
A Faster{than Relation

for Asynchronous Processes?

Gerald L�uttgen1 and Walter Vogler2

1 Department of Computer Science, She�eld University, 211 Portobello Street,
She�eld S1 4DP, U.K., g.luettgen@dcs.shef.ac.uk

2 Institut f�ur Informatik, Universit�at Augsburg, D{86135 Augsburg, Germany,
vogler@informatik.uni-augsburg.de

Abstract. This paper introduces a novel (bi)simulation{based faster{
than preorder which relates asynchronous processes with respect to their
worst{case timing behavior. The studies are conducted for a conservative
extension of the process algebra CCS, called TACS, which permits the
speci�cation of maximal time bounds of actions. The most unusual con-
tribution is in showing that the proposed faster{than preorder coincides
with two other preorders, one of which considers the absolute times at
which actions occur in system runs. The paper also develops the seman-
tic theory of TACS, addressing congruence properties, equational laws,
and abstractions from internal actions.

1 Introduction

Process algebras [5] provide a widely studied framework for reasoning about the
behavior of concurrent systems. Early approaches, including Milner's CCS [15],
focused on semantic issues of asynchronous processes, where the relative speeds
between processes running in parallel is not bounded, i.e., one process may be ar-
bitrarily slower or faster than another. This leads to a simple and mathematically
elegant semantic theory analyzing the functional behavior of systems regarding
their causal interactions with their environments. To include time as an aspect of
system behavior, timed process algebras [4] were introduced. They usually model
synchronous systems where processes running in parallel are under the regime of
a common global clock and have a �xed speed. A well{known representative of
discrete timed process algebras is Hennessy and Regan's TPL [11] which extends
CCS by a timeout operator and a clock pre�x demanding that exactly one time
unit must pass before activating the argument process. Research papers on timed
process algebras usually do not relate processes with respect to speed; the most
notable exception is work by Moller and Tofts [17] which considers a faster{than
preorder within a CCS{based setting, where processes are attached with lower
time bounds. In practice, however, often upper time bounds are known to a sys-
tem designer, determining how long a process may delay its execution. These can
be used to compare the worst{case timing behavior of processes. The assumption

? Research support was partly provided under NASA Contract No. NAS1{97046.

of upper time bounds for asynchronous processes is exploited in distributed al-
gorithms and was studied by the second author [6, 13, 12, 20, 21, 22] in settings
equipped with DeNicola and Hennessy's testing semantics [9]. We re{emphasize
that, in our context, \asynchronous" means that the relative speeds of system
components are indeterminate.

In this paper we develop a novel (bi)simulation{based approach to compare
asynchronous systems with respect to their worst{case timing behavior. To do so,
we extend CCS by a rather speci�c notion of clock pre�xing \�:", where � stands
for one time unit or a single clock tick. In contrast to TPL we interpret �:P as
a process which may delay at most one time unit before executing P . Similar
to TPL we view the occurrence of actions as instantaneous. This results in a
new process algebra extending CCS, to which we refer as Timed Asynchronous

Communicating Systems (TACS). To make our intuition of upper bound delays
precise, consider the processes �:a:0 and a:0, where a denotes an action as in
CCS. While the former process may delay an enabled communication on a by
one time unit, the latter must engage in the communication, i.e., a is non{

urgent in �:a:0 but urgent in a:0. However, if a communication on a is not
enabled, then process a:0 may wait until some communication partner is ready.
To enforce a communication resulting in the internal action � , a time step in
TACS is preempted by an urgent � . This is similar to timed process algebras
employing the maximal progress assumption [11] where, however, in contrast
to TACS, any internal computation is considered to be urgent. For TACS we
introduce a faster{than preorder which exploits upper time bounds: a process is
faster than another if both are linked by a relation which is a strong bisimulation
for actions and a simulation for time steps.

The main contribution of this paper is the formal underpinning of our pre-
order, justifying why it is a good candidate for a faster{than relation on pro-
cesses. There are at least two very appealing alternative de�nitions for such a
preorder. First, one could allow the slower process to perform extra time steps
when simulating an action or time step of the faster process. Second is the ques-
tion of how exactly the faster process can match a time step and the subsequent
behavior of the slower one. For illustrating this issue, consider the runs a��b
and �a�b which might be exhibited by some processes. One can argue that the
�rst run is faster than the second one since action a occurs earlier in the run and
since action b occurs at absolute time two in both runs, measured from the start
of each run. Accordingly, we de�ne a second variant of our faster{than preorder,
where a time step of the slower process is either simulated immediately by the
faster one or might be performed later on. As a key result we prove that both
variants coincide with our faster{than preorder. Subsequently, this paper devel-
ops the preorder's semantic theory: we characterize the coarsest precongruence
contained in it, demonstrate that TACS with this precongruence is a conserva-
tive extension of CCS with bisimulation, and axiomatize our precongruence for
�nite sequential processes. We also study the corresponding weak faster{than
preorder which abstracts from internal computation. All proofs can be found in
a technical report [14].

2 Timed Asynchronous Communicating Systems

The novel process algebra TACS conservatively extends CCS [15] by a concept
of global, discrete time. This concept is introduced to CCS by including the clock
pre�xing operator \�:" [11] with a non{standard interpretation: a process �:P
can at most delay one time unit before having to execute process P , provided
that P can engage in a communication with the environment or in some internal
computation. The semantics of TACS is based on a notion of transition system
that involves two kinds of transitions, action transitions and clock transitions.
Action transitions, like in CCS, are local handshake communications in which
two processes may synchronize to take a joint state change together. A clock
represents the progress of time which manifests itself in a recurrent global syn-
chronization event, the clock transition. As indicated before, action and clock
transitions are not orthogonal concepts, since time can only pass if the process
under consideration cannot engage in an urgent internal computation.

Syntax. Let � be a countable set of actions not including the distinguished
unobservable, internal action � . With every a 2 � we associate a complementary

action a. We de�ne � =df fa j a 2 �g and take A to denote the set �[�[f�g.
Complementation is lifted to � [� by de�ning a =df a. As in CCS [15], an
action a communicates with its complement a to produce the internal action � .
We let a; b; : : : range over � [� and �; �; : : : over A and represent (potential)
clock ticks by the symbol �. The syntax of TACS is then de�ned as follows:

P ::= 0 j x j �:P j �:P j P + P j P jP j P n L j P [f] j �x:P

where x is a variable taken from a countably in�nite set V of variables, L �
Anf�g is a restriction set, and f : A ! A is a �nite relabeling. A �nite relabeling
satis�es the properties f(�) = � , f(a) = f(a), and jf� j f(�) 6= �gj < 1. The

set of all terms is abbreviated by bP , and we de�ne L =df fa j a 2 Lg. Moreover,
we use the standard de�nitions for the semantic sort sort(P) � � [� of some
term P , open and closed terms, and contexts (terms with a \hole"). A variable
is called guarded in a term if each occurrence of the variable is within the scope
of an action pre�x. Moreover, we require for terms of the form �x:P that x is
guarded in P . We refer to closed and guarded terms as processes, with the set
of all processes written as P.

Semantics. The operational semantics of a TACS term P 2 bP is given by
a labeled transition system hbP ;A[f�g;�!; P i, where bP is the set of states,

A[f�g the alphabet, �!� bP �A[f�g� bP the transition relation, and P the
start state. Before we proceed, it is convenient to introduce sets U(P), for all

terms P 2 bP , which include the urgent actions in which P can initially engage,
as discussed in the introduction. These sets are inductively de�ned along the
structure of P , as shown in Table 1. Strictly speaking, U(P) does not necessarily
contain all urgent actions. For example, for P = �:0+�:a:0 we have U(P) = f�g,
although action a is semantically also urgent, because the clock transition of P is
preempted according to our notion of maximal progress. However, in the sequel

we need the urgent action set of P only for determining whether P can initially
perform an urgent � . For this purpose, our syntactic de�nition of urgent action
sets su�ces since � 2 U(P) if and only if � is semantically urgent in P .

Table 1. Urgent action sets
U(�:P) =df ; U(0) = U(x) =df ; U(P n L) =df U(P) n (L [L)
U(�:P) =df f�g U(P +Q) =df U(P) [U(Q) U(P [f]) =df ff(�) j� 2 U(P)g

U(�x:P) =df U(P) U(P jQ) =df U(P) [U(Q) [f� j U(P) \ U(Q) 6= ;g

Now, the operational semantics for action transitions and clock transitions
can be de�ned via the structural operational rules displayed in Tables 2 and 3,
respectively. For action transitions, the rules are exactly the same as for CCS,
with the exception of our new clock{pre�x operator. For clock transitions, our
semantics is set up such that, if � 2 U(P), then a clock tick � of P is inhibited.

For the sake of simplicity, let us write P

�! P 0 instead of hP;
; P 0i 2�!, for

 2 A [f�g, and say that P may engage in
 and thereafter behave like P 0.

Sometimes it is also convenient to write P

�! for 9P 0: P

�! P 0.

Table 2. Operational semantics for TACS (action transitions)

Act
��

�:P
�
�! P

Pre
P

�
�! P 0

�:P
�
�! P 0

Rec
P

�
�! P 0

�x:P
�
�! P 0[�x:P=x]

Sum1
P

�
�! P 0

P +Q
�
�! P 0

Sum2
Q

�
�! Q0

P +Q
�
�! Q0

Com1
P

�
�! P 0

P jQ
�
�! P 0jQ

Com2
Q

�
�! Q0

P jQ
�
�! P jQ0

Com3
P

a
�! P 0 Q

a
�! Q0

P jQ
�
�! P 0jQ0

Rel
P

�
�! P 0

P [f]
f(�)
�! P 0[f]

Res
P

�
�! P 0

P n L
�
�! P 0 n L

� =2 L [L

The action{pre�x term �:P may engage in action � and then behave like P .
If � 6= � , then it may also idle, i.e., engage in a clock transition to itself, as
process 0 does. The clock{pre�x term �:P can engage in a clock transition to P
and, additionally, it can perform any action transition that P can, since � rep-
resents a delay of at most one time unit. The summation operator + denotes
nondeterministic choice such that P +Q may behave like P or Q. Time has to
proceed equally on both sides of summation, whence P +Q can engage in a clock
transition and delay the nondeterministic choice if and only if both P and Q can.
Consequently, e.g., process �:a:0 + �:0 cannot engage in a clock transition; in
particular, a has to occur without delay if it occurs at all. The restriction opera-

tor nL prohibits the execution of actions in L[L and, thus, permits the scoping
of actions. P [f] behaves exactly as P where actions are renamed by the relabel-

ing f . The term P jQ stands for the parallel composition of P and Q according to
an interleaving semantics with synchronized communication on complementary
actions, resulting in the internal action � . Again, time has to proceed equally on
both sides of the operator. The side condition ensures that P jQ can only progress
on �, if it cannot engage in an urgent � . Finally, �x: P denotes recursion, i.e.,
�x: P behaves as a distinguished solution to the equation x = P .

Table 3. Operational semantics for TACS (clock transitions)

tNil
��

0
�
�! 0

tRec
P

�
�! P 0

�x:P
�
�! P 0[�x:P=x]

tRes
P

�
�! P 0

P n L
�
�! P 0 n L

tAct
��

a:P
�
�! a:P

tSum
P

�
�! P 0 Q

�
�! Q0

P +Q
�
�! P 0 +Q0

tRel
P

�
�! P 0

P [f]
�
�! P 0[f]

tPre
��

�:P
�
�! P

tCom
P

�
�! P 0 Q

�
�! Q0

P jQ
�
�! P 0jQ0

� =2 U(P jQ)

The operational semantics for TACS possesses several important proper-
ties [11]. First, it is time{deterministic, i.e., processes react deterministically to
clock ticks, re
ecting the intuition that progress of time does not resolve choices.
Formally, P

�
�! P 0 and P

�
�! P 00 implies P 0 = P 00, for all P; P 0; P 00 2 bP . Sec-

ond, according to our variant of maximal progress, P
�
�! if and only if � =2 U(P),

for all P 2 bP.

3 Design Choices for Faster{than Relations

In the following we de�ne a reference faster{than relation, called naive faster{

than preorder, which is inspired by Milner's notions of simulation and bisimula-

tion [15]. Our main objective is to convince the reader that this simple faster{
than preorder with its concise de�nition is not chosen arbitrarily. This is done
by showing that it coincides with two other preorders which formalize a notion
of faster{than as well and which are possibly more intuitive.

De�nition 1 (Naive faster{than preorder). A relation R � P � P is a
naive faster{than relation if, for all hP;Qi 2 R and � 2 A:

1. P
�
�! P 0 implies 9Q0: Q

�
�! Q0 and hP 0; Q0i 2 R.

2. Q
�
�! Q0 implies 9P 0: P

�
�! P 0 and hP 0; Q0i 2 R.

3. P
�
�! P 0 implies 9Q0: Q

�
�! Q0 and hP 0; Q0i 2 R.

We write P =
�n

Q if hP;Qi 2 R for some naive faster{than relation R.

Note that the behavioral relation =
�n

, as well as all other behavioral relations
on processes de�ned in the sequel, can be extended to open terms by the usual
means of closed substitution [15]. It is fairly easy to see that =�n

is a preorder,
i.e., it is transitive and re
exive; moreover, =�n

is the largest naive faster{than
relation. Intuitively, P =

�n
Q holds if P is faster than (or as fast as) Q, and if both

processes are functionally equivalent (cf. Clauses (1) and (2)). Here, \P is faster

than Q" means the following: if P may let time pass and the environment of P has
to wait, then this should also be the case if one considers the slower (or equally
fast) process Q instead (cf. Clause (3)). However, if Q lets time pass, then P is
not required to match this behavior. Observe that we use bounded delays and,
accordingly, are interested in worst{case behavior. Hence, clock transitions of
the fast process must be matched, but not those of the slow process; behavior
after an unmatched clock transition can just as well occur quickly without the
time step, whence it is catered for in Clause (2).

As the naive faster{than preorder is the basis of our approach, it is very
important that its de�nition is intuitively convincing. There are two immediate
questions which arise from our de�nition.

Question I. The �rst question concerns the observation that Clauses (1) and (3)
of Def. 1 require that an action or a time step of P must be matched with just
this action or time step by Q. What if we are less strict? Maybe we should allow
the slower process Q to perform some additional time steps when matching the
behavior of P . This idea is formalized in the following variant of our faster{

than preorder. Here,
�
�!

+

and
�
�!

�
stand for the transitive and the transitive

re
exive closure of the clock transition relation
�
�!, respectively.

De�nition 2 (Delayed faster{than preorder). A relation R � P � P is a
delayed faster{than relation if, for all hP;Qi 2 R and � 2 A:

1. P
�
�! P 0 implies 9Q0: Q

�
�!

� �
�!

�
�!

�
Q0 and hP 0; Q0i 2 R.

2. Q
�
�! Q0 implies 9P 0: P

�
�! P 0 and hP 0; Q0i 2 R.

3. P
�
�! P 0 implies 9Q0: Q

�
�!

+
Q0 and hP 0; Q0i 2 R.

We write P =
�d

Q if hP;Qi 2 R for some delayed faster{than relation R.

As usual one can derive that =�d
is a preorder and that it is the largest delayed

faster{than relation. In the following we will show that both preorders =�n
and =�d

coincide; the proof of this result is based on a syntactic relation � on terms.

De�nition 3. The relation � � bP � bP is de�ned as the smallest relation satis-
fying the following properties, for all P; P 0; Q;Q0 2 bP.

Always: (1) P � P (2) P � �:P
If P 0 � P and Q0 � Q: (3) P 0jQ0 � P jQ (4) P 0 +Q0 � P +Q

(5) P 0 n L � P n L (6) P 0[f] � P [f]
If P 0 � P and x guarded in P : (7) P 0[�x: P=x] � �x: P

Note that relation� is not transitive and that it is also de�ned for open terms. Its
essential properties are: (a) P

�
�! P 0 implies P 0 � P , for any terms P; P 0 2 bP ,

and (b) � satis�es the clauses of Def. 1, also on open terms; hence, �jP�P � =
�n

.
Crucial for this are Clauses (2) and (7) of the above de�nition. For (a) we
clearly must include Clause (2). Additionally, Clause (7) covers the unwinding

of recursion; for its motivation consider, e.g., the transition �x: �:a:�:b:x
�
�!

a:�:b:�x: �:a:�:b:x.

Theorem 4 (Coincidence I). The preorders =�n
and =

�d
coincide.

Question II.We now turn to a second question which might be raised regarding
the de�nition of the naive faster{than preorder =�n

. Should one add a fourth
clause to the de�nition of =�n

that permits, but not requires, the faster process P
to match a clock transition of the slower process Q? More precisely, P might
be able to do whatever Q can do after a time step, or P might itself have to
perform a time step to match Q. Hence, a candidate for a fourth clause is

(4) Q
�
�! Q0 implies hP;Q0i 2 R or 9P 0: P

�
�! P 0 and hP 0; Q0i 2 R :

Unfortunately, this requirement is not as sensible as it might appear at �rst sight.
Consider the processes P =df �

n:a:0 j a:0 j a:0 and Q =df �
n:a:0 j�n:a:0 j a:0, for

n � 1. Obviously, we expect P to be faster than Q. However, Q can engage in a
clock transition to Q0 =df �

n�1:a:0 j�n�1:a:0 j a:0. According to Clause (4) and

since P 6
�
�!, we would require P to be faster than Q0. This conclusion, however,

should obviously be deemed wrong according to our intuition of \faster than."
The point of this example is that process P , which is in some components

faster than Q, cannot mimic a clock transition of Q with a matching clock
transition. However, since P is equally fast in the other components, it cannot
simply leave out the time step. The solution to this situation is to remember
within the relation R how many clock transitions P missed out and, in addi-
tion, to allow P to perform these clock transitions later. Thus, the computation

Q
�
�!

n
a:0 j a:0 j a:0

a
�! 0 j a:0 j a:0

a
�! 0 j0 j a:0 of Q, where we have no clock

transitions between the two action transitions labeled by a, can be matched by P

with the computation P
a
�! �n:a:0 j0 j a:0

�
�!

n
a:0 j0 j a:0

a
�! 0 j0 j a:0. This

matching is intuitively correct, since the �rst a occurs faster in the considered
trace of P than in the trace of Q, while the second a occurs at the same absolute
time, measured from the start of each computation.

De�nition 5 (Family of faster{than preorders). A family (Ri)i2N of rela-
tions over P, indexed by natural numbers (including 0), is a family of indexed{

faster{than relations if, for all i 2 N, hP;Qi 2 Ri, and � 2 A:

1. P
�
�! P 0 implies 9Q0: Q

�
�! Q0 and hP 0; Q0i 2 Ri.

2. Q
�
�! Q0 implies 9P 0: P

�
�! P 0 and hP 0; Q0i 2 Ri.

3. P
�
�! P 0 implies (a) 9Q0: Q

�
�! Q0 and hP 0; Q0i 2 Ri, or

(b) i > 0 and hP 0; Qi 2 Ri�1.

4. Q
�
�! Q0 implies (a) 9P 0: P

�
�! P 0 and hP 0; Q0i 2 Ri, or

(b) hP;Q0i 2 Ri+1.

We write P =
�i

Q if hP;Qi 2 Ri for some family of indexed{faster{than rela-
tions (Ri)i2N.

Intuitively, P =
�i

Qmeans that process P is faster than processQ provided that P
may delay up to i additional clock ticks which Q does not need to match. Observe
that there exists a family of largest indexed{faster{than relations, but it is not
clear that these relations are transitive. We establish, however, a stronger result
by showing that our naive faster{than preorder =�n

coincides with =�0
. The proof

of this result uses a family of purely syntactic relations �i, for i 2 N.

De�nition 6. The relations �i � bP � bP, for i 2 N, are de�ned as the smallest
relations such that, for all P; P 0; Q;Q0; P1; : : : ; Pn 2 bP and i; j 2 N:

Always: (1) P �i P
If P1 � P2 � � � � � Pn: (2a) P1 �i �

j :Pn

If P 0 �i P and Q0 �i Q: (2b) �:P 0 �i+1 P
(3) P 0jQ0 �i P jQ (4) P 0 +Q0 �i P +Q
(5) P 0 n L �i P n L (6) P 0[f] �i P [f]

If P 0 �i P , x guarded in P : (7a) P 0[�x: P=x] �i �x: P
If P 0 �i P , x guarded in P 0: (7b) �x: P 0 �i P [�x: P

0=x]

Our syntactic relations satisfy the following useful properties:

1. �i��i+1, for all i 2 N.
2. ���0 ; in particular, P

�
�! P 0 implies P 0 �0 P , for any P; P 0 2 bP.

3. P 0 � P (whence, P
�
�! P 0) implies P �i P

0, for all i > 0 and any P; P 0 2 bP .

For the proof of the following theorem, a series of further lemmas is needed,
which show in particular that the family of relations �i satis�es the conditions
of an indexed{faster{than family.

Theorem 7 (Coincidence II). The preorders =�n
and =

�0
coincide.

4 Semantic Theory of our Faster{than Relation

A shortcoming of the naive faster{than preorder =�n
, as introduced above, is

that it is not compositional. As an example, consider the processes P =df �:a:0
and Q =df a:0, for which P =

�n
Q holds according to Def. 1. Intuitively, however,

this should not be the case, as we expect P = �:Q to be strictly slower than Q.
Technically, if we compose P and Q in parallel with process R =df a:0, then
P jR

�
�! a:0ja:0, but QjR 6

�
�!, since any clock transition of QjR is preempted

due to � 2 U(QjR). Hence, P jR 6=�n
QjR, i.e., =�n

is not a precongruence.
The reason for P and Q being equally fast according to =�n

lies in our oper-
ational rules: we allow Q to delay arbitrarily since this might be necessary in a
context where no communication on a is possible. As R shows, we have to take
a re�ned view once we �x a context. In order to �nd the largest precongruence
contained in =

�n
we must take the urgent action sets of processes into account.

De�nition 8 (Strong faster{than precongruence). A relation R � P �P
is a strong faster{than relation if, for all hP;Qi 2 R and � 2 A:

1. P
�
�! P 0 implies 9Q0: Q

�
�! Q0 and hP 0; Q0i 2 R.

2. Q
�
�! Q0 implies 9P 0: P

�
�! P 0 and hP 0; Q0i 2 R.

3. P
�
�! P 0 implies U(Q) � U(P) and 9Q0: Q

�
�! Q0 and hP 0; Q0i 2 R.

We write P =
�Q if hP;Qi 2 R for some strong faster{than relation R.

Again, it is easy to see that =� is a preorder, that it is contained in =
�n

, and
that =� is the largest strong faster{than relation. We also have that P is strictly
faster than �:P , for all P 2 P, which is to be expected intuitively.

Theorem 9 (Full abstraction). The preorder =� is the largest precongruence
contained in =

�n
.

We conclude this section by showing that TACS is a conservative extension of
CCS. As noted earlier, we can interpret any process not containing a �{pre�x as
CCS process. Moreover, for all TACS processes, we can adopt the equivalence
strong bisimulation [15], in signs �, which is de�ned just as =� when omitting the
third clause of Def. 8. Additionally, we denote the process obtained from some
process P 2 P when deleting all �'s by �{strip(P).

Theorem 10 (Conservativity). Let P; Q 2 P.

1. Always P =
�Q implies P � Q.

2. If P and Q do not contain any �{pre�xes, then P =
�Q if and only if Q =

�P
if and only if P � Q.

3. Always P � �{strip(P); furthermore, P
�
�! P 0 implies P � P 0.

This shows that our strong faster{than preorder re�nes strong bisimulation.
Moreover, if no bounded delays occur in some processes, then these processes
run in zero{time, and our strong faster{than preorder coincides with strong
bisimulation. That the bounded delays in TACS processes do not in
uence any
\functional" behavior, is demonstrated in the third part of the above result.

Axiomatization. Next, we provide a sound and complete axiomatization of our
strong faster{than precongruence =� for the class of �nite sequential processes.
According to standard terminology, a process is called �nite sequential if it does
neither contain any recursion operator nor any parallel operator. Although this
class seems to be rather restrictive at �rst sight, it is simple and rich enough
to demonstrate, by studying axioms, how exactly our semantic theory for =

�
in TACS di�ers from the one for strong bisimulation in CCS [15].

The axioms for our strong faster{than precongruence are shown in Table 4,
where any axiom of the form t = u should be read as two axioms t w u and
u w t. We write ` t w u if t w u can be derived from the axioms. Axioms (A1){
(A4), (D1){(D4), and (C1){(C5) are exactly the ones for strong bisimulation in
CCS [15]. Hence, the semantic theory of our calculus is distinguished from the

one for strong bisimulation by the additional Axioms (P1){(P5). Intuitively,
Axiom (P1) re
ects our notion of maximal progress or urgency, namely that a
process, which can engage in an internal urgent action, cannot delay. Axiom (P2)
states that, if an action occurs \urgent" and \non{urgent" in a term, then it is
indeed urgent, i.e., the non{urgent occurrence of the action may be transformed
into an urgent one. Axiom (P3) is similar in spirit, but cannot be derived from
Axiom (P2) and the other axioms. Axiom (P4) is a standard axiom in timed
process algebras and testi�es to the fact that time is a deterministic concept
which does not resolve choices. Finally, Axiom (P5) encodes our elementary
intuition of �{pre�xes and speed within TACS, namely that any process t is
faster than process �:t which might delay the execution of t by one clock tick.

Table 4. Axiomatization for �nite sequential processes

(A1) t+ u = u+ t (D1) 0[f] = 0

(A2) t+ (u+ v) = (t+ u) + v (D2) (�:t)[f] = f(�):(t[f])
(A3) t+ t = t (D3) (�:t)[f] = �:(t[f])
(A4) t+ 0 = t (D4) (t+ u)[f] = t[f] + u[f]

(P1) �:t+ �:u = t+ �:u (C1) 0 n L = 0

(P2) a:t+ �:a:u = a:t+ a:u (C2) (�:t) n L = 0 � 2 L [L

(P3) t+ �:t = t (C3) (�:t) n L = �:(t n L) � =2 L [L
(P4) �:(t+ u) = �:t+ �:u (C4) (�:t) n L = �:(t n L)
(P5) t w �:t (C5) (t+ u) n L = (t n L) + (u n L)

The correctness of our axioms relative to =� can be established as usual [15];
note that all axioms are sound for arbitrary processes, not only for �nite sequen-
tial ones. To prove the completeness of our axiomatization for �nite sequential
processes, we use a fairly involved notion of normal form; see [14] for details.

Theorem 11 (Correctness & completeness). For �nite sequential processes
t and u we have: ` t w u if and only if t =�u.

How to extend our axiomatization to cover parallel composition, too, is non{
trivial and still an open problem. The di�culty lies in the lack of a suitable ex-
pansion law: observe that �:a:0 j�:b:0 is strictly faster than �:a:�:b:0+�:b:�:a:0.
However, since � is synchronized, a more sensible expansion law would try to
equate �:a:0 j�:b:0 with �:(a:0 j b:0). But this law does not hold, since the latter
process can engage in an a{transition to 0 j b:0 and is therefore strictly faster.
Thus, our situation is the same as in Moller and Tofts' paper [17] which also
considers a bisimulation{type faster{than relation for asynchronous processes,
but which deals with best{case rather than worst{case timing behavior. It turns
out that the axioms for the sequential sub{calculus given in [17] are all true in
our setting; however, we have the additional Axioms (P1) and (P2) which both
are valid since � is just a potential delay that can occur in certain contexts. Note
that also Moller and Tofts do not treat parallel composition completely.

Abstracting from internal computation. The strong faster{than precon-
gruence requires that two systems have to match each others action transitions
exactly, even those labeled with the internal action � . Instead, one would like
to abstract from � 's and develop a faster{than precongruence from the point of
view of an external observer, as in CCS [15].

We start o� with the de�nition of a naive weak faster{than preorder which
requires us to introduce the following auxiliary notations. For any action � we

de�ne �̂ =df �, if � = � , and �̂ =df �, otherwise. Further, we let
�

=) =df
�
�!

�

and write P
�
=) Q if there exist R and S such that P

�
=) R

�
�! S

�
=) Q.

De�nition 12 (Naive weak faster{than preorder). A relation R � P �P
is a naive weak faster{than relation if, for all hP;Qi 2 R and � 2 A:

1. P
�
�! P 0 implies 9Q0: Q

�̂
=) Q0 and hP 0; Q0i 2 R.

2. Q
�
�! Q0 implies 9P 0: P

�̂
=) P 0 and hP 0; Q0i 2 R.

3. P
�
�! P 0 implies 9Q0; Q00; Q000: Q

�
=) Q00 �

�! Q000 �
=) Q0 and hP 0; Q0i 2 R.

We write P =

�n
Q if hP;Qi 2 R for some naive weak faster{than relation R.

Since no urgent action sets are considered, it is easy to see that =�n
is not a

precongruence (cf. Def. 8).

De�nition 13 (Weak faster{than preorder). A relation R � P � P is a
weak faster{than relation if, for all hP;Qi 2 R and � 2 A:

1. P
�
�! P 0 implies 9Q0: Q

�̂
=) Q0 and hP 0; Q0i 2 R.

2. Q
�
�! Q0 implies 9P 0: P

�̂
=) P 0 and hP 0; Q0i 2 R.

3. P
�
�! P 0 implies 9Q0; Q00; Q000: Q

�
=) Q00 �

�! Q000 �
=) Q0, U(Q00) � U(P),

and hP 0; Q0i 2 R.

We write P =

�Q if hP;Qi 2 R for some weak faster{than relation R.

Hence, =� is the largest weak faster{than relation and also a preorder. However,
=

� is still not a precongruence for summation, but the summation �x used for
other bisimulation{based timed process algebras proves e�ective for TACS, too.

De�nition 14 (Weak faster{than precongruence). A relation R � P �P
is a weak faster{than precongruence relation if, for all hP;Qi 2 R and � 2 A:

1. P
�
�! P 0 implies 9Q0: Q

�
=) Q0 and P 0 =

�Q0.

2. Q
�
�! Q0 implies 9P 0: P

�
=) P 0 and P 0 =

�Q0.

3. P
�
�! P 0 implies U(Q) � U(P), and 9Q0: Q

�
�! Q0 and hP 0; Q0i 2 R.

We write P =

'Q if hP;Qi 2 R for a weak faster{than precongruence relation R.

Theorem 15 (Full{abstraction). The relation =

� is a precongruence for all

operators except summation, and it is the largest such one contained in =

�n
.

Moreover, the relation =

' is the largest precongruence contained in =

� , and hence

the largest one contained in =

�n
.

5 Example: A 2{place Storage

We demonstrate the utility of TACS by means of a small example dealing with
two implementations of a 2{place storage in terms of an array and a bu�er,
respectively. Both can be de�ned using some de�nition of a 1{place bu�er, e.g.,
Be =df �x:�:in:out:x, which can alternately engage in communications with the
environment on channels in and out [15]. Observe that we assume a communi-
cation on channel out to be urgent, while process Be may autonomously delay
a communication on channel in by one clock tick. Finally, subscript e of pro-
cess Be should indicate that the 1{place bu�er is initially empty. On the basis
of Be, one may now de�ne a 2{place array 2arr and a 2{place bu�er 2buf as
follows: 2arr =df Be jBe and 2buf =df (Be[c=out] jBe[c=in])nfcg. While 2arr
is simply the parallel composition of two 1{place bu�ers, 2buf is constructed
by sequencing two 1{place bu�ers, i.e., by taking the output of the �rst 1{place
bu�er to be the input of the second one. Intuitively, we expect the array to be-
have functionally identical to the bu�er, i.e., both should alternate between in

and out actions. However, 2arr should be faster than 2buf since it can always
output some of its contents immediately. In contrast, 2buf needs to pass any
item from the �rst to the second bu�er cell, before it can output the item [15].

e Be

Bσ BσB

B

f e Be Bf

Bf B

B

σ

σ BeBe Bσ

out

out out

out out

B

B

Bf

B

σ

Bf

out
Be Be

Bσ Be

Bf Bσ

Bσ BσBf Be

Be Bf

Bσ Bff f Bf

out

out

out

B

τ

τ

in

σ

inσ

σin

in σ

in

σ

σ σ

in σ

in in

inin

in

σ σ

σσ

in in

in in

in in

σ

σ σ

σ

Fig. 1. Semantics of the array variant (left) and the bu�er variant (right).

The semantics of the 2{place array 2arr and our 2{place bu�er 2buf are
depicted in Fig. 1 on the left and right, respectively. For notational convenience
we let B� stand for the process in:out:Be and Bf for out:Be. Moreover, we leave
out the restriction operator nfcg in the terms depicted for the bu�er variant.
The highlighted �{transition indicates an urgent internal step of the bu�er.

Hence, process (BfjB�) n fcg cannot engage in a clock transition. The other �{
transition depicted in Fig. 1 is non{urgent. As desired, our semantic theory for
TACS relates 2arr and 2buf. Formally, this may be witnessed by the weak
faster{than relation given in Table 5, whence 2arr =

� 2buf. Moreover, since
both 2arr and 2buf do not possess any initial internal transitions, they can
also easily be proved to be weak faster{than precongruent, according to Def. 14.
Thus, 2arr =

' 2buf, i.e., the 2{place array is faster than the 2{place bu�er in
all contexts, although functionally equivalent, which matches our intuition.

Table 5. Pairs in the considered weak faster{than relation

h (Be jBe) ; (Be jBe) n fcgi h (Bf jBe) ; (Bf jBe) n fcgi h (Be jBf) ; (Bf jBe) n fcgi
h (Bf jBe) ; (Be jBf) n fcgi h (Bf jB�) ; (Bf jB�) n fcgi h (Bf jBf) ; (Bf jBf) n fcgi
h (Bf jB�) ; (B�jBf) n fcgi h (Be jB�) ; (BejBe) n fcgi h (B�jBe) ; (Be jBe) n fcgi
h (B�jBf) ; (Be jBf) n fcgi h (Bf jB�) ; (BejBf) n fcgi h (Be jBf) ; (Be jBf) n fcgi
h (Bf jB�) ; (Bf jBe) n fcgi h (B�jBf) ; (Bf jBe) n fcgi h (B�jBe) ; (B�jBe) n fcgi
h (B�jB�) ; (B�jB�) n fcgi h (B�jBf) ; (Bf jB�) n fcgi h (B�jBf) ; (B�jBf) n fcgi
h (Be jB�) ; (B�jBe) n fcgi

6 Discussion and Related Work

The literature includes a large number of papers on timed process algebras [4].
We concentrate only on those which consider faster{than relations.

Research comparing the worst{case timing behavior of asynchronous systems
initially centered around DeNicola and Hennessy's testing theory [9]; it was �rst
conducted within the setting of Petri nets [6, 13, 20, 21] and later for a TCSP{
style [19] process algebra, called PAFAS [12, 22]. The justi�cation for adopting
a testing approach is re
ected in a fundamental result stating that the consid-
ered faster{than testing preorder based on continuous{time semantics coincides
with the analogue testing preorder based on discrete{time semantics [12]. This
result depends very much on the testing setting and is di�erent from the sort
of discretization obtained for timed automata. In PAFAS, every action has the
same integrated upper time bound, namely 1. This gives a more realistic embed-
ding of ordinary process terms, while a CCS{term in TACS runs in zero-time.
In contrast, TACS allows one to specify arbitrary upper time bounds easily
by nesting �{pre�xes. Also, the equational laws established for the faster{than
testing preorder of PAFAS are quite complicated [22], while the simple axioms
presented here provide a clear, comprehensive insight into our semantics.

Regarding other research of faster-than relations, our approach is most closely
related to work by Moller and Tofts [17] who developed a bisimulation{based
faster{than preorder within the discrete{time process algebra `TCCS [16]. In
their approach, asynchronous processes are modeled without any progress as-
sumption. Instead, processes may idle arbitrarily long and, in addition, �xed
delays may be speci�ed. Hence, their setting is focused on best{case behavior, as
the worst{case would be that for an arbitrary long time nothing happens. Moller

and Tofts present an axiomatization of their faster{than preorder for �nite se-
quential processes and discuss the problem of axiomatizing parallel composition,
for which only valid laws for special cases are provided. It has to be mentioned
here that the axioms and the behavioral preorder of Moller and Tofts do not
completely correspond. In fact, writing � for what is actually written (1) in [17],
a:�:b:0+ a:b:0 is equally fast as a:b:0, which does not seem to be derivable from
the axioms. Also, the intuition behind relating these processes is not so clear,
since a:a:�:b:0 + a:a:b:0 is not necessarily faster than or equally fast as a:a:b:0.
Since the publication in 1991, also Moller and Tofts noticed this shortcoming of
their preorder [priv. commun.]. The problem seems to lie in the way in which a

transition P
a
�! P 0 of the faster process is matched: For intuitive reasons, the

slower process must be allowed to perform time steps before engaging in a. Now
the slower process is ahead in time, whence P 0 should be allowed some additional
time steps. What might be wrong is that P 0 must perform these additional time
steps immediately. We assume that a version of our indexed faster{than relation,
which relaxes the latter requirement, would be more satisfactory. It would also
be interesting to study the resulting preorder and compare it in detail to our
faster{than precongruence.

A di�erent idea for relating processes with respect to speed was investi-
gated by Corradini et al. [8] within the so{called ill{timed{but{well{caused ap-
proach [1, 10]. The key of this approach is that components attach local time
stamps to actions; however, actions occur as in an untimed algebra. Hence, in a
sequence of actions exhibited by di�erent processes running in parallel, local time
stamps might decrease. Due to these \ill{timed" runs, the faster{than preorder
of Corradini et al. is di�cult to relate to our approach.

Other research compares the e�ciency of untimed CCS{like terms by count-
ing internal actions either within a testing framework [7, 18] or a bisimulation{
based setting [2, 3]. Except in [7] which does not consider parallel composition,
runs of parallel processes are seen to be the interleaved runs of their component
processes. Consequently, e.g., (�:a:0 j �:a:b:0) n fag is as e�cient as �:�:�:b:0,
whereas in our setting (�:a:0 j�:a:b:0) n fag is strictly faster than �:�:�:b:0.

7 Conclusions and Future Work

To consider the worst{case e�ciency of asynchronous processes, i.e., those pro-
cesses whose functional behavior is not in
uenced by timing issues, we de�ned
the process algebra TACS. This algebra conservatively extends CCS by a clock
pre�x which represents a delay of at most one time unit, and it takes time to
be discrete. For TACS processes we then introduced a simple (bi)simulation{
based faster{than preorder and showed this to coincide with two other variants
of the preorder, both of which might be intuitively more convincing but which
are certainly more complicated. We also developed a semantic theory for our
preorder, including a coarsest precongruence result and an axiomatization for
�nite sequential processes, and investigated a corresponding \weak" preorder.

Regarding future work, we intend to extend our axiomatization to larger
classes of processes and also to our weak faster{than preorder, as well as to
implement TACS in an automated veri�cation tool.

Acknowledgments. We would like to thank the anonymous referees for their
valuable comments and suggestions.

References

[1] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inform.,
33(4):317{350, 1996.

[2] S. Arun-Kumar and M. Hennessy. An e�ciency preorder for processes. Acta

Inform., 29(8):737{760, 1992.
[3] S. Arun-Kumar and V. Natarajan. Conformance: A precongruence close to bisim-

ilarity. In STRICT '95, Workshops in Comp., pp. 55{68. Springer-Verlag, 1995.
[4] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing: Real Time

and Discrete Time, ch. 10. In Bergstra et al. [5], 2001.
[5] J.A. Bergstra, A. Ponse, and S.A. Smolka, eds. Handbook of Process Algebra.

Elsevier Science, 2001.
[6] E. Bihler and W. Vogler. E�ciency of token-passing MUTEX-solutions. In

ICATPN '98, vol. 1420 of LNCS, pp. 185{204. Springer-Verlag, 1998.
[7] R. Cleaveland and A. Zwarico. A theory of testing for real time. In LICS '91, pp.

110{119. IEEE Computer Society Press, 1991.
[8] F. Corradini, R. Gorrieri, and M. Roccetti. Performance preorder and competitive

equivalence. Acta Inform., 34(11):805{835, 1997.
[9] R. DeNicola and M.C.B. Hennessy. Testing equivalences for processes. TCS,

34:83{133, 1983.
[10] R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with dura-

tional actions. TCS, 140(1):73{94, 1995.
[11] M. Hennessy and T. Regan. A process algebra for timed systems. Inform. and

Comp., 117:221{239, 1995.
[12] L. Jenner and W. Vogler. Comparing the e�ciency of asynchronous systems. In

ARTS '99, vol. 1601 of LNCS, pp. 172{191. Springer-Verlag, 1999.
[13] L. Jenner andW. Vogler. Fast asynchronous systems in dense time. TCS, 254:379{

422, 2001.
[14] G. L�uttgen and W. Vogler. A faster-than relation for asynchronous processes.

Techn. Rep. 2001-2, ICASE, NASA Langley Research Center, USA, 2001.
[15] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[16] F. Moller and C. Tofts. A temporal calculus of communicating systems. In

CONCUR '90, vol. 458 of LNCS, pp. 401{415. Springer-Verlag, 1990.
[17] F. Moller and C. Tofts. Relating processes with respect to speed. In CONCUR '91,

vol. 527 of LNCS, pp. 424{438. Springer-Verlag, 1991.
[18] V. Natarajan and R. Cleaveland. An algebraic theory of process e�ciency. In

LICS '96, pp. 63{72. IEEE Computer Society Press, 1996.
[19] S. Schneider. An operational semantics for timed CSP. Inform. and Comp.,

116(2):193{213, 1995.
[20] W. Vogler. Faster asynchronous systems. In CONCUR '95, vol. 962 of LNCS, pp.

299{312. Springer-Verlag, 1995.
[21] W. Vogler. E�ciency of asynchronous systems and read arcs in Petri nets. In

ICALP '97, vol. 1256 of LNCS, pp. 538{548. Springer-Verlag, 1997.
[22] W. Vogler and L. Jenner. Axiomatizing a fragment of PAFAS. ENTCS, 39, 2000.

