
Bisimulation on Speed: A Unified Approach

Gerald Lüttgen1 and Walter Vogler2

1 Department of Computer Science, University of York, York YO10 5DD, U.K.,
luettgen@cs.york.ac.uk

2 Institut für Informatik, Universität Augsburg, D–86135 Augsburg, Germany,
vogler@informatik.uni-augsburg.de

Abstract. Two process–algebraic approaches have been developed for
comparing two bisimulation–equivalent processes with respect to speed:
the one of Moller/Tofts equips actions with lower time bounds, while the
one by Lüttgen/Vogler considers upper time bounds instead.
This paper sheds new light on both approaches by testifying to their
close relationship. We introduce a general, intuitive concept of “faster–
than”, which is formalised by a notion of amortised faster–than preorder.
When closing this preorder under all contexts, exactly the two faster–
than preorders investigated by Moller/Tofts and Lüttgen/Vogler arise.
For processes incorporating both lower and upper time bounds we also
show that the largest precongruence contained in the amortised faster–
than preorder is not a proper preorder but a timed bisimulation. In the
light of this result we systematically investigate under which circum-
stances the amortised faster–than preorder degrades to an equivalence.

1 Introduction

Process algebras provide a popular framework for modelling and analysing the
communication behaviour of asynchronous systems. Various extensions of classic
process algebras, e.g., Milner’s Calculus of Communicating Systems (CCS) [12],
are also well established in the literature, including timed process algebras. Timed
process algebras add constructs for modelling timeouts and delays of actions,
and thus enable one to reason not only about the communication, or functional,
behaviour of processes but also about their timing behaviour. Despite the vast
literature on timed process algebra, most of which has concentrated on capturing
behaviour in terms of process equivalence and refinement, there is relatively little
work on relating functionally equivalent processes with respect to speed. This is
surprising since designers of distributed algorithms are very interested in knowing
which one out of several possible solutions to a given problem is the most time
efficient one. Indeed, time efficiency is not something that can only be decided
once an algorithm is implemented — often lower and/or upper time bounds on
the algorithm’s actions are known at design time.

Within timed process algebra, the idea of “faster–than” was first addressed
by Moller and Tofts [14] who studied an extension of CCS, called TACS

lt in this
paper, that allows for specifying lower time bounds of actions. They proposed the

MT–preorder which refines bisimulation [12] and has recently been put on firm
theoretical grounds via a full–abstraction result established by us in [11]. Previ-
ously, we had also investigated an analogous approach to extending CCS with
upper time bounds of actions, which resulted in the calculus TACS

ut and the
LV–preorder [10]; this preorder was also justified intuitively by a full–abstraction
result. That latter work complements research in various Petri–net [8, 16] and
process–algebra [4] frameworks based on a testing semantics rather than a bisim-
ulation semantics. The main shortcoming of our previous research is that the ref-
erence preorders for the two full–abstraction results — though similar in spirit —
are quite different in detail and indeed somewhat tuned towards the desired out-
comes. Also, we have not explored, and neither have others in the literature, the
consequences of combining both lower and upper time bounds in a single setting.

This paper presents a unified approach to studying faster–than preorders for
asynchronous processes. It unifies the previously known results on faster–than
preorders in two ways. Firstly, it proposes a natural reference preorder for re-
lating two processes with respect to speed: the amortised faster–than preorder.
This preorder formalises the intuition that the faster process must execute each
action no later than the slower process does, while both processes must be func-
tionally equivalent in the sense of strong bisimulation [12]; here, “no later” refers
to absolute time as measured from the system start, as opposed to relative time
which is used in our operational semantics and describes the passing of time
between actions. Although the amortised faster–than relation is more abstract
than the reference preorders of [10, 11], we show that both the MT–preorder and
the LV–preorder remain fully–abstract in TACS

lt and TACS
ut, respectively.

Secondly, this paper characterises the largest precongruence contained in
the amortised faster–than preorder when combining the calculi TACS

lt and
TACS

ut, so as to being able to specify both lower and upper time bounds of
actions. This is an important open problem in the literature, and it turns out
that the resulting precongruence is not a proper preorder but an equivalence
relation that is a variant of timed bisimulation [13]. The concluding part of this
paper systematically investigates under which circumstances a proper preorder
is obtained, and when exactly the amortised faster–than preorder degrades to
an equivalence. For example, we get a positive result as in [10] when we extend
TACS

ut by actions that may be delayed arbitrarily long; such lazy actions are
useful for modelling system errors that are not bound to occur within some fixed
time interval.

The full–abstraction results of this paper complete the picture of faster–than
preorders within bisimulation–based process algebras. On the one hand, the
various published faster–than preorders can be traced back to the same notion
of “faster–than”, which is rooted in the concept of amortisation. On the other
hand, the amortisation approach highlights the limits for defining a useful faster–
than preorder that fully supports compositionality. Due to space constraints, the
proofs of our results are omitted here but can be found in a technical report [9].

2 Timed Asynchronous Communicating Systems

This section presents our process algebra TACS that combines the timed process
algebras TACS

lt [11] and TACS
ut [10], both of which extend Milner’s CCS [12]

by permitting the specification of lower and respectively upper time bounds for
the execution of actions and processes. These time bounds will be used in the
next sections for comparing processes with respect to speed. Syntactically, TACS

includes two types of actions: lazy actions α and urgent actions α; the idea is
that the former can idle arbitrarily, while the latter have to be performed im-
mediately. It also includes one clock prefixing operator “σ.”, called must–clock

prefix, for specifying minimum delays and another “σ.”, called can–clock prefix,
for specifying maximum delays. Semantically and as in CCS, an action a or a
communicates with the complements a or a, irrespective of whether either action
is urgent. This communication results in an urgent internal action, if both partic-
ipating actions are urgent, and a lazy internal action otherwise. Moreover, TACS

adopts a concept of global, discrete time that behaves as follows: process σ.P
must wait for at least one time unit before it can start executing process P (lower
time bound), while process σ.P can wait for at most one time unit (upper time
bound); thus, σ can be understood as a potential time step. Upper time bounds
are technically enforced by the concept of maximal progress [7], such that time
can only pass if no urgent internal computation can be performed.

Syntax. The syntax of TACS is identical to CCS, except that we include the
two clock–prefixing operators and distinguish between lazy and urgent actions,
as discussed above. Formally, let Λ be a countably infinite set of lazy actions not
including the distinguished unobservable, internal action τ . With every a ∈ Λ
we associate a complementary action a, and define Λ =df {a | a ∈ Λ}. Each lazy
action a ∈ Λ (a ∈ Λ, τ) has an associated urgent variant, i.e., an action a (a,
τ). We define Λ =df {a | a ∈ Λ} and Λ =df {a | a ∈ Λ}, and take A (A) to denote
the set Λ ∪ Λ ∪ {τ} (Λ ∪ Λ ∪ {τ}). Complementation is lifted to Λ ∪ Λ (Λ ∪ Λ)
by defining a =df a (a =df a). We let a, b, . . . (a, b, . . .) range over Λ ∪ Λ (Λ ∪ Λ)
and α, β, . . . (α, β, . . .) over A (A). The syntax of TACS is defined as follows:

P ::= 0 | x | α.P | α.P | σ.P | σ.P | P + P | P |P | P \ L | P [f] | µx.P ,

where x is a variable taken from a countably infinite set V of variables, L ⊆
A\{τ} is a restriction set, and f : A → A is a finite relabelling. A finite relabelling
satisfies the properties f(τ) = τ , f(a) = f(a), and |{α | f(α) 6= α}| < ∞. The

set of all terms is abbreviated by P̂ , and we define L =df {a | a ∈ L}. We use the
standard definitions for the semantic sort sort(P) ⊆ Λ∪Λ of some term P , open

and closed terms, and contexts (terms with a “hole”). Due to our restriction
to finite relabellings, sorts of terms are guaranteed to be finite so that contexts
such as the one needed in the proof of Thm. 13 are well–defined. A variable is
called guarded in a term if each occurrence of the variable is within the scope of
an action– or σ–prefix. Moreover, we require for terms of the form µx.P that x
is guarded in P . Note that, since σ only denotes a potential time step, σ.P can
perform the actions of P immediately, whence σ does not count as a guard.

We refer to closed and guarded terms as processes, with the set of all processes
written as P, and let ≡ stand for syntactic equality.

Table 1. Operational semantics for TACS (action transitions)

Act
−−

α.P
α

−→ P
uAct

−−

α.P
α

−→ P
uPre

P
α

−→ P ′

σ.P
α

−→ P ′

Sum1
P

α
−→ P ′

P + Q
α

−→ P ′

Sum2
Q

α
−→ Q′

P + Q
α

−→ Q′

Rec
P

α
−→ P ′

µx.P
α

−→ P ′[µx.P/x]

Com1
P

α
−→ P ′

P |Q
α

−→ P ′|Q
Com2

Q
α

−→ Q′

P |Q
α

−→ P |Q′

Com3
P

a
−→ P ′ Q

a
−→ Q′

P |Q
τ

−→ P ′|Q′

Rel
P

α
−→ P ′

P [f]
f(α)
−→ P ′[f]

Res
P

α
−→ P ′

P \ L
α

−→ P ′ \ L
α /∈L∪L

Semantics. The operational semantics of a TACS term P ∈ P̂ is given by a
labelled transition system and an urgent action set. The labelled transition sys-
tem has the form 〈P̂ ,A ∪ {σ},−→, P 〉, where P̂ is the set of states, A∪{σ} the

alphabet, −→⊆ P̂ × (A∪{σ})×P̂ the transition relation, and P the start state.
Transitions labelled with an action α are called action transitions that, like in
CCS, are either internal activities or local communications in which two processes
may synchronise to take a joint state change together. Transitions labelled with
the clock symbol σ are called clock transitions representing a recurrent global
synchronisation that encodes the progress of time. Note that transitions are la-
belled by ordinary (lazy) actions only. Urgency is dealt with in an orthogonal
fashion by a notion of urgent action set. This is defined in Table 2 and contains
exactly the urgent actions in which a term can initially engage. Note: the com-
munication of two complementary actions results in an urgent silent action only
if the two participating actions are urgent.

Table 2. Urgent action sets

U(α.P) =df ∅ U(α.P) =df {α} U(0) =df ∅
U(σ.P) =df ∅ U(σ.P) =df ∅ U(x) =df ∅
U(P \ L) =df U(P) \ (L ∪ L) U(P [f]) =df {f(α) |α ∈ U(P)} U(µx.P) =df U(P)

U(P + Q) =df U(P) ∪ U(Q) U(P |Q) =df U(P) ∪ U(Q) ∪ {τ | U(P) ∩ U(Q) 6= ∅}

According to our operational rules, the action–prefix terms α.P and α.P
may engage in action α and then behave like P . The processes α.P (α ∈ A) and
a.P (a ∈ Λ ∪ Λ) may also idle, i.e., engage in a clock transition to themselves,
as process 0 does; the rationale is that even an urgent communication action
may have to wait for a communication partner. Hence, an a–prefix expresses
potential urgency which becomes actual only in a synchronisation with an urgent
complementary action. The must–clock prefix term σ.P can only engage in a
clock transition to P ; thus, σ stands for a delay of exactly one time unit, and
it can be used to define lower time bounds, since P may perform further time

Table 3. Operational semantics for TACS (clock transitions)

tNil
−−

0
σ

−→ 0
tAct

−−

α.P
σ

−→ α.P
tuAct

−−

a.P
σ

−→ a.P

tPre
−−

σ.P
σ

−→ P
tuPre

−−

σ.P
σ

−→ P
tRec

P
σ

−→ P ′

µx.P
σ

−→ P ′[µx.P/x]

tSum
P

σ
−→ P ′ Q

σ
−→ Q′

P + Q
σ

−→ P ′ + Q′

tCom
P

σ
−→ P ′ Q

σ
−→ Q′

P |Q
σ

−→ P ′|Q′

τ /∈ U(P |Q)

tRel
P

σ
−→ P ′

P [f]
σ

−→ P ′[f]
tRes

P
σ

−→ P ′

P \ L
σ

−→ P ′ \ L

steps due to clock prefixes, lazy actions or waiting for a communication. The
can–clock prefix term σ.P can additionally perform any action transition that P
can engage in; in this sense, σ represents a delay of at most one time unit and
can be used to define arbitrary upper time bounds.

The term P |Q stands for the parallel composition of P and Q according to
an interleaving semantics with synchronised communication on complementary
actions resulting in the internal action τ . Time has to proceed equally on both
sides of the operator. The side condition of Rule (tCom) ensures that P |Q can
only progress on σ, if it cannot engage in any urgent internal computation, in
accordance with our notion of maximal progress. Thus, due to the urgency of
the actions, a.P | a.Q cannot perform a time step. On the other hand, a.P | b.Q
or a.P | a.Q can, since communication is not possible or can at least be delayed;
thus, a is urgent but also patient. Note that predicates within structural opera-
tional rules, such as τ /∈ U(P |Q) in Rule (tCom), are well understood.

The summation operator + denotes nondeterministic choice such that P +Q
may behave like P or Q. Again, P +Q can engage in a clock transition and delay
the nondeterministic choice if and only if both P and Q can. Restriction \L,
relabelling [f] and recursion µx. P have the usual meaning.

The rules for action transitions are the same as for CCS, with the exception
of the rules for the new can–clock prefix and for recursion; however, the latter
is equivalent to the standard CCS rule over guarded terms. It is important to
note that both faster–than settings previously investigated by us in [10, 11] can
be found within TACS. The sub–calculus obtained when considering only lazy
actions (urgent actions) and only must–clock prefixing (can–clock prefixing) is
exactly the calculus TACS

lt (TACS
ut) studied in [11] ([10]). For improving

readability we also write P lt (Put) for the set of processes in TACS
lt (TACS

ut).

The operational semantics for TACS possesses several important proper-
ties [7]. Firstly, it is time–deterministic, i.e., progress of time does not resolve

choices. Formally, P
σ

−→ P ′ and P
σ

−→ P ′′ implies P ′ ≡ P ′′, for all P, P ′, P ′′ ∈ P̂ ,
which can easily be proved by induction on the structure of P . This property
is very intuitive, as only actions can resolve choices, and also technically con-
venient. Secondly, by our variant of maximal progress, a guarded term P can
engage in a clock transition exactly if it cannot engage in an urgent internal

transition. Formally, P
σ

−→ if and only if τ /∈ U(P), for all guarded terms P .
In particular, processes in TACS

lt satisfy laziness : they can always engage in
a clock transition. Last, but not least, we note that the sort sort(P) of any
process P is finite. This is because we only allow finite relabellings.

3 Generalised Full–Abstraction Results

This section presents our unified approach to “faster–than” by introducing a
very simple and intuitive preorder, the amortised faster–than preorder, which
captures the essence of faster–than within a bisimulation–based setting, as dis-
cussed below. Using this preorder as a reference preorder, we show that the LV–
preorder [10] and the MT–preorder [14] are fully–abstract within the TACS

ut

and TACS
lt sub–calculi of TACS, respectively.

Definition 1 (Amortised faster–than preorder). A family (Ri)i∈N of rela-
tions over P , indexed by natural numbers (including 0), is a family of amortised

faster–than relations if, for all i ∈ N, 〈P, Q〉 ∈ Ri, and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′, k, l. Q
σ

−→
k α
−→

σ
−→

l
Q′ and 〈P ′, Q′〉 ∈ Ri+k+l.

2. Q
α

−→ Q′ implies ∃P ′, k, l. k+l≤i, P
σ

−→
k α
−→

σ
−→

l
P ′, and 〈P ′, Q′〉 ∈ Ri−k−l.

3. P
σ

−→ P ′ implies ∃Q′, k≥1−i. Q
σ

−→
k
Q′ and 〈P ′, Q′〉 ∈ Ri−1+k.

4. Q
σ

−→ Q′ implies ∃P ′, k≤i+1. P
σ

−→
k
P ′ and 〈P ′, Q′〉 ∈ Ri+1−k.

We write P A
∼i

Q if 〈P, Q〉 ∈ Ri for some family (Ri)i∈N of amortised faster–than
relations, and call A

∼0
the amortised faster–than preorder.

Here,
σ

−→
k

stands for k consecutive clock transitions. It is easy to show that A
∼0

is
indeed a preorder. While reflexivity is obvious, transitivity follows immediately
from the property A

∼i
◦ A
∼j

⊆ A
∼i+j

, for any i, j ∈ N. Furthermore, (A
∼i

)i∈N is the

(componentwise) largest family of amortised faster–than relations.
The above definition reflects our intuition that processes performing delays

later along execution paths are faster than functionally equivalent ones that
perform delays earlier; this is because the former processes are executing actions
at earlier absolute times (as measured from the start of the processes). Consider,
e.g., the processes P =df a.b.σ.σ.c.0 and Q =df σ.a.σ.b.c.0. Roughly speaking,
P executes actions a, b at absolute time 0 and action c at absolute time 2.
Analogously, Q executes action a at absolute time 1 and actions b, c at absolute
time 2. Hence, every action in P is executed earlier than, or at the same absolute
time as in Q, whence P is strictly faster than Q. This idea is formalised in the
above definition as follows: Q is permitted to match an a from P by σa; the
additional time step is saved as a credit by increasing the index of R such
that P can perform this time step when needed, i.e., after its b. Thus, in Def. 1,
an action or clock transition is matched by allowing the matching process fewer
or more clock transitions as far as this is allowed by the available credit; the

difference in the number of clock transitions is added to or subtracted from the
credit. In this sense, our definition canonically captures the idea of amortisation.

The remainder of this paper is concerned with the characterisation of the
largest precongruence contained in A

∼0
, for various sub–calculi of TACS, in par-

ticular TACS
ut and TACS

lt. We will also discuss below which variants of A
∼0

have been used for TACS
ut and TACS

lt in [10, 11], and we will write A
∼

ut

i
and A

∼
lt

i

when restricting A
∼i

to processes in TACS
ut and TACS

lt, respectively.

3.1 The LV–Preorder is Fully Abstract in TACSut

TACS
ut is the sub–calculus of TACS that emerges when restricting ourselves

to urgent actions α and can–clock prefixing σ only, i.e., disregarding lazy actions
and must–clock prefixing. We start off by recalling some definitions from [10].

Definition 2 (LV–preorder [10]). A relation R over Put is an LV–relation

if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′. Q
α

−→ Q′ and 〈P ′, Q′〉 ∈ R.

2. Q
α

−→ Q′ implies ∃P ′. P
α

−→ P ′ and 〈P ′, Q′〉 ∈ R.

3. P
σ

−→ P ′ implies U(Q) ⊆ U(P) and ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

We write P A
∼lv

Q if 〈P, Q〉 ∈ R for some LV–relation R, and call A
∼lv

the LV–
preorder.

This definition is of an elegant simplicity, since an LV–relation essentially com-
bines bisimulation on actions with simulation on clock steps; the condition on the
inclusion of urgent sets is needed to get a precongruence for parallel composition.

We also introduced in [10] an amortised variant of the LV–preorder which,
in contrast to the amortised faster–than preorder of Def. 1, does not allow for
leading and trailing clock transitions when matching action transitions — just
as for the LV–preorder. Also, for matching clock transitions, the increase or
decrease of the credit is restricted.

Definition 3 (Amortised LV–preorder [10]). A family (Ri)i∈N of relations
over Put is a family of amortised LV–relations if, for all i ∈ N, 〈P, Q〉 ∈ Ri, and
α ∈ A:

1. P
α

−→ P ′ implies ∃Q′. Q
α

−→ Q′ and 〈P ′, Q′〉 ∈ Ri.

2. Q
α

−→ Q′ implies ∃P ′. P
α

−→ P ′ and 〈P ′, Q′〉 ∈ Ri.

3. P
σ

−→ P ′ implies (a) ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ Ri, or

(b) i>0 and 〈P ′, Q〉 ∈ Ri−1.

4. Q
σ

−→ Q′ implies (a) ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ Ri, or

(b) 〈P, Q′〉 ∈ Ri+1.

We write P A
∼

lv

i
Q if 〈P, Q〉 ∈ Ri for some family (Ri)i∈N of amortised LV–

relations, and call A
∼

lv

0
the amortised LV–preorder.

Theorem 4 (Full abstraction [10]). The LV–preorder A
∼lv

is the largest pre-

congruence contained in A
∼

lv

0
.

The next theorem is the main result of this section and, because of A

∼
lv

0
⊆ A

∼
ut

0
,

generalises the above theorem.

Theorem 5 (Generalised full abstraction in TACSut). The LV–preorder
A
∼lv

is the largest precongruence contained in A
∼

ut

0
.

3.2 The MT–Preorder is Fully Abstract in TACSlt

We turn our attention to the TACS sub–calculus TACS
lt in which only lazy

actions α and the must–clock prefix σ are available. Although a σ–prefix cor-
responds to exactly one time unit, these prefixes specify lower time bounds for
actions in this fragment, since actions can always be delayed arbitrarily. We first
recall the faster–than preorder introduced by Moller and Tofts in [14], to which
we refer as Moller–Tofts preorder, or MT–preorder for short.

Definition 6 (MT–preorder [14]). A relation R over P lt is an MT–relation

if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′, k, P ′′. Q
σ

−→
k α
−→ Q′, P ′ σ

−→
k

P ′′, and 〈P ′′, Q′〉 ∈ R.

2. Q
α

−→ Q′ implies ∃P ′. P
α

−→ P ′ and 〈P ′, Q′〉 ∈ R.

3. P
σ

−→ P ′ implies ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

4. Q
σ

−→ Q′ implies ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P A
∼mt

Q if 〈P, Q〉 ∈ R for some MT–relation R, and call A
∼mt

the
MT–preorder.

It is easy to see that A

∼mt
is indeed a preorder and that it is the largest MT–

relation. We have also proved in [11] that A
∼mt

is a precongruence for all TACS
lt

operators. The only difficult and non–standard part of that proof concerned
compositionality regarding parallel composition and was based on the following
commutation lemma.

Lemma 7 (Commutation lemma [11]). Let P, P ′ ∈ P lt and w ∈ (A∪{σ})∗.

If P
w

−→
σ

−→
k
P ′, for k∈N, then ∃P ′′. P

σ
−→

k w
−→ P ′′ and P ′ A

∼mt
P ′′.

This lemma holds as well within the slightly more general setting of Sec. 5.2, in
which also can–clock prefixes are allowed. We also introduced in [11] an amortised
variant of the MT–preorder, which is however less abstract than the amortised
faster–than preorder of Def. 1.

Definition 8 (Amortised MT–preorder [11]). A family (Ri)i∈N of relations
over P lt is a family of amortised MT–relations if, for all i ∈ N, 〈P, Q〉 ∈ Ri, and
α ∈ A:

1. P
α

−→ P ′ implies ∃Q′, k. Q
σ

−→
k α
−→ Q′ and 〈P ′, Q′〉 ∈ Ri+k.

2. Q
α

−→ Q′ implies ∃P ′, k≤i. P
σ

−→
k α
−→ P ′ and 〈P ′, Q′〉 ∈ Ri−k.

3. P
σ

−→ P ′ implies ∃Q′, k≥0. k≥1−i, Q
σ

−→
k
Q′, and 〈P ′, Q′〉 ∈ Ri−1+k.

4. Q
σ

−→ Q′ implies ∃P ′, k≥0. k≤i+1, P
σ

−→
k
P ′, and 〈P ′, Q′〉 ∈ Ri+1−k.

We write P A
∼

mt

i
Q if 〈P, Q〉 ∈ Ri for some family (Ri)i∈N of amortised MT–

relations, and call A
∼

mt

0
the amortised MT–preorder.

When comparing Defs. 8 and 1, it is obvious that A

∼
mt

0
⊆ A

∼
lt

0
. While Conds. (3)

and (4) coincide in Defs. 8 and 1, Conds. (1) and (2) do not allow clock transitions
to trail the matching α–transition — just as it is the case in Cond. (1) in Def. 6.
We recall the following full–abstraction result from [11].

Theorem 9 (Full abstraction [11]). The MT–preorder A
∼mt

is the largest

precongruence contained in A
∼

mt

0
.

We generalise this full–abstraction result here by replacing A
∼

mt

0
by A

∼
lt

0
.

Theorem 10 (Generalised full abstraction in TACSlt). The MT–preorder
A
∼mt

is the largest precongruence contained in A
∼

lt

0
.

Thms. 5 and 10 testify not only to the elegance of the amortised faster–than
preorder as a very intuitive faster–than preorder, but also as a unified starting
point to approaching faster–than relations on processes.

4 Full Abstraction in TACS

Having identified the largest precongruences contained in the amortised faster–
than preorder for the sub–calculi TACS

ut and TACS
lt of TACS, it is natural

to investigate the same issue for the full calculus.
For a calculus with must–clock prefixing and urgent actions, Moller and Tofts

informally argued in [14] that a precongruence relating bisimulation–equivalent
processes cannot satisfy a property one would, at first sight, expect from a faster–
than preorder, namely that omitting a must–clock prefix should result in a faster
process. This intuition can be backed up by a more general result within our
setting, which includes must–clock prefixing and urgent actions, too. Our result
is not just based on a specific property; instead, we have a semantic definition
of an intuitive faster–than as the coarsest precongruence refining the amortised
faster–than preorder, and we will show that this precongruence degrades to a
congruence, rather than a proper precongruence. This congruence turns out to
be a variant of timed bisimulation [13].

Definition 11 (Timed bisimulation). A relation R over P is a timed bisim-

ulation relation if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′. Q
α

−→ Q′ and 〈P ′, Q′〉 ∈ R.

2. P
σ

−→ P ′ implies ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

3. Q
α

−→ Q′ implies ∃P ′. P
α

−→ P ′ and 〈P ′, Q′〉 ∈ R.

4. Q
σ

−→ Q′ implies ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P ∼t Q if 〈P, Q〉 ∈ R for some timed bisimulation relation R, and
call ∼t timed bisimulation.

It is obvious that timed bisimulation ∼t is an equivalence and that it refines the
amortised faster–than preorder A

∼0
. However, ∼t is not a congruence for TACS

since it is not compositional for parallel composition. To see this, consider the
processes a.0+b.0 ∼t σ.a.0+b.0. When putting them in parallel with process b.0
the relation ∼t is no longer preserved since (a.0 + b.0) | b.0 can engage in an a–
transition while (σ.a.0 + b.0) | b.0 cannot, as the clock transition that would
enable action a is preempted by the urgent communication on b. We thus have
to refine timed bisimulation and take initial urgent action sets into account.

Definition 12 (Urgent timed bisimulation). A relation R over P is an
urgent timed bisimulation relation if, for all 〈P, Q〉 ∈ R and α ∈ A:

1. P
α

−→ P ′ implies ∃Q′. Q
α

−→ Q′ and 〈P ′, Q′〉 ∈ R.

2. P
σ

−→ P ′ implies U(Q) ⊆ U(P) and ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

3. Q
α

−→ Q′ implies ∃P ′. P
α

−→ P ′ and 〈P ′, Q′〉 ∈ R.

4. Q
σ

−→ Q′ implies U(P) ⊆ U(Q) and ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P 't Q if 〈P, Q〉 ∈ R for some urgent timed bisimulation relation R,
and call 't urgent timed bisimulation.

We have used set inclusion in Conds. (2) and (4) above in analogy to Def. 2. It

is important to note the following: if P
σ

−→ P ′, then Q
σ

−→ Q′ by Cond. (2),
so that Cond. (4) becomes applicable. Therefore, we could just as well require
equality of urgent sets in Conds. (2) and (4). This equality is violated for the two
processes a.0 + b.0 and σ.a.0 + b.0 considered above, although both can engage
in a clock transition.

Theorem 13 (Full abstraction). Urgent timed bisimulation 't is the largest
congruence contained in ∼t.

Theorem 14 (Full abstraction in TACS). Urgent timed bisimulation 't is

the largest (pre–)congruence contained in A
∼0

.

5 Discussion

This section investigates when exactly the amortised faster–than preorder, when
closed under all contexts, collapses from a proper precongruence to a congru-
ence. We have shown in the TACS sub–calculus with only must–clock prefixing
and lazy actions (cf. Sec. 3.1) and in the sub–calculus with only can–clock pre-
fixing and urgent actions (cf. Sec. 3.2) that indeed proper precongruences are

obtained: the MT–preorder and the LV–preorder, respectively. However, when
combining both clock prefixes as well as lazy and urgent actions, then the result
is a congruence: urgent timed bisimulation (cf. Sec. 4). We desire to explore
where exactly this borderline lies, by characterising the largest precongruence
contained in the amortised faster–than preorder for other combinations of can–
/must–clock prefixes as well as urgent/lazy actions. While some of the resulting
settings might not appear natural, others are clearly practically relevant, and
this will be pointed out when analysing each combination in turn.

5.1 Can–Clock Prefixing and Urgent+Lazy Actions

Here we find ourselves in the sub–calculus TACS
ut investigated in Sec. 3.1,

where additionally lazy actions may be present. Lazy actions might be used
for modelling the potential of errors: many errors in practice can occur at any
moment and thus cannot be associated with maximal delays.

Corollary 15 (Full–abstraction in the can/urgent+lazy setting). The

LV–preorder A
∼lv

is the largest precongruence contained in A
∼0

, when considering

TACS processes with can–clock prefixes only.

Hence, Thm. 5 of Sec. 3.1 remains valid in the presence of lazy actions; one only
needs to check the proof of Thm. 5 and all the proofs of [10] on which it depends.

5.2 Must– and Can–Clock Prefixing and Lazy Actions

The setting here is the one of TACS
lt, where can–clock prefixes are added. This

does not change the result we obtained for the TACS
lt setting (cf. Thm. 10 in

Sec. 3.2), when extending the definition of the MT–preorder A
∼mt

(cf. Def. 6)

from processes in P lt to the class of processes considered here.

Theorem 16 (Full abstraction in the must+can/lazy setting). The MT–

preorder A
∼mt

is the largest precongruence contained in A
∼0

, when considering

TACS processes with lazy actions only.

This statement can be deduced by inspecting the proofs of Sec. 3.2, i.e., the
proof of Thm. 10 and the proofs of the underlying statements adopted from [11],
in the presence of σ–prefixes. The only parts that are not straightforward con-
cern checking whether the MT–preorder A

∼mt
is also compositional for can–clock

prefixes and whether the commutation lemma, Lemma 7, still holds. To do so
we first need to adapt the syntactic faster–than preorder � of [11] by adding the
clause P � σ.P .

Definition 17 (Syntactic Faster–Than Preorder). The relation � ⊆ P̂×P̂
is defined as the smallest relation satisfying the following properties, for all
P, P ′, Q, Q′ ∈ P̂ .

Always: (1) P � P (2) (a) P � σ.P and (b) P � σ.P
P ′ � P , Q′ � Q: (3) P ′|Q′ � P |Q (4) P ′ + Q′ � P + Q

(5) P ′ \ L � P \ L (6) P ′[f] � P [f]
P ′ � P , x guarded: (7) P ′[µx. P/x] � µx. P

Lemma 18. For any P, P ′, if P
σ

−→ P ′ then P ′ � P .

This lemma is adopted from Lemma 5(2) of the full version of [11], and its
proof is by a straightforward induction on the structure of P . Also the other
statements of the mentioned Lemma 5 hold under the modified syntactic faster–
than preorder, in particular P ′ � P implies P ′ A

∼mt
P for processes P ′, P in the

TACS fragment we consider in this subsection. For the proof of Lemma 5 it is
important that these processes satisfy the laziness property, i.e., each of them can
perform a time step. We can now prove that the MT–preorder is compositional
for can–clock prefixes, in the TACS sub–calculus that is restricted to lazy actions
only.

Lemma 19. Let P, Q be TACS processes with lazy actions only. Then P A
∼mt

Q
implies σ.P A

∼mt
σ.Q.

Moreover, since the correctness of the commutation lemma is only based on
Lemma 5 of the full version of [11], the laziness property as well as the time–
determinism property, the commutation lemma obviously remains valid even in
the presence of can–clock prefixing.

5.3 Can–Clock Prefixing and Lazy Actions

This combination is one that does not appear to be intuitive. If every action can
delay its execution, additional potential delays specified by can–clock prefixes
seem irrelevant and can be omitted (cf. Prop. 20). Further, if every delay specified
by a clock prefix can indeed be omitted, then it appears that delays are not
relevant at all and may thus be safely ignored (cf. Thm. 22).

Proposition 20. P ∼t σ.P for all TACS processes P with can–clock prefixes

and lazy actions only.

Because of the irrelevance of timed behaviour, timed bisimulation ∼t coincides
with standard bisimulation ∼ [12] — where clock transitions are ignored — in
the setting considered in this section.

Lemma 21. ∼ = ∼t on TACS processes P with can–clock prefixes and lazy

actions only.

As expected, the amortised faster–than preorder, when closed under all contexts,
degrades to standard bisimulation in this setting.

Theorem 22 (Full abstraction in the can/lazy setting). Standard bisimu-

lation ∼ is the largest precongruence contained in A
∼0

, when considering TACS

processes with can–clock prefixes and lazy actions only.

To conclude, note that Prop. 20 does not hold in the presence of must–clock
prefixes; e.g., σ.σ.a.0

σ
−→ σ.a.0 and σ.a.0

σ
−→ a.0, but obviously σ.a.0 6∼ a.0.

5.4 Must–Clock Prefixing and Urgent Actions, & More

For the full algebra TACS, we have shown in Sec. 4 that the largest precongru-
ence contained in the amortised faster–than preorder is urgent timed bisimula-
tion (cf. Thm. 14). Full TACS combines must– and can–clock prefixing with lazy
and urgent actions. When leaving out either lazy actions, or can–clock prefixes,
or both, the result remains valid, as can be checked by inspecting the proofs of
Sec. 4. Essentially, the reason is that the context constructed within this proof
uses neither lazy actions nor can–clock prefixes.

Most interesting is the case when we are left with must–clock prefixing and
urgent actions only. This setting coincides with the one of Hennessy and Regan’s
well–known Timed Process Language [7], TPL, in terms of both syntax and op-
erational semantics, when leaving out TPL’s timeout operator; we refer to this
calculus as TPL−. It is important to note that, for TPL−, urgent timed bisim-
ulation is the same as timed bisimulation; this is because all actions are urgent,
and the bisimulation conditions on actions imply that equivalent processes have
the same initial (urgent) actions.

However, adding either can–clock prefixing or lazy actions to TPL− leads to
a more expressive calculus than TPL−. For example, the process σ.τ .P in the
setting must+can–clock prefixing and urgent actions can engage in both a clock
transition and a τ–transition, and the same applies to process τ.P . This semantic
behaviour is incompatible with the maximal–progress property in TPL−, and
indeed in full TPL, bearing in mind that every action is urgent.

6 Related Work

Relatively little work has been published on theories that relate processes with
respect to speed. This is somewhat surprising, given the wealth of literature on
timed process algebras and the importance of time efficiency in system design.

Early research on process efficiency compares untimed CCS–like terms by
counting internal actions either within a testing–based [15] or a bisimulation–
based [2, 3] setting. Due to interleaving, e.g., (τ.a.0 | τ.a.b.0) \ {a} is considered
to be as efficient as τ.τ.τ.b.0, whereas (σ.a.0 |σ.a.b.0)\{a} ((σ.a.0 |σ.a.b.0)\{a})
is strictly faster than σ.σ.τ.b.0 (σ.σ.τ .b.0) in our setting.

The most closely related research to ours is obviously the one by Moller and
Tofts on processes equipped with lower time bounds [14] and our own on pro-
cesses equipped with upper time bounds [10]. The work of Moller and Tofts has
recently been revisited by us [11] and completed by adding an axiomatisation
for finite processes, a full–abstraction result, and a “weak” variant of the MT–
preorder that abstracts from the unobservable action τ . Our work on upper time
bounds [10] features similar results for the LV–preorder. In both papers [10, 11],
the chosen reference preorders for the full–abstraction results are less abstract
than the amortised faster–than preorder advocated here. Although a couple of
these reference preorders borrowed some idea of amortisation (cf. Defs. 3 and 8),

they were somewhat tweaked to fit the LV–preorder and the MT–preorder, re-
spectively. Thus, Thms. 5 and 10 are indeed significant generalisations of the
corresponding theorems in [10] and in [11] (cf. Thms. 4 and 9), respectively.

Most other published work on faster–than relations focuses on settings with
upper time bounds and on preorders based on De Nicola and Hennessy’s testing
theory. Initially, research was conducted within the setting of Petri nets [16, 17],
and later for the Theoretical–CSP–style process algebra PAFAS [4]. An attrac-
tive feature when adopting testing semantics is a fundamental result stating
that the considered faster–than testing preorder based on continuous–time se-
mantics coincides with the analogous testing preorder based on discrete–time
semantics [17]. It remains to be seen whether a similar result holds for our
bisimulation–based approach.

Last, but not least, Corradini et al. [5] introduced the ill–timed–but–well–

caused approach for relating processes with respect to speed [1, 6]. This approach
allows system components to attach local time stamps to actions. However, as
a byproduct of interleaving semantics, local time stamps may decrease within
action sequences exhibited by concurrent processes. These “ill–timed” runs make
it difficult to relate the faster–than preorder of [5] to ours.

7 Conclusions and Future Work

We proposed a general amortised faster–than preorder for unifying bisimulation–
based process theories [10, 11, 14] that relate asynchronous processes with respect
to speed. Our amortised preorder ensures that a faster process must execute each
action no later than the related slower process does, while both processes must
be functionally equivalent in the sense of strong bisimulation [12].

Since the amortised faster–than preorder is normally not closed under all
system contexts, we characterised the largest precongruences contained in it for a
range of settings. The chosen range is spanned by a two–dimensional space, with
one axis indicating whether only must–clock prefixes, only can–clock prefixes, or
both are permitted, and the other axis determining whether only lazy actions,
only urgent actions, or both kinds of actions are available. In this space, the
settings of Moller/Tofts [14], which is concerned with lower time bounds, and
of Lüttgen/Vogler [10], which is concerned with upper time bounds, can be
recognised as “must/lazy” and “can/urgent” combinations, respectively. Since
all reference preorders chosen in [10, 11] are less abstract than the amortised
faster–than preorder, the results of this paper strengthen the ones obtained for
both the Moller/Tofts and the Lüttgen/Vogler approach. The following table
summarises our findings for each combination of clock prefix and action type,
i.e., each entry identifies the behavioural relation that characterises the largest
precongruence contained in the amortised faster–than preorder.

Lazy Urgent Lazy+Urgent

Must MT–preorder Timed bisimulation Urgent timed bisimulation
Can Bisimulation LV–preorder LV–preorder

Must+Can MT–preorder Urgent timed bisimulation Urgent timed bisimulation

The table shows that the amortised faster–than relation degrades to timed
bisimulation as soon as must–clock prefixes and urgent actions come together.
In this case, which includes the established process algebra TPL [7], one may
express time intervals by equipping actions with both lower and upper time
bounds. Moreover, when extending the Moller/Tofts approach by can–clock pre-
fixing or the Lüttgen/Vogler approach by lazy actions, the MT–preorder and the
LV–preorder, respectively, remain fully–abstract.

Future work shall investigate decision procedures for the MT– and LV–
preorders, in order for them to be implemented in automated verification tools.

Acknowledgements. We would like to thank the anonymous referees for their
valuable comments and suggestions.

References

[1] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inform.,
33(4):317–350, 1996.

[2] S. Arun-Kumar and M.C.B. Hennessy. An efficiency preorder for processes. Acta

Inform., 29(8):737–760, 1992.
[3] S. Arun-Kumar and V. Natarajan. Conformance: A precongruence close to bisim-

ilarity. In STRICT ’95, Workshops in Comp., pp. 55–68. Springer-Verlag, 1995.
[4] F. Corradini, M. Di Berardini, and W. Vogler. PAFAS at work: Comparing the

worst-case efficiency of three buffer implementations. In APAQS 2001, pp. 231–
240. IEEE Computer Society Press, 2001.

[5] F. Corradini, R. Gorrieri, and M. Roccetti. Performance preorder and competitive
equivalence. Acta Inform., 34(11):805–835, 1997.

[6] R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with dura-
tional actions. TCS, 140(1):73–94, 1995.

[7] M.C.B. Hennessy and T. Regan. A process algebra for timed systems. Inform.

and Comp., 117(2):221–239, 1995.
[8] L. Jenner and W. Vogler. Fast asynchronous systems in dense time. TCS, 254(1-

2):379–422, 2001.
[9] G. Lüttgen and W. Vogler. Bisimulation on speed: A unified approach. Techn.

Rep. 2004-15, Universität Augsburg, Germany, 2004.
[10] G. Lüttgen and W. Vogler. Bisimulation on speed: Worst–case efficiency. Inform.

and Comp., 191(2):105–144, 2004.
[11] G. Lüttgen and W. Vogler. Bisimulation on speed: Lower time bounds. RAIRO

Theoretical Informatics and Applications, 2005. To appear.
[12] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[13] F. Moller and C. Tofts. A temporal calculus of communicating systems. In

CONCUR ’90, vol. 458 of LNCS, pp. 401–415. Springer-Verlag, 1990.
[14] F. Moller and C. Tofts. Relating processes with respect to speed. In CONCUR ’91,

vol. 527 of LNCS, pp. 424–438. Springer-Verlag, 1991.
[15] V. Natarajan and R. Cleaveland. An algebraic theory of process efficiency. In

LICS ’96, pp. 63–72. IEEE Computer Society Press, 1996.
[16] W. Vogler. Efficiency of asynchronous systems, read arcs, and the MUTEX-

problem. TCS, 275(1–2):589–631, 2002.
[17] W. Vogler. Faster asynchronous systems. Inform. and Comp., 184(2):311–342,

2003.

