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Abstract

This paper presents the Logical Process Calculus (LPC), a formalism that sup-
ports heterogeneous system speci�cations containing both operational and declar-
ative subspeci�cations. Syntactically, LPC extends Milner's Calculus of Commu-
nicating Systems with operators from the alternation{free linear{time �{calculus
(LT�). Semantically, LPC is equipped with a behavioral preorder that generalizes
Hennessy's and De Nicola's must{testing preorder as well as LT�'s satisfaction re-
lation, while being compositional for all LPC operators. From a technical point of
view, the new calculus is distinguished by the inclusion of (i) both minimal and
maximal �xed{point operators and (ii) an unimplementability predicate on process
terms which tags inconsistent speci�cations. The utility of LPC is demonstrated by
means of an example highlighting the bene�ts of heterogeneous system speci�cation.

1 Introduction

Over the past two decades, a wealth of approaches to formally specifying and
reasoning about reactive systems have been introduced. Most of these may
be classi�ed according to whether they are based on process algebra [3] or
temporal logic [28]. The process{algebraic paradigm is founded on notions
of re�nement, where one typically formulates a system speci�cation and its
implementation in the same notation and then proves that the latter re�nes
the former. The underling semantics is usually given operationally, and re-
�nement relations are formalized as preorders. In contrast, the temporal{logic
paradigm is based on the use of temporal logics [28] to formulate speci�cations,
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with implementations being given in an operational notation. One then veri-
�es a system by establishing that it is a model of its speci�cation, in the formal
logical sense. The strength of the former paradigm is its support for compo-
sitional reasoning, i.e., one may re�ne system components independently of
others. The bene�t of the latter paradigm originates in its support for abstract
speci�cations, where irrelevant operational details may be ignored. Both ap-
proaches may be given automated support in the form of model checking when
the considered systems are �nite{state.

The objective of this paper is to develop a compositional theory for hetero-
geneous speci�cations that uniformly integrates both re�nement{based and
temporal{logic speci�cation styles, thereby allowing both approaches to be
taken advantage of when designing systems. Accordingly, we present a novel
Logical Process Calculus (LPC) that combines the algebraic operators of Mil-
ner's Calculus of Communicating Systems (CCS) [26] with the logical operators
of the Alternation{Free Linear{Time �{Calculus (LT�) [33]. More precisely,
we show that logical disjunction in LT� may be understood as internal choice,
complementing the external choice operator in CCS, and logical conjunction in
LT� as synchronous parallel composition, complementing asynchronous paral-
lel composition in CCS. Moreover, LT� is equipped with two recursion opera-
tors, a least �xed{point operator and a greatest �xed{point operator, which
allow for the �nite but unbounded and the in�nite unwinding of recursion,
respectively. The behavior described by the greatest �xed{point operator in
LT� thus corresponds to recursion in CCS. In the light of this discussion, LPC
extends CCS by operators for disjunction, conjunction, and minimal �xed{
points, as well as the basic processes true and false, and thereby allows for the
encoding of both LT� formulas and CCS processes in LPC (cf. Sec. 2).

The semantics of LPC is based on the testing approach of De Nicola and
Hennessy [12]. The hallmarks of this theory are on the one hand the use of
transitions to model both processes and tests and on the other hand the di�er-
entiation of processes on the basis of their responses to tests. Accordingly, we
equip LPC terms with a transition relation de�ning the single{step transitions
that speci�cations may engage in. We also introduce a novel unimplementabil-
ity predicate on terms whose role is to identify inconsistent speci�cations, such
as false, that cannot be implemented. Both the transition relation and the
unimplementability predicate are de�ned via structural operational rules, i.e.,
in a syntax{driven fashion. We then carry over the de�nitions of must{testing
in [12] to our setting and show that the resulting behavioral preorder (i) con-
servatively extends the traditional must{preorder between CCS speci�cations,
(ii) is compositional for all operators in LPC, and (iii) naturally encodes the
standard satisfaction relation between CCS processes and LT� formulas (cf.
Sec. 3). Thus, our framework may be seen to unify re�nement{based and
logic{based approaches to system speci�cation, while facilitating component{
based reasoning. Technically, this expressiveness follows from the mathemati-
cally coherent inclusion of process and logical operators in LPC that is enabled

2



Cleaveland and L�uttgen

by our treatment of unimplementability (cf. Sec. 4). Practically, the theory
allows system modelers to freely intermix operational and declarative subspec-
i�cations using both system operators (e.g. parallel composition) and logical
constructors (e.g. conjunction). This gives engineers powerful tools to model
system components at di�erent levels of abstraction and to impose declarative
constraints on the execution behavior of components (cf. Sec. 5).

2 A Logical Process Calculus

This section formally introduces our logical process calculus, LPC. We present
its syntax, de�ne its semantics via operational rules and a novel unimple-
mentability predicate, and equip it with a re�nement preorder on processes,
which is adapted from De Nicola and Hennessy [12].

Syntax of LPC. The syntax of LPC extends Milner's CCS [26] with disjunc-
tion, conjunction, and least �xed{point operators. It also includes a process
constant for the universal process true, while false will be a derived process
term in our calculus. Formally, let � be a countable set of actions, or ports,
not including the distinguished unobservable, internal action � . With every
a 2 � we associate a complementary action a. We de�ne � := fa j a 2 �g
and take A to denote the set �[�. Complementation is lifted to A by de�n-
ing a := a. As in CCS, an action a communicates with its complement a
to produce the internal action � . We let a; b; : : : range over A and �; �; : : :
over A� := A [ f�g. The syntax of LPC is then de�ned as follows:

P ::= 0 j tt j x j w j �:P j P + P j P _ P j P jP j P ^ P j
P n L j P [f ] j �x:P j �kx:P j �x:P

where k 2 N , x is a variable taken from some nonempty set V of variables,
w is an in�nite word over A whose inclusion will be discussed in the next
section, set L � A is a restriction set, and f : A� ! A� is a �nite relabel-
ing. A �nite relabeling satis�es the properties f(�) = � , f(a) = f(a), and
jf� j f(�) 6= �gj < 1. We de�ne L := fa j a 2 Lg and use the standard de�-
nitions for free and bound variables, open and closed terms, guardedness, and
contexts. We require for �xed{point terms �x:P , �kx:P , and �x:P that x is
guarded in P . Intuitively, �x:P stands for �nite unbounded unwindings of P ,
while �kx:P encodes �nite unwindings of P bounded by k. A term is called
alternation{free if every variable bound by a least (greatest) �xed{point �x:P
(�x:P ) does not occur free in a subterm �y:Q (�y:Q) of P . We refer to closed,
guarded, and alternation{free 4 terms as processes, with the set of all processes
written as P. Finally, we denote syntactic equality by �.
4 The restriction to alternation{free processes is made for continuity reasons that are elab-

orated on later. Note that alternation{free processes still allow one to express fairness

constraints, as will be demonstrated in Sec. 5.
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While it is obvious that LPC subsumes all CCS processes, it is not immedi-
ately clear that it also encodes all Alternation{Free Linear{Time �{Calculus
(LT�) formulas [5]. 5 The syntax of LT� formulas is de�ned as follows:

� ::= 0 j tt j � j x j hai� j � _ � j � ^ � j �x:� j �x:�

In our setting, LT� formulas will be interpreted over in�nite action sequences
and also �nite ones leading to deadlock. This is why the `deadlock formula' 0
is included in LT�. In LPC, � corresponds to the term �x:�:x, as will become
clear from our semantics de�nition below, and the next operator `hai', for
a 2 A, corresponds to the pre�x operator `a:'.

Semantics of LPC. The operational semantics of an LPC process P as a
labeled transition system hP;A� ;�!; #; P i, where P is the set of states,
A� the alphabet, �!� P � A� � P the transition relation, # � P our
unimplementability predicate that is discussed below, and P the start state.

The transition relation is de�ned by the structural operational rules dis-
played in Table 1. For convenience, we write P

��! P 0 instead of hP; �; P 0i 2
�!. Note that, for the CCS operators, the semantics is exactly as in [26].
As for the other constructs, tt can nondeterministically engage in any action
transition, or decide to deadlock (cf. Rules (True1) and (True2)). Process �:P
may engage in action � and then behave like P (cf. Rule (Act1)), and similarly
the process described by the in�nite word aw may engage in its initial action a
and then behave like w (cf. Rule (Act2)). The reason for including process w
is to enable the modeling of arbitrary system environments within our calcu-
lus, including those exhibiting irregular behavior. The summation operator +
denotes nondeterministic external choice such that P +Q may behave like P
or Q, depending on which communication initially o�ered by P and Q is ac-
cepted by the environment (cf. Rules (Sum1) and (Sum2)). Analogously, _
encodes disjunction or nondeterministic internal choice, i.e., process P _Q de-
termines internally, without consulting its environment, whether to execute P
or Q (cf. Rules (Dis1) and (Dis2)). Process P jQ stands for the asynchronous
parallel composition of processes P and Q according to an interleaving seman-
tics with synchronized communication on complementary actions, resulting in
the internal action � (cf. Rules (Par1){(Par3)). Similarly, P ^Q encodes the
conjunction or synchronous parallel composition of P and Q, with synchro-
nization on all visible actions and interleaving on � (cf. Rules (Con1){(Con3)).
The restriction operator nL prohibits the execution of actions in L [ L and,
thus, permits the scoping of actions. Process P [f ] behaves exactly as P where
actions are renamed according to the relabeling f . The remaining rules de�ne
the semantics of our least and greatest �xed{point operators. The minimal
�xed{point process �x:P �rst guesses some number k 2 N that determines how

5 LT� is more expressive than linear{time temporal logic, so the limitation to alternation{

free formulas does not impose undue expressiveness restrictions.
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Table 1
Operational semantics

True1
��

tt
�
�! a:tt

a 2 A True2
��

tt
�
�! 0

Act1
��

�:P
�
�! P

Act2
��

aw
a
�! w

Sum1
P

�
�! P 0

P +Q
�
�! P 0

Sum2
Q

�
�! Q0

P +Q
�
�! Q0

Dis1
��

P _Q
�
�! P

Dis2
��

P _Q
�
�! Q

Par1
P

�
�! P 0

P jQ
�
�! P 0jQ

Par2
Q

�
�! Q0

P jQ
�
�! P jQ0

Con1
P

�
�! P 0

P ^Q
�
�! P 0 ^Q

Con2
Q

�
�! Q0

P ^Q
�
�! P ^Q0

Par3
P

a
�! P 0 Q

a
�! Q0

P jQ
�
�! P 0jQ0

Con3
P

a
�! P 0 Q

a
�! Q0

P ^Q
a
�! P 0 ^Q0

Res
P

�
�! P 0

P n L
�
�! P 0 n L

� =2 L [ L Rel
P

�
�! P 0

P [f ]
f(�)
�! P 0[f ]

Mu1
��

�x:P
�
�! �kx:P

k 2 N Mu2
P [�k�1x:P=x]

�
�! P 0

�kx:P
�
�! P 0

k > 0

Nu
P [�x:P=x]

�
�! P 0

�x:P
�
�! P 0

often P might be unwound, as encoded by the process �kx:P (cf. Rules (Mu1)
and (Mu2)). Here, P [Q=x] stands for the process P with all of its free oc-
currences of variable x substituted by Q. This account of � may be seen as
embodying a form of continuity : � is interpreted in terms of its �nite unwind-
ings. Because of continuity problems associated with alternating least and
greatest �xed points, which are well{documented in the literature [33], we
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only consider alternation{free process expressions in this paper. The maximal
�xed{point process �x:P may unwind its loop inde�nitely, as is the case for
recursion in CCS (cf. Rule (Nu)). Note that the purely divergent process 
,
employed in some process algebras [17] for describing in�nite internal compu-
tation and already expressible in CCS [26], can be derived in LPC as �x:�:x.

Table 2
Unimplementability predicate #

(i) �0x:P #

(ii) (P �! and P ^Q 6�!) implies P ^Q#

(iii) (Q �! and P ^Q 6�!) implies P ^Q#

(iv) P # implies

� �:P # � P [f ]# � P n L#

� P +Q# � Q+ P #

� P ^Q# � Q ^ P #

� P jQ# � QjP #

� �x:P # � �x:P # � �kx:P #; for all k 2 N

(v) P # and Q# implies P _Q#

(vi) P [�k�1x:P=x] # implies �kx:P #, for all k > 0

(vii) (8k 2 N: �kx:P #) implies �x:P #

Temporal logics, including LT�, are capable of specifying inconsistencies
or contradictions, i.e., behaviors equivalent to false. From an operational
point of view, a process describing an inconsistency is not implementable,
and thus runs of processes passing through unimplementable states should be
ignored. Due to logical disjunction, however, a process that can engage in such
runs is not necessarily unimplementable itself. Note the di�erence between
unimplementability for logical disjunction P _Q and nondeterministic choice
P + Q: The latter process P + Q denotes a completely operational process
that is implementable if both P and Q are implementable. In contrast, P _Q
can be implemented if either P or Q can.

This intuition is re
ected in the de�nition of our unimplementability pred-
icate, given in Table 2, where we write P # for P 2 # and where P �!
stands for 9P 0 2 P : 9� 2 A� P

��! P 0. In particular, a contradiction is
present within a conjunction P ^Q, if the conjunction process cannot engage
in any transition, although one of its argument processes can (cf. Rules (ii)
and (iii)). As an example, consider process a:0 ^ b:0, for a 6� b. Further,
the �rst part of Rule (iv) states that the unimplementability of P propagates
backwards through pre�xing. Note that the operational semantics for LPC
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distinguishes between inconsistent processes, which are unimplementable, and
deadlocked processes, which are implementable. For example, both processes
(a:0jb:0) n fa; bg and a:0 ^ b:0 cannot engage in any transition. However,
(a:0 ^ b:0)# while :(((a:0jb:0) n fa; bg)#), as desired. All other rules are
straightforward, except for least �xed{point processes, such as the process
�0x:P that cannot unwind its body P further and is thus considered to be
unimplementable (cf. Rule (i)). Together with Rules (vi) and (vii), this implies
that the process �x:�:x, which can engage in �nite but unbounded numbers
of � 's, is actually unimplementable. Indeed, we will identify this process with
false and abbreviate it by �. It is this de�nition that will allow one to distin-
guish the processes � and 0.

The semantics for LPC does not only extend the standard CCS semantics
but is also compatible with the semantics of LT� formulas; see Thm. 3.5. This
theorem, however, is not straightforward, and its proof requires us to build a
rich semantic theory for LPC. Before doing so we �rst introduce some notation.
A potential path � of process P is a sequence of transitions (Pi

�i�! Pi+1)0�i<k,
for some k 2 N [ f!g, such that P0 � P . If :(Pi#), for all 0 � i < k and
for i = k if k 2 N , then � is called an implementable path, or simply path. We
use j�j to refer to k, the length of �. If j�j = !, we say that � is in�nite;
otherwise, � is �nite. Moreover, � is called maximal if j�j < ! and Pj�j 6�!.
The trace trace(�) of � is de�ned as the word w := (�i)I� 2 A1 := A� [ A!,
where I� := f0 � i < j�j j�i 6� �g. In the case of I� = ;, we let � stand for
w = (). Moreover, if � is �nite, we also write P

w
=) Pj�j for �. We denote the

sets of all �nite, maximal, and in�nite paths of P by ��n(P ), �max(P ), and
�!(P ), respectively. We may also introduce according languages for P :

L�n(P ) := ftrace(�) j � 2 ��n(P )g � A� �nite{trace language of P

Lmax(P ) := ftrace(�) j � 2 �max(P )g � A� maximal{trace language of P

L!(P ) := ftrace(�) j � 2 �!(P )g � A1 in�nite{trace language of P

The semantic theory to be developed for LPC relies on the notion of divergence,
i.e., a system's ability to engage in an in�nite internal computation. In this
paper, we employ the traditional notion of divergence as used by De Nicola
and Hennessy [12]; more sophisticated de�nitions may be found elsewhere in
the literature [6,27,29]. Process P is divergent, in signs P *, if � 2 L!(P ).
For example, process 
 := �x:�:x is divergent. A process P is called w{
divergent for some w 2 A1, in signs P * w, if 9P 0 2 P 9v <�n w: P

v
=) P 0

and P 0 *. Here, <�n stands for the �nite pre�x ordering on words. We
further write Ldiv(P ) for the divergent{trace language of P , i.e., Ldiv(P ) :=
fw 2 A1 jP * wg. Finally, P is called convergent or w{convergent, in symbols
P + and P + w, if :(P *) and :(P * w), respectively.
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Re�nement in LPC. We now turn our attention to a behavioral theory of
LPC, which de�nes a behavioral preorder @� on processes such that P @�Q, i.e.,
Q re�nes P , if Q is \more de�ned" than P . The preorder is an adaptation of
De Nicola and Hennessy's must{preorder [12], which was developed within an
elegant testing theory and distinguishes processes on the basis of the tests they
are necessarily able to pass. In this context, tests are processes equipped with
a special action

p
, which are employed to witness the interactions a process

may have with its environment. In order to determine whether a process
passes a test, one has to examine the maximal and in�nite computations that
result when the test runs in lock{step with the process under consideration.

Formally, a test is a process that might use the distinguished success actionp
=2 A� . The set of all tests is denoted by T . A maximal (in�nite) computa-

tion � of process P and test T is a maximal (in�nite) path � of (P jT )nA, i.e.,
� = ((PijTi) n A ��! (Pi+1jTi+1) n A)0�i<j�j. Recall that paths only go along
implementable states (including the �nal state in a maximal computation).

Computation � is successful if Ti

p
�! for some 0 � i < j�j; otherwise, it is

unsuccessful. Finally, process P is said to must{satisfy test T , in symbols
P mustT , if every maximal and in�nite computation of P and T is successful.

De�nition 2.1 [Must{preorder] For P;Q 2 P we let P @�Q if, for all T 2 T ,
P must T implies Qmust T .

It is easy to see that @� is a preorder, i.e., that it is re
exive and transitive.
Note that this preorder can be extended to open terms by the usual means
of closed substitution [26]. Moreover, @� satis�es the following basic algebraic
laws, where � stands for the kernel @� \ (@�)�1 of @�.
Proposition 2.2 Let P;Q;R 2 P. Then, the following holds:

P j0 � P P j
 � 
 P ^ tt � P P ^ � � �

P + 0 � P P + 
 � 
 P _ tt � tt P _ � � P

Further, P ^P � P , P _P � P , and P _Q @� P . All binary operators are,
of course, also commutative and associative.

It is also easy to see that the divergent process 
 does not must{satisfy any
tests, except the trivial ones, such as

p
:0. Hence, it is the smallest process

with respect to @�. Conversely, process �must{satis�es every test, since it does
not possess any computation due to �#. Consequently, � is the largest process
with respect to @�. Also tt is a distinguished process in our setting; it is the
smallest convergent process with respect to @�. Thus, we have 
 @� tt @� 0 @��;
it is easy to verify that this ordering is actually strict. 6

6 This ordering is the reverse of the more usual Boolean ordering, which considers � to be

lower than tt, and arises since must re�nement implies reverse language containment.
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3 Properties of the Must{Preorder

In this section we investigate the utility of our calculus for the heterogeneous
speci�cation of reactive systems. We show that our must{preorder is a conser-
vative extension of the one of De Nicola and Hennessy, provide its character-
ization in terms of traces and initial action sets, investigate its close relation
to LT� satisfaction, and �nally establish its compositionality properties. Due
to space constraints we can only include some proof sketches here.

Extension of De Nicola and Hennessy's Must{Preorder. It is easy
to see that our must{preorder @� is a conservative extension of the must{
preorder @�DH of De Nicola and Hennessy, de�ned on CCS processes [12].
Indeed, their and our de�nitions of the testing framework coincide on CCS

processes and CCS tests, which leads to the following conservativity theorem.

Theorem 3.1 Let P;Q be CCS processes. Then, P @�Q if and only if P @�DHQ.

Characterization. We now present a characterization of our must{preorder
which will be used for obtaining some of our main results. The character-
ization closely follows the lines of a similar characterization of De Nicola
and Hennessy's must{preorder [12]. It uses the notation I(P ) for the set
fa 2 A jP a

=)g of visible initial actions of P .
Theorem 3.2 Let P and Q be processes. Then P @�Q if and only if for all
w 2 A1 such that P + w :

(i) Q + w

(ii) jwj < !: 8Q0: Q
w
=) Q0 implies 9P 0: P

w
=) P 0 and I(P 0) � I(Q0)

jwj = !: w 2 L!(Q) implies w 2 L!(P )

Observe that this characterization is also sensitive to in�nite traces and not
only �nite ones (cf. Cond. (2)). This is super�cially similar to the improved
failures model of [7]; the di�erence is that in�nite traces in [7] convey diver-
gence information, while they convey convergence information in the above
characterization. The proof of the above theorem, which proceeds along the
lines of the proof of a corresponding theorem that can be found in [9], is
partly non{standard in that it relies on the following distinguished tests, where
k 2 N , w = (ai)0�i<k 2 A�, v 2 A!, and a 2 A.
(i) T +w := a0:a1: � � � :ak�1:0 j �:p:0

(ii) T �n

w := a0:(a1: � � � :(ak�1:0+ �:
p
:0) � � � ) + �:

p
:0) + �:

p
:0

(iii) Tmax

w;a := a0:(a1: � � � :(ak�1:a:
p
:0 + �:

p
:0) � � � ) + �:

p
:0) + �:

p
:0

(iv) T !
v := v j �:p:0

The intuitions behind de�ning these tests are as follows.
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Lemma 3.3 Let P be an arbitrary LPC process and

(i) Let w 2 A�. Then, P + w i� P mustT +w .
(ii) Let w 2 A� such that P + w. Then, w =2 L�n(P ) i� P must T �n

w .

(iii) Let w 2 A� such that P + w. Then, w =2 Lmax(P ) i� 9a 2 A: P mustTmax

w;a .

(iv) Let v 2 A! such that P + v. Then, v =2 L!(P ) i� P must T !
v .

The proof of this lemma is not too di�cult but tedious; it follows our de�nition
of must{passing tests and is similar to a corresponding proof in [10]. Note
that the �rst property can also be carried over to in�nite words, due to our
`approximative' de�nition of divergence.

Extension of LT� Satisfaction. To prove that our must{preorder is also
an extension of LT� satisfaction we �rst recall the standard semantics of LT�.
An LT� formula is interpreted as the set of those �nite and in�nite sequences
over A that validate the formula. Formally, the semantics [[�]]E of a possibly
open LT� term � is de�ned relative to an environment E mapping variables
to subsets of A1. Note that our variant of the linear{time �{calculus [5] can
be used to reason about deadlock traces as well, due to our inclusion of the
atomic proposition 0; this is why we also consider �nite traces.

[[tt]]E := A1 [[�]]E := ; [[x]]E := E(x)
[[hai�]]E := faw jw 2 [[�]]Eg [[0]]E := f�g
[[�x:�]]E :=

TfT � A1 j [[�]]E[x7!T ] � Tg [[�1 ^ �2]]
E := [[�1]]

E \ [[�2]]
E

[[�x:�]]E :=
SfT � A1 jT � [[�]]E[x 7!T ]g [[�1 _ �2]]

E := [[�1]]
E [ [[�2]]

E

In case � is a formula, i.e., � is a closed LT� term, it is easy to see that the
environment E is irrelevant. We say that a CCS process P satis�es �, in signs
P j= �, if all traces of P are included in the traces of [[�]]. Formally, P j= �
if (i) Ldiv(P ) � Ldiv(�), (ii) Lmax(P ) � [[�]], and (iii) L!(P ) � [[�]].

Further, LT� formulas, when considered as a sublanguage of LPC, possess
two important properties. First, all formulas � are convergent, i.e., Ldiv(�) =
;. This is because the internal pre�x operator `�:' is not available in LT�. In
addition, the atomic propositions tt, �, and 0 do not give rise to divergence.
As a consequence, Cond. (i) in the de�nition of P j= � above can be simpli�ed
to Ldiv(P ) = ;. In particular, formula tt is satis�ed by convergent processes
only, whence P j= tt if and only if Ldiv(P ) = ;. Second, every LT� formula �
is purely nondeterministic in the sense that all choices are internal:

8�0;�00 8�; �: � ��! �0; �
��! �00; �0 6� �00 implies � � � � � :

This is due to the fact that disjunction is modeled as internal choice in LPC.

Proposition 3.4 Let � be an LT� formula and P a CCS process. Then, � @�P
if and only if (i) Ldiv(P ) = ;, (ii) Lmax(P ) � Lmax(�), (iii) L!(P ) � L!(�).

10
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The proof of this proposition relies on our characterization theorem for @� (cf.
Thm. 3.2) and uses the two properties of formulas mentioned above. The
proposition is the key for establishing the next theorem.

Theorem 3.5 Let P be a CCS process and � an LT� formula. Then, P j= �
if and only if � @�P .

Due to Prop. 3.4 and the de�nition of j=, it is su�cient to prove that [[�]] =
Lmax(�) [ L!(�). This can be done along the structure of LT� formulas, but
requires the appropriate extension of the de�nition of languages to open terms.

The above theorem also establishes that the LPC operator `^' is indeed
a logical conjunction operator when restricted to operands in LT�. Formally,
�1^�2

@� P if and only if �1
@�P and �2

@�P , for all LT� formulas �1;�2 and
CCS processes P ; this statement also holds for arbitrary LPC processes P .

Compositionality. One virtue of process algebras is that they allow one to
reason compositionally about processes. Our logical process calculus LPC is
no exception. Indeed our must{preorder is compositional for all operators,
except for the choice operators + and _. This defect manifests itself also
in De Nicola and Hennessy's must{preorder. The largest precongruence v
contained in @� can be obtained in the standard way [12].

De�nition 3.6 [Must{precongruence] For P;Q 2 P we write P v Q if
(i) P @�Q and (ii) Q

��! implies P
��!.

Theorem 3.7 The preorder v is a precongruence, i.e., for all processes P;Q
such that P v Q, we have:

� �:P v �:Q for all � 2 A � P n L v Q n L for all restriction sets L

� P +R v Q +R for all R 2 P � P [f ] v Q[f ] for all relabelings f

� P _R v Q _R for all R 2 P � �kx:P v �kx:Q for all x 2 V, k 2 N

� P jR v QjR for all R 2 P � �x:P v �x:Q for all x 2 V
� P ^R v Q ^R for all R 2 P � �x:P v �x:Q for all x 2 V

Moreover, v is the largest precongruence contained in @�.
Compositionality can be checked straightforwardly for most operators, except
for the largest �xed{point operator, by referring to Thm. 3.2. Regarding
asynchronous parallel composition, the compositionality of v follows directly
from the fact that P jQmustT if and only if P mustQjT , for all P;Q 2 P and
T 2 T ; this is essentially the associativity property of j . In case of the largest
�xed{point operator, one needs to reason indirectly via a denotational char-
acterization of our operational semantics in terms of a suitably modi�ed form
of acceptance trees [12]; unfortunately, the presentation of this denotational
characterization here is made impossible by space constraints. The proof of
the `largest' statement in Thm. 3.7 is standard [12].

11
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4 Discussion and Related Work

This section contrasts LPC to related work and discusses the fundamental
di�erences of the setting presented here to our previous approach [10].

Most early related work couples operational and declarative approaches
to system speci�cation loosely and does not allow for mixed speci�cations.
This includes the large amount of work on relating behavioral equivalences
or preorders to temporal logics in one of the following ways: (i) establishing
that one system re�nes another if and only if both satisfy the same temporal
formulas [13,18,26,32]; (ii) translating �nite{state labeled transition systems
into temporal formulas [31]; or (iii) encoding subclasses of temporal formulas
as behavioral relations via the idea of implicit speci�cations [24]. Other work,
in the �eld of compositional model checking [8,15,21], aimed at supporting a
modular approach for reasoning about temporal{logic speci�cations. Several
researchers have also considered the inclusion of di�erent �xed{point oper-
ators in behavioral theories of processes in order to model fairness and un-
bounded but �nite delay [16,19]. One may also �nd a process algebra with
an element similar to our process � in [2]. Diverting from these approaches,
advanced frameworks for genuine heterogeneous speci�cations have been de-
veloped as well, which can be distinguished according to whether they employ
logic/algebraic or automata{theoretic techniques.

Logic/algebraic approaches. This category includes the seminal work of
Abadi and Lamport, who have developed ideas for heterogeneous speci�ca-
tions for shared{memory systems [1]. Their technical setting is the logical
framework of TLA [23], in which processes and temporal formulas are indis-
tinguishable and logical implication serves as the re�nement relation. The
di�erence to our setting is that TLA re�nement is insensitive to deadlock and
divergence. While this might not be a problem for shared{memory systems, it
is not suitable for reasoning about distributed systems, at which our calculus
LPC aims. Graf and Sifakis follow a similar line of development in [14]. There,
a logic is developed that includes constructs for actions and nondeterministic
choice, and a logical encoding of operational behavior is given. In this logic,
one establishes that a system satis�es a property by showing that the logical
formula associated with the system implies the property.

In a di�erent line of research, Valmari et al. have studied several congru-
ences preserving \next{time{less" linear{time temporal logic [28], which may
also handle deadlock and livelock [20,29,34]. A good overview by Puhakka
and Valmari on the matters of liveness and fairness in process algebra can be
found in [30]. This paper also observes that, during system re�nement, fairness
constraints are often only relevant for intermediate systems and are automat-
ically implied when considering the larger system context. It then suggests a
way to avoid constructing the usually in�nite intermediate systems. Our work
complements theirs in that LPC allows for embedding arbitrary LTL formulas
in operational speci�cations, instead of a speci�c class of fairness constraints.

12
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However, LPC does not avoid reasoning about in�nite intermediate systems
which can, in our opinion, be handled by employing clever data structures for
implementing our must{preorder in veri�cation tools, such as the Concurrency
Workbench NC [11]. Finally, it should be noted that De Nicola and Hennessy's
testing theory [12] has also been enriched with notions of fairness [6,27], in
order to constrain in�nite computations in labeled transition systems.

Automata{theoretic approaches. Regarding automata{theoretic tech-
niques, the work of Kurshan is of direct relevance to this paper [22], who pre-
sented a theory of !{word automata that includes notions of synchronous and
asynchronous composition. However, Kurshan's underlying semantic model
maps processes to their in�nite traces, and the associated notion of re�ne-
ment is (reverse) trace inclusion. In theories of concurrency, such as in ours in
which deadlock is possible, maximal trace inclusion is not compositional [25].

The most closely related approach to the one presented here was intro-
duced by the authors in [10]. B�uchi automata were employed to uniformly
encode mixed operational and declarative behavior, exploiting the well{known
relation between B�uchi automata and LTL [35]. We equipped this semantic
framework with a notion of B�uchi must{testing that extends De Nicola and
Hennessy's must{testing preorder from labeled transition systems to B�uchi
automata. The intuition was to consider only those in�nite traces as in�-
nite computations that go through B�uchi states in�nitely often, and only to
accept those in�nite computations for which the considered B�uchi test de-
clares success in�nitely often. The relation of our B�uchi must{preorder to the
LTL satisfaction relation, with the central result intended to be analogous to
Thm. 3.5, was then established in a pure automata{theoretic fashion by suit-
ably adapting the construction of [35]. However, our previous approach had
several shortcomings that made it unsuitable as a semantic basis for a logical
process calculus; these are discussed next.

Most importantly, our paper [10] contained a subtle technical mistake in
the analogue of Lemma 3.3, which propagated through the paper's results. In a
nutshell, the setup of B�uchi testing did not allow us, as was intended, to ignore
non{B�uchi divergent traces, i.e., those in�nite internal computations that go
through B�uchi states only �nitely often. While most of the results in [10] could
be repaired by explicitly observing non{B�uchi divergence, the framework did
no longer re
ect the underlying intuition, and it made compositionality di�-
cult to achieve for some operators, including parallel composition. Moreover,
our identi�cation of �, or other inconsistent speci�cations, with non{B�uchi
divergence led to the invalidity of the desired law P _ � � P . The present
paper repairs this defect by associating � with a process that cannot engage in
any observable transition, nor in any divergence. In order to then distinguish
� from, say, 0 we introduced the unimplementability predicate. Similar dif-
�culties arose when interpreting tt as B�uchi{divergent process, which is why
this paper distinguishes between tt and 
, making tt the smallest convergent
process in our must{preorder, while 
 still is the smallest process overall.
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Indeed, the collection of these insights also allowed us to do away with
B�uchi automata as our semantic framework for heterogeneous system design
altogether. Accordingly, LPC encodes the least and greatest �xed{points oc-
curring in temporal logics via labeled transition systems, where the process{
algebraic semantic rules for least �xed{points re
ect the intuition that the
recursion under consideration can only be unwound �nitely often, while a re-
cursion associated with a greatest �xed{point may be unwound in�nitely often.
Hence, in LPC all in�nite traces are `good', which means that the expressive
power of B�uchi automata to distinguish `good' and `bad' in�nite traces is no
longer needed. The result is a process calculus, LPC, in which classical process
algebras and linear{time temporal logics can be uniformly integrated, as was
envisioned in [10]. The example in the next section highlights the expressive-
ness of LPC 7 as well as its underlying practical motivation.

5 Example: Heterogeneous System Design

We illustrate by means of an example, the kind of re�nement{based system
design supported by LPC. The example advocates a heterogeneous style of
system speci�cation, combining process{algebraic and temporal{logic speci�-
cations, and thereby testi�es to the utility of our calculus. It will be convenient
to express temporal constraints by means of formulas in Linear{time Tempo-
ral Logic (LTL) [28] | a temporal logic that engineers often prefer over the
linear{time �{calculus [5]. We thus brie
y show how LTL formulas can be
encoded in LT� or, more precisely, in our new calculus LPC.

Encoding of LTL in LPC. Since we would like to describe action{based
distributed systems and their deadlock behavior, the variant of LTL studied
here includes the atomic propositions a, for a 2 A, and 0. Note that, in the
context of temporal logics, A is always taken to be a �nite set.

� ::= 0 j a j tt j � j � _ � j � ^ � j X� j X̂� j �U� j �V�

The temporal operators X, U, and V are intuitively interpreted as next, until,
and release operators, respectively. Operator X̂ is the dual operator of X,
namely a next operator that tolerates deadlocks; note that X is not self{dual
in the presence of �nite traces. An LTL formula � corresponds to the LPC

process f[�]g, where the translation function f[�]g is de�ned along the structure
of � as follows and where x is some randomly chosen variable in V.
f[0]g := 0 f[tt]g := tt f[�1 _ �2]g := f[�1]g _ f[�2]g f[X�]g :=Wa2A a:f[�]g
f[a]g := a:tt f[�]g :=� f[�1 ^ �2]g := f[�1]g ^ f[�2]g f[X̂�]g := 0 _ Wa2A a:f[�]g

7 It seems doubtful to us whether LPC can be encoded in standard CCS, which appears to

be problematic regarding the conjunction and least{�xed{point operators.
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f[�1U�2]g :=�x:f[�2]g _ (f[�1]g ^ Wa2A a:x)

f[�1V�2]g := �x:f[�2]g ^ (f[�1]g _ 0 _ Wa2A a:x)

For convenience, we abbreviate formula �V� by G� (\generally �") and ttU�
by F� (\eventually �"), as usual. Moreover, we let a =) � stand for the
process a:� _ 0 _ Wb6�a b:tt which is valid if and only if, for all traces of the
form aw, trace w satis�es �.

Example. Suppose an engineer designs a reliable bidirectional network link in
a component{based fashion. One might think of this link as a composition of
two reliable unidirectional links that are closely tight together. In particular,
the failure of one unidirectional link should imply the failure of the other,
which is a typical physical constraint of bidirectional links. The engineer
might begin with a simple speci�cation of an unreliable unidirectional link,

ULSpec := �x:up:(x + fail:�y:down:(y _ x)) ;

which signals whether the link is up or down, or whether it just failed. In
case of failure, the link tries to repair itself and, if and once it is successfully
repaired, it returns to its initial state. However, a successful repair is not
guaranteed, whence the process ULSpec may in�nitely engage in the down{
loop over variable y.

To obtain a speci�cation RLSpec of a reliable unidirectional link, ULSpec
is simply re�ned by adding a constraint imposing a \repair guarantee," RG :=
G (fail =) F up), i.e., every broken link is eventually repaired and up. We
then de�ne RLSpec := ULSpec ^ RG, which does away with the down{loop in
ULSpec. The desired bidirectional link might then be speci�ed as follows:

BLSpec := ( RLSpec[up1=up; down1=down; sync=fail]

j RLSpec[up2=up; down2=down; sync=fail]
) n fsyncg ;

where the synchronization on action fail, via the relabeling to action sync,
ensures that the failure of one unidirectional link implies the failure of the
other. Note that the constraints RG indirectly refer to action sync, which is
restricted in BLSpec.

The engineer may now re�ne the heterogeneous LPC speci�cation BLSpec

into a pure CCS implementation. The idea is to ful�ll the constraints RG by
eliminating the down{loop in ULSpec, thus encoding that a repair can always
be successfully carried out immediately. The implementation of RLSpec might
accordingly be chosen as the CCS process RLImp := �x:up:(x+ fail:down:x).
We now establish that RLImp indeed re�nes RLSpec in the framework of our
must{precongruence. First of all, it is easy to see by our characterization of @�
(cf. Thm. 3.2) that ULSpec @� RLImp, due to the internal nondeterministic
choice in ULSpec. Further, we obviously have RLImp j= RG. Hence, we may
infer by Thm. 3.5 that RG @� RLImp. Because RLImp cannot engage in an
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initial �{transition, we may in summary conclude ULSpec v RLImp and RG v
RLImp. By Prop. 2.2, which is also valid for v, and by Thm. 3.7, we derive
RLSpec � ULSpec ^ RG v RLImp ^ RLImp v RLImp, as desired.

When replacing in BLSpec the components RLSpec by RLImp, we obtain an
implementation of our reliable bidirectional link, to which we refer as BLImp.
Sincev is a precongruence and RLSpec v RLImp, we obtain BLSpec v BLImp,
i.e., BLImp re�nes BLSpec, which coincides with our intuition.

Finally, it is worth mentioning that LPC may actually be seen as a tem-
poral logic that allows for some restricted form of branching{time reason-
ing. For example, the LPC process sync =) (down1:tt + down2:tt) en-
codes the property that the system state reached when executing action sync

has both actions down1 and down2 enabled. Observe that, in contrast to
down1:tt+down2:tt, the term down1:tt ^ down2:tt in LPC speci�es the obvious
contradiction that every initial transition is labeled by both actions down1

and down2 at the same time.

6 Conclusions and Future Work

We presented a novel logical process calculus LPC that integrates both clas-
sical process calculi, such as Milner's CCS, and temporal logics, such as the
alternation{free linear{time �{calculus LT�. The syntax of LPC enriched CCS

by operators for synchronous parallel composition (conjunction) and nonde-
terministic choice (disjunction), as well as by minimal �xed{points operators
(�nite unwindings of recursion). The semantics of LPC was given in terms
of labeled transition systems and an unimplementability predicate, which are
both de�ned via structural operational rules. A re�nement preorder on pro-
cess terms was then introduced, which conservatively extends both De Nicola's
and Hennessy's must{preorder and the LT� satisfaction relation. Hence, LT�
model checking may as well be understood as re�nement checking. Finally,
our must{preorder was shown to be compositional for all operators in LPC.

The outcome of our studies is a heterogeneous speci�cation language, which
allows system designers to specify systems in a mixed operational and declara-
tive style, together with a behavioral preorder that permits component{based
re�nement. We believe that our setting provides groundwork for formally in-
vestigating those software engineering languages that support heterogeneous
speci�cations as a mixture of operational state machines and declarative con-
straints, such as the Uni�ed Modeling Language [4].

Regarding future work, we intend to study axiomatizations of our must{
preorder and to develop an algorithm for its implementation in automated
veri�cation tools, such as the Concurrency Workbench NC [11]. It should also
be investigated whether our approach is suitable for calculi other than CCS,
such as Petri nets or the �{calculus, as well as for temporal logics other than
LT�, in particular for branching{time temporal logics.
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