
A Process Algebra with Distributed Priorities

Rance Cleaveland1 Gerald L�uttgen2 V. Natarajan1

1 Department of Computer Science, North Carolina State University, Raleigh, NC
27695-8206, USA, e-mail: france,nvaidhyg@eos.ncsu.edu . Research supported by NSF
grant CCR-9120995, ONR Young Investigator Award N00014-92-J-1582, NSF Young
Investigator Award CCR-9257963, NSF grant CCR-9402807, and AFOSR grant

F49620-95-1-0508.
2 Fakult�at f�ur Mathematik und Informatik, Universit�at Passau, 94030 Passau,

Germany, e-mail: luettgen@fmi.uni-passau.de . Research support partly provided by
the German Academic Exchange Service under grant D/95/09026

(Doktorandenstipendium HSP II/ AUFE).

Abstract. This paper presents a process algebra for distributed systems
in which some actions may take precedence over others. In contrast with
existing approaches to priorities, our algebra only allows actions to pre-
empt others at the same \location" and therefore captures a notion of
localized precedence. Using Park's and Milner's notion of strong bisimula-
tion as a basis, we develop a behavioral congruence and axiomatize it for
�nite processes; we also derive an associated observational congruence.
Simple examples highlight the utility of the theory.

1 Introduction

Process algebras [11, 13] provide widely studied frameworks for modeling and
verifying concurrent systems [9]. Such theories typically consist of a simple lan-
guage with a well-de�ned operational semantics given in terms of labeled tran-
sition systems; a behavioral equivalence is then used to relate implementations
and speci�cations, which are both given as terms in the language. In order to
facilitate compositional reasoning, in which systems are veri�ed on the basis of
the behavior of their components, researchers have devoted great attention to
the de�nition of behavioral congruences, which allow the substitution of \equals
for equals" inside larger systems. Traditional process algebras focus on modeling
the potential nondeterminism that concurrent processes may exhibit; approaches
have also been suggested for introducing sensitivity to other aspects of system
behavior, including priority [1, 2, 4, 5, 6, 12, 15] and true concurrency [3, 14].
The latter work presents theories in which parallelism is treated as a primitive
notion that is not reducible to nondeterminism, while the former enables the
modeling of systems in which some system transitions (e.g. interrupts) may take
precedence over others.

In this paper, we develop an algebraic theory of action priority for distributed
systems. As in existing work, our aim is to model systems in which some tran-
sitions have precedence over others. Our point of departure is that the priority
scheme should be localized within individual sites in the system; actions should

only be able to pre-empt actions being performed at the \same location." This
constraint re
ects an essential intuition about distributed systems, which is that
the execution of a process on one processor should not a�ect the behavior of a
process on another processor unless the designer explicitly builds in an interac-
tion (e.g. synchronization) between them. Technically, we begin with a theory
of priority that includes a notion of global precedence [6, 15] and show how its
semantics may be altered using ideas from true concurrency [3] to localize capa-
bilities for pre-emption. We then de�ne a strong congruence for this language,
axiomatize it for �nite processes, and derive an observational congruence along
the lines of [13].

Organization of the Paper. In the next section we present a generic example
illustrating the need for local pre-emption in modeling systems. The following
three sections present our language and derive the technical results discussed
above, while Sect. 6 presents an example showing the application of our theory.
Sect. 7 discusses related work, and the last section presents our conclusions and
directions for future work. Due to space constraints we refer the reader to [7] for
the proofs of our main theorems.

2 Motivating Example

Application1

Handler2Handler1

Site1 Site2

Network

Application2

Fig. 1. Standard distributed system

The example depicted in Fig. 1 motivates the need for considering a local notion
of pre-emption when dealing with priorities in distributed systems. It consists of
two sites, Site1 and Site2, e.g. two computers, that are connected via the net-
work Network. Each site runs an application, Application1 and Application2,
respectively, which may send or receive information from the application at the
other site via its (interrupt-)handler, Handler1 or Handler2. A handler delivers
the message to the network or receives a message for its site from the network
and noti�es the application by sending an interrupt. Now, we have the follow-
ing intuitive requirements which the semantics of our language CCSprio should

satisfy in order to re
ect the behavior of the system correctly. First, an inter-
rupt of a handler should pre-empt the normal work of the application at its
site, i.e. the application should immediately respond to an interrupt request.
Second, both sites should be able to perform internal computations that are lo-
cal to their site without interference from the other site. In particular, internal
activities of Handler1 should not pre-empt those of Handler2, and vice versa.
While traditional process-algebraic treatments [6, 15] of priority satisfy the �rst
requirement, they typically violate the second, since they allow Application1

to pre-empt Application2 if the former has higher priority, even though they
are running on di�erent sites. In general, one would expect priorities at di�erent
sites to be incomparable. The semantics given in [6, 15], however, do not permit
this distinction to be made; the net e�ect is that some computations that one
would expect to �nd in a distributed system are improperly suppressed. We pro-
pose to remedy this shortcoming in this paper by introducing a notion of local
pre-emption.

3 Syntax and Semantics of CCSprio

In this section we de�ne the syntax and semantics of our language CCSprio, which
is based on CCS [13].

3.1 Syntax of CCSprio

The syntax of CCSprio di�ers from CCS in the structure of the action set which
exhibits a priority scheme. For the sake of simplicity, we restrict ourselves to a
two-level priority scheme. However, all results presented in this paper can be gen-
eralized to multi-level priority schemes in a straightforward fashion. Intuitively,
actions represent potential synchronizations that a process may be willing to
engage in with its environment. Given a choice between a synchronization on a
high priority action and one on a low priority action, a process should choose
the former.

Formally, let � be a countable set of action labels, not including the internal
or silent action � . For every input action a 2 � , there exists a complementary

action a , the corresponding output action. Let �=dffa j a 2 �g , and let us
denote the set of all actions � [� [f�g , where � =2 � , by A . Intuitively, an
action indicates that a process is willing to perform a synchronization on the
port associated with the action name, i.e. action a means that the process wants
to receive a message from port a whereas a means that the process wants to
send a message via port a . The action � represents either an internal action
of a process or the synchronization of two processes on some port in order to
communicate with each other. Finally, we let a; b; : : : range over � and �; �; : : :
over A .

In order to de�ne prioritized actions , let � be a countable set of prioritized
action labels disjoint from � . Then A=df � [� [f�g is the set of prioritized
actions, where � is the prioritized internal or silent action. We use A=df A[A

to denote the set of all actions. Intuitively, prioritized actions are considered to
be names for \important" channels. Therefore, communications on a prioritized
action should be preferred over communications on unprioritized actions. In the
remainder of the paper, let a; b; : : : range over � , the symbols �; �; : : : over A ,

and
; � over A . Additionally, we extend by
 =
 , and if L � A n f�; �g
then L=dff
 j
 2 Lg . A mapping f on A is a relabeling if f preserves priorities
(i.e. f(�) � � and f(�) � �), is such that the set f
 j f(
) 6=
g is �nite, and
satis�es the following: f(a) = f(a) f(a) = f(a) , f(�) = � , and f(�) = � .

The syntax of our language is de�ned by the BNF

P ::= 0 j
:P j P + P j P jP j P [f] j P n L j C
def
= P

where f is a relabeling, L � An f�; �g , and C is a process constant. We use the
standard de�nitions for sort of a process, free and bound variables , open and
closed terms , guarded recursion, and contexts . We refer to closed and guarded
terms as processes and denote syntactic equality by � . Let P;Q;R; : : : range
over the set P of processes.

3.2 Locations

We now introduce the notion of location, which will be used in the next section in
the operational semantics for CCSprio as a basis for deciding when one transition
pre-empts another. Intuitively, a location is a string representing the \address" of
a subterm inside a larger term; when a system performs an action, our semantics
will also note the location of the subterm that \generates" this action. Our
account of locations closely follows that of [14].

Formally, let Aloc=dffL;R; l; rg be the location alphabet , and let Loc denote
the set of all words over Aloc concatenated with the special symbol � to the
left, i.e. Loc is the set of all locations . As usual, � denotes the concatenation
operator as e.g. in � � L � l 2 Loc . Further, we write M � � for fm � � jm 2 Mg
whereM � Loc and � 2 Aloc . As noted above, a location represents the address
of a subterm, with � denoting the current term, l (r) representing the left (right)
subterm of a +, and L (R) the left (right) component of a j . For example, the
process (a:0 j b:0)+ c:0 can perform action a from location � �L � l , action b from
location � � R � l , and action c from location � � r . For simplicity, we often write
m instead of � �m for m 2 Loc .

As mentioned in the introduction, we want to adopt the view that processes
on di�erent sides of the parallel operator are (logically) executed on di�erent
processors, i.e. at di�erent locations. Thus, priorities on di�erent sides of the
parallel operator are distributed and, therefore, should be incomparable. How-
ever, processes on di�erent sides of the summation operator, which models non-
deterministic choice, are scheduled on a single processor, i.e. they should be
comparable. We formalize this intuition in the following comparability relation

on locations which is adapted from [10].

De�nition 1. The comparability relation ./ on locations is the smallest re
exive
and symmetric subset of Loc�Loc such that for all v; w 2 Loc .

1. (v � l; w � r) 2 ./ , and
2. (v; w) 2 ./ implies (v � �; w � �) 2 ./ for � 2 Aloc .

We write v ./ w instead of (v; w) 2 ./ .

Note that the comparability relation is not transitive, e.g. we have L � l ./ r and
r ./ R � l but L � l 6./ R � l since L 6./ R . Considering our example (a:0 j b:0) + c:0
above, the locations of the actions a and c and the locations of the actions b
and c are comparable since they are just on di�erent sides of the summation
operator. In contrast, the locations of the actions a and b are incomparable since
they are on di�erent sides of the parallel operator.

In the following, let m;n; o; : : : range over Loc and let [m] denote the set
fo 2 Loc j o ./ mg . Moreover, we close Loc with respect to pairing; that is, if
m;n 2 Loc then we let hm;ni 2 Loc also. Allowing pairs of locations is necessary
because communications in a CCS-based framework take place between two
processes o�ering complementary actions. The result of a communication is an
internal action which is assigned with the two locations of the complementary
actions. Finally, we de�ne hm;ni � � =dfhm � �; n � �i and [hm;ni] =df [m] [[n]
where m;n 2 Loc and � 2 Aloc .

3.3 Semantics of CCSprio

The (operational) semantics of a CCSprio process P 2 P is given by a labeled
transition system hP ;A;�!; P i where P is the set of states, A the alphabet,
�! the transition relation, and P the start state. The transition relation �!�
P � (Loc � A) � P is de�ned in Table 2 using Plotkin-style operational rules.
We write P m;
��!P 0 instead of hP;m;
; P 0i 2�! . We say that P may engage in

action
 o�ered from location m and thereafter behaves like process P 0. Moreover,
if
 2 A then we abbreviate P m;
��!P 0 by P
�!P 0 since it turns out that the
location m is not important when reasoning about prioritized transitions, i.e.
transitions labeled by a prioritized action.

The presentation of the operational rules requires prioritized initial action

sets which are de�ned as the least relations satisfying the rules in Table 1.
Intuitively, Im(P) denotes the set of all prioritized initial actions of P from
location m . Note that those sets are either empty or contain exactly one initial
transition. Im(P) = ; means that either m is not a location of P or P wants
to perform an unprioritized action at location m . Additionally, let us denote
the set of all prioritized initial actions of process P from locations M � Loc by
IM (P) , and the set of all prioritized initial actions of process P by I(P) . We also
de�ne analogous initial action sets ignoring internal actions and denote them by
IIm(P) , IIM (P) , and II(P) , respectively.

Note that the set of actions is de�ned independently from the transition re-
lation �! . Therefore, �! is well-de�ned. The side conditions of the operational
semantic rules guarantee that a process does not perform an unprioritized action
if it can engage in a prioritized synchronization or internal computation, i.e. a
� -transition, from a comparable location. Therefore, � -actions have pre-emptive

Table 1. Initial action sets

Im(C)=df Im(P) where C
def
= P I�(�:P)=dff�g

Im�l(P +Q)=df Im(P) In�r(P +Q)=df In(Q)

Im(P [f]) =dfff(�) j� 2 Im(P)g Im(P n L)=df Im(P) n (L [L)

Im�L(P jQ)=df Im(P) In�R(P jQ)=df In(Q)

Ihm�L;n�Ri(P jQ)=df Im(P) [In(Q) [f� j IIm(P) \ IIn(Q) 6= ;g

IM(P)=df

S
fIm(P) jm 2Mg IIM(P)=df IM (P) n f�g

I(P)=df ILoc(P) II(P)=df I(P) n f�g

power over unprioritized actions. The reason that prioritized visible actions do
not have priority over unprioritized actions is that visible actions only indicate
the potential of a synchronization, i.e. the potential of progress, whereas internal
actions describe real progress in our model.

The semantics of CCSprio for prioritized transitions is the same as the usual
CCS semantics. The di�erence arises by the side conditions of the rules for
unprioritized transitions. The process
:P may engage in action
 and then
behaves like P . The summation operator + denotes nondeterministic choice.
The process P + Q may behave like process P (Q) if Q (P) does not pre-
empt unprioritized actions by performing a � -action. Note that priorities arising
from di�erent sides of the summation operator are comparable. The restriction

operator nL prohibits the execution of actions in L [L . Thus, the restriction
operator permits the scoping of actions. P [f] behaves exactly as the process P
where the actions are renamed with respect to the relabeling f . The process
P jQ stands for the parallel composition of P and Q according to an interleaving

semantics with synchronized communication on complementary actions resulting
in the internal action � or � . Since locations on di�erent sides of a parallel
operator are incomparable, � 's arising from a location of P (Q) cannot pre-empt
the execution of an action, even an unprioritized one, of Q (P). Only if P (Q)
engages in a prioritized synchronization with Q (P) can unprioritized actions of

P and Q be pre-empted. Finally, C
def
= P denotes a constant de�nition, i.e. C is

a recursively de�ned process which behaves as a distinguished solution of the
equation C = P .

Table 2. Operational semantics for CCSprio

Act
��

�:P ��!P
Act

��

�:P �;���!P

Sum1
P ��!P 0

P +Q ��!P 0
Sum1

P m;���!P 0

P +Q m�l;����!P 0
� =2 I(Q)

Sum2
Q ��!Q0

P +Q ��!Q0
Sum2

Q n;���!Q0

P +Q n�r;����!Q0
� =2 I(P)

Rel
P ��!P 0

P [f] f(�)��!P 0[f]
Rel

P m;���!P 0

P [f] m;f(�)����!P 0[f]

Res
P ��!P 0

P n L ��!P 0 n L
� =2 L [L Res

P m;���!P 0

P n L m;���!P 0 n L
� =2 L [L

Com1
P ��!P 0

P jQ ��!P 0jQ
Com1

P m;���!P 0

P jQ m�L;�����!P 0jQ
II[m](P) \ II(Q) = ;

Com2
Q ��!Q0

P jQ ��!P jQ0
Com2

Q n;���!Q0

P jQ n�R;����!P jQ0
II[n](Q) \ II(P) = ;

Com3
P a�!P 0 Q a�!Q0

P jQ ��!P 0jQ0
Com3

P m;a��!P 0 Q n;a��!Q0

P jQ hm�L;n�Ri;��������!P 0jQ0

II[m](P) \ II(Q) = ;

and

II[n](Q) \ II(P) = ;

Con
P ��!P 0

C ��!P 0
C

def
= P Con

P m;���!P 0

C m;���!P 0
C

def
= P

4 Prioritized Strong Bisimulation

In this section we present an equivalence relation for CCSprio processes that is
based on bisimulation [17]. Our aim is to characterize the largest congruence
contained in the \naive" adaption of strong bisimulation [13] to our framework.

De�nition 2 Naive Prioritized Strong Bisimulation. A symmetric relati-
on R � P�P is called naive prioritized strong bisimulation if for every hP;Qi 2
R ,
 2 A , and m 2 Loc the following condition holds.

P m;
��!P 0 implies 9Q0; n:Q n;
��!Q0 and hP 0; Q0i 2 R :

We write P ' Q if there exists a naive prioritized strong bisimulation R such
that hP;Qi 2 R .

It is straightforward to establish that ' is the largest naive prioritized strong
bisimulation and that ' is an equivalence relation. Unfortunately, ' is not a
congruence, which is a necessary requirement for an equivalence to be suitable
for compositional reasoning. The lack of compositionality is demonstrated by
the following example, which presents the traditional view of process algebras
that \parallelism = nondeterminism." We have a:b:0 + b:a:0 ' a:0 j b:0 but
(a:b:0+ b:a:0) j b:0 6' (a:0 j b:0) j b:0 since the latter can perform an a-transition
while the corresponding a-transition of the former process is pre-empted because
the right process in the summation can engage in a � -transition.

The above observation is not surprising since the distribution of processes
in
uences the pre-emption of transitions and, consequently, the bisimulation.
Thus, in order to �nd the largest congruence relation '+ contained in ' we
have to take the local pre-emption of processes into account. In the following, we
de�ne prioritized strong bisimulation '+ , which is indeed the largest congruence
contained in ' .

De�nition 3 Prioritized Strong Bisimulation. A symmetric relation R �
P�P is a prioritized strong bisimulation if for every hP;Qi 2 R , � 2 A , � 2 A ,
and m 2 Loc the following conditions hold.

1. P ��!P 0 implies 9Q0: Q ��!Q0 and hP 0; Q0i 2 R .
2. P m;���!P 0 implies 9Q0; n:Q n;���!Q0 ; II[n](Q) � II[m](P) ; and hP

0; Q0i 2 R .

We write P '+Q if there exists a prioritized strong bisimulation R such that
hP;Qi 2 R .

The di�erence between this de�nition and the de�nition of ' is the additional
requirement concerning the initial action sets, parameterized with the appro-
priate locations, in the condition for unprioritized transitions. Intuitively, the
prioritized initial action set of a process with respect to some location, and not
the location itself, is a measure of the pre-emptive power of the process relative
to that location. Thus, the second condition of De�nition 3 states that an un-
prioritized action � from some location m of the process P has to be matched
by the same action from some location n of Q and that the pre-emptive power
of Q with respect to n is at most as strong as the pre-emptive power of P with
respect to m .

Proposition4. The relation '+ is a congruence, i.e. for all CCSprio contexts

C[X] we have: P '+Q implies C[P]'+ C[Q] .

Theorem5. The congruence '+ is the largest congruence contained in ' .

Axiomatization of '+

In this section we give an axiomatization of '+ for �nite processes, i.e. processes
that do not contain recursion. In order to develop the axiomatization, we add a
new, binary summation operator � to the process algebra CCSprio. This operator

is called distributed summation and needed for giving an expansion axiom (cf.
Axiom (E)). Its semantics is similar to + except that priorities on di�erent sides
of the operator are considered as incomparable.

De�nition 6 Distributed Summation. The semantics of the new binary op-
erator � on processes is de�ned by the following operational rules.

iSum1
P ��!P 0

P �Q ��!P 0
iSum1

P m;���!P 0

P �Q m�L;�����!P 0

iSum2
Q ��!Q0

P �Q ��!Q0
iSum2

Q n;���!Q0

P �Q n�R;����!Q0

Table 3. Axiomatization of '+ (Part I)

(A1) x+ y = y + x (iA1) x� y = y � x
(A2) x+ (y + z) = (x+ y) + z (iA2) x� (y � z) = (x� y)� z
(A3) x+ x = x (iA3) x� x = x
(A4) x+ 0 = x (iA4) x� 0 = x

(P) �:x+ �:y = �:x

(E) P �
L

i

P
j

ij :Pij and Q �

L
k

P
l
�kl:Qkl implies

P jQ =L
i

P
j
(
ij :(Pij jQ) +

P
k

P
l
f�:(Pij jQkl) j
ij = �kl;
ij ; �kl 2 Ag

+
P

k

P
l
f� :(Pij jQkl) j
ij = �kl;
ij ; �kl 2 Ag) �

L
k

P
l
(�kl:(P jQkl) +

P
i

P
j
f�:(Pij jQkl) j
ij = �kl;
ij ; �kl 2 Ag

+
P

i

P
j
f� :(Pij jQkl) j
ij = �kl;
ij ; �kl 2 Ag)

(Res1) 0 n L = 0 (Rel1) 0[f] = 0

(Res2) (
:x) n L = 0 (
 2 L [L) (Rel2) (
:x)[f] = f(
):(x[f])

(Res3) (
:x) n L =
:(x n L) (
 =2 L [L) (Rel3) (x+ y)[f] = x[f] + y[f]
(Res4) (x+ y) n L = (x n L) + (y n L) (iRel3) (x� y)[f] = x[f] � y[f]
(iRes4) (x� y) n L = (x n L)� (y n L)

Now, we turn to the axiom system for prioritized strong bisimulation. We write
` P = Q if P can be rewritten to Q using the axioms in the Tables 3 and 4.
Axioms (S2) and (S3) involve side conditions. The relation vi is the precongru-
ence on �nite processes generated from the axioms (iC1), (iC2), and (iC3) using
the laws of inequational reasoning. The axioms in Table 3 are basically those
presented in [6] augmented with the corresponding axioms for the incomparable
summation operator. Moreover, the expansion axiom has been adapted for our

Table 4. Axiomatization of '+ (Part II) and axiomatization of vi

(D1) (x� �:y) + �:z = (x+ �:z)� �:y (iC1) �:xvi �:y
(D2) (x� �:y) + �:z = x� (x+ �:y + �:z) (iC2) 0vi �:x (� 2 A n f�g)
(D3) (x� y) + �:z = (x+ �:z)� (y + �:z) (iC3) �:xvi 0

(Ic1) �:x+ �:y = �:x� �:y

(Ic2) �:x+ y = (�:x+ y)� �:x

(S1) (x+ �:y)� (x0 + �:y0) = (x+ �:y + �:y0)� (x0 + �:y + �:y0)
(S2) (x+ �:z)� (y + �:z) = (x+ �:z)� y (` xvi y)
(S3) x� y = x+ y (` x=i y)

algebra (cf. Axiom (E) where
P

is the indexed version of + and
L

the indexed
version of the new summation operator �). The axioms in Table 4 are new and
show how we may \restructure" locations. They deal with the distributivity of
the summation operators (Axioms (D1), (D2), and (D3)), the interchangeabil-

ity of the summation operators (Axioms (Ic1) and (Ic2)), and the saturation of
locations (Axioms (S1), (S2), and (S3)), respectively.

Lemma7. Let ` P viQ for some processes P;Q 2 P . Then, II(P) � II(Q)
holds. Moreover, � 2 I(P) if and only if � 2 I(Q) .

We write ` P =iQ i� ` P viQ and ` Qvi P . Considering the meaning of the
side conditions as made precise in Lemma 7, it is immediately clear that the
Axioms (S2) and (S3) are sound. In order to prove our axiomatization complete,
we introduce a notion of normal form of processes that is based on the following
de�nition.

De�nition 8 Summation Form. A process P 2 P is in summation form if it
has the form P �

Lm

i=1

Pni
j=1
ij :Pij where m;ni 2 N and the processes Pij are

again in summation form. Per de�nition, 0 is in summation form.

Intuitively, P is distributed throughout m incomparable locations which them-
selves consist of ni comparable locations, 1 � i � m . Now, we are able to de�ne
normal forms .

De�nition 9 Normal Form. Let P �
Lm

i=1

Pni
j=1
ij :Pij be in summation

form. We de�ne

i�
=dff
ij j 1 � j � nig \ A . The process P is said to be in

normal form if the following properties hold.

1. ; � L � I(P) implies 9i:

i�
= L .

2.
ij = � and
kl 2 A imply i 6= k .
3.
ij =
kl = � implies 9j0: Pij0 � Pkl and
ij0 = � .

4. i 6= k implies

i�
6=

k�
.

5.
ij :Pij �
kl:Pkl ,
ij 2 A , and i 6= k imply

i�
6�

j�
.

Proposition 10. If P is a �nite process, then there exists a normal form N
such that ` N = P .

Rewriting a process in its normal form requires restructuring its locations. After
this is done, standard techniques used in CCS (cf. [13]) can be applied in order
to show our axiomatization complete.

Theorem11 Soundness & Completeness. For �nite processes P;Q 2 P we

have ` P = Q if and only if P '+Q .

5 Prioritized Observational Congruence

The behavioral congruence developed in the previous section is too strong for
verifying systems in practice, as it requires that two equivalent terms match
each other's transitions exactly, even those labeled by internal actions. In this
section we remedy this problem by developing a semantic congruence that ab-
stracts away from internal transitions. Our approach follows the lines of [15, 13].
We start o� with the de�nition of a naive prioritized weak bisimulation which
abstracts from internal actions. This relation is an adaption of observational
equivalence [13].

De�nition 12 Naive Weak Transition Relation. We de�ne:

1.
̂=df � if
 2 f� ; �g and
̂=df
 , otherwise.

2.
�

=)� =df(
��! [f m;���! jm 2 Locg)�

3.
�

=)� =df
�

=)� �
��!�

�
=)�

4.
m;�
=)� =df

�
=)� �

m;���!�
�

=)�

De�nition 13 Naive Prioritized Weak Bisimulation. A symmetric relati-
on R � P � P is a naive prioritized weak bisimulation if for every hP;Qi 2 R ,

 2 A , and m 2 Loc the following condition holds.

P m;
��!P 0 implies 9Q0; n:Q
n;
̂
=)� Q0 and hP 0; Q0i 2 R :

We write P ��Q if there exists a naive prioritized weak bisimulation R such
that hP;Qi 2 R .

It is fairly easy to see that �� is not a congruence for CCSprio. On the other
hand, it re
ects an intuitive approach to abstracting away from internal com-
putation, and consequently we devote the rest of this section to characterizing
the largest congruence contained in this relation. To do so, we �rst rede�ne the
weak transition relation as follows.

De�nition 14 Prioritized Weak Transition Relation. For L;M � Anf�g
we de�ne the following notations.

1. �̂ =df � , â=df a , �̂ =df � , and â=df a .

2. P
m;�
�!

L
P 0 i� P m;���!P 0 and II[m](P) � L .

3.
�

=) =df(
��! [f

m;�
�!

;
jm 2 Locg)�

4.
�
=) =df

�
=) � ��!�

�
=)

5.
�

=)
L
=df(

��! [f
m;�
�!

L
jm 2 Locg)�

6. P
m;�
=)
L;M

P 0 i� 9P 00; P 000: P
�

=)
L
P 00

m;�
�!

L
P 000

�
=) P 0 and II(P 00) �M .

Intuitively, P
m;�
�!

L
P 0 means that P can evolve to P 0 by performing action � from

location m and the pre-emptive power of P at location m is at most L . Recall
that the prioritized initial action set of a process (with respect to a location)
is a measure of its pre-emptive power. Actually, there are two slightly di�erent
views of pre-emption which are encoded in the sets L and M in the de�nition of

P
m;�
=)
L;M

P 0 , respectively. Whereas L is concerned with the in
uence of the environ-

ment, i.e. a parallel context, on actions performed on the path from P to P 000 ,
the set M re
ects the impact of P 00 on potential synchronization partners (cf.

Rule Com3). Note that the de�nition of P
�

=)
L
P 0 corresponds with our intuition

that internal actions, and, therefore, their locations are unobservable. Addition-
ally, a parallel context of P is not in
uenced by internal actions performed by P
since priorities arising from di�erent sides of the parallel operator are incompa-
rable. Therefore, the parameterM is unnecessary in the de�nition of the relation
�

=)
L
.

De�nition 15 Prioritized Weak Bisimulation. A symmetric relation R �
P �P is a prioritized weak bisimulation if for every hP;Qi 2 R , � 2 A , � 2 A ,
and m 2 Loc the following conditions hold.

1. 9Q0; Q00: Q
�

=) Q00
�

=) Q0; II(Q00) � II(P); and hP;Q0i 2 R .

2. P ��!P 0 implies 9Q0: Q
�̂
=) Q0 and hP 0; Q0i 2 R .

3. P m;���!P 0 implies 9Q0; n:Q
n;�̂
=)
L;M

Q0; L=II[m](P); M=II(P); and hP 0; Q0i 2 R .

We write P �Q if there exists a prioritized weak bisimulation R such that
hP;Qi 2 R .

From this de�nition, we may directly conclude that � is the largest priori-
tized weak bisimulation, and that � is an equivalence relation. The �rst condi-
tion of De�nition 15 guarantees that prioritized weak bisimulation is composi-
tional with respect to the parallel operator. Its necessity is best illustrated by

the following example. The processes P
def
= � :a:0 and Q

def
= a:0 would be consid-

ered as equivalent if the �rst condition would be absent. However, the context

C[X]
def
= X j(a:0+ b:0) is able to distinguish them.

Proposition 16. The equivalence relation � is a congruence with respect to all

CCSprio operators except the summation operator + , the distributed summation

operator � , and recursion.

In contrast to [15], the summation �x presented in [13] is not su�cient in or-

der to achieve a congruence relation. E.g., let C
def
= � :D and D

def
= �:C . Now,

de�ne P
def
= �:C and Q

def
= � :D . By De�nition 15 we may observe P �Q , but

P + a:0 6� Q+ a:0 since the former can perform an a-action whereas the latter
cannot. It turns out that we have to require that observationally congruent pro-
cesses must have the same initial actions. This requirement is stronger than the
�rst condition of De�nition 15.

De�nition 17 Prioritized Observational Congruence. We de�ne P �+Q
if for all � 2 A , � 2 A , and m 2 Loc the following conditions hold.

1. I(P) = I(Q)

2. P ��!P 0 implies 9Q0: Q
�

=) Q0 and P 0�Q0 .

3. P m;���!P 0 implies 9Q0; n:Q
n;�
=)
L;M

Q0; L = II[m](P); M = II(P); and P 0�Q0 .

4. Q ��!Q0 implies 9P 0: P
�

=) P 0 and P 0�Q0 .

5. Q m;���!Q0 implies 9P 0; n: P
n;�
=)
L;M

P 0; L = II[m](Q); M = II(Q); and P 0�Q0 .

Theorem18. The relation �+ is the largest congruence contained in �� .

The proof of this theoremmakes use of the presence of the distributed summation
operator in CCSprio.

6 Example

In this section we demonstrate the utility of CCSprio for the veri�cation of dis-
tributed systems using an example involving an architecture scheme found in
many of today's computers.

dma dma

Appl

Bench1 Bench2

τ

τ

dmadma

Fig. 2. Example system and its semantics

Our example system consists of an application which receives and writes data
from two memory benches (cf. Fig. 2, left hand side). In order to improve the
e�ciency in a computer system each bench is connected to a direct-memory-
access (DMA) controller. To overcome the low speed of most memory modules,
the application Appl works alternately with each memory bench. We model

Appl in CCSprio by Appl
def
= fetch1:fetch2:Appl . Each memory bench Bench1

and Bench2 is continuously able to serve the application or to allow the external
DMA controller to access the memory via the channel dma. However, if a memory
bench has to decide between both activities, then it chooses the former since the
progress of the application is considered as more important. Consequently, we

de�ne Bench1
def
= fetch1:Bench1+ dma:Bench1 and Bench2

def
= fetch2:Bench2+

dma:Bench2 . The overall system Sys is given by Sys
def
=(Appl j Bench1 jBench2)n

ffetch1; fetch2g . Since the application uses the memory cells alternately, the
DMA is expected to be allowed to access the free memory bench. Therefore, the

speci�cation is simply Spec
def
= dma:Spec . The CCSprio semantics of Sys is given

in Fig. 2, right hand side, where we abstract from the locations of the action
dma. It is easy to see that the symmetric closure of

fhSpec; Sysi; hSpec; (fetch2:Appl j Bench1 j Bench2) n ffetch1; fetch2gig

is a prioritized weak bisimulation. Note that Condition (1) of De�nition 15 is
trivially satis�ed since Spec and Sys do not contain any visible prioritized ac-
tions. Therefore, we obtain Spec�Sys as expected. However, in the traditional
approach [6, 15] the dma-loops in the labeled transition system of Sys would be
missing, and Sys would not be observationally equivalent to Spec.

7 Discussion and Related Work

Several proposals have been made for extending traditional process algebras
with priorities. They di�er in the aspects of computation, such as interrupts [1],
programming constructs like the PRIALT construct of occam [5, 12], or real-
time [4], that they aim to capture.

An extension of CCS [13] with priorities has been proposed in [6], where
priorities are assigned to actions in a globally dynamic way, i.e. in one state of
a system action � may have priority over action � while the situation may be
converse in another state of the system. For that process algebra a complete
semantic theory has been developed in an analogous fashion to [13] which in-
cludes congruences based on strong and weak bisimulation and their axiomatic
characterizations [15].

Our process algebra CCSprio is based on the approach in [6, 15], where we
adopt all design decisions except the notion of global pre-emption. Therefore,
CCSprio has the following characteristics. Only transitions labeled by comple-
mentary actions with the same priority may engage in a synchronization. As
in [6], we consider actions with di�erent priorities as di�erent channels. This is
su�cient for most cases occurring in practice [8] and avoids that priorities values

have to be adjusted in case of communication (cf. [4, 10]). The strong relation of
CCSprio to the process algebra proposed in [6, 15] can be made precise by the fol-
lowing fact. If we globalize pre-emption in our framework by de�ning [m] =df Loc
for all m 2 Loc , our operational semantics and our behavioral relations reduce
to the corresponding notions presented in [6, 15].

For a comparison with our work it is of importance that all the above men-
tioned traditional approaches are provided with a semantics which deals with
global pre-emption. In contrast, we consider a notion of local pre-emption. This
idea is also presented in [10], where a CSP-based language is extended with
priorities. However, this process algebra su�ers from a complicated semantics,
especially for the hiding operator. The authors only conjecture that their strong
bisimulation is a congruence. They do not provide an axiomatization for their
equivalence and do not present a theory for observational congruence. Also
Prasad's Calculus of Broadcasting Systems with Priorities (PCBS) [18] deals
with a distributed notion of priorities. For PCBS a nice semantic theory based
on bisimulation has been developed. However, our process algebra CCSprio is
concerned with a di�erent model for communication.

We close this section with some remarks about our notion of strong and weak
bisimulation. Since our semantic theory re
ects local pre-emption, locations are
implicitly occurring in our semantic equivalences. However, in contrast to [3]
locations are not explicitly considered in our bisimulations. Our objective is not
to observe locations but to observe local pre-emption which is necessary for
causal reasoning in process algebras with priorities.

8 Conclusions and Future Work

In this paper we have presented a process algebra, CCSprio, with distributed
priorities. The key idea for this algebra is to take the distribution of the con-
sidered system into account for de�ning a notion of local pre-emption. We have
developed a semantic theory for this algebra and have shown its suitability by
an example. However, it remains to show how our prioritized bisimulations can
be computed before implementing CCSprio in an automated veri�cation tool [9].
In order to apply standard algorithms [16] the bisimulations have to be char-
acterized using a transition relation that is not parameterized with prioritized
initial action sets. Moreover, we intend to axiomatize prioritized observational
congruence.

References

1. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and de�ning equations for
an interrupt mechanism in process algebra. Fundamenta Informaticae IX, pages
127{168, 1986.

2. E. Best and M. Koutny. Petri net semantics of priority systems. Theoretical
Computer Science, 96:175{215, 1992.

3. G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. Theo-
retical Computer Science, 114(1):31{61, June 1993.

4. P. Br�emonde-Gr�egoire, I. Lee, and R. Gerber. ACSR: An algebra of communicating
shared resources with dense time and priorities. In E. Best, editor, CONCUR '93,
volume 715 of Lecture Notes in Computer Science, pages 417{431, Hildesheim,
Germany, August 1993. Springer-Verlag.

5. J. Camilleri and G. Winskel. CCS with priority choice. Information and Compu-
tation, 116(1):26{37, January 1995.

6. R. Cleaveland and M.C.B. Hennessy. Priorities in process algebra. Information
and Computation, 87(1/2):58{77, July/August 1990.

7. R. Cleaveland, G. L�uttgen, and V. Natarajan. A process algebra with distributed
priorities. Technical Report TR-96-02, North Carolina State University, March
1996.

8. R. Cleaveland, G. L�uttgen, V. Natarajan, and S. Sims. Priorities for modeling
and verifying distributed systems. In T. Margaria and B. Ste�en, editors, Second
International Workshop on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS '96), volume 1055 of Lecture Notes in Computer Science, pages
278{297, Passau, Germany, March 1996. Springer-Verlag.

9. R. Cleaveland, J. Parrow, and B. Ste�en. The Concurrency Workbench: A
semantics-based tool for the veri�cation of �nite-state systems. ACM Transac-
tions on Programming Languages and Systems, 15(1):36{72, January 1993.

10. H. Hansson and F. Orava. A process calculus with incomparable priorities. In
Proceedings of the North American Process Algebra Workshop, Workshops in Com-
puting, pages 43{64, Stony Brook, New York, August 1992. Springer-Verlag.

11. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.
12. C.-T. Jensen. Prioritized and Independent Actions in Distributed Computer Sys-

tems. PhD thesis, Aarhus University, August 1994.
13. R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.
14. U. Montanari and D. Yankelevich. A parametric approach to localities. In

W. Kuich, editor, Automata, Languages and Programming (ICALP '92), volume
623 of Lecture Notes in Computer Science, pages 617{628, Vienna, July 1992.
Springer-Verlag.

15. V. Natarajan, L. Christo�, I. Christo�, and R. Cleaveland. Priorities and ab-
straction in process algebra. In P.S. Thiagarajan, editor, Foundations of Software
Technology and Theoretical Computer Science, volume 880 of Lecture Notes in
Computer Science, pages 217{230, Madras, India, December 1994. Springer-Verlag.

16. R. Paige and R.E. Tarjan. Three partition re�nement algorithms. SIAM Journal
of Computing, 16(6):973{989, December 1987.

17. D.M.R. Park. Concurrency and automata on in�nite sequences. In Proceedings
of 5th G.I. Conference on Theoretical Computer Science, volume 104 of Lecture
Notes in Computer Science, pages 167{183. Springer-Verlag, 1980.

18. K. V. S. Prasad. Broadcasting with priority. In Proceedings of the 5th European
Symposium on Programming, volume 788 of Lecture Notes in Computer Science,
pages 469{484, Edinburgh, U.K., April 1994. Springer-Verlag.

This article was processed using the LATEX macro package with LLNCS style

