
Bisimulation on Speed: Lower Time Bounds

Gerald Lüttgen1,? and Walter Vogler2

1 Department of Computer Science, University of York, York YO10 5DD, U.K.,
luettgen@cs.york.ac.uk

2 Institut für Informatik, Universität Augsburg, D–86135 Augsburg, Germany,
vogler@informatik.uni-augsburg.de

Abstract. More than a decade ago, Moller and Tofts published their
seminal work on relating processes that are annotated with lower time
bounds, with respect to speed. Their paper has left open many questions
concerning the semantic theory for their suggested bisimulation–based
faster–than preorder, the MT–preorder, which have not been addressed
since. The encountered difficulties concern a general compositionality
result, a complete axiom system for finite processes, and a convincing
intuitive justification of the MT–preorder.

This paper solves these difficulties by developing and employing novel
tools for reasoning in discrete–time process algebra, in particular a gen-
eral commutation lemma relating the sequencing of action and clock
transitions. Most importantly, it is proved that the MT–preorder is fully–
abstract with respect to a natural amortized preorder that uses a simple
bookkeeping mechanism for deciding whether one process is faster than
another. Together these results reveal the intuitive roots of the MT–
preorder as a faster–than relation, while testifying to its semantic ele-
gance. This lifts some of the barriers that have so far hampered progress
in semantic theories for comparing the speed of processes.

1 Introduction

Over the past two decades, the field of process algebra [7] has proved successful
for modeling and reasoning about the communication behavior of concurrent pro-
cesses. Early process algebras, such as Milner’s CCS [18] and Hoare’s CSP [15],
have been augmented to capture other important system aspects as well, in-
cluding timing behavior [6]. Many variants of timed process algebra that employ
either discrete or continuous notions of time have been proposed, whose seman-
tic theories are usually based on the well–studied concepts of bisimulation [19],
failures [22], or testing [14].

While several approaches for comparing the efficiency of processes have been
introduced in the literature [4, 21], theories for comparing timed processes with
respect to speed are seeded very sparsely. The most seminal paper in the lat-
ter category was published over a decade ago [20]. In this paper, the authors

? Research supported by EPSRC grant GR/M99637.

Moller and Tofts argue that a faster–than relation on processes can only ex-
ist for those process–algebraic settings where the passage of time cannot pre-
empt behavior, and especially not for settings involving timeout operators. For
a timeout–less fragment of TCCS [19], Moller and Tofts then introduced a com-
positional faster–than preorder based on strong bisimulation [18], and discussed
some of its underlying algebraic laws. Despite the paper’s originality, the work is
lacking regarding three important aspects. First, the advocated preorder is not
intuitively justified but appears to be an ad–hoc remedy for a compositionality
problem. Second, the framework possesses technical weaknesses. For example,
Moller and Tofts only managed to prove compositionality of their preorder for
the class of regular processes, and their proposed laws for characterizing their
preorder are incomplete. Third, no semantic theory that abstracts from internal
computation, in the sense of observation equivalence [18], is presented in [20].

The aim of this paper is to put the faster–than preorder of Moller and Tofts,
or MT–preorder for short, on solid semantic grounds and to highlight its in-
tuitive roots, thereby testifying to the elegance of Moller and Tofts’ approach.
Technically, we add to Milner’s CCS a discrete–time clock prefixing operator
“σ.”, interpreted as lower time bound. Intuitively, process P in σ.P is only ac-
tivated after the ticking of the abstract clock σ, i.e., after one time unit. The
nesting of σ–prefixes then allows the specification of arbitrary delays (written
as prefix (n) with n ∈ N in [20]), which results in a process algebra equivalent
to the fragment of TCCS studied by Moller and Tofts. We refer to this alge-
bra as Timed Asynchronous Communicating Systems with lower time bounds, or
TACS

lt. As our first main result we prove that the MT–preorder is composi-
tional and fully–abstract with respect to a natural amortized preorder that uses
a simple bookkeeping mechanism for deciding whether one process is faster than
another. The intuition behind this amortized preorder is that the faster process
must execute each action no later than the slower process does, while both pro-
cesses must be functionally equivalent in the usual sense of strong bisimulation.
To obtain this result we also establish some powerful semantic tools for reasoning
within discrete–time process algebra, in particular a general commutation lemma

relating the sequencing of action and clock transitions. As our second main re-
sult we provide a sound and complete axiomatization of the MT–preorder for
the class of finite processes. This includes the provision of a simple expansion

law, which Moller and Tofts had claimed could not exist. The twist is that this
expansion law is only valid for finite processes, but interestingly not for arbitrary
recursive processes. As our third and final main result we introduce a notion of
a weak MT–preorder — a task that turns out to be far more challenging than
in other bisimulation–based process–algebraic settings.

Our results shed light on the nature of the MT–preorder and overcome the
technical difficulties experienced by Moller and Tofts, thereby completing, gen-
eralizing, and strengthening their results and providing groundwork for advanc-
ing semantic theories that compare processes with respect to speed. This paper
also complements our previous work on bisimulation–based faster–than relations
for timed process algebra with upper time bounds [17]. Indeed, several ideas

and technical concepts can be carried over from the upper–time–bounds setting
of [17] to the lower–time–bounds setting presented here.

Due to lack of space, all proofs had to be omitted; they will be available
under http://www.informatik.uni-augsburg.de/skripts/techreports/ as technical
report 2004-1.

2 Timed Asynchronous Communicating Systems

Our process algebra TACS
lt conservatively extends Milner’s CCS [18] by per-

mitting the specification of lower time bounds for the execution of actions and
processes. These will then be used to compare processes with respect to speed.
Syntactically, TACS

lt includes a clock prefixing operator “σ.”, taken from Hen-
nessy and Regan’s TPL [14]. Semantically, it adopts a concept of global, discrete
time in which processes are lazy and can always let time pass. For example, σ.P
must wait for at least one time unit before it can start executing process P .

Syntax. The syntax of TACS
lt is identical to the one in [17], where we consid-

ered a faster–than preorder that relates processes on the basis of upper rather
than lower time bounds. Formally, let Λ be a countably infinite set of actions not
including the distinguished unobservable, internal action τ . With every a ∈ Λ
we associate a complementary action a. We define Λ =df {a | a ∈ Λ} and take A
to denote the set Λ ∪ Λ ∪ {τ}. Complementation is lifted to Λ ∪ Λ by defining
a =df a. As in CCS [18], an action a communicates with its complement a to
produce the internal action τ . We let a, b, . . . range over Λ ∪ Λ, α, β, . . . over A,
and represent clock ticks by σ. The syntax of TACS

lt is defined as follows:

P ::= 0 | x | α.P | σ.P | P + P | P |P | P \ L | P [f] | µx.P

where x is a variable taken from a countably infinite set V of variables, L ⊆
A\{τ} is a restriction set, and f : A → A is a finite relabeling. A finite relabeling
satisfies the properties f(τ) = τ , f(a) = f(a), and |{α | f(α) 6= α}| < ∞. The

set of all terms is abbreviated by P̂ , and we define L =df {a | a ∈ L}. Moreover,
we use the standard definition for open and closed terms. A variable is called
guarded in a term if each occurrence of the variable is within the scope of an
action or clock prefix. Moreover, we require for terms of the form µx.P that x
is guarded in P . We refer to closed and guarded terms as processes, with the set
of all processes written as P, and write ≡ for syntactic equality.

Semantics. The operational semantics of a TACS
lt term P ∈ P̂ is given by

a labeled transition system 〈P̂ ,A∪ {σ},−→, P 〉, where P̂ is the set of states,

A∪{σ} the alphabet, −→⊆ P̂×(A∪{σ})×P̂ the transition relation, and P the
start state. Transitions labeled with an action α are called action transitions

that, like in CCS, are local handshake communications in which two processes
may synchronize to take a joint state change together. Transitions labeled with
the clock symbol σ are called clock transitions representing a recurrent global
synchronization that encodes the progress of time.

The operational semantics for action and clock transitions can be defined
via the structural operational rules shown in Tables 1 and 2, resp. As usual, we

write P
γ

−→ P ′ instead of 〈P, γ, P ′〉 ∈−→, for γ ∈ A∪ {σ}, and say that P may

engage in γ and thereafter behave like P ′. Sometimes it is also convenient to write

(i) P
γ

−→ for ∃P ′. P
γ

−→ P ′, (ii)
σ

−→
k

for k ∈ N consecutive clock transitions,

with N including 0, and (iii) P
w

−→ P ′, where either w = ε and P ≡ P ′, or

w = γw′ for some γ ∈ A ∪ {σ} and w′ ∈ (A ∪ {σ})∗, and ∃P̂ . P
γ

−→ P̂
w′

−→ P ′.

Table 1. Operational semantics for TACS
lt (action transitions)

Act
−−

α.P
α

−→ P
Rel

P
α

−→ P ′

P [f]
f(α)
−→ P ′[f]

Rec
P

α
−→ P ′

µx.P
α

−→ P ′[µx.P/x]

Sum1
P

α
−→ P ′

P + Q
α

−→ P ′

Sum2
Q

α
−→ Q′

P + Q
α

−→ Q′

Res
P

α
−→ P ′

P \ L
α

−→ P ′ \ L
α /∈L∪L

Com1
P

α
−→ P ′

P |Q
α

−→ P ′|Q
Com2

Q
α

−→ Q′

P |Q
α

−→ P |Q′

Com3
P

a
−→ P ′ Q

a
−→ Q′

P |Q
τ

−→ P ′|Q′

The action–prefix term α.P may engage in action α and then behave like P .
It may also idle, i.e., engage in a clock transition to itself, as process 0 does. The
clock–prefix term σ.P can engage in a clock transition to P and ensures that
there is a delay of at least one time unit before P is activated. The summation

operator + denotes nondeterministic choice: P + Q may behave like P or Q;
according to the deterministic nature of time, a clock transition cannot resolve
choices. The restriction operator \L prohibits the execution of actions in L ∪ L
and, thus, permits the scoping of actions. P [f] behaves exactly as P with actions
renamed by the relabeling f . The term P |Q stands for the parallel composition

of P and Q according to an interleaving semantics with synchronized commu-
nication on complementary actions, resulting in the internal action τ . Again,
time has to proceed equally on both sides of the operator, i.e., deterministically.
Finally, µx. P denotes recursion, it behaves as a distinguished solution to the
equation x = P . The rules for action transitions are the same as for CCS, with
the exception of the new clock–prefix operator and the rule for recursion; how-
ever, the latter is equivalent to the standard CCS rule over guarded terms [5].

The operational semantics for TACS
lt possesses several important proper-

ties [14]. Firstly, any process can perform a clock transition due to our adoption
of a lazy nil–process 0 and a lazy prefix operator. Secondly, the semantics is time–

deterministic, i.e., progress of time does not resolve choices. Formally, P
σ

−→ P ′

and P
σ

−→ P ′′ implies P ′ ≡ P ′′, for all P, P ′, P ′′ ∈ P̂ , which can easily be proved
via induction on the structure of P .

Table 2. Operational semantics for TACS
lt (clock transitions)

tNil
−−

0
σ

−→ 0
tRec

P
σ

−→ P ′

µx.P
σ

−→ P ′[µx.P/x]
tRes

P
σ

−→ P ′

P \ L
σ

−→ P ′ \ L

tAct
−−

α.P
σ

−→ α.P
tSum

P
σ

−→ P ′ Q
σ

−→ Q′

P + Q
σ

−→ P ′ + Q′

tRel
P

σ
−→ P ′

P [f]
σ

−→ P ′[f]

tPre
−−

σ.P
σ

−→ P
tCom

P
σ

−→ P ′ Q
σ

−→ Q′

P |Q
σ

−→ P ′|Q′

3 The Moller–Tofts Preorder

This section first recalls the faster–than preorder introduced by Moller and Tofts
in [20], to which we refer as Moller–Tofts preorder, or MT–preorder for short. As
the section’s main contribution, we prove the compositionality of this preorder
for arbitrary processes, which has only been conjectured by Moller and Tofts.
Indeed, the compositionality proof offered in [20] is restricted to processes that
do not have any parallel operators inside the scope of a recursion. The key
for proving compositionality in the general setting is a nontrivial commutation

lemma that considers what happens when adjacent action and clock transitions
are transposed. This lemma also plays an important role when obtaining the
full–abstraction result presented in the next section.

Definition 1 (MT–preorder [20]). A relation R ⊆ P ×P is an MT–relation

if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′, k, P ′′. Q
σ

−→
k α
−→ Q′, P ′ σ

−→
k

P ′′, and 〈P ′′, Q′〉 ∈ R.

2. Q
α

−→ Q′ implies ∃P ′. P
α

−→ P ′ and 〈P ′, Q′〉 ∈ R.

3. P
σ

−→ P ′ implies ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

4. Q
σ

−→ Q′ implies ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P =
∼mt

Q if 〈P, Q〉 ∈ R for some MT–relation R, and call =
∼mt

the
MT–preorder.

Technically, all conditions of this definition, with the exception of the first one,
are identical to the ones of temporal strong bisimulation (cf., e.g., [8]). Intuitively,
the weaker first condition states that, if the faster process P can perform an
action, then the slower process Q must not match this action right away, but can
perform an arbitrary number k of time steps before doing so. However, delaying
k time steps may make the resulting process Q′ faster than P ′. To account for
this, Moller and Tofts suggest that P ′ performs k time steps of its own, resulting
in process P ′′ that should then be faster than Q′. To see the necessity for this,
consider the processes a.0|σ.b.0 and σ.a.0|σ.b.0, for which a sensible faster–than

preorder should clearly identify the former process as the faster one. Here, the
a–transition of the former process to 0|σ.b.0 can only be matched by the latter
process after a delay of one time unit, leading to 0|b.0. However, 0|σ.b.0 is not
faster than 0|b.0, but only if it has delayed a time unit as well. Forcing the faster
process to match the delay of the slower one immediately seems arbitrary and
restrictive. Nevertheless, we will show in the next section that this is not the
case and that there is a very natural explanation for this.

It is easy to see that =
∼mt

is indeed a preorder, i.e., it is reflexive and transitive,
and that it is the largest MT–relation. Moreover, if one studies CCS process
terms only, i.e., TACS

lt processes not containing any clock prefix operator, then
two processes are related in the MT–preorder if and only if they are strongly
bisimular. This is because here all clock transitions are idling transitions, i.e.,
σ–loops; vice versa, every process can idle due to the laziness property. Hence,
CCS is a sub–calculus of TACS

lt.

Theorem 2 (Precongruence). The MT–preorder =
∼mt

is a precongruence for

all TACS
lt operators.

The only difficult and non–standard part of the proof concerns compositionality
regarding parallel composition and is based on the following commutation lemma.

Lemma 3 (Commutation). Let P, P ′ ∈ P and w ∈ (A ∪ {σ})∗. If P
w

−→
σ

−→
k
P ′, for k∈N, then ∃P ′′. P

σ
−→

k w
−→ P ′′ and P ′=

∼mt
P ′′.

The commutation lemma states that a delay, i.e., one or more clock transitions,
after a given sequence of transitions can also be made before this sequence.
Moreover, the earlier a delay is performed, the slower the resulting process is.
The proof of this lemma is non–trivial and requires the introduction of a sim-
ple syntactic faster–than relation on process terms that essentially encodes the
syntactic implications of our intuition that any term P should be faster than σ.P .

Definition 4. The relation � ⊆ P̂ × P̂ is defined as the smallest relation satis-
fying the following properties, for all P, P ′, Q, Q′ ∈ P̂.

Always: (1) P � P (2) P � σ.P
If P ′ � P and Q′ � Q: (3) P ′|Q′ � P |Q (4) P ′ + Q′ � P + Q

(5) P ′ \ L � P \ L (6) P ′[f] � P [f]
If P ′ � P and x guarded in P : (7) P ′[µx. P/x] � µx. P

Observe that relation � is not transitive and that it is also defined for open
terms. It is interesting to note that � is adopted from [17], where we studied
bisimulation–based faster–than relations for upper time bounds.

Important properties are: �| P×P is an MT–relation, i.e. a syntactically faster
process is also semantically faster; the process resulting from a clock-transition
is syntactically and hence semantically faster than the initial process.

4 The MT–Preorder is Fully–Abstract

While the MT–preorder is algebraically appealing due to its precongruence prop-
erty, it does not necessarily seem to be a natural choice for defining a faster–than
relation. As mentioned earlier, Def. 1 requires that differences in delays between
processes must be accounted for within one step of matching, and hence not
all the future behaviour of P ′ in Part 1 is considered. In the following we ex-
plore an alternative amortized view of faster–than, where the differences can
be smoothened out over several steps. Technically, we will prove that the MT–
preorder is fully–abstract with respect to this amortized preorder, which demon-
strates that the MT–preorder has indeed very intuitive roots.

Definition 5 (Amortized faster–than preorder). A family (Ri)i∈N of re-
lations over P is a family of faster–than relations if, for all i ∈ N, 〈P, Q〉 ∈ Ri,
and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′, k. Q
σ

−→
k α
−→ Q′ and 〈P ′, Q′〉 ∈ Ri+k .

2. Q
α

−→ Q′ implies ∃P ′, k≤i. P
σ

−→
k α
−→ P ′ and 〈P ′, Q′〉 ∈ Ri−k .

3. P
σ

−→ P ′ implies ∃Q′, k≥0. k ≥ 1 − i, Q
σ

−→
k

Q′, and 〈P ′, Q′〉 ∈ Ri−1+k.

4. Q
σ

−→ Q′ implies ∃P ′, k≥0. k ≤ i + 1, P
σ

−→
k

P ′, and 〈P ′, Q′〉 ∈ Ri+1−k.

We write P =
∼i

Q if 〈P, Q〉 ∈ Ri for some family of faster–than relations (Ri)i∈N,
and call =

∼0
the amortized faster–than preorder.

This definition reflects our intuition that processes that perform delays later
along execution paths are faster than functionally equivalent ones that perform
delays earlier; this is because the former processes are executing actions at earlier
absolute times (as measured from the start of the processes) than the latter
ones. Def. 5 formalizes this intuition as follows: P =

∼i
Q means that Q, or rather

some predecessor of Q, has already performed i clock transitions that were not
matched by P ; therefore, P has a credit of i clock transitions that it might
perform later without a match by Q (cf. Part (3) for k = 0). Any extra delays
of the slower process when matching an action or clock transition of the faster
process, increase credit i accordingly (cf. Parts (1) and (3) for k > 1). Vice versa,
an action or clock transition of the slower process does not necessarily have to
be matched directly by the faster one: the latter may delay up to as many clock
transitions as are allowed by the current credit i (cf. Parts (2) and (4)).

Processes P =df c.a.σ.b.0 + c.a.b.0 and Q =df c.a.b.0 exhibit the differ-
ence to the MT–preorder. The family of faster–than relations defined by R0 =df

{〈P, Q〉}∪{〈R, R〉 | R ∈ P}, R1 =df {〈a.σ.b.0, a.b.0〉, 〈σ.b.0, b.0〉, 〈b.0, b.0〉, 〈0,0〉},

and Ri =df ∅, for i>1, testifies to P =
∼0

Q; note that P
c

−→ a.σ.b.0 is matched by

Q
σ

−→
c

−→ a.b.0. However, we do not have P =
∼mt

Q. The step P
c

−→ a.σ.b.0 could

only be matched by Q
σ

−→
k c
−→ a.b.0 for some k ∈ N. Since a.σ.b.0

σ
−→

k
a.σ.b.0,

for any k, this would require a.σ.b.0=
∼mt

a.b.0, which is clearly wrong.
It can be shown that the amortized faster–than preorder is indeed a preorder

and that (=
∼i

)i∈N is the (componentwise) largest family of faster–than relations.

However, there is an important shortcoming: =
∼0

is not preserved under par-
allel composition. Consider the processes P and Q above, where P =

∼0
Q. For

R =df µx.(σ.d.0 |σ.x), where d is a ‘fresh’ action not occurring in the sorts
of P and Q, one may show that P |R 6 =∼0

Q |R. The reason for this is as fol-

lows. Transition P |R
c

−→ a.σ.b.0 |R would need to be matched by a sequence

of transitions Q |R
σ

−→
k c
−→ a.b.0 | d.0 | · · · | d.0 |R, for some k∈N and k paral-

lel components d.0, such that a.σ.b.0 |R =
∼k

a.b.0 | d.0 | · · · | d.0 |R would hold.
Now, let the latter process engage in all d–computations of the k components d.0.
Since d is a fresh action, these can only be matched by unfolding k–times pro-
cess R in a.σ.b.0 |R and executing k clock transitions and k d–transitions. Thus,
a.σ.b.0 |R =

∼0
a.b.0 |R would follow necessarily, i.e., no credit remains. While the

right–hand process can now engage in the sequence a.b, the left–hand process
can only match action a, but not also action b due to the lack of credit.

To address this compositionality problem of =
∼0

we refine its definition.

Definition 6 (Amortized faster–than precongruence). A family (Ri)i∈N

of relations over P is a precongruence family if, for all i ∈ N, 〈P, Q〉 ∈ Ri, and
α ∈ A:

1. P
α

−→ P ′ implies ∃Q′, k. Q
σ

−→
k α
−→ Q′ and 〈P ′, Q′〉 ∈ Ri+k .

2. Q
α

−→ Q′ implies ∃P ′, k ≤ i. P
σ

−→
k α
−→ P ′ and 〈P ′, Q′〉 ∈ Ri−k.

3. P
σ

−→ P ′ implies (a) i > 0 and 〈P ′, Q〉 ∈ Ri−1, or

(b) i = 0 and ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ Ri.
4. Q

σ
−→ Q′ implies 〈P, Q′〉 ∈ Ri+1.

We write P =

'i
Q if 〈P, Q〉 ∈ Ri for some precongruence family (Ri)i∈N and

call =

'0
the amortized faster–than precongruence.

One can show that this amortized faster–than precongruence is indeed a preorder
and that (=

'i
)i∈N is the (componentwise) largest family of faster–than relations.

This preorder’s definition is identical to the one of the amortized faster–than
preorder, with the exception that a delay of the faster process now always results
in consuming any available credit, while any delay of the slower process results in
increasing the credit available to the faster one. As a consequence, it is easy to see
that the amortized faster–than precongruence refines the amortized faster–than
preorder, i.e., =

'0
⊆ =

∼0
.

Theorem 7 (Coincidence). The preorders =

'0
and =

∼mt
coincide.

As a consequence, =

'0
is not only a preorder but indeed a precongruence, since =

∼mt

is a precongruence. Note, however, that the relations =

'i
, for i > 0, are not pre-

congruences; for example, σ.b.0 =

'1
b.0 but not a.σ.b.0 =

'1
a.b.0 due to Def. 6(3).

Theorem 8 (Full abstraction). The preorder =

'0
is the largest precongruence

contained in =
∼0

.

Intuitively, Thms. 7 and 8 show that the MT–preorder rests on a very natural,
amortized view of the notion of faster–than. Henceforth, we will call =

∼mt
= =

'0

the strong faster–than precongruence.

5 Axiomatizing the Moller–Tofts Preorder

We give a sound and complete axiomatization of our strong faster–than precon-
gruence =

∼mt
for the class of finite processes, which do not contain any recursion

operator. This allows one to compare our semantic theory for a calculus with
lower time bounds, with the one developed for a calculus with upper time bounds
presented in [17], as well as with the CCS theory of strong bisimulation [18].

Table 3. Axiom system for finite processes

(A1) t + u = u + t (D1) 0[f] = 0

(A2) t + (u + v) = (t + u) + v (D2) (α.t)[f] = f(α).(t[f])
(A3) t + t = t (D3) (σ.t)[f] = σ.(t[f])
(A4) t + 0 = t (D4) (t + u)[f] = t[f] + u[f]

(P3) t + σ.t = t (C1) 0 \ L = 0

(P4) σ.(t + u) = σ.t + σ.u (C2) (α.t) \ L = 0 α ∈ L ∪ L

(P5) t w σ.t (C3) (α.t) \ L = α.(t \ L) α /∈ L ∪ L
(C4) (σ.t) \ L = σ.(t \ L)

(P6) α.t = α.σ.t + α.t (C5) (t + u) \ L = (t \ L) + (u \ L)

Let t ≡
∑

i∈I
αi.ti [+ σ.tσ] and u ≡

∑
j∈J

βj .uj [+ σ.uσ] .

(E) t|u =
∑

i∈I
αi.(ti|u) +

∑
j∈J

βj .(t|uj) +
∑

αi=βj
τ.(ti|uj) +

0 if both σ.tσ, σ.uσ are absent
σ.(((

∑
i∈I

αi.ti) + tσ) | (
∑

j∈J
βj .uj)) if only σ.uσ is absent

σ.((
∑

i∈I αi.ti) | ((
∑

j∈J βj .uj) + uσ)) if only σ.tσ is absent

σ.(((
∑

i∈I
αi.ti) + tσ) | ((

∑
j∈J

βj .uj) + uσ)) otherwise

The axioms for our MT–precongruence are shown in Table 3, where a term
in square brackets is optional. Moreover,

∑
is the indexed version of +, and we

adopt the convention that the sum over the empty index set is identified with
process 0. Any axiom of the form t = u should be read as two axioms t w u
and u w t. We write ` t w u if t w u can be derived from the axioms.

Axioms (A1)–(A4), (D1)–(D4), and (C1)–(C5) are exactly the ones for strong
bisimulation in CCS [18]. Hence, the semantic theory of our calculus is distin-
guished from the one for strong bisimulation by the additional Axioms (P3)–(P6)
and the refined expansion law (E). Further, it is distinguished from the one for
the faster–than preorder for upper time bounds [17] by leaving out Axioms (P1)
and (P2) related to enforcing upper time bounds, and by adding Axiom (P6).
Intuitively, this added axiom states that inserting a delay within a path of a
process does not alter the speed of the process, as long as there exists a func-
tionally equivalent path without delay; this shows that our theory concentrates
on best–case behavior by ignoring the slower summand that has the optional
delay. Axiom (P6) generalizes to

(P6’) α.P = α.σk .P + α.P ,

for any k ∈ N, by repeated application; here, “σk.” stands for k nested clock
prefixes. Axiom (P3) is similar in spirit to Axiom (P6) but cannot be derived
from the other axioms. Axiom (P4) is a standard axiom in timed process algebras
and testifies to the fact that time is a deterministic concept and does not resolve
choices. Finally, Axiom (P5) encodes our elementary intuition of clock prefixes
and speed within TACS

lt, namely that any process t is faster than process σ.t,
which must delay the execution of t by one clock tick.

The correctness of our axioms relative to =
∼mt

can be established as usual [18].
Note that all axioms, with the exception of the Expansion Axiom (E) and Ax-
iom (P3), are sound for arbitrary processes, not only for finite ones. It should
be noted here that the axioms presented in [20] do not completely correspond
with the MT–preorder, as has also been noted by Moller and Tofts since the
publication of their paper in 1991 [priv. commun.]. For example, a.σ.b.0 + a.b.0
is as fast as a.b.0, which does not seem to be derivable from the axioms in [20].
In our theory, this example is a simple instantiation of Axiom (P6).

Moller and Tofts claim in [20] that the “standard” expansion law [18] for
faster–than relations based on lower time bounds does not hold, even for finite
processes. While this observation is true for arbitrary processes, it is incorrect
for finite ones. As a simple example we have a.0 |σ.b.0 = a.(0|σ.b.0)+σ.(a.0|b.0),
contrary to the claims in [20].

The proof for the completeness of our axiomatization is based on the following
notion of normal form.

Definition 9 (Normal form). A finite process t is in normal form if

t ≡
∑

i∈I

αi.ti [+ σ.tσ] ,

where (i) I denotes a finite index set, (ii) αi ∈ A for all i ∈ I , (iii) all the ti are
in normal form, and (iv) the subterm in brackets is optional and, if it exists, tσ

is in normal form
∑

j∈J βj .uj [+ σ.uσ] and ∀i∈I ∃j ∈J. αi.ti ≡ βj .uj .

Theorem 10 (Correctness & completeness). For finite processes t and u
we have: ` t w u if and only if t =

∼mt
u.

6 Example

This section applies our semantic theory to a simple example dealing with two
implementations of a two–place storage in terms of two cells and a buffer, respec-
tively (cf., [18]). For simplifying the presentation we specify recursion via recur-
sive process equations in the style of Milner [18], instead of using our recursion
operator. The two–cells system is defined as the parallel composition of two one–

place cells C0
def
= in.C1, where C1

def
= σ.out.C0. The two–place buffer B0 is given

by the process equations B0
def
= in.B1, B1

def
= σ.out.B0 + in.B2 and B2

def
= σ.out.B1.

As is reflected by the σ–prefixes in front of the out–prefixes, both cells C0 and
the two–place buffer B0 have to delay at least one time unit until they can offer

a communication on port out. Intuitively, one would expect the two cell system
to be strictly faster, since if both cells are full, then both data items stored may
be output after a delay of only one time unit, while the buffer requires a delay
of at least two time units until it may release the second data item.

As desired, our semantic theory for TACS
lt relates C0 |C0 and B0. Formally,

this may be witnessed by the MT–relation given below, in which we employ the
abbreviations C ′

1 =df out.C0, B′
1 =df out.B0 + in.B2, and B′

2 =df out.B1.

〈C0 |C0 , B0 〉 〈C1 |C0 , B1 〉 〈C0 |C1 , B1 〉 〈C ′
1 |C0 , B′

1 〉
〈C0 |C

′
1 , B′

1 〉 〈C1 |C1 , B2 〉 〈C ′
1 |C1 , B2 〉 〈C1 |C

′
1 , B2 〉

〈C ′
1 |C

′
1 , B′

2 〉 〈C ′
1 |C0 , B1 〉 〈C0 |C ′

1 , B1 〉

It is easy to check, by referring to Def. 1, that this relation is indeed an MT–
relation, whence C0 |C0

=
∼mt

B0. Vice versa, B0
=
∼mt

C0 |C0 does not hold accord-

ing to Def. 1, since C0 |C0 can engage in the transition sequence C0 |C0
in
−→

in
−→

σ
−→

out
−→

out
−→, which cannot be matched by B0. Thus, the two–cells system is faster

than the two–place buffer in all contexts, although functionally equivalent, which
matches our intuition mentioned above.

Another example, which compares the speeds of different forms of mail deliv-
ery and originates in [20], can be adapted from our earlier work on faster–than
relations for processes with upper time bounds [17]. This adaptation only re-
quires one to interpret σ–prefixes as lower time bounds instead of upper time
bounds. The axiomatic reasoning may then proceed as in [17], which only em-
ploys axioms that are part of the axiom system presented in Sec. 5, too.

7 Abstracting from Internal Computation

As usual in process algebra, one wishes to coarsen a semantic theory by abstract-
ing from the internal action τ , which is supposed to be hidden from an external
observer. While doing this is usually quite straightforward for CCS–based cal-
culi [18], it turns out to be highly non–trivial here, which we guess may be the
reason why it has not been attempted by Moller and Tofts in [20].

We start off by defining a weak version of our reference preorder, the amor-
tized faster–than preorder, which requires us to introduce the following auxiliary
notations. For any action α we define α̂ =df ε, if α = τ , and α̂ =df α, otherwise.

Further, we let
ε

=⇒ =df
τ

−→
∗

and write P
γ

=⇒ Q, where γ ∈ A ∪ {σ}, if there

exist R and S such that P
ε

=⇒ R
γ

−→ S
ε

=⇒ Q. We also let
σ

=⇒
0

stand for
ε

=⇒.

Definition 11 (Weak amortized faster–than preorder). A family (Ri)i∈N

of relations over P is a family of weak faster–than relations if, for all i ∈ N,
〈P, Q〉 ∈ Ri, and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′, k, k′. Q
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

Q′ and 〈P ′, Q′〉 ∈ Ri+k+k′ .

2. Q
α

−→ Q′ implies ∃P ′, k, k′. k+k′ ≤ i, P
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

P ′ and
〈P ′, Q′〉 ∈ Ri−k−k′ .

3. P
σ

−→ P ′ implies ∃Q′, k≥0. k ≥ 1−i, Q
σ

=⇒
k
Q′, and 〈P ′, Q′〉 ∈ Ri−1+k .

4. Q
σ

−→ Q′ implies ∃P ′, k≥0. k ≤ i+1, P
σ

=⇒
k
P ′, and 〈P ′, Q′〉 ∈ Ri+1−k .

We write P =

≈i
Q if 〈P, Q〉 ∈ Ri for some family of weak faster–than rela-

tions (Ri)i∈N, and call =

≈0
the weak amortized faster–than preorder.

Relation =

≈0
is indeed a preorder; while reflexivity is obvious, establishing transi-

tivity is simple but nontrivial. The best way of proving transitivity is by showing
that Rk =df {

=

≈i
◦ =

≈j
| i+j = k }, for k ∈ N, is a family of weak faster–than

relations. Moreover, one may check that (=

≈i
)i∈N is the (componentwise) largest

family of weak faster–than relations.
Our weakening of the amortized faster–than preorder might appear surprising

at first sight, due to the presence of
σ

=⇒
k′

trailing weak action transitions on the
right–hand side of the definition. As usual for weak bisimilarity, one may have
a number of internal transitions before and after a matching action transition,
and to get to these trailing internal transitions one may need to pass further
clock transitions.

As in the strong case, it is easy to see that =

≈0
is not a precongruence, even

not for parallel composition. For reasons we cannot discuss for lack of space, we
define the following weak variant of the MT–preorder. (Observe the requirements

P ′ σ
−→

k+k′

P ′′ in (1) and P
σ

−→ P ′ in (4).)

Definition 12 (Weak MT–preorder). A relation R ⊆ P ×P is a weak MT–

relation if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′, k, P ′′, k′. Q
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

Q′, P ′ σ
−→

k+k′

P ′′, and
〈P ′′, Q′〉 ∈ R.

2. Q
α

−→ Q′ implies ∃P ′. P
α̂

=⇒ P ′ and 〈P ′, Q′〉 ∈ R.

3. P
σ

−→ P ′ implies ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

4. Q
σ

−→ Q′ implies ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P =

≈mt
Q if 〈P, Q〉 ∈ R for some weak MT–relation R, and call =

≈mt
the

weak MT–preorder.

Relation =

≈mt
is a preorder, but the proof of transitivity is difficult. It is obvious

from Defs. 1 and 12 that the MT–preorder =
∼mt

is a weak MT-relation and

hence included in =

≈mt
. Further, =

≈mt
is included in the weak amortized faster–

than preorder =

≈0
, since one can prove that Ri =df {〈P, Q〉 |P

σ
−→

i
P ′=

≈mt
Q} is

a family of weak faster–than relations.

Proposition 13. The weak MT–preorder =

≈mt
is compositional for all TACS

lt

operators except summation.

As expected for a CCS–based process calculus, =

≈mt
is not a precongruence for

summation, but the summation fix used for other bisimulation–based timed pro-
cess algebras proves adequate for TACS

lt, too.

Definition 14 (Weak MT–precongruence). A relation R ⊆ P×P is a weak

MT–precongruence relation if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′, k, P ′′, k′. Q
σ

=⇒
k α
=⇒

σ
=⇒

k′

Q′, P ′ σ
−→

k+k′

P ′′, and
P ′′ =

≈mt
Q′.

2. Q
α

−→ Q′ implies ∃P ′. P
α

=⇒ P ′ and P ′ =

≈mt
Q′.

3. P
σ

−→ P ′ implies ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

4. Q
σ

−→ Q′ implies ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P =

umt
Q if 〈P, Q〉 ∈ R for some weak MT–precongruence relation R,

and call =

umt
the weak MT–precongruence.

Again, =

umt
is a preorder and the largest weak MT–precongruence relation. It is

worth pointing out that the strong faster–than precongruence =
∼mt

is contained

in the weak faster–than precongruence =

umt
, which follows by inspecting the

respective definitions. The recursive definition of the weak MT–precongruence
employed in (3) and (4) above reflects the fact that clock transitions do not
resolve choices.

Theorem 15. =

umt
is the largest precongruence contained in =

≈mt
.

It remains an open question whether the weak MT–precongruence is also the
largest precongruence contained in the weak amortized faster–than preorder.
Our attempts of finding a suitable context for proving this full–abstraction result
have been unsuccessful so far. Nevertheless we believe in the validity of such a
result and are optimistic to identify a simpler formulation of the weak MT–
preorder, referring to fewer internal computation steps, from which the desired
context may be derived.

8 Related Work

Although there is a wealth of literature on timed process algebras [6], little
work has been done in developing theories for relating processes with respect
to speed. The approaches closest to ours are obviously the one by Moller and
Tofts regarding processes equipped with lower time bounds [20], and our own
one regarding processes equipped with upper time bounds [17]. As these have
been referred to and discussed throughout, we refrain from repetitions here.

The probably best–known related work focuses on comparing process effi-

ciency rather than process speed. Arun–Kumar and Hennessy [3, 4] have devel-
oped a bisimulation–based theory for untimed processes that is based on counting
internal actions, which was later carried over to De Nicola and Hennessy’s testing
framework [12] by Natarajan and Cleaveland [21]. In these theories, runs of par-
allel processes are seen to be the interleaved runs of their component processes.
Consequently, e.g., (τ.a.0 | τ.a.b.0) \ {a} is as efficient as τ.τ.τ.b.0, whereas, in
our setting, (σ.a.0 |σ.a.b.0) \ {a} is strictly faster than σ.σ.τ.b.0.

The sparse work on comparing process speeds largely concentrated on worst–
case timing behavior on the basis of upper time bounds. Research by Vogler et
al. [16, 23] originally employed the concurrency–theoretic framework of Petri
nets and testing semantics; it has only recently been carried over to the process
algebra PAFAS [11] and is discussed in [17]. Simultaneously, Corradini et al. [10]
pursued a different idea for relating processes with respect to speed, which is
known as the ill–timed–but–well–caused approach [2, 13]. This approach allows
system components to attach local time stamps to actions. Since actions may
occur as in an untimed process algebra, local time stamps may decrease within
a sequence of actions which is exhibited by several processes running in parallel.
The presence of these “ill–timed” runs makes it difficult to relate the faster–than
preorder of Corradini et al. to the one of Moller and Tofts; a modified approach
that restricts attention to “well–timed” behaviour might allow some meaningful
result.

9 Conclusions and Future Work

In previous work [17], the authors investigated bisimulation–based preorders that
relate the speeds of asynchronous processes relative to given upper time bounds,
specifying when actions have to be executed at the latest. The present paper
considered the case of lower time bounds, specifying when actions may be exe-
cuted at the earliest, by revisiting the seminal approach of Moller and Tofts [20].
Although Moller and Tofts’ work was published more than a decade ago and the
first one to introduce a faster–than relation in timed process algebra, it was never
followed up in the literature – except for [1] where characteristic formulae are
provided. One reason for this might be the absence of strong theoretical results,
including the absence of a compositionality result for arbitrary processes, of a
full–abstraction result, and of a complete axiomatization for finite processes, as
well as the bleak picture drawn in [20] for achieving such results elegantly.

This paper established these nontrivial results by introducing some novel
process–algebraic techniques, including a commutation lemma between action
and clock transitions. In particular, we proved a full–abstraction theorem with
respect to a very intuitive amortized preorder that uses bookkeeping for deciding
whether one process is faster than another. In addition, an expansion law was
established for finite processes, which paved the way for a sound and complete
axiomatization of the Moller–Tofts preorder. This not only testifies to the nature
of the MT–preorder but also highlights its importance among the sparse related
work in the field. Last, but not least, a variant of the MT–preorder that abstracts
from internal, unobservable actions was studied.

Future work should proceed along three directions. First, we wish to complete
the theory for our weak MT–precongruence by establishing the conjectured full–
abstraction result. Second, the developed preorders should be implemented in a
formal verification tool, such as the Concurrency Workbench NC [9]. Third, we
intend to integrate our theory for lower time bounds with our earlier work on

upper time bounds [17], thereby exploring the appropriateness of our faster–than
approaches for settings with restricted asynchrony.

References

[1] L. Aceto, A. Ingólfsdóttir, M. L. Pedersen, and J. Poulsen. Characteristic formulae
for timed automata. RAIRO, Theoretical Informatics and Applications, 34:565–
584, 2000.

[2] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inform.,
33(4):317–350, 1996.

[3] S. Arun-Kumar and M.C.B. Hennessy. An efficiency preorder for processes. Acta

Inform., 29(8):737–760, 1992.
[4] S. Arun-Kumar and V. Natarajan. Conformance: A precongruence close to bisim-

ilarity. In STRICT ’95, Workshops in Comp., pp. 55–68. Springer-Verlag, 1995.
[5] E. Badouel and P. Darondeau. On guarded recursion. TCS, 82(2):403–408, 1991.
[6] J.C.M. Baeten and C.A. Middelburg. Process algebra with timing: Real time and

discrete time. In Bergstra et al. [7], ch. 10, pp. 627–684.
[7] J.A. Bergstra, A. Ponse, and S.A. Smolka, eds. Handbook of Process Algebra.

Elsevier Science, 2001.
[8] R. Cleaveland, G. Lüttgen, and M. Mendler. An algebraic theory of multiple

clocks. In CONCUR ’97, vol. 1243 of LNCS, pp. 166–180. Springer-Verlag, 1997.
[9] R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In CAV ’96,

vol. 1102 of LNCS, pp. 394–397. Springer-Verlag, 1996.
[10] F. Corradini, R. Gorrieri, and M. Roccetti. Performance preorder and competitive

equivalence. Acta Inform., 34(11):805–835, 1997.
[11] F. Corradini, W. Vogler, and L. Jenner. Comparing the worst-case efficiency of

asynchronous systems with PAFAS. Acta Informatica, 38:735–792, 2002.
[12] R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. TCS,

34(1-2):83–133, 1984.
[13] R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with dura-

tional actions. TCS, 140(1):73–94, 1995.
[14] M.C.B. Hennessy and T. Regan. A process algebra for timed systems. Inform.

and Comp., 117(2):221–239, 1995.
[15] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[16] L. Jenner and W. Vogler. Fast asynchronous systems in dense time. TCS, 254(1-

2):379–422, 2001.
[17] G. Lüttgen and W. Vogler. A faster-than relation for asynchronous processes.

In CONCUR 2001, vol. 2154 of LNCS, pp. 262–276. Springer-Verlag, 2001. Full
version to appear in Inform. and Comp. under the title Bisimulation on Speed:

Worst–Case Efficiency.
[18] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[19] F. Moller and C. Tofts. A temporal calculus of communicating systems. In

CONCUR ’90, vol. 458 of LNCS, pp. 401–415. Springer-Verlag, 1990.
[20] F. Moller and C. Tofts. Relating processes with respect to speed. In CONCUR ’91,

vol. 527 of LNCS, pp. 424–438. Springer-Verlag, 1991.
[21] V. Natarajan and R. Cleaveland. An algebraic theory of process efficiency. In

LICS ’96, pp. 63–72. IEEE Computer Society Press, 1996.
[22] S. Schneider. An operational semantics for timed CSP. Inform. and Comp.,

116(2):193–213, 1995.
[23] W. Vogler. Faster asynchronous systems. In CONCUR ’95, vol. 962 of LNCS, pp.

299–312. Springer-Verlag, 1995.

