

4.1 Data Flow Analysis: Workset Algorithms

Data
ow analysis (DFA) is concerned with the static analysis of programs in order
to support the generation of e�cient object code by \optimizing" compilers (cf.
[Hec77, MJ81]). For imperative languages, it provides informationabout the program
states that may occur at a given program point during execution. Usually, this
information is computed by means of some iterative workset algorithm, which can
elegantly be modelled by the vector iteration approach.

In DFA and program optimization (cf. Section 4.2) it is common to represent
programs as directed
ow graphs G = (N;E; s; e) with node set N and edge set
E. Nodes n 2 N represent the statements, edges (n;m) 2 E the nondetermin-
istic branching structure of the program under consideration, and s and e the
unique start node and end node of G, which are assumed to possess no prede-
cessors and successors, respectively. Moreover, predG(n)=df fm j (m;n) 2 E g and
succG(n)=df fm j (n;m) 2 E g denote the set of all immediate predecessors and
successors of a node n, respectively. Finally, every node n 2 N is assumed to lie on
a path from s to e, i.e. every node n 2 N is reachable from s, and e is reachable
from every node n 2 N .

Theoretically wellfounded are DFAs that are based on abstract interpretation (cf.
[CC77, Mar93]). The point of this approach is to replace the \full" semantics of a
program by a simpler more abstract version, which is tailored to deal with a speci�c
problem. Usually, the abstract semantics is speci�ed by means of a local semantic
functional

[[]] : N! (C !C)

which gives abstract meaning to every program statement in terms of a monotone
(or even continuous) transformation function on a wellfounded partial order hC;vi
with least element ?, whose elements express the DFA-information of interest.

Given a program G and a local abstract semantics [[]], the goal of DFA is to
annotate the program points of G with DFA-information that properly re
ect the
run-time behaviour of G with respect to the problem under consideration. Formally,
this annotation is de�ned by the least solution of Equation System 6 which speci�es
the consistency between pre-conditions of the statements of G expressed in terms of
C with respect to some start information c0 2 C. This annotation is known as the
solution of the minimal �xpoint (MFP) approach in the sense of Kam and Ullman
[KU77].

Equation System6.

pre(n) =

�
c0 if n = sF
f [[m]](pre(m)) jm 2 predG(n) g otherwise

In practice the MFP -solution, which we denote by prec0 , is computed by means of
some iterative workset algorithm (see Figure 2).

We will see that termination and correctness in this approach are a consequence
of Corollary 5. To begin with, let G = (N;E; s; e) be the
ow graph under consider-
ation, and let [[]] : N! (C !C) be a local abstract semantics, such that all semantic
functions are monotone. Without loss of generality we identify in the following the

pre[s] := c0;
forall n 2 Nnfsg do pre[n] := ? od;
workset := N ;
while workset 6= ; do

choose n 2 workset in
workset := worksetnf n g;
new := pre[n] t

F
f[[m]](pre[m]) jm 2 predG(n)g;

if new A pre[n] then
pre[n] := new ;
workset := workset [succG(n)

�

ni

od

Fig. 2. A Workset
Algorithm

set of nodes of N with the set of natural numbers f1; : : : ; ng, where n denotes the
number of nodes of N .

Now let us de�ne D=df Cn equipped with the pointwise extension of v. One easily
veri�es that D is a wellfounded partial order. A value d = (d1; : : : ; dn) represents
an annotation of the
ow graph where the value dk is assigned to node k.

For every node k of the
ow graph we de�ne a function fk : D!C by

fk(d1; : : : ; dn)=df d
0k

where
d0k = dk t

G
f[[m]](dm) jm 2 predG(k)g

Intuitively, fk describes the e�ect of a computation of the local semantics at node
k. The following lemma states that the DFA problem is modelled correctly.

Lemma7. For all d 2 D we have: d is a solution of Equation System 6 if and
only if d is a �xpoint of f=df (f

1; : : : ; fn).

The workset algorithmof Figure 2 follows the general pattern of the nondeterministic
skeleton algorithm of Figure 1 with F = fffkg j 1 � k � ng. It pro�ts from a set
workset of indices which satis�es the invariant: workset � fk j ffkg(d) 6= dg. One
easily veri�es that f is monotone. Hence the premises of Corollary 5 are satis�ed
and we obtain the following theorem.

Theorem8 Correctness and Termination. Every run of the workset algorithm
terminates with the MFP -solution prec0 .

4.2 Program Optimization: Partial Dead Code Elimination

In this section we demonstrate an application of the Chaotic Fixpoint Iteration
Theorem 3 in program optimization by proving the optimality of the partial dead
code elimination algorithm of [KRS94b]. Intuitively, an assignment in a program
is dead if its left hand side variable is dead immediately after its execution, i.e., if
on every program continuation reaching the end of the program the �rst use of this

variable is preceded by a rede�nition of it. Correspondingly, an assignment is partially
dead , if it is dead along some program paths reaching the end of the program.

Conceptually, the elimination of partially dead occurrences of an assignment
pattern � (for short: partially dead �-occurrences) can be decomposed into two
steps. First, moving them as far as possible in the direction of the control
ow, and
second, removing all dead �-occurrences. In order to preserve the program semantics,
both the sinking and the elimination steps must be admissible. This is de�ned in
full detail in [KRS94b]. So, we here restrict the presentation to those parts that are
essential for Theorem 3.

The relevance of Theorem 3 for partial dead code elimination stems from the fact
that assignment sinking and elimination steps in general have second order e�ects,
i.e. they usually enable assignment sinking and elimination steps for other assignment
patterns. For example, eliminating the partially dead occurrences of some assignment
pattern is often the premise that occurrences of other assignment patterns can be
eliminated at all. In [KRS94b] this is taken care of by repeatedly applying admissible
assignment sinking and elimination steps to the assignment patterns of the argument
program until the program stabilizes, i.e. until a �xpoint is reached. The correctness
of this iterative approach is a consequence of Theorem 3, as we are going to show in
the remainder of this section, where we consider an arbitrary, but �xed program G.

For a program G0, we will write G0 `se G00 if the
ow graph G00 results from
G0 by applying an admissible assignment sinking or elimination transformation.
We denote the set of all admissible assignment sinking and dead code elimination
functions by S and E , respectively. Additionally, we abbreviate S [E by T . It
consists of all functions fG1;G2

: G!G de�ned by

8G0 2 G: fG1 ;G2
(G0)=df

�
G2 if G0=G1

G0 otherwise

where G1; G2 2 G and G1 `se G2. Alternatively to f(G0)=G00 we will also write
G0 `fse G

00. Then,

G=df fG
0 j G `�se G

0 g

denotes the universe of programs resulting from G by partial dead code elimination.
In order to compare the quality of di�erent programs in G, we introduce the

relation \better" between programs of G. Note that this relation is re
exive. In fact,
at least as good would be the more precise but uglier notion.

De�nition9 Optimality.

1. Let G0; G00 2 G. Then G0 is better than G00, in signs G00 @
� G0, if and only if

for every assignment pattern � and every program path p leading from the
start node to the end node of the argument program there are at most as many
occurrences of � in G0 as in G00.5

2. G� 2 G is optimal if and only if G� is better than any other program in G.

5 Partial dead code elimination preserves the branching structure of the argument program.
Hence, starting from a path in G, we can easily identify corresponding paths in G0 and
G00.

It is easy to check that the relation @� is re
exive, transitive, and wellfounded. Un-
fortunately, it is not antisymmetric. Hence, there may be several programs being
optimal in the sense of De�nition 9. In order to apply Theorem 3, we thus con-
sider the partial order `�se instead of @�, but we are going to reconsider relation @�
subsequently (cf. Theorem 18).

In addition to S and E , we de�ne the set of maximal assignment sinkings and
eliminations, which are the functions involved in the partial dead code elimination
algorithm of [KRS94b]. A function fG1;G2

2 S (E) is called maximal , if for all
functions fG1;G3

2 S (E) there is a function fG3;G2
2 T with fG1;G2

= fG3;G2
�

fG1;G3
. The set of all maximal sinking and elimination functions are denoted by

Smax and Emax, respectively, and T max � T denotes the union of Smax and
Emax. Finally, we denote the set of (maximal) admissible assignment sinkings and
eliminations with respect to an assignment pattern � by T� and T max

� . As a �rst
result we then obtain the Dominance Lemma 10, which follows immediately from
the de�nitions of T max

� and T�.

Lemma10 Dominance. Let G1 2 G, let f 2 T max
� and g 2 T� be corresponding

functions, i.e. both sinking or both elimination functions, let G1 `gse G2, and G1 `fse
G3. Then we have: G2 `se G3. In particular: G3 6= G1 if G2 6= G1.

The next lemma can be proven by a straightforward induction on the length of
a derivation sequence. The point for proving the induction step is that a program
resulting from a transformation of T is at least as good as its argument with respect
to @�. It is in the same equivalence class after sinking and trivial elimination steps,
i.e., elimination steps, where no assignment occurrence has been eliminated; and it
is better otherwise. This follows immediately from the constraints that are satis�ed
by admissible assignment sinkings and eliminations.

Lemma11. We have: G0 `�se G00) G0@
�G00

In other words, Lemma 11 says `�se�
@
�. From the wellfoundedness of @� and

the de�nitions of `se and T max we immediately conclude:

Lemma12 Wellfoundedness and Increasingness.

1. The relation `�se is wellfounded.
2. All functions f 2 T max are increasing.

Next we are going to show that T is delay-monotone. This proof is supported by
the following lemma, whose �rst part is a consequence of the fact that eliminating
dead assignment occurrences does not reanimate other dead assignment occurrences,
and whose second part is a consequence of the admissibility of g and a simple
program transformation supposed in [KRS94b] which is typical for code motion
transformations (cf. [DRZ92, KRS92, KRS94a, RWZ88]), namely to insert in every
edge leading from a node with more than one successor to a node with more than
one predecessor a new `synthetic' node.

Lemma13. Let G1; G2; G3 2 G, and g; h 2 T with G1 `
g
se G2 and G1 `

h
se G3.

1. If g 2 E�, and occ an �-occurrence occurring both in G1 and G2, then we
have: If occ is dead in G1, then it is dead in G2.

2. If g; h 2 S�, occ an �-occurrence that has been moved by g into a node n

of G2 with more than one predecessor, and occ0 an �-occurrence that has been
moved by h into a predecessor m of n, then we have: occ is dead in n i� occ0

is dead in m.

Additionally, we have:

Lemma14. Let G1; G2 2 G, let g 2 T , f 2 T max, and let �; � 2 AP be two
di�erent assignment patterns. Then we have:

1. If f; g 2 E , then there are transformations f 0; g0 2 E such that the diagram in
Figure 3 commutes.

2. If f; g 2 S, then there are transformations f 0; g0 2 S such that the diagram in
Figure 3 commutes.

3. If g 2 E� and f 2 S�, then there are transformations g0 2 E� and f 0 2 S�
such that the diagram in Figure 3 commutes.

4. If g 2 S� and f 2 E�, then there are transformations g0 2 S� and f 0 2 E�
such that the diagram in Figure 3 commutes.

G

G

G1

G

2

3 4

f f

g

g

se

se

se se

Fig. 3. Commuting Diagram

Lemma 13 and Lemma 14 allow us to establish the following lemma, which is
the key for proving the delay-monotonicity of T .

Lemma15 Main Lemma.

8 g 2 T : G1 `gse G2) 8 f 2 T 9 f1; : : : ; fn 2 T : f(G1) `�se fn � : : : � f1(G2)

The following theorem states the desired delay-monotonicity result. The reason-
ing closely resembles the classical Newman Lemma [New42], saying that con
uence
follows from local con
uence if the given relation is wellfounded. Note that mono-
tonicity does not hold.

Lemma16 Delay-Monotonicity.

T is delay-monotone, i.e.,

8 f 2 T : G0 `�se G00) 9 f1; : : : ; fn 2 T : f(G
0) `�se fn � : : : � f1(G

00)

Finally, we have to show that the set of common �xpoints of T max and T
coincide. Central for proving this result is the Dominance Lemma 10. Moreover, we
have to check that the �xpoints of T are maximal in G.

Theorem17 Fixpoint Characterization.

1. G0 2 G is a �xpoint of the functions of T if and only if G0 is a �xpoint of the
functions of T max.

2. G0 2 G is a �xpoint of the functions of T if and only if G0 is maximal in G.

Collecting our results we have: `�se is a wellfounded (Lemma 12(1)) complete partial
order on G, whose least element is G itself; all functions f 2 T max are increasing
(Lemma 12(2)) and T is delay-monotone with respect to `�se (Lemma 16). Hence,
Theorem 3 is applicable.

Moreover, the function families T max and T have the same common �xpoints
(Theorem 17(1)), and all of their �xpoints are maximal in `�se (Theorem 17(2)).

Combining these results and applying Lemma 11 we obtain that there exists a
terminating optimal program transformation [KRS94b]:

Theorem18 Optimal Partial Dead Code Elimination.

G has (up to local reorderings in basic blocks) a unique optimal element (with respect
to @

�) which can be computed by any fair sequence of function applications from
T max.

We remark that the optimality of the partial faint code elimination algorithm which
is also introduced in [KRS94b] as well as the optimality of the algorithm for the
uniform elimination of partially redundant expressions and assignments in [KRS95]
can be proven in exactly the same fashion.

5 Conclusions

We have presented a new �xpoint theorem, which gives a su�cient condition for the
existence and computability of the least common �xpoint of a family of functions
on a wellfounded partial order. The point of this theorem is that for wellfounded
partial orders the usual monotonicity condition can be substantially weakened. This
allows us to capture a new and interesting class of practically relevant applications.
To characterize this class, we discussed applications in data
ow analysis and pro-
gram optimization. Whereas the �rst application could still be treated by the known
�xpoint theorems, the second application requires the generalization developed in
this paper. Our new theorem is the key for proving the optimality of the partial dead
code elimimation algorithm of [KRS94b], which is implemented in the new release of
the Sun SPARCompiler language systems. Moreover, as our theorem only requires
delay-monotonicity, a property being weaker than monoticity, algorithm designers
gain greater
exibility in the construction process than in the classical setup.

References

[Bau78] G�erard Baudet. Asynchronous iterative methods for multiprocessors. Journal of
the ACM, 25(2):226{244, April 1978.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints. In
Conf. Record of the 4th ACM Symp. on Principles of Programming Languages,
pages 238 { 252, Los Angeles, CA, 1977.

[CC79] P. Cousot and R. Cousot. Constructive versions of Tarski's �xed point theorems.
Paci�c Journal of Mathematics, 82(1):43{87, 1979.

[Cou77] P. Cousot. Asynchronous iterative methods for solving a �xed point system
of monotone equations in a complete lattice. Technical Report 88, Laboratoire
d'Informatique, U.S.M.G., Grenoble, France, September 1977.

[DRZ92] D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck. How to analyze large pro-
grams e�ciently and informatively. In Proc. ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation'92, volume 27,7 of ACM SIGPLAN
Notices, pages 212 { 223, San Francisco, CA, June 1992.

[Hec77] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, North-Holland,
1977.

[J�r94] N. J�rgensen. Finding �xpoints in �nite function spaces using needeness analysis
and chaotic iteration. In First International Static Analysis Symposium(SAS'94),
Lecture Notes in Computer Science 864, pages 329{345, Namur, Belgium, 1994.
Springer-Verlag.

[KRS92] J. Knoop, O. R�uthing, and B. Ste�en. Lazy code motion. In Proc. ACM SIG-
PLAN Conf. on Programming Language Design and Implementation'92, volume
27,7 of ACM SIGPLAN Notices, pages 224 { 234, San Francisco, CA, June 1992.

[KRS94a] J. Knoop, O. R�uthing, and B. Ste�en. Optimal code motion: Theory and prac-
tice. ACM Transactions on Programming Languages and Systems, 16(4):1117{
1155, 1994.

[KRS94b] J. Knoop, O. R�uthing, and B. Ste�en. Partial dead code elimination. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and Implemen-
tation'94, volume 29,6 of ACM SIGPLAN Notices, pages 147 { 158, Orlando, FL,
June 1994.

[KRS95] J. Knoop, O. R�uthing, and B. Ste�en. The power of assignment motion. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and Implemen-
tation'95, volume 30,6 of ACM SIGPLAN Notices, pages 233 { 245, La Jolla,
CA, June 1995.

[KU77] J. B. Kam and J. D. Ullman. Monotone data
ow analysis frameworks. Acta
Informatica, 7:309 { 317, 1977.

[LNS82] J.-L. Lassez, V.L. Nguyen, and E.A. Sonnenberg. Fixed point theorems and
semantics: A folk tale. Information Processing Letters, 14(3):112{116, 1982.

[Mar93] K. Marriot. Frameworks for abstract interpretation. Acta Informatica, 30:103 {
129, 1993.

[MJ81] S. S. Muchnick and N. D. Jones, editors. Program Flow Analysis: Theory and
Applications. Prentice Hall, Englewood Cli�s, NJ, 1981.

[New42] M.H.A. Newman. On theories with a combinatorial de�nition of equivalence.
Annals of Math., 43,2:223{243, 1942.

[Rob76] F. Robert. Convergence locale d'it�erations chaotiques non lin�eaires. Technical
Report 58, Laboratoire d'Informatique, U.S.M.G., Grenoble, France, December
1976.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Conf. Record of the 15th ACM Symp. on Principles
of Programming Languages, pages 12 { 27, San Diego, CA, 1988.

[Tar55] A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c
Journal of Mathematics, 5:285{309, 1955.

[�UD89] Aydin �Uresin and Michel Dubois. Su�cient conditions for the convergence of
asynchronous iterations. Parallel Computing, 10:83{92, 1989.

[VWL94] B. Vergauwen, J. Wauman, and J. Lewi. E�cient �xpoint computation. In First
International Static Analysis Symposium(SAS'94), Lecture Notes in Computer
Science 864, pages 314{328, Namur, Belgium, 1994. Springer-Verlag.

[Wei93] Jiawang Wei. Parallel asynchronous iterations of least �xed points. Parallel
Computing, 19:887{895, 1993.

A Proofs

Proof of the New Fixpoint Theorem 3

The wellfoundedness of v, the increasingness of the functions of F , and the fairness
of the strategy directly imply that

F
f
(?) is a �xpoint and that it is reached in a

�nite number of iteration steps. Thus, we are left with showing that
F
f
(?) is a

lower bound for every common �xpoint of F . Let � be an arbitrary �xed point of
F , i.e. fk(�) = � for all fk 2 F and as a consequence fs(�) = � for all s 2 IN�. For
(di)i2IN = f
 (?) we show di v � for all i 2 IN by induction on i. For i = 0, we have
d0 = ? v �. The induction step, di+1 = f
(i)(di) v fs(�) = � for some s 2 IN�,
then follows from the induction hypothesis di v � and delay-monotonicity. Hence
di v � for all i and so

F
f
(?) v � by de�nition of

F
. ut

Proof of Lemma 4

Let
 be an arbitrary set strategy on f1; : : : ; ng, and (di)i2IN be its induced chaotic
iteration, starting from ?=df (?C ; : : : ;?C). We have to show

8i 2 IN: di v di+1

The proof is by induction on i. Let J =df
(i). By de�nition of fJ the property

8 k 2 f1; : : : ; ngnJ 8 d 2 D: fJ (d)
k = dk

holds. Therefore, it su�ces to show dki vC fk(di)
k for all k 2 J . The case dki = ?C

is trivial. Otherwise, dki must have been updated in an earlier step. More precisely,
dki = f
(j)(dj)

k where j is the greatest index j < i such that k 2
(j). By induction
hypothesis for each j0 = j; : : : ; i � 1, we obtain dj0 v dj0+1, from which dj v di
follows by transitivity of v. By monotonicity of f
(j) then, dki = f
(j)(dj)

k vC

f
(j)(di)
k = fk(di) = fJ (di)k = dki+1 follows, and the proof is done. ut

Proof of Lemma 14

For f 2 E�, let elim�(f;G
0) denote the set of �-occurrences in G0 that are elimi-

nated by f . Then, the �rst part of Lemma 14 is proven by investigating two cases:
(1a) g; f 2 E�, (1b) g 2 E�, f 2 E�

In case (1a), the maximality of f guarantees: elim�(g;G1) � elim�(f;G1). Ap-
plying Lemma 13(1) we obtain that all �-occurrences in elim�(f;G1)nelim�(g;G1)

are dead in G2. Hence, there is a transformation in E , which eliminates all �-
occurrences in elim�(f;G1)nelim�(g;G1) in G2. Choosing this transformation as
f 0, and an arbitrary function of T max leaving G3 invariant as g0, we get:

G2 `
f 0

se G4

and therefore as desired:

G3 `
g0

se G3=G4

In case (1b) Lemma 13(1) yields that elim�(g;G1) and elim�(f;G1) are subsets
of the sets of dead �- and �-occurrences in G3 and G2, respectively. Hence, there
are transformations in E which eliminate all �-occurrences of elim�(g;G1) in G3

and all �-occurrences of elim�(f;G1) in G2. Choosing these transformations as g0

and f 0, respectively, we obtain as desired

G2 `f
0

se G4 and G3 `g
0

se G4

Similarly to the proof of the �rst part of Lemma 14, two cases must also be
considered in the proof of its second part: (2a) g; f 2 S�, (2b) g 2 S�, f 2 S�

In case (2a) the Dominance Lemma 10 yields the existence of an admissible
assignment sinking f 0 2 S, which directly transforms G2 into G3. Thus, by choosing
an arbitrary function of T max leaving G3 invariant as g0, we succeed in this case.

In order to prove case (2b) consider the program G
0

2, which results from G2 by
reinserting all �-occurrences that have been moved by g. Let G

0

4 be the program
which results from the maximal �-sinking to G

0

2, i.e., G
0

2 `
f
se G

0

4, and let G4 result
from G

0

4 by eliminating the reinserted �-occurrences. Obviously, there is a trans-
formation f 0 2 S� , which directly transforms G2 into G4. The admissibility of g
implies that G2 and G4 are identical except for �-occurrences. Thus, interchanging
the roles of � and � and applying the same construction to G3, we get the exis-
tence of a transformation g0 2 S�, which transforms G3 into G4. This completes
the proof of case (2b).

The remaining two parts of Lemma 14 can now be proven straightforward along
the proof lines of part (2) by additionally applying Lemma 13(1). ut

Proof of the Main Lemma 15

Let �; � 2 AP be di�erent assignment patterns. Then the Main Lemma 15 is proven
by investigating the following cases:

1. g; f 2 E

2. g; f 2 S

3. g 2 E�, f 2 S�
4. g 2 S�, f 2 E�

5. g 2 E�, f 2 S�
6. g 2 S�, f 2 E�

Applying the Dominance Lemma10 we can assume without loss of generality that
f is maximal, i.e., f 2 T max. The �rst four cases are then immediate consequences
of the corresponding parts of Lemma 14. Thus, we are left with the cases (5) and
(6), which both can be proven in the same fashion. Thus, we only present the proof
of case (5).

In the situation of case (5) let G
0

2 be the program, which results from G2 by
reinserting a labelled version of all �-occurrences that have been eliminated by g.

Due to the labelling the reinserted �-occurrences can be distinguished from the re-
maining ones. In G

0

2, we assume that only unlabelled �-occurrences can be subject
to assignment sinkings; however, all �-occurrences, i.e., labelled or not, are consid-
ered to block the sinking of �-occurrences, i.e., no �-occurrence can sink across a
labelled or unlabelled �-occurrence in G

0

2. Now we choose the uniquely determined
maximal �-sinking and �-elimination as f1 and f2, respectively, and denote the
program resulting from the subsequent application of f1 and f2 to G

0

2 by G
0

4.
By eliminating all labelled �-occurrences in G

0

4 we obtain the program G4. Of
course, f1 and f2 have corresponding functions in T which directly transform G2

into G4. Thus, in order to complete the proof of case (5), it is su�cient to show
that a maximal �-elimination transforms G3 into G4 as well. The point here is
that due to the reinsertion of �-occurrences eliminated by g, G

0

2 has precisely the
same `�-blockades' as G1. Hence, on join-free paths, i.e., on paths where no node
has more than one predecessor, (unlabelled) �-occurrences in G

0

2 have precisely
the same sinking potential as their corresponding occurrences in G1. Only on paths
containing join-nodes the sinking potential can be di�erent: In G

0

2 an �-occurrence
occ can be blocked in a predecessor n of a join-node j, because there is a brother m
of n,6 to which no �-occurrence is sinkable; in G1, however, the same �-occurrence
can successfully be sunk into j, because some of the �-occurrences eliminated by g

in G1 are sinkable to m. It is worth noting that the �-occurrence is dead in j and
will never become live again. Hence, it is eliminated by the subsequent application
of f2. This, however, holds for the �-occurrence blocked in the predecessor n of
j as well, since it is dead according to Lemma 13(2). Combining these results we
obtain as desired that maximal �-elimination transforms G3 into G4. ut

Proof of Lemma 17

Since (2) holds trivially, we only prove (1). The �rst implication, \)", is a simple
consequence of T max � T . The second implication, \ (", is proven by showing
the contrapositive. Without loss of generality, we can assume g 2 T�nT max

� and
G0 `gse G

00 with G00 6= G0. Let now f 2 T max
� be the uniquely determined function

f of T max
� corresponding to g. Then the Dominance Lemma 10 yields as desired

that the program resulting from the application of f to G0 is di�erent from G0. ut

This article was processed using the LATEX macro package with LLNCS style

6 The set of brothers of a node n is given by
S
fpred(m) jm 2 succ(n)g.

