A Compositional Semantic Theory

for Synchronous Component—based Design*

Barry Norton', Gerald Liittgen?, and Michael Mendler3

! Department of Computer Science, University of Sheffield, UK.
e—mail: b.norton@dcs.shef.ac.uk
2 Department of Computer Science, University of York, UK.
e—mail: gerald.luettgen@cs.york.ac.uk
3 Informatics Theory Group, University of Bamberg, Germany.
e—mail: michael.mendler@wiai.uni-bamberg.de

Abstract. Digital signal processing and control (DSPC) tools allow ap-
plication developers to assemble systems by connecting predefined com-
ponents in signal-flow graphs and by hierarchically building new com-
ponents via encapsulating sub—graphs. Run—time environments then dy-
namically schedule components for execution on some embedded proces-
sor, typically in a synchronous cycle-based fashion, and check whether
one component jams another by producing outputs faster than can be
consumed. This paper develops a process—algebraic model of coordina-
tion for synchronous component—based design, which directly lends itself
to compositionally formalising the monolithic semantics of DSPC tools.
By uniformly combining the well-known concepts of abstract clocks,
maximal progress and clock-hiding, it is shown how the DSPC prin-
ciples of dynamic synchronous scheduling, isochrony and encapsulation
may be captured faithfully and compositionally in process algebra, and
how observation equivalence may facilitate jam checks at compile—time.

1 Introduction

One important domain for embedded—systems designers are digital signal pro-
cessing and control (DSPC) applications. These involve dedicated software for
control and monitoring problems in industrial production plants, or software
embedded in engineering products. The underlying programming style within
this domain relies on component-based design, based on the rich repositories
of pre—compiled and well-tested software components (PID—controllers, FIR—
filters, FF T—transforms, etc.) built by engineers over many years. Applications
are simply programmed by interconnecting components, which frees engineers
from most of the error—prone low-level programming tasks. Design efficiency is
further aided by the fact that DSPC programming tools, including LabView [9],
iConnect [15] and Ptolemy [10], provide a graphical user interface that supports
hierarchical extensions of signal-flow graphs. These permit the encapsulation of
sub—systems into single components, thus enabling the reuse of system designs.

* Research supported by EPSRC grant GR/M99637.

While the visual signal-flow formalism facilitates the structural design of
DSPC applications, the behaviour of a component—based system manifests it-
self only once its components are scheduled on an embedded processor. This
scheduling is often handled dynamically by run—time environments, as is the
case in LabView and iConnect, in order to achieve more efficient and adaptive
real-time behaviour. The scheduling typically follows a cycle-based execution
model with the phases collect input (I), compute reaction (R) and deliver out-
put (O). At the top level, the scheduler continuously iterates between executing
the source components that produce new inputs, e.g., by reading sensor values,
and executing computation components that transform input values into output
values, which are then delivered to the system environment, e.g., via actuators.
Each phase obeys the synchrony principle, i.e., in (I) all source components are
given a chance to collect input from the environment before any computation
component is executed, in (R) every computation component whose inputs are
available will be scheduled for execution, and in (O) all generated outputs will
be delivered before the current cycle ends. The constraint in phase (O), which
is known as isochrony [6], implies that each output signal will be ‘simultane-
ously’ and ‘instantaneously’ received at each connected input. This synchronous
scheme can be applied in a hierarchical fashion, abstracting a sequence of RO—
steps produced by a sub—system into a single RO—step (cf. Sec. 2).

Like in synchronous programming, the implicit synchrony hypothesis of IRO
scheduling assumes that the reaction of a (sub—)system is always faster than
its environment issues execution requests. If a component cannot consume its
input signals at the pace at which they arrive, a jam occurs [15], indicating a
serious real-time problem (cf. Sec. 2). Unfortunately, in existing tools, there are
no compile-time checks for detecting jams, thereby forcing engineers to rely on
extensive simulations for validating their applications before delivery. Moreover,
there is no formal model of IRO scheduling for DSPC programming systems that
can be used for the static analysis of jams, and the question of how to distribute
the monolithic IRO scheduler into a uniform model of coordination has not been
addressed in the literature either.

The objective of this paper is to show that a relatively small number of stan-
dard concepts studied in concurrency theory provides the key to compositionally
formalising the semantics of component—based DSPC designs, and to enabling
static jam checks. The most important concepts from the process—algebra tool—
box are handshake synchronisation from CCS [12] and abstract clocks in com-
bination with mazimal progress as investigated in temporal process algebras,
specifically TPL [7], PMC [1] and CSA [3]. We use handshake synchronisation
for achieving serialisation and maximal-progress clocks for enforcing synchrony.
Finally, given maximal progress, synchronous encapsulation may be captured
naturally in terms of clock-hiding, similar to hiding in CSP [8]. We will uni-
formly integrate all three concepts into a single process language (cf. Sec. 3), to
which we refer as Calculus for Synchrony and Encapsulation (CaSE) and which
conservatively extends CCS in being equipped with a behavioural theory based
on observation equivalence [12].

As our main contribution we will formally establish that CaSE is expressive
enough for faithfully modelling the principles of IRO scheduling and for captur-
ing jams (cf. Sec. 4). First, using a single clock and maximal progress we will
show how one may derive a decentralised description of the synchronous sched-
uler. Second, we prove that isochrony across connections can be modelled via
multiple clocks and maximal progress. Third, the subsystems—as—components
principle is captured by the clock-hiding operator. Moreover, we will argue that
observation equivalence lends itself for statically detecting jams by reducing
jam checking to timelock checking. In this way, our modelling in CaSE yields a
model of coordination for synchronous component—based design, whose virtue is
its compositional style for specifying and reasoning about DSPC systems and its
support for the static capture of semantic properties of DSPC programs. Thus,
CaSE provides a foundation for developing new—generation DSPC tools that
offer the compositional, static analysis techniques desired by engineers.

2 An Example of DSPC Design

Our motivating example is a digital spectrum analyser whose hierarchical signal—
flow graph is sketched in Fig. 1. The task is to analyse an audio signal and contin-
ually show an array of bar—graphs representing the intensity of the signal in dis-
joint sections of the frequency range. Our spectrum analyser is designed with the
help of components Soundcard, Const, Element and BarGraph. Each instance c1,
c2, ... of Element, written as ck:Element or simply ck, for k = 1,2, ..., is respon-
sible for assessing the intensity of one frequency range, which is then displayed
by component instance dk:BarGraph. The first input port eig; of ck:Element
is connected to the output port 56 of the single instance s0:Soundcard, which
generates the audio signal and provides exactly one audio value each time it is
scheduled. As can be seen by the wire stretching from output port cop to in-
put port eigo, ck:Element is also connected to instance sk:Const of component
Const, which initialises ck:Element by providing filter parameters when it is first
scheduled. In contrast to components Soundcard and Const, Element is not a
basic but a hierarchical component. Indeed, every ck encapsulates one instance
of Filter, ckl:Filter, and one of Quantise, ck2:Quantise, as shown in Fig. 1 on
the right—-hand side.

s0: Soundcard Overall System Encapsulated component ‘ Element’
S0
cl:Element d1:BarGraph
sl:Const Fedy, - g ck Element
_ . 1 1
co e i
* 2 Ehas ckl:Filter ck2:Quantise
i =) €0,
c2:Element d2:BarGraph ? fia fou ik q*qg»—’_" K
s2:Const a o 2“_,—Mikz
P ®ein = i ki
K €0 gl
€0 W eiz

Fig. 1. Example: Digital spectrum analyser

Scheduling. According to IRO scheduling, our example application will be se-
rialised as follows within each IRO—cycle. First, each source component instance
gets the chance to execute. In the first cycle, this will be s0:Soundcard and all
sk:Const, which will be interleaved in some arbitrary order. In all subsequent
cycles, only sO:Soundcard will request to be scheduled, since sk:Const can only
produce a value once. Each produced sound value will be instantaneously prop-
agated from output port 50 of sO to the input port eix; of each ck:Element, for
all £k > 1, according to the principle of isochronic broadcast discussed below.
The scheduler then switches to scheduling computation components. Since all
necessary inputs of each ck are available in each IRO-cycle, every ck will re-
quest to be scheduled. The scheduler will serialise these requests, each ck will
execute accordingly, and the synthesised frequency—strength signal will be emit-
ted by component ck2:Quantise via port qo, and propagated by ck through
port €ox. Upon reception of this signal by dk:BarGraph at port gi,, this com-
putation component instance will also request to be scheduled and, according to
the synchrony hypothesis, granted execution within the same IRO—cycle. When
all components dk have executed, the current IRO—cycle ends since these do not
generate outputs that need to be propagated to the system environment.

It is important to note that, since each ck encapsulates further computation
component instances, its execution is non-trivial and involves a sub—scheduler
that will schedule ckl:Filter and ck2:Quantise in such a way that an RO—cycle of
these instances will appear atomic outside of ck. This ensures that the scheduling
of the inner ckl and ck2 will not be interleaved with the execution of any sibling
instance cl of ck, for [# k, or any component instance dk.

Isochronic output. Whenever s0:Soundcard is scheduled in our example sys-
tem, it generates an audio signal whose value is propagated via a wire from
port 50, which forks to port eik1 of each instance ck:Element, for £ > 1. In order
for the array of bar—graphs to display a consistent state synchronous with the
environment, all ck must have received the new value from s0:Soundcard before
any cl:Element may be scheduled. Thus, s0:Soundcard and all ck:Element, for
k > 1, must synchronise to transmit sound values instantaneously. This form
of synchronisation is called isochrony [6] in hardware, where it is the weakest
known synchronisation principle from which non—trivial sequential behaviour
can be implemented safely, without internal real-time glitches.

Jams. Let us now consider what happens if instances s0:Soundcard and s1:Const
are accidently connected the wrong way around, i.e., output port so is con-
nected to input port eijs, and output port co; of s1:Const to input port eij; of
cl:Element. Recall that cl11:Filter within cl:Element will only read a value, an
initialisation value, from port ei;s in the first IRO—cycle and never again after-
wards. Thus, when the value of sO:Soundcard produced in the second cycle is
propagated to port eijo and further to fijs, the system jams. This is because the
value that has been produced in the second IRO—cycle and stored at this latter
port, has not yet been read by cll:Filter. Observe that a jam is different from
a deadlock; indeed, our example system does not deadlock since all instances of
Element other than cl:Element continue to operate properly.

3 CaSE: Calculus for Synchrony and Encapsulation

This section presents our process calculus CaSE, which serves as a framework
for deriving our formal model of coordination for DSPC design in Sec. 4. The
purpose here is not to develop yet another process algebra, but to tailor sev-
eral well-studied semantic concepts for addressing a specific application domain.
CaSE is inspired by Hennessy and Regan’s TPL [7], which is an extension of Mil-
ner’s CCS [12] with regard to syntax and operational semantics. In addition to
CCS, TPL includes (i) a single abstract clock o that is interpreted not quanti-
tatively as some number, but qualitatively as a recurrent global synchronisation
event; (ii) a timeout operator | P|o(Q), where the occurrence of o deactivates
process P and activates @; (iii) the concept of mazimal progress that imple-
ments the synchrony hypothesis by demanding that a clock can only tick within
a process, if the process cannot engage in any internal activity 7.

CaSE further extends TPL by (i) allowing for multiple clocks o,p,... as in
PMC [1] and CSA [3], while, in contrast to PMC and CSA, maintaining the global
interpretation of maximal progress; (ii) explicit timelock operators A and A,
that prohibit the ticking of all clocks and of clock o, respectively; (iii) clock—
hiding operators P/o that internalise all clock ticks o of process P. Clock hiding
is basically hiding as in CSP [8], i.e., hidden actions are made non—observable. In
combination with maximal progress, this has the important effect that all inner
clock ticks become included within the synchronous cycle of an outer clock.
This is the essence of synchronous encapsulation, as is required for modelling
isochronous broadcast and the subsystems—as—components principle. Finally, in
contrast to TPL and similar to CCS and CSA, we will equip CaSE with a
bisimulation—based semantic theory [12].

Syntax and operational semantics. We let A = {a,b, ...} be a countable set
of input actions and A = {a,b, ...} be the set of complementing output actions.
As in CCS [12], an action @ communicates with its complement @ to produce
the internal action 7. The symbol A denotes the set of all actions AU AU {7}.
Moreover, CaSE is parameterised in a set 7 = {0, p,...} of abstract clocks, or
clocks for brief. The syntax of CaSE is defined by the following BNF:

P:=0|A|As|z|a.P|P+P|PP|P\L|P/o||P|o(P)|ux.P,

where x is a variable taken from some countably infinite set, and L C A\ {7} is
a restriction set. Further, we use the standard definitions for static and dynamic
operators, free and bound variables, open and closed terms, and guarded terms.
We refer to closed and guarded terms as processes, collected in the set P. For

convenience, we write L for the set {@|a € L}, where a =q¢a, and 2P for the
process pz.P.

The operational semantics of a CaSE process P is given by a labelled transi-
tion system (P, AU T, —, P), where P is the set of states, AU7T the alphabet,
— the transition relation and P the start state. We refer to transitions with
labels in A as action transitions and to those with labels in 7 as clock transi-
tions. The transition relation — C P x (AUT) x P is defined in Table 1 using

Table 1. Operational semantics of CaSE

O

Act ~ tAct %a *T
a.P — P, a.P — a.P
Suml —~ L NIl —— tStall ————
P+Q 3P 020 As B As
& o o ’
Sumz — 2= @ tSum L= Q= Q
PrQ2qQ P+rQZP+Q
[e 2 g /
Res P:P a¢ LUL tRes Pjip
P\L % P\L P\L % P\L
@ / g / g /
Parl P:>7P tPar PHPU Q=0Q P|Q#
PlQ = P'lQ P|Q = P'|Q
parg — 4@ tHid1 L
P|Q — P|Q’ P/oc — PJo
a / a / P /
parg L1 Q=0 iz — 52, P2
P|Q = P'|Q’ P/oc = P'/o
Hd LT tTOl ———— P %
P/o — P'/o |Plo(Q) — Q
o / P /
TO P;Pa tTO2 P? P c#p
|Plo(Q) = P’ [Plo(Q) = [P']o(Q)
«@ 2 g /
Rec P[/chP/ai] — P tRec P[um.P/;i] Z P
ux. P — P’ px. P — P’

operational rules. We write ~ for a representative of AUT, as well as P > P’ for
(P,,P'y € — and P 2 for 3P’ € P. P 5 P'. Note that, despite the negative
side conditions of some rules, the transition relation is well-defined for guarded
processes. Our semantics obeys the following properties, for all clocks o € 7
(i) maximal progress, i.e., P % implies P%; (ii) time determinacy, i.e., P % P’
and P 5 P” implies P’ = P”. It is time determinacy that distinguishes clock
ticks from CSP broadcasting [8].

Intuitively, the nil process 0 permits all clocks to tick, while the timelock
processes A and A, prohibit the ticking of any clock and of clock o, respectively.
Process a.P may engage in action « and then behave like P. If o # 7, it may
also idle for each clock o; otherwise, all clocks are stopped, thus respecting
maximal progress. The summation operator + denotes nondeterministic choice,
i.e., process P + (Q may behave like P or). Because of time determinacy, time
has to proceed equally on both sides of summation. Process P|Q stands for the
parallel composition of P and @ according to an interleaving semantics with
synchronised communication on complementary actions resulting in the internal
action 7. Again, time has to proceed equally on both sides of the operator,
and the side condition of Rule (tPar) ensures maximal progress. The restriction
operator \ L prohibits the execution of actions in L U L and thus permits the
scoping of actions. The clock-hiding operator /o within a process P/c turns
every tick of clock ¢ in P into the internal action 7. This not only hides clock o
but also pre—empts all other clocks ticking in P at the same states as o, by
Rule (tHid2). Process | P|o(Q) behaves as process P, and it can perform a o—
transition to @, provided P cannot engage in an internal action as is reflected

in the side condition of Rule (tTO1). The timeout operator disappears as soon
as P engages in an action transition, but persists along clock transitions. Finally,
ux. P denotes recursion and behaves as a distinguished solution of the equation
xz=P.

Our interpretation of prefixes a.P adopted above, for a # 7, is relazed [7],
i.e., we allow this process to idle on clock ticks. In the remainder, insistent pre-
fizes a.P [1], which do not allow clocks to tick, will prove convenient as well.
These can be expressed in CaSE by a.P =g4¢ «.P+ A. Similarly, one may define a
prefix that only lets clocks not in 1" tick, for ' C 7, by ap. P =af . P+ Ap, where
Ar =4t) ,ep Ao As usual,) denotes the indexed version of operator +, with
the empty summation understood to be process 0. For convenience, we abbrevi-
ate |0]o(P) by 0.P, and |A]o(P) by g.P. We also write P/{c1,09,...,01} for
P/oy/oy -+ /oy, if the order in which clocks are hidden is inessential. Moreover,
for finite A C A\{7} and process P, we let A.P stand for the recursively defined
process Y, 4 a.(A\{a}).P, if A#) and P, otherwise. Finally, instead of rela-
belling as in CCS [12] we use syntactic substitution, e.g., Pla’/a,b’/b] relabels
all occurrences of actions a, @, b, b in P by o/, @, V', I/, respectively.

Temporal observation equivalence and congruence. This section equips
CaSE with a bisimulation—based semantics [12]. For the purposes of this paper
we will concentrate on observation equivalence and congruence. The straightfor-
ward adaptation of strong bisimulation to our calculus immediately leads to a
behavioural congruence, as can easily be verified by inspecting the format of our
operational rules and by applying well-known results for structured operational
semantics [16]. Observation equivalence is a notion of bisimulation in which any
sequence of 7’s may be skipped. For v € AU T we define 4 =4¢¢ if v = 7 and
4 =q¢ 7, otherwise. Further, let = =g4¢ " and P 2 P’ if there exist processes P

€

and P such that P = P" L p" = P/,

Definition 1. A symmetric relation R C P x P is a temporal weak bisimula-
tion if P 5 P’ implies 3Q’.Q = Q' and (P, Q') € R, for every (P,Q) € R
and for v € AUT. We write P = @Q if (P,Q) € R for some temporal weak
bisimulation R.

Temporal observation equivalence =~ is compositional for all operators except
summation and timeout. However, for proving compositionality regarding par-
allel composition and hiding, the following proposition is central.

Proposition 1. If P~ Q and P % P', then 3Q",Q",Q".Q=Q" % Q"'=(Q’,
P~Q", P=Q and {yc AUT|PL}={yc AUT|Q">}.

The validity of this proposition is due to the maximal-progress property in
CaSE. To identify the largest equivalence contained in =2, the summation fix
of CCS is not sufficient. As in other work in temporal process algebras [3], the
deterministic nature of clocks implies the following definition.

Definition 2. A symmetric relation R C P x P is a temporal observation
congruence if for every (P,Q) € R, «a € A and o € T:

1. PS5 P implies 3Q'.Q = Q' and P' = Q'.
2. PZ P implies 3Q".Q % Q' and (P',Q') € R.

We write P = Q if (P,Q) € R for some temporal observation congruence R.
Theorem 1. The equivalence = is the largest congruence contained in ~.

CCS [12] can be identified in terms of syntax, operational semantics and bisimu-
lation semantics as the sub—calculus of CaSE that is obtained by setting 7 = ().

4 A Synchronous Coordination Model with Encapsulation

This section presents our model of coordination for DSPC applications on the
basis of our process calculus CaSE. As illustrated in Fig. 2 we will successively
model the key ingredients of a DSPC application: the behaviour of its source
and computation components towards its environment (Figs. 2(a) and (b)), a
compositional version of the centralised scheduler which is distributed to ‘wrap’
each component instance (Figs. 2(c) and (d)), the application’s isochronous forks
connecting output and input ports (Fig. 2(e)), and the facility to encapsulate
several computation components (Fig. 2(f)). Having these ingredients at hand,
a CaSE model of a DSPC application can then be built systematically along the
structure of hierarchical signal-flow graphs, which we will illustrate by way of the
digital-spectrum—analyser example introduced in Sec. 2. A particular emphasis
will be given on showing how our modelling may facilitate static jam analysis.

(a) Source Component Interface (SIF) (b) Computation Component Interface (CIF) (e) Isochronic Fork (IsoFork)
r t r t .
° ® ° ® —o i

[Yol i 19 [Xol}

oe——o j,

[Jo im® [Jo

—®im

(c) Wrapped Source Component (WSC) (d) Wrapped Computation Component (WCC) (f) Encapsulation Interface (EIF)

ft o rt ft o rt r t
Source ;Vrapper Computati;n Wrapper Encagwlati on Wr;pper
o (SwW) o o (Cw) o (EW)
r t 0, i r t 0, ird ftt Oe rt 0
SIF : : CIF : | Swed :
® 0 im® ® 0, im H.m b On,

Fig. 2. [llustration of our modelling toolbox

4.1 Component interfaces. A component interface describes the inter-
action of a source component or a basic computation component, which does
not encapsulate a subsystem, with its environment via its ports (cf. Figs. 2(a)
and (b)). These ports include a component’s output ports, O = {o01,...,0,}, for

n > 0, and, in case of a computation component, its input ports, I = {i1,...,im},
for m > 1. Note that we abstract from values carried by signals through ports.
In addition, each component interfaces to the system scheduler via port r, over
which a component sends request—to—be—scheduled messages, and port ¢ via which
a token is passed between the scheduler and the component, with the intention
that a component can go ahead with its computation of output signals whenever
it holds the token.

Formally, source and computation component interfaces are processes speci-
fied in the following CCS sub—languages of CaSE, where i € I and o € O:

Source Component Interface Computation Component Interface

SIF ::= 0|z | SR| uz.SR CIF :=0 |z |CI| uz.CI
Cl:=4.CI|CI+CI|i.CR

SR = 7.t.7.50 CR :=7.t.7.CO

SO ::=5.50 | SO + SO | &.SIF CO ::=05.CO | CO + CO | t.CIF

Intuitively, after reading its inputs in case of a computation component, a com-
ponent instance (i) requests to be scheduled (action T), (ii) waits for receiving the
scheduler’s token (action t), which indicates that the request has been granted
and ensures serialisation on the underlying single processor, (iii) computes the
output signal values (internal action 7), (iv) outputs these signal values over the
corresponding output ports, and (v) returns the token to the scheduler (action t).
The interfaces of the source and basic computation component instances of our
example system can then be specified as follows:

STF. % 7.¢.7.56.7.8TF s SIF.x %' 7.t.7.26,.1.0
CIFCkl dZEf flklflngtT%k fCIFékl CIF/clcl d:ef flklftT%kECIFékl
CIF er2 %' iy, 7.t.7.q0,, £.CIF e CIFar & giy.7.t.7.1.CIF gk

Note that sk:Const produces an output So during the first cycle only, while
ck:Element reads an input from port fix; during the first cycle only, as desired.

4.2 Component instances and scheduling. As seen above, a component
uses its ports r and ¢ to negotiate its execution with a scheduler. From the point
of view of the component, it does not matter whether it communicates with a
centralised or a distributed scheduler. In this section we develop a concept of
wrappers for harnessing component instances with enough local control so they
participate coherently in a global IRO—scheduling scheme, without the presence
of a global scheduler (cf. Figs. 2(c) and (d)). Indeed all wrappers added together
will represent a distributed version of an imagined central IRO scheduler.
Before introducing our distributed scheduler we present, for reference, an
abstract model of the global centralised scheduler, as employed in the DSPC tool
iConnect [15]. It uses an abstract clock o that reflects the phase clock inherent
in TRO scheduling. This clock organises the strict alternation between source
and computation phases and, by way of maximal progress, implements run—to—
completion within each phase. The global scheduler is defined via the following
two sets of process equations, namely CSC that models the computation phase
and CSS that models the source phase. They are stated relative to the sets S of
source component instances and C of computation component instances within

the signal-flow graph under consideration.

def

CSC(W,0) = |[C(W,0)]a(CSS(D,0,0))
CW,0) = (3 re.CSC(WU{c}, 0)) + (3 Tete,.CSC(W\{c}, 0))

ceC\W ceEW
CSS(W, D, o) & |S(W, D, o) |o(CSC(0, 7))
SW,D,0) € (Y r..CSS(WU{s}, D,0)) + (D ks .CSS(W\{s}, DU{s},0))

seS\(WuD) sew

The process equations are parameterised in the phase clock o, as well as the
set W of component instances that are waiting for their scheduling request to be
granted and the set D of source component instances that have already executed
during the current source phase. Recall that each source component instance
can execute at most once during each source phase, while each computation
component instance may execute several times during a computation phase.
While there are component instances that request to be scheduled or wait for
being scheduled, the scheduler remains in the current phase, as is enforced by
maximal progress. Otherwise, the phase clock may tick and switch phases.

To distribute this centralised scheduler over each component instance, all we
assume is that the single embedded processor, on which the DSPC application is
scheduled, provides some facility to ensure mutual exclusion. This may be mod-
elled via a single token that the processor passes on to the component instance

that may execute next: CPUtoken d:efﬁ.rt.CPUtoken, where ft stands for fetch
token and rt for release token. Now, we may define the wrapping of computation
and source component instances via meta—processes WCC and WSC, respec-
tively. They are parameterised in the computation (source) component interface
CIF, (SIF;) of a given computation (source) component instance ¢ (s), as well
as in the phase clock o.

WCC(CIF.., 0) & (CIF. | CW(0))\{r, t} CW (o) r.ft.LL, TE.CW(0)|o(0.CW(0r))

WSC(SIF,, o) ©(SIF, | 0.SW(0))\{r, t} SW(0) &\ r.ft.Et, TE.0.0.8W(0)|o(0.SW(c))

Consider process WCC(CIF,, o), which runs the wrapping process CW (o) along-
side the computation component interface CIF.. Both synchronise via the now
internalised channels r and ¢. If the component instance ¢ signals its desire to
be scheduled via a communication on channel r, the wrapping process CW (o)
waits until it may fetch the CPU token (action ft), passes on the token via the
internal channel ¢, waits until the token has been passed back via the same chan-
nel, i.e., until the execution of ¢ is complete, and then surrenders the token to
the CPU (action rt). If no computation component instance wishes to be sched-
uled, process CW (o) may time out, thus allowing the overall system to switch to
the source phase. In this state, component instance ¢ must wait until the clock
ticks again, i.e., until the scheduling has returned to the computation phase. The
behaviour of WSC(SIF g, o) wrapping source component instances is similar, ex-
cept that those may only be scheduled once during each source phase. Thus,
the source wrapper process SW (o) makes sure that two clock ticks have to pass
before a request of the wrapped source component instance is considered again.

Moreover, note that the initial o—prefix in front of the wrapping process SW(o)
ensures that the first source phase begins with the first ticking of o. The fol-
lowing theorem shows that our compositional approach to scheduling coincides
with the centralised one, where Ilxc i P; stands for the parallel composition of
processes Py, for a finite index set K.

Theorem 2. Let S (C) be a finite set of source (computation) components with
interfaces SIFs (CIF.), for s € S (c € C), let o be the phase clock, and let
R=g{rs,ts|s € S} U{re,tc|c€C}. Then

(Hses WSC(SIFs,0) | .cc WCC(CIF,, o) | CPUtoken)\{ft, rt} =
(IT5esSIFs[rs /7, ts/t]| Heec CIF [re /7, te/t] | CSC(D,0)))\R .

4.3 Isochronic Forks. Before encoding isochronous forks in CaSE we present
their naive modelling in CCS. To do so, we introduce a new output prefix o; P and
assume that output port o shall be connected to input ports I = {i1,i2,...,%m}
via an isochronic fork, as sketched in Fig. 2(e). We need to ensure that the signal
transmitted via 0 reaches all i, for 1<i<m, before process P executes. To model
this, we define 0; P =4¢0.f,.P and ForkWire(o, I)=q0.1.f,.ForkWire(o, I). Here,
ForkWire(o, I) models the forking wire between port o and the ports in I. This
wire distributes messages from the output port to all input ports and, once
finished, signals this via the distinguished action 70. The sending process 0; P
has to wait for synchronisation on f, before it can proceed with P, whence
ensuring isochrony. While this solution is feasible, it requires that the number
of intended recipients of a broadcasted signal is fixed up front and cannot grow
as components are added to a signal-flow graph.

To overcome this problem we employ isochronic wires that connect the out-
put port with exactly one input port, and use a fresh clock ¢, under maximal
progress for synchronisation between sender and receivers of a broadcast signal.

In analogy to the above we define the new isochronic output prefix 0:P =q4¢ C5 p

with C5 p d:efLﬁ.Ca ploo(P) and an isochronic wire connecting o to input port 4

by IsoWire(o, i) =dt 0, -i,, -0,-Is0Wire(,4). Thus, for a broadcast request o, an
arbitrary number of copies of the signal will be communicated on o until clock o,
which defines the isochronous instant in which the communication occurs, ticks
and ends that instant. Because of maximal progress, o, can only tick when
there are no further receivers listening on o. In this way signal o obtains maxi-
mal distribution, and one can add further receiving ports j later on by simply
including a new isochronic wire from 0 to j without having to change the ex-
isting model. The following theorem shows that our compositional approach to
isochronic broadcast faithfully models isochronous forks.

Theorem 3. Letoe A, I Chn A and P € P. Then

(0:P | ;e 1 IsoWire(o,i))\{o} /o, = (0;P | ForkWire(o,I))\{o, fo}| Ao, -
The parallel component A, caters for the fact that the clock hiding operator /o,
eliminates clock o,. From now on we assume that all action prefixes 0.P refer-
ring to the output ports of our component interfaces are replaced by isochronic
ones 0:P, e.g., SIFyy becomes 7.t.7.50:t.SIFp.

Note that isochronous wiring cannot be modelled faithfully and composition-
ally in Hoare’s CSP [8] or Prasad’s CBS [13]. While the broadcasting primitive
in CSP ignores the direction in which information is propagated, the one in CBS
does not force receivers to synchronise with the sender.

4.4 Encapsulation. Hierarchical signal-flow graphs allow system designers to
encapsulate several interconnected computation components, i.e., a subsystem,
into a single computation component. As depicted in Fig. 2(f), a subsystem
is a tuple (C.,W,,I,O0,W;,Wp) that consists of (i) a finite set C. C C of
computation components, with disjoint sets of input ports I. and sets of out-
put ports O,, (ii) a set of internal isochronic wires connecting output ports
in O, with input ports in I, (iii) a set of input ports I = {i1,...,imn}, (iv) a
set of output ports O = {o1,...,0,}, (v) a set Wy C I x I, of isochronic
wires connecting the input ports of the subsystem with the input ports of the
encapsulated components, and (vi) a set Wo C O, x O of isochronic wires
connecting the output ports of the encapsulated components with the out-
put ports of the subsystem. In the example of Fig. 1 we have ck:Element =
({ck1:Filter, ck2:Quantise} { (fox, qiy) }{eik1, eir2 }, {80k },{(€ir1, fir1),(eirz, firz) }
{(@,,,e0k)}). The CaSE model of this subsystem is given by

Elementy(0.) % (I.cc, WCC'(CIF., 00) | 5, i.yew, IsoWire (o, ic) |
H<i,ie>€WIIsoWire(f, te) | 5, zyew, IsoWire(oe, 0))\1.\Oc /o0, ,

where 0o, =qt{0,. | 0e€0.} contain the clocks governing the encapsulated isoch-

ronic wires. Also, WCC'(CIF,., o) d:mc(CIFc | CW(0¢))\{r,t} is an updated ver-

sion of our instantiation wrapper given in Sec. 4.2, with CW' (o) d:ef[r.(ft.f.zae.

rt.CW'(0e)+Te. ft.t.t, 7E.CW'(0¢))]0c(0e.CW'(0¢)). As subsystems must be ex-
ecuted atomically, the first encapsulated computation component that is ready
to execute needs to request the mutual-exclusion token from its environment
(action T.), i.e., from the subsystem at the next higher hierarchy level. Our
modelling of encapsulation must then ensure that the token is only passed up to
the environment once all computation components within the subsystem, which
are able to execute, have actually executed. This is achieved via an encapsu-
lation wrapper EW(SS, I, 0,0.) that is parameterised in the CaSE model SS
of the subsystem under consideration, with input ports I, output ports O and
subsystem clock o.. The encapsulation wrapper essentially translates back the
scheduling interface {ft,rt,o.} into {r,t}, which is the scheduling interface of a
basic component.

EW(SS, 1,0, 00) “ (SS[i} /i1, . . . il /im, 0, /o1, ..., 04 on] | EI(I,00) |[EO(O, o))

\{@1, .. i, 01, o, OnyTe} JOT) 0e
EI(l,00) € Y 7 EBI(I,00) + re, T, t, B0
el

El'(I,0.) € [ft.rt.EU (I, 00)]oc(Z,. EI(I,0¢))
def

EO(O,0.) = Z 0 .50:E0(0,0¢),

€0

where all ¢/, for 4 € I, and @', for o € O, are fresh port names not used in SS,
and where o7 =q¢{0; |i€I}. The wrapper process EI(I, o.) propagates all input

signals entering the subsystem to the desired receiving components, within the
same cycle of the subsystem clock o.. Once an inner component requests to be
scheduled (action r.), the wrapper process forwards this request via port T to
the next upper hierarchy level and waits for the token, indicating granted access
to the embedded processor, to be passed down via port . In this state, the en-
capsulation wrapper essentially behaves as process CPUtoken has done before,
i.e., engaging in a communication cycle between ports ft and rt, until no further
encapsulated component wishes to execute, i.e., until clock o, triggers a timeout
and the token is passed back up (action £). The outputs produced by components
within the subsystem are instantaneously propagated to the subsystem’s envi-
ronment via the parallel process EO(O, 0.), which is part of the encapsulation
wrapper. Note that our encapsulation wrapper hides the inner clock o., whose
ticking thus appears like an internal, unobservable computation, from the point
of view of components outside the subsystem under consideration. The following
theorem puts the subsystems—as—components principle on a formal footing.

Theorem 4. Let SS be the CaSE model of a subsystem (Co,We,I,O,W ,Wo)
using o. as subsystem clock. Then, there exists a computation component c
with input ports I, output ports O and component interface CIF. such that
EW(SS,1,0,0.) = EW(WCC (CIF,,0.),1,0,0.)| Asruoo, -

We now have all tools of our DSPC modelling toolbox to complete the overall
CaSE model DSA(p) of the digital spectrum analyser of Fig. 1, under phase

clock p and given the component interfaces provided in Sec. 4.1: DSA(p) def

(WSC(SIFso, p) |
II)>1 (WSC(SIFy, p) | WCC(EW (Elementy (ok), {€ix1,eik2 }, {€0r }, ok), p) |
WCC(ClIFqg, p) | IsoWire(50, eix1) | IsoWire(Coy, eixz) | IsoWire(€oy, gi,,))
)\{cor, eix1, €lrz, €0, gl | k>1}\{s0}/{0co s Teoy | k>1}/0s0

Observe that our modelling proceeds along the structure of the hierarchical
signal-flow graph of Fig. 1.

4.5 Jam analysis. A jam occurs when an output signal value produced by
one component cannot be consumed by an intended receiving component within
the same IRO—cycle. In current DSPC tools, jams are detected by the run—time
system; upon detection of a jam, a DSPC application is simply terminated.

In our model of coordination we will encode jams in such a way that a
jam manifests itself as a timelock regarding the overall system clock p. Such a
timelock will occur when an isochronic wire is unable to pass on the value it holds.
This can be achieved by modifying processes IsoWire(9, i) throughout, such that
clock p is stopped when the wire already stores a signal value but has not yet been
able to pass it on to port 4; formally, TsoWire(, 1) =ar 0,, i1, }-C,-[50Wire(o, 7).
Consequently, the local ‘jam’ condition is turned into a timing flaw, which is a
global condition that stops the complete system, as desired. The next theorem
makes this mathematically precise; note that our model of coordination of a
DSPC system does not possess any infinite 7—computations, as long as the system

does not contain some computation components that are wired—up in feedback
loops in which these components continuously trigger themselves.

Theorem 5. Let P be a process that possesses only T— and p—transitions and
no infinite T-computations, and let Check=gqrpx.|A|p(x). Then P ~ Check if

and only if BP' s € {1, p}*. P > P = .

Hence, when considering that our model of coordination for an arbitrary hierar-
chical signal-flow graph can be automatically constructed from the flow graph’s
given component interfaces, one may statically check for jams by employing
well-known algorithms for computing temporal observation equivalence [4].

5 Related Work

To the best of our knowledge, our process—algebraic model of coordination is
the first formal model of the synchronous and hierarchical scheduling disci-
pline behind DSPC tools. It complements existing work in distributed object—
oriented systems and in architectural description languages. There, the focus is
on distributed software rather than on embedded centralised systems, and con-
sequently on asynchronous rather than on synchronous component behaviour.

In object—oriented systems, process—algebraic frameworks have been studied,
where processes model the life—cycle of objects [14]. Within these frameworks,
one may reason at compile-time whether each invocation of an object’s method
at run—time is permissible. This semantic analysis is different from jam analysis
in DSPC applications, but similar to the compatibility analysis of interface au-
tomata [5], which we will discuss below. In architectural description languages,
the formalism of process algebra has been studied by Bernardo et al. [2]. Their
approach rests on the use of CSP—style broadcast communication together with
asynchronous parallel composition. Like in our application domain of DSPC
design, the intention is to identify communication problems, but these are di-
agnosed in terms of deadlock behaviour. As illustrated earlier, deadlock is a
more specific property than the jam property investigated by us: a jam in one
component jams the whole system, but a deadlock in one component does not
necessarily result in a system deadlock.

From a practical point of view we envision our model of coordination based
on the process calculus CaSE to play the role of a reactive—types language. This
would enable designers to specify the intended interactions between a given com-
ponent and its environment as a type, and permit tool implementations to reduce
type checking to temporal observation—equivalence checking. This idea is some-
what similar to the one of behavioural types in the Ptolemy community [11].
Behavioural types are based on the formalism of interface automata [5] and
employed for checking the compatibility property between components. How-
ever, interface automata are not expressive enough to reason about jams, which
Ptolemy handles by linear—algebra techniques for the restricted class of syn-
chronous data—flow (SDF) models. In contrast, CaSE’s semantic theory is more
general than SDF and lends itself to checking jams at compile—time.

6 Conclusions and Future Work

This paper presented a novel compositional model of coordination for the syn-
chronous component—based design of and reasoning about DSPC applications.
We demonstrated that the semantic concepts underlying the IRO principle of
DSPC tools, namely dynamic synchronous scheduling, isochrony and encapsula-
tion, can be captured by uniformly combining the process—algebraic concepts of
abstract clocks, maximal progress and clock hiding, which have been studied in
the concurrency—theory community. The standard notion of temporal observa-
tion equivalence then facilitates the desired static reasoning about jams in DSPC
applications. Future work should integrate our work in DSPC tools in the form
of a reactive—types system. A prototype written in Haskell is currently being
implemented in Sheffield.

Acknowledgements. We thank the anonymous referees, as well as Rance Cleave-
land and Matt Fairtlough for their valuable comments and suggestions.

References

1. H.R. Andersen and M. Mendler. An asynchronous process algebra with multiple
clocks. In ESOP ’9/4, volume 788 of LNCS, pages 58-73, 1994.

2. M. Bernardo, P. Ciancarini, and L. Donatiello. Detecting architectural mismatches
in process algebraic descriptions of software systems. In WICSA 2001, pages 77-86.
IEEE Comp. Soc. Press, 2001.

3. R. Cleaveland, G. Liittgen, and M. Mendler. An algebraic theory of multiple clocks.
In CONCUR ’97, volume 1243 of LNCS, pages 166180, 1997.

4. R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In CAV 96,
volume 1102 of LNCS, pages 394-397, 1996.

5. L. de Alfaro and T.A. Henzinger. Interface automata. In ESEC/FSE 2001, volume
26, 5 of Softw. Eng. Notes, pages 109-120. ACM Press, 2001.

6. S. Hauck. Asynchronous design methodologies: An overview. Proc. of the IEEE,
83(1):69-93, 1995.

7. M. Hennessy and T. Regan. A process algebra for timed systems. Inform. and

Comp., 117:221-239, 1995.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

G.W. Johnson and R. Jennings. LabView Graphical Programming. McGraw, 2001.

10. E.A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL MO01/11,
Univ. of California at Berkeley, 2001.

11. E.A. Lee and Y. Xiong. Behavioral types for component-based design. Technical
Report UCB/ERL M02/29, Univ. of California at Berkeley, 2002.

12. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

13. K.V.S. Prasad. Programming with broadcasts. In CONCUR 93, volume 715 of
LNCS, pages 173-187, 1993.

14. F. Puntigam. Type specifications with processes. In FORTE ’95, volume 43 of
IFIP Conf. Proc. Chapman & Hall, 1995.

15. A. Sicheneder et al. Tool-supported software design and program execution for
signal processing applications using modular software components. In STTT ’98,
BRICS Notes Series NS-98-4, pages 61-70, 1998.

16. C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic J. of Computing, 2(2):274-302, 1995.

© ®

