
Axiomatizing an Algebra of Step Reactions

for Synchronous Languages

Gerald L�uttgen1 and Michael Mendler2

1 Department of Computer Science, She�eld University, 211 Portobello Street,
She�eld S1 4DP, U.K., g.luettgen@dcs.shef.ac.uk

2 Fakult�at f�ur Wirtschaftsinformatik und Angewandte Informatik,
Universit�at Bamberg, D{96045 Bamberg, michael.mendler@wiai.uni-bamberg.de

Abstract. This paper introduces a novel algebra for reasoning about
step reactions in synchronous languages, such as macro steps in Harel,
Pnueli and Shalev's Statecharts and instantaneous reactions in Berry's
Esterel. The algebra describes step reactions in terms of con�gurations
which can both be read in a standard operational as well as in a model{
theoretic fashion. The latter arises by viewing con�gurations as propo-
sitional formulas, interpreted intuitionistically over �nite linear Kripke
structures. Previous work by the authors showed the adequacy of this ap-
proach by establishing compositionality and full{abstraction results for
Statecharts and Esterel. The present paper generalizes this work in an
algebraic setting and, as its main result, provides a sound and complete
equational axiomatization of step reactions. This yields, for the �rst time
in the literature, a complete axiomatization of Statecharts macro steps,
which can also be applied, modulo encoding, to Esterel reactions.

1 Introduction

Synchronous languages provide a popular framework for designing and program-
ming event{based reactive systems. Prominent examples of such languages in-
clude Harel's Statecharts [2], which is a graphical language that extends �nite{
state machines by concepts of state hierarchy, concurrency, and event prior-
ity, and Berry's Esterel [1], which is a textual language having similar features
to Statecharts. Today, both languages are supported by commercial tools that
mainly focus on generating running code. The development of semantic{based
veri�cation tools, however, is still in its infancy, which is partly due to the lack
of su�ciently simple compositional semantics.

The semantics of Statecharts, as conceived by Pnueli and Shalev [15], and
of Esterel are based on the idea of cycle{based reaction, where �rst the input
events, as de�ned by a system's environment, are sampled at the beginning of
each cycle, then the system's reaction in form of the emission of further events
is determined, and �nally the generated events are output to the environment.
Statecharts and Esterel di�er in the details of what exactly constitutes a cycle,
which is also called a macro step in Statecharts and an instantaneous reaction

in Esterel. Moreover, Esterel refers to events as signals. Both languages have in
common that they obey the semantic principles of synchrony and causality. The

synchrony requirement re
ects the mechanism behind cycle{based reaction and
is mathematically modeled via the synchrony hypothesis. This hypothesis en-
sures that reactions and propagations of events are instantaneous, which models
an idealized system behavior and is practically justi�ed by the observation that
reactive systems usually perform much faster than their environments. Causal-
ity refers to the requirement that the reason for an event to be generated in a
system reaction can be traced back to the input events provided by the envi-
ronment. Esterel di�ers from Statecharts in that it further adopts the principles
of reactivity and determinism. Reactivity implies that in each cycle, a system
response, in the form of generated events, can be constructed for any input an
environment may provide. Determinism requires for this response to be unique.

This brief discussion highlights the variety of possible choices when de�ning
a semantics for step reactions, with di�erent choices implying subtly di�erent
semantics. Recent research by the authors, aiming at a unifying semantic frame-
work for synchronous languages, has concentrated on employing ideas from intu-

itionistic logic for describing step reactions [8{10]. Intuitionistic logic, in contrast
to classical logic, is constructive and thus truly re
ects the operational character
of step reactions in the light of causality: it rejects the principle of the excluded
middle, viz., that events are either always present or always absent throughout
a reaction. This axiom cannot be maintained for a compositional semantics that
allows the system environment to inject events during a step reaction. Indeed,
our intuitionistic setting led to compositional and fully{abstract characteriza-
tions of Statecharts macro steps and Esterel reactions [9, 10].

This paper introduces a simple yet expressive algebra for describing and
reasoning about step reactions in terms of so{called con�gurations and presents
an equational axiomatization for it. In particular, this gives for the �rst time
in the literature a sound and complete axiomatization for Statecharts macro
steps, which can also be applied, modulo encoding, to Esterel reactions. The
step algebra's semantics is inspired by the authors' previous work and reads
con�gurations as propositional formulas, interpreted intuitionistically over �nite
linear Kripke structures, to which we refer as sequence structures (cf. Sec. 2).
Our axiomatization is then built on top of this algebra (cf. Sec. 3), and its proof
of completeness combines techniques used in process algebras and logics (cf.
Sec. 4). At its heart, the proof employs a process{algebraic notion of normal

form that in turn is de�ned by model{theoretic means. Our axioms not only
shed light on the semantics of step reactions, but also provide groundwork for
an exact axiomatic comparison of popular synchronous languages.

2 Step Algebra

This section introduces our step algebra for reasoning about those step reactions
that may be speci�ed within event{based synchronous language. Usually, syn-
chronous languages, such as Statecharts [2, 15] or Esterel [1] (with its graphical
front{end SyncCharts), enrich the notation of �nite state machines by mecha-
nisms for expressing hierarchy, concurrency, and priority. This makes it possible

to re�ne a single state by a state machine, to run several state machines in
parallel which may coordinate each other via broadcasting events, and to give
some transitions precedence over others, respectively. The underlying semantics
is based on a nested two{level execution model. The top{level synchronous com-
putation cycle consists of a sequence of macro steps, each of which represents a
single reaction of the system to some environment stimulus. If the notion of a
reaction is understood, this synchronous level can be handled by conventional
automata models and poses no semantic challenge. Hence, the interesting ques-
tion is what exactly constitutes a reaction. Although the environment treats
reactions as atomic, each individual reaction is indeed a computation in its own
right, a sequence of micro steps in which concurrent components of the system
under consideration are engaged. This introduces subtle issues regarding compo-
sitionality and full-abstraction, which are well documented in the literature (cf.
Sec. 5). Moreover, many synchronous languages |and variants of Statecharts in
particular| are distinguished by how exactly they de�ne valid sets of concurrent
transitions that can �re together in a single reaction. The work presented here
features an algebra of individual reactions that arose from the systematic study
of these problems and variations in the literature. We start o� with an informal
description of step reactions.

In event{based synchronous languages, each transition t is labeled by two
sets of events, which are referred to as trigger and action, respectively. The trig-
ger is a set of positive events P and negative events N , taken from a countable
universe of events Ev and their negated counterparts in Ev =df fe : e 2 Evg, re-
spectively. For convenience, we de�ne e =df e. Intuitively, t is enabled and forced
to �re if the transition's environment signals all events in P but none in N . The
e�ect of �ring t is the generation of all events in the transition's action A � Ev.
These events might in turn trigger transitions in di�erent parallel components,
thus enabling a causal chain reaction whose length is bounded by the number of
parallel components within the program under consideration. A step reaction is
then the set of all events that are already valid at the beginning of the step or
generated during the step. When constructing steps in the suggested operational
manner, it is possible to experience inconsistencies, namely when a �ring tran-
sitions generates some event e, whose absence, i.e., its negation e, was assumed
when �ring a previous transition in the step. Since an event cannot be both
present and absent within the same step reaction, due to the principle of global
consistency, the choice sequence leading to the inconsistency is rejected, and a
di�erent sequence must then be chosen. If no consistent sequence is possible,
the step construction fails altogether. Alternatively, one could also say that the
step construction remains un�nished; it waits for the environment to provide
additional events to disable the transition(s) that produced the inconsistency.

The semantic subtlety of step reactions arises precisely from the capability of
de�ning transitions whose enabledness disables other transitions, as well as from
the interpretation of negated trigger events. In the light of this discussion, the key
operators for combining transitions in synchronous languages are parallel com-

position and event negation. State hierarchy is merely a notational convenience

rather than a semantically relevant operator. Observe that parallel composition
and event negation also allow one to express nondeterministic choice [8]. For ex-
ample, a choice between two transitions P1; N1=A1 and P2; N2=A2 might be writ-
ten as the parallel composition P1; N1; e2=A1; e1 k P2; N2; e1=A2; e2, where e1; e2
are distinguished events not occurring in the triggers or actions of the two original
transitions and where the comma notation stands for union, i.e., X;Y =df X[Y
and X; x =df X [fxg. Finally, we often write x for the singleton set fxg.

Syntax. For the purposes of this paper, it is convenient to work with a quite
general syntax for reactions, which allows us to encode several dialects of syn-
chronous languages, including Statecharts and Esterel. In fact, it may be seen
as the smallest common superset of the kernel of both languages. The terms
describing step reactions, to which we also refer as con�gurations, are de�ned
inductively as follows:

C ::= 0 j A j I=C j CkC

where A � Ev and I � Ev [Ev. Intuitively, 0 stands for the con�guration
with the empty behavior, A � Ev denotes the signaling of all events in A,
con�guration I=C encodes that con�guration C is triggered by the presence of
the positive events in I and the absence of the negative events in I , and C1kC2

describes the parallel composition of con�gurations C1 and C2. Observe that the
semantics of con�guration 0 coincides with the semantics of A = ;; nevertheless,
it seems natural to include 0. For notational convenience, we let the transition
slash = to have lower binding power than parallel composition k and interpret a
nesting of transition slashes in a right{associative manner.

t1

s11

s12

s1

a/b s22

s21

s211

s213212s

b/c
t4

t2 t3

s

s2

c/ab, c/a

Fig. 1. Example Statechart

We illustrate our syntax by means of an example. Consider the Statechart
depicted in Fig. 1 and assume that all components are in their initial states
marked by small unlabeled arrows. Then the �rst Statechart step determining
the initial Statechart reaction, may be encoded in our syntax as the con�guration

Cex =df a=b k b; c; e3; e4=a; e2 k c; e2; e4=a; e3 k b; e2; e3=c; e4 :

Although the main body of this paper focuses on Statecharts, it is worth noting
again that reactions of Esterel programs can be encoded in our syntax as well. In

particular, our syntax admits nested triggers, such as in I=(J=C), and parallel
composition in a transition's action, such as in I=(CkD). While these features
are only present in Esterel but not in Statecharts, their inclusion will prove
notationally convenient, but not essential (cf. Sec. 5).

Semantics. In order for a semantics on con�gurations to be useful for the pur-
poses of this paper, it must meet several requirements. First, it must be com-

positional to be axiomatizable, i.e., it must give rise to a semantic equivalence
on con�gurations that is a congruence. Second, it should be compatible with
the existing semantics of the synchronous languages of interest, in particular
with Statecharts' and Esterel's semantics. Unfortunately, many semantics for
synchronous languages, including the one of Statecharts as originally conceived
by Harel, Pnueli and Shalev [2, 15], are not compositional. Recent research by
the authors has revealed an appealing model{theoretic framework for studying
Statecharts' and Esterel's semantics, which is based on reading con�gurations as
simple propositional formulas that are intuitionistically interpreted over �nite
linear Kripke structures [8{10]. This model{theoretic approach allows not only
for a compositional semantics but also for establishing full{abstraction results.
The present paper generalizes this work in an algebraic setting.

The key idea is to consider a single step reaction as a stabilization process,
where the synchronous environment is only concerned with the �nal response,
while the system under consideration takes care of the actual sequence of events
that leads to the stationary state. The main feature that distinguishes a stabi-
lization process from an arbitrary computation is that it is a monotonically in-

creasing approximation of the �nal step reaction. This means that once an event
from the �nal step reaction has become present or asserted by the �ring of a
transition generating it, the event will remain present until the stationary state is
reached. Formally, we interpret con�gurations over �nite, nonempty, strictly in-
creasing sequencesM = (M1;M2; : : : ;Mn), where n 2 N andMi � Ev, to which
we refer as sequence structures. `Strictly increasing' means that Mi (Mi+1, for
all 1 � i < n. We say that M satis�es C, in signs M j= C, if the following holds
for all 1 � i � n:

Mi j= 0 always

Mi j= A if A �Mi

Mi j= I=C if (I \ Ev �Mi and (I \ Ev) \Mn = ;) implies Mi j= C
Mi j= C1kC2 if Mi j= C1 and Mi j= C2

This de�nition is a shaved version of the standard semantics obtained when
reading a con�guration as a formula in propositional intuitionistic logic [16], i.e.,
when taking events to be atomic propositions and replacing e by the negation :e,
concatenation of events in sets and `k' by conjunction `^', and the transition
slash `=' by implication `�'. An empty trigger and the con�guration 0 are identi-
�ed with true. Then we haveM j= C if and only if C is valid in the intuitionistic
Kripke structureM . Note that, for sequence structuresM = (M1) of length one,
the notions of sequence model and classical model coincide; hence, intuitionistic
logic is a re�nement of classical logic, and we simply write M1 for (M1). The

utility of intuitionistic logic comes into play when ensuring global consistency
within reaction sequences. This is because intuitionistic logic interprets negation
globally for a sequence M , and not locally for single states Mi.

Our semantics suggests the following equivalence on con�gurations. Con�g-
urations C1; C2 are step congruent, in signs C1 ' C2, if M j= C1 , M j= C2

holds for all sequence structures M .

Proposition 1 (Congruence). The equivalence ' is indeed a congruence, i.e.,

C1 ' C2 implies C1kD ' C2kD and I=C1 ' I=C2, for all con�gurations

C1; C2; D and for all triggers I � Ev [Ev.

It was proved in [9] that step congruence ' is compositional and fully{abstract

with respect to Statecharts macro{step semantics, according to the operational
semantics of Pnueli and Shalev [15]. More precisely, for any two Statecharts
con�gurations C;D, we have C ' D if and only if CkP and DkP have exactly
the same step responses for all parallel environments P . The remainder of this
paper presents an axiomatic characterization of our step congruence.

3 Axiomatization

Our axioms system is displayed in Table 1, where A;B;N; P � Ev, I; I1; I2 2
Ev [Ev, and e 2 Ev, and where C;C1; C2; C3 are con�gurations. We write
` C1 = C2 to state that C1 = C2 can be derived from the axioms via standard
equational reasoning. Axioms (A1){(A6) and (B1){(B4) are fairly natural and
do not need much operational justi�cation. When taking them together, it is
easy to see that every con�guration is equivalent to a
at parallel composition
of transitions, without nested triggers and where ordering and duplication is
immaterial. Note that Axioms (B3) and (B4) can actually be deduced from
Axioms (A1){(A6), (B1), and (B2) by induction on the structure of C. Because of
their fundamental nature, however, we have included them as �rst{class axioms.

Table 1. Axioms for the step congruence

(A1) ; = 0 (A2) A kB = A [B
(A3) ;=C = C (A4) I=0 = 0
(A5) I1; I2=C = I1=(I2=C) (A6) I=(C1 kC2) = I=C1 k I=C2

(B1) C1 kC2 = C2 kC1 (B2) (C1 kC2) kC3 = C1 k (C2 kC3)
(B3) C kC = C (B4) C k 0 = C

(C1) P; I=P = 0
(C2) C = C k I=C
(C3) A kA; I=C = A k I=C
(C4) P;N=C = 0 if P \N 6= ;
(D1) P;N=A = P;N=A;B if N \A 6= ;
(D2) P;N=A = P; e;N=A kP;N; e=A if N \A 6= ;
(D3) N=C kP;N=A = kfN; e=C : e 2 Pg kP;N=A if N \ A 6= ; and P 6= ;

We concentrate on explaining the remaining, more interesting axioms. Ax-
iom (C1) describes that, if the �ring of a transition merely reproduces in its
action some of the events required by its trigger, then we might just as well not
�re the transition at all. Hence, it is equivalent to con�guration 0. Axiom (C2)
states that by adding in parallel to a con�guration C a guarded version I=C of
it, the behavior remains unchanged. This is intuitively clear since the extra I=C
component, when and if it �res at all, only produces the behavior encoded by C,
which is already present anyway. Logically speaking, guarding is a weakening

operation. Axiom (C3) is perhaps the most important equation, as it emulates
the �ring of transitions. The left{hand side A kA; I=C represents a situation in
which some events A have become present while at the same time there is a
pending transition A; I=C that is waiting, among other preconditions I , for the
events in A. Hence, it is safe to cancel out all dependencies of C on A and to
replace A; I=C by I=C. Hence, Axiom (C3) is nothing but a version of the cut

rule known from logic. Axiom (C4) deals with inconsistencies in triggers. If a
con�guration C is guarded by a trigger P;N in which some event is required to
be both present and absent, i.e., P \N 6= ;, then this guarded con�guration will
never become active. In this case, P;N=C is obviously equivalent to 0.

The remaining Axioms (D1){(D3) are concerned with con
icts between the
trigger and action of a transition. They axiomatize the e�ect of transitions that
produce a failure under certain trigger conditions. More precisely, these axioms
involve a transition P;N=A with N \ A 6= ;, whose �ring leads to a global
inconsistency. Such a transition rejects the completion of all macro steps in which
its trigger P;N is true. Thus, since P;N=A can never �re in a consistent way,
the step construction cannot terminate in a situation in which trigger P;N holds
true. In other words, whenever all P have become present the step construction
must continue until at least one event in N is present, in order to inactivate the
transition. If this does not happen the step construction fails. Axioms (D1){(D3)
formalize three di�erent consequences of this. Axiom (D1) re
ects the fact that,
since P;N=A can never contribute to a completed step if N \A 6= ;, we may add
arbitrary other events B to its action, without changing its behavior. Logically,
this axiom corresponds to the laws e ^ :e � false and false � B, for any B.
Axiom (D2) o�ers a second way of reading the inconsistency between triggers and
actions. Since at completion time any event e is either present or absent, the same
rejection that P;N=A produces can be achieved by P;N; e=A kP;N; e=A. This is
because if e is present at completion time, then P;N; e=A raises the failure; if e
is absent, then P;N; e=A does the job. This corresponds to the law :(:e^::e)
in intuitionistic logic. To see this, simply instantiate P as true and A and N
both as false. Then, Axiom (D2) turns into the equivalence (true ^ :false) �
false � ((true ^ :false ^ e) � false) ^ (true ^ :false ^ :e) � false , which
simpli�es to :(:e^::e). Finally, consider Axiom (D3) that encodes the following
intuition. Instead of saying that P;N=A generates a failure, if all events in P are
present and all events in N are absent, we might say that, if all events in N are
absent, then at least one of the events in P must be absent, provided the step
under consideration is to be completed without failure. But then any parallel

component of the form N=C, which becomes active on the absence of all events
in N , can be replaced by the parallel composition kfN; e=C : e 2 Pg. The
reason is that, if N=C �res at all in the presence of transition P;N=A, then at
least one of the weaker transitions N; e=C will be able to �re at some point,
depending on which of the events in P it is that will be absent to avoid failure.
Again there is a logic equivalent for this, namely the law :(p1 ^ p2) � :p1 _:p2
that holds for linear Kripke models. This can be seen by instantiating N and A
as false, P as p1 ^ p2, and C as :p1 _ :p2. It is not di�cult to show that then
Axiom (D3) becomes equivalent to ((:p1_:p2)^:(p1^p2)) � :(p1^p2), which
in turn is logically equivalent to :(p1 ^ p2) � :p1 _ :p2. Last, but not least, it
is important to note that con�guration P;N=A, for N \ A 6= ;, is not the same
as con�guration 0, since the former inevitably produces a failure if its trigger is
true, while 0 does not respond at all, not even by failure.

Theorem 1 (Correctness). Let ` C1 = C2. Then, C1 ' C2.

The correctness of each of our axioms can be established directly along our notion
of sequence models. However, since this is exactly the standard interpretation of
propositional intuitionistic formulas over �nite linear Kripke structures, one may
simply employ the wealth of knowledge on intuitionistic logic for the proof [16].

4 Completeness

The proof of completeness of our step{congruence axiomatization employs a
notion of normal form. As usual, the idea is to �rst show that every con�guration
can be rewritten into one in normal form using our axioms and then establish the
desired completeness result for con�gurations in normal form. The purpose of the
normal form is to lay out explicitly, in a canonical syntactic form, the behavior
o�ered by a con�guration relative to a �xed and �nite set of relevant events.
Typically, these are all the events that occur in the con�gurations we wish to
normalize. For simplicity, let us take Ev to be this �nite set; the complement Ac

of any set A � Ev is then also �nite. A normal form relative to Ev is a parallel
composition of simple transitions

(ki2IPi; Ni=Ai) k (kj2JEj ; Ec
j=Ev) :

The transitions are grouped into two categories, indexed by I and J , respec-
tively. The former category encodes individual, partial or complete, step reac-
tions, whereas the latter category records the conditions under which the step
construction fails (to complete). A transition Pi; Ni=Ai of the �rst kind speci�es
that, if the events in Pi are known to be present and those in Ni are absent, then
Ai is one possible reaction of the con�guration to Pi. A transition Ej ; Ec

j=Ev of
the second kind enforces that the step construction cannot consistently complete
with just the events in Ej present. In order to complete the reaction at least one
event outside Ej must become available as well. In the light of this discussion,
a normal form may be seen as a \response table", where, given a set of environ-
ment events, one may look up the associated partial or complete step reaction

or learn about immanent failure. This response{table interpretation is re
ected
in a number of structural properties on normal{form con�gurations.

De�nition 1. A con�guration C is in normal form, if it has the shape

(ki2IPi; Ni=Ai) k (kj2JEj ; Ec
j=Ev) ;

where I; J are disjoint �nite index sets, Ej (Ev, for all j 2 J ; and if it satis�es:

1. Pi � Ai and Pi \Ni = ;, for all i 2 I;

2. B j= C i� 8j 2 J:B 6= Ej ;

3. B j= C i� 9i 2 I: B = Nc
i ;

4. B j= C and P � B implies 9i 2 I: Pi = P and B = Nc
i ;

5. (Pi; N
c
i)

� = Ai, for all i 2 I with Ni \ Ai = ;; and
6. Ni \ Ai = ;, for all i 2 I.

where (P;N)� =df

T
fE : (E;N) j= C; P � E � Ng and B � Ev arbitrary.

Conds. (2){(5) encode structural properties that refer to our model{theoretic se-
mantics. It is through these that the normal form obtains its essential semantic
relevance. The other conditions, Conds. (1) and (6), are simple local consistency
requirements. Note that the side condition Ni \ Ai = ; of Cond. (5) is redun-
dant due to Cond. (6); however, its presence will simplify matters later. It seems
important to stress that Conds. (2){(5) could of course be rewritten in purely
syntactic terms, simply by expanding the de�nition of j= in the respective cases.
This, however, would only obscure the purpose of these conditions, which is to
permit an easy correspondence between syntax and semantics in the complete-
ness proof. Note that there may be other notions of normal form; we do not claim
that Def. 1 is necessarily the best choice for performing equivalence proofs.

Proposition 2. For any con�guration C there exists a con�guration C 0 in nor-

mal form such that ` C = C 0.

Proof. Let C be an arbitrary con�guration. Because of Axioms (A3){(A6) we
may assume without loss of generality that C is given as a
at parallel compo-
sition of simple transitions P;Nc=A. We will rewrite C using our axioms in six
steps, obtaining con�gurations Ci, for 1 � i � 6, such that Ci satis�es normal{
form Conds. (1) through (i). We say that Ci is in i{normal form, or i{nf for short.
At each stage we de�ne the J{part of Ci to be the collection of all transitions of
the form B;Bc=Ev, where B (Ev. All other transitions make up the I{part. In
this way each Ci naturally splits into the form (ki2IPi; Ni=Ai) k (kj2JEj ; Ec

j=Ev)
such that Ej (Ev, for all j 2 J .

We will employ the associativity and commutativity Axioms (B1) and (B2)
for parallel composition without explicit mentioning, wherever convenient. Fur-
thermore, observe that since all Ci have the same semantics, it does not matter
whether we read validity j= in Conds. (2){(5) relative to C or Ci.

1. Assume Cond. (1) is violated by a transition P;N=A in C, i.e., P 6� A or
P \ N 6= ;. In the second case we can simply drop the transition because
of Axioms (C4) and (B4). In the former case, we can transform P;N=A so
that Cond. (1) is satis�ed:

` P;N=A = P;N=A k 0 (B4)
= P;N=A kP;N=P (C1)
= P;N=(AkP) (A6)
= P;N=A; P (A2)

Making these �rst adjustments yields C1, with ` C = C1, where C1 is in
1{nf. All successive transformations to C1 either introduce new transitions
that satisfy Cond. (1) or, if not, we can repeat this step to clean out or
transform the transitions such that Cond. (1) does hold.

2. Next we consider Cond. (2), starting o� with direction (=)). Let B j= C1,
i.e., B is a classical model, and further B = Ej for some j 2 J . Then B (Ev

and also Ev � B, since B j= B;Bc=Ev. This is an obvious contradiction,
whence this direction of Cond. (2) is automatically ful�lled in C1.
For the other direction ((=) we show that, for any B 6j= C1, the equivalence
` C1 = C1 kB;Bc=Ev is derivable. If we apply this for every such B we get
our desired 2{nf C2, subsuming the new transitions B;Bc=Ev in the J{part
of the 2{nf. Note that always Ev j= C, which means B (Ev in such a case.
The transformation ` C1 = C1 kB;Bc=Ev is obtained in the following fash-
ion. Since by assumption B 6j= C1, there must be some transition P;N=A
in C1 such that B 6j= P;N=A. Hence, ` C1 = C 0

1 kP;N=A, where C 0

1 is
C1 without the transition P;N=A. Now observe that B 6j= P;N=A implies
P � B and N \B = ;, but A 6� B. We then reason as follows, abbreviating
P;N=A kB;Bc=B by D.

` P;N=A

= P;N=A kB;Bc=B (B4,C1)
= D kB;P;Bc; N=A kB;P;Bc; N=B (C2, A5, twice)
= D kB;Bc=A kB;Bc=B (P � B, N \B = ;, i.e., N � Bc)
= D kB;Bc=(AkB) (A6)

= D kB;Bc=A;B (A2)
= D kB;Bc=Ev (D1, A 6� B, i.e., A \ Bc 6= ;)
= P;N=A kB;Bc=B kB;Bc=Ev
= P;N=A kB;Bc=Ev (A6, A2)

This shows ` C1 = C 0

1 kP;N=A = C 0

1 kP;N=A kB;Bc=Ev = C1 kB;Bc=Ev.
3. The direction (=)) of Cond. (3) can be trivially satis�ed by inserting parallel

transitions B;Bc=B for those B (Ev that satisfy B j= C2, via Axioms (B4)
and (C1). This preserves Conds. (1) and (2). Note that we accommodate
B;Bc=B in the I{part.
Suppose direction ((=) is violated by B 6j= C2, for which there exists a
transition Pi; Ni=Ai with B = Nc

i in the I{part of C2. We must have Ni =

Bc 6= ;, for otherwise B = Nc
i = Ev, contradicting B 6j= C2. By Cond. (2),

there exists a transition B;Bc=Ev in the J{part of C2. Hence,

` C2 = C 0

2 kPi; Bc=Ai kB;Bc=Ev :

We distinguish several cases. If Ai = ;, then Pi; Bc=Ai is the same as Pi; Bc=;
which can be eliminated from C2 right away by Axioms (A1), (A4), and (B4).
If Pi\Bc 6= ;, we can drop Pi; Bc=Ai by way of Axioms (B4) and (C4). Hence,
assume that Ai 6= ; and Pi\Bc = ;. Now, if B = ;, then Bc = Ev and Pi = ;.
Hence, we use Axioms (A2) and (A6) to derive ` Pi; Bc=Ai kB;Bc=Ev =
Ev=Ai kEv=Ev = Ev=Ev = B;Bc=Ev, which gets rid of the culprit Pi; Bc=Ai.
It remains to tackle the situation in which B 6= ;. But then, since alsoBc 6= ;,
we can use the equational rewriting

` Pi; Bc=Ai kB;Bc=Ev
= Bc=(Pi=Ai) kB;Bc=Ev (A5)
= k fBc; e=(Pi=Ai) : e 2 Bg kB;Bc=Ev (D3)
= k fPi; Bc; e=Ai : e 2 Bg kB;Bc=Ev (A5)

to replace in C2, e�ectively, the o�ending Pi; Bc=Ai by the parallel compo-
sition of transitions Pi; Bc; e=Ai, for e 2 B, each of which has a negative
trigger strictly larger than the one in Pi; Bc=Ai we started o� with.

By iterating these transformations over all B's and i's such that B 6j= C2

and B = Nc
i , Cond. (3) ((=) can be achieved. The normalization must

terminate since the sets B to consider become smaller and smaller in the
process. Note that the resulting con�guration C3 also satis�es Conds. (1)
and (2), whence it is a 3{nf.

4. Cond. (4) may be achieved by inserting into C3 the transitions P;Bc=P , for
all P;B such that P � B j= C3. The insertions may be done via Axioms (B4)
and (C1). Note that the resulting con�guration C4 still satis�es Conds. (1){
(3), since P � B is equivalent to P \ Bc = ;, whence it is a 4{nf.

5. Consider an arbitrary transition Pi; Ni=Ai, satisfying Ni \ Ai = ;, in the
I{part of C4. We will show how to enforce Cond. (5) for this transition.
Under the assumptions, we know Pi � Ai � Nc

i and Nc
i j= C4 by Conds. (1)

and (3). In order to show (Pi; N
c
i)

� = Ai, it is su�cient to establish the
following two properties:

(a) (Ai; N
c
i) j= C4; and

(b) (X;Nc
i) j= C4 and Pi � X � Nc

i implies Ai � X , for any X � Ev.

Assume that Property (5a) is not yet satis�ed, i.e., (Ai; N
c
i) 6j= C4. Then,

there must be a transition P;N=A in C4 such that (Ai; N
c
i) 6j= P;N=A. This

transition could be of the form Pk; Nk=Ak, for some k 2 I , or of the form
Ej ; Ec

j=Ev, for some j 2 J .

Because of N c
i j= C4, we have N

c
i j= P;N=A. But then, (Ai; N

c
i) 6j= P;N=A

means that (Ai; N
c
i) j= P;N and (Ai; N

c
i) 6j= A. Hence, in particular,Ai � P ,

Ai 6� A, and Nc
i \N = ;, i.e., N � Ni.

We now show that Pi; Ni=Ai kP;N=A = Pi; Ni=Ai; A kP;N=A by the fol-
lowing calculations, where N1 =df Ni nN and A1 =df Ai n P :

` Pi; Ni=Ai kP;N=A
= Pi; N1; N=A1; P kP;N=A

= Pi; N1; N=A1 kPi; N1; N=P kP;N=A (A2; A6)
= Pi; N1; N=A1 kN=(Pi; N1=P kP=A) (A5; A6)
= Pi; N1; N=A1 kN=(Pi; N1=P kPi; N1=(P=A) kP=A) (C2)
= Pi; N1; N=A1 kN=(Pi; N1=(P kP=A) kP=A) (A6)
= Pi; N1; N=A1 kN=(Pi; N1=(P kA) kP=A) (C3)

= Pi; N1; N=A1; P; A kP;N=A (A2; A5; A6)
= Pi; Ni=Ai; A kP;N=A

This allows us to replace transition Pi; Ni=Ai, for which (Ai; N
c
i) 6j= C4 by

the transition Pi; Ni=Ai; A. If now Ni \ (Ai [A) = ;, i.e., Ai [A � Nc
i ,

then we �nd (Ai [A;Nc
i) j= P;N=A and Ai [A) Ai since Ai 6� A. Thus,

using this technique, one can saturate the Ai until, for all transitions P;N=A,
there exists no i 2 I such that Ni \ Ai = ; and (Ai; N

c
i) 6j= P;N=A. This

will ensure Property (5a), for all i 2 I .
It remains to establish Property (5b). Let (X;Nc

i) j= C4 for some X � Ev

such that Pi � X � N c
i . Hence, (X;N

c
i) j= Pi; Ni=Ai. Since (X;Nc

i) j=
Pi; Ni, we consequently know that (X;Nc

i) j= Ai, i.e., Ai � X as desired.
Let C5 denote the 5{nf con�guration resulting from this normalization step.

6. Let us assume that some transition P;N=A in C5 violates Cond. (6). Then,
using Axiom (D1) we rewrite ` P;N=A = P;N=Ev �rst, and then by re-
peated applications of Axiom (D2) we obtain ` P;N=Ev = kfE;Ec=Ev :
P � E � Ncg. In this way, the o�ending original transition P;N=A in C5

can be eliminated completely in terms of transitions indexed by J . This es-
tablishes Cond. (6) and does not destroy any of the conditions previously
established. The result is a 6{nf C6 with ` C = C6.

Con�guration C6 is now the desired normal form of C. 2

Theorem 2 (Completeness). Let C1 ' C2. Then, ` C1 = C2.

Proof. Let, w.l.o.g., C1; C2 be in normal form such that C1 ' C2, i.e., M j= C1

i� M j= C2. Due to symmetry and Axioms (B1){(B4), it su�ces to show that
every parallel component, i.e., transition, of C1 also occurs in C2.

Consider a transition of the form Pi; Ni=Ai occurring in C1. Since C1 is in
normal form, we know by Cond. (3) that Nc

i j= C1. Hence, by premise C1 ' C2,
we have Nc

i j= C2. We may now apply Cond. (4), since Pi � Nc
i by Cond. (1),

to obtain some i0 2 I such that Pi0 ; Ni0=Ai0 is a transition in C2 with Ni0 = Ni

and Pi0 = Pi. By Cond. (5), Ai0 = (Pi0 ; N
c
i0)

� = (Pi; N
c
i)

� = Ai. Note that the
de�nitions of (Pi0 ; N

c
i0)

� in C2 and (Pi; N
c
i)

� in C1 coincide, because of C1 ' C2.
Consider a transition of the form Ej ; Ec

j=Ev in C1. Since C1 is in normal form,
we know by Cond. (2) that Ej 6j= C1. Hence, Ej 6j= C2 by the premise C1 ' C2.
Further, by Cond. (2) applied to normal form C2, we conclude the existence of
some j0 2 J such that Ej0 ; E

c
j0=Ev is a transition in C2 with Ej0 = Ej . 2

5 Discussion and Related Work

There exists a wealth of related work on the semantics of synchronous lan-
guages, especially Statecharts. Our paper focused on the most popular original
semantics of Harel's Statecharts, as de�ned by Pnueli and Shalev in their semi-
nal paper [15]. Since this semantics combines the synchrony hypothesis and the
causality principle, it cannot be compositional if step reactions are modeled by
input{output{functions over event sets, according to a result by Huizing and
Gerth [5]. Within the traditional style of labeled transition systems, researchers
have then concentrated on providing compositionality for Pnueli and Shalev's
semantics either by taking transition labels to be partial orders encoding causal-
ity [7, 12] or by explicitly including micro{step transitions [11]. Our step algebra
is related to the former kind of semantics, where causality is encoded via intu-
itionistically interpreted sequence structures. However, in contrast to the other
mentioned work, our logical approach lends itself to establishing full{abstraction
results [9] and the equational axiomatization of Statecharts presented here.

A di�erent approach to axiomatizing Statecharts was suggested by de Roever
et al. for an early and lateron rejected Statecharts semantics that does not obey
global consistency [3]. In their setting, it is admissible for a �ring transition to
generate an event, whose absence was assumed earlier in the construction of the
macro step under consideration. This leads to a very di�erent semantics than the
one of Pnueli and Shalev [15], for which Huizing, Gerth, and de Roever gave a de-
notational account in [6]. This denotational semantics provided the groundwork
for an axiomatization by Hooman, Ramesh, and de Roever [4]. However, in con-
trast to our work that equationally axiomatized the step congruence underlying
Pnueli and Shalev's semantics, Hooman et al. supplied a Hoare{style axiomati-
zation for both liveness and safety properties of Statecharts, which was proved
to be sound and complete with respect to the denotational semantics of Huizing
et al. [6]. A similar approach was taken by Levi regarding a process{algebraic
variant of Pnueli and Shalev's Statecharts and a real{time temporal logic [7].
It should be noted that the settings of de Rover et al. and of Levi deal with
sequences of macro steps and not just single macro steps, as our step algebra
does. However, extending the step algebra and its axiomatization to sequences
of macro steps should not be di�cult. In such a more general development the
con�guration algebra introduced here would play the role of a synchronization
algebra [17], around which a macro{step process language would be built.

The results of this paper are not restricted to Statecharts but can also
be applied to other languages, in particular to Berry's Esterel [1]. The au-
thors have shown in [10], using the same model{theoretic framework of intu-
itionistic sequence structures as for Statecharts, how the instantaneous core
of Esterel can be faithfully and compositionally encoded in terms of propo-
sitional formulas. This is done in such a way that the operational execution
of the encoding produces the same responses as the execution of the original
program under the semantics of Esterel [1]. It is not di�cult to see that the
propositional formulas corresponding to Esterel con�gurations build a subclass
in our step algebra, when taking Ev =df fs=1; s=0 : s is a signal g, where

s=1 stands for signal s is present `high' and s=0 for s is present `low'. This
subclass, however, requires the full syntax of our step algebra, which allows
for nested transition triggers. For example, the instantaneous Esterel program
present a then present b else emit c end end would be translated into
the con�guration a=1=(b=0=c=1); see [10] for details. Because of the existence of
this encoding of Esterel reactions into our step algebra, which preserves Esterel's
semantics, the axiomatization presented here can directly be used to reason
about Esterel reactions. For the sake of completeness, it needs to be mentioned
that some initial work on axiomatizing Esterel has been carried out within an
encoding of Esterel programs in a variant of the duration calculus [14]. However,
this work aims at an axiomatic semantics for Esterel rather than an equational
axiomatization of the underlying step congruence.

The step algebra presented in this paper focused on the most essential op-
erators in synchronous languages. In the future we would like to enrich our
algebra and its axiomatization to accommodate an operator for event scoping,
or signal hiding, which is used in Esterel [1] and Argos [13]. Moreover, instead
of encoding the external{choice operator +, as found in the hierarchy operator
of Statecharts, via parallel composition and negated events, it is possible to in-
clude + as a primitive operator in our step algebra. To do so, one only needs to
add a silent, non{synchronizing event in the action of every transition; see [9].

Our syntax is a common superset of the kernel languages of Statecharts and
Esterel. Speci�cally, the applications of Axioms (A5), (A6), and (C2) introduce
nested triggers and parallel compositions in the action part of a transition, which
do not exist in standard Statecharts con�gurations. However, it can be shown
that any axiomatic proof can be performed properly within the Statecharts frag-
ment, when using the following axioms instead of their original counterparts:

(A6') I=A k I=B = I=(A [B)
(C2') I=A = I=A k I; J=A
(C3') I=A k A; J=B = I=A k A; J=B k I; J=B
(D3') I;N=B k P;N=A = fI;N; e=B : e 2 Pg k P;N=A; if N \ A 6= ;; P 6= ;

6 Conclusions and Future Work

This paper presented a uniform algebra, to which we referred as step algebra,
for reasoning about step reactions in synchronous languages, such as those origi-
nating from Statecharts and Esterel. The algebra covers single reactions, and as
such constitutes a �rst important step towards an axiomatization of Statecharts
and related languages. Its semantics was inspired by previous work of the au-
thors, which adapted ideas from intuitionistic logics for de�ning a compositional
semantics for step reactions. Our main result is a sound and complete axiomati-
zation of the resulting step congruence in our step algebra, whose completeness
proof mixes techniques from process algebra and logic. This yields, for the �rst
time in the literature, a complete axiomatization of Statecharts macro steps,
in the sense of Pnueli and Shalev. Modulo a simple syntactic translation, this
axiomatization can be adapted to instantaneous reactions in Esterel as well. We

believe that our approach provides important groundwork for comparing popu-
lar synchronous languages by means of axioms, an approach that already proved
successful in process algebra, and also for developing suitable compositional ver-
i�cation methods.

Regarding future work, we plan to integrate other operators employed in
synchronous languages into our step algebra, in particular an operator for event
scoping. Additionally, our algebra should be extended to step sequences, by
adding pre�xing operators and recursion.

Acknowledgments. We would like to thank the anonymous referees for their valu-
able comments and suggestions. The second author was supported by EPSRC
grant GR/M99637 and the EC Types Working Group IST{EU{29001.

References

1. G. Berry. The constructive semantics of pure Esterel, 1999. Draft Version 3.
Available at http://www-sop.inria.fr/meije/Personnel/Gerard.Berry.html.

2. D. Harel. Statecharts: A visual formalism for complex systems. SCP, 8:231{274,
1987.

3. D. Harel, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman. On the formal semantics
of Statecharts. In LICS '87, pp. 54{64. IEEE Computer Society Press, 1987.

4. J.J.M. Hooman, S. Ramesh, and W.-P. de Roever. A compositional axiomatization
of Statecharts. Theoretical Computer Science, 101:289{335, 1992.

5. C. Huizing. Semantics of Reactive Systems: Comparison and Full Abstraction.
PhD thesis, Eindhoven Univ. of Technology, 1991.

6. C. Huizing, R. Gerth, and W.-P. de Roever. Modeling Statecharts behavior in a
fully abstract way. In CAAP '88, vol. 299 of LNCS, pp. 271{294, 1988.

7. F. Levi. Veri�cation of Temporal and Real-Time Properties of Statecharts. PhD
thesis, Univ. of Pisa-Genova-Udine, 1997.

8. G. L�uttgen and M. Mendler. Statecharts: From visual syntax to model-theoretic
semantics. In Integrating Diagrammatic and Formal Speci�cation Techniques, pp.
615{621. Austrian Computer Society, 2001.

9. G. L�uttgen and M. Mendler. The intuitionism behind Statecharts steps. ACM

Trans. on Computational Logic, 3(1):1{41, 2002.
10. G. L�uttgen and M. Mendler. Towards a model-theory for Esterel. In Synchronous

Languages, Applications, and Programming, vol. 65:5. ENTCS, 2002. To appear.
11. G. L�uttgen, M. von der Beeck, and R. Cleaveland. Statecharts via process algebra.

In CONCUR '99, vol. 1664 of LNCS, pp. 399{414, 1999.
12. A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences of Statecharts. In

CONCUR '96, vol. 1119 of LNCS, pp. 687{702, 1996.
13. F. Maraninchi. Operational and compositional semantics of synchronous automa-

ton compositions. In CONCUR '92, vol. 630 of LNCS, pp. 550{564, 1992.
14. P.K. Pandya, Y.S. Ramakrishna, and R.K. Shyamasundar. A compositional se-

mantics of Esterel in Duration Calculus. In AMAST '95, vol. 936 of LNCS, 1995.
15. A. Pnueli and M. Shalev. What is in a step: On the semantics of Statecharts. In

TACS '91, vol. 526 of LNCS, pp. 244{264, 1991.
16. D. van Dalen. Intuitionistic logic. In Handbook of Philosophical Logic, vol. III,

chap. 4, pp. 225{339. Reidel, 1986.
17. G. Winskel. A compositional proof system on a category of labelled transition

systems. Inform. and Comp., 87(1/2):2{57, 1990.

