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Abstract. Embedded-systems designers often use transition system-
based notations for specifying, with respect to some refinement preorder,
sets of deterministic implementations. This paper compares popular such
refinement settings — ranging from transition systems equipped with
failure-pair inclusion to disjunctive modal transition systems — regard-
ing the sets of implementations they are able to express. The paper’s
main result is an expressiveness hierarchy, as well as language-preserving
transformations between various settings. In addition to system design-
ers, the main beneficiaries of this work are tool builders who wish to
reuse refinement checkers or model checkers across different settings.

1 Introduction

Many of today’s embedded systems employ control software that runs on special-
ized computer chips, performing dedicated tasks often without the need of an op-
erating system. System designers typically specify such software using notations
based on labeled transition systems: a possibly nondeterministic specification
allows for a set of deterministic implementations, amenable to quality checks via
testing or model checking. Verifiers benefit from the reduced state space in possi-
bly nondeterministic abstractions from deterministic implementations. Choosing
a suitable refinement setting for a given application in hand depends on various
aspects, e.g., expressiveness, conciseness, and verification support.

In the concurrency-theory literature many refinement settings have been
studied, with a focus on compositionality and full abstraction of, and logical
characterizations and decision procedures for the underlying refinement pre-
orders, see, e.g., [17] and the numerous references therein. Less attention has
been paid to questions of expressiveness. In the context of top-down develop-
ment, where sets of allowed implementations are specified at different design
levels, it is of special interest to characterize the expressible sets of implemen-
tations. In general, the more sets a formalism can describe, the more expressive
it is and the more flexibility a system designer has by describing finer sets of
implementations.

* Research support provided by DFG (FE 942/2-1, RO 1122/12-2), EPSRC
(EP/E034853/1) and MEC (TIN2006-15660-C02-01, TIN2006-15578-C02-01).



We perform the expressiveness comparison using language-preserving trans-
formations, where the language of a refinement setting is the expressible set
of deterministic implementations. This is analogous for trace-based languages,
where language-preserving transformations have been developed between au-
tomata that differ in their fairness notion (Biichi, Muller, Rabin, Streett, parity),
see [19] and the references therein.

Language-preserving transformations are valuable in the context of model
checking, too, where abstract models reduce the size of the state space, while
at the same time staying amenable to quality checks: if a property is model
checked for an abstract model, then it is guaranteed to hold for each of its
implementations. Therefore, a model checking tool over a refinement setting 2y
can be reused for another setting 2, if every model from 2, can be converted
into an equivalent model from 2; that defines the same language.

This paper studies and compares the expressiveness of almost a dozen re-
finement settings designed for deterministic transition systems. To do so, several
intricate language-preserving transformations are developed. We also show how
algorithms for checking a specification’s consistency and for checking refinement
can be derived from our transformations. While the expressiveness hierarchy is
valuable for informing system designers on their choice of refinement setting, our
transformations allow tool builders to reuse their refinement checkers or model
checking algorithms across different settings.

2 Basic notions: refinement settings and expressiveness

To begin with, let £ denote a finite set of possible actions (i.e., transition labels®),
| M| the cardinality of a set M, and P (M) its power set. M* stands for the set
of finite sequences over M, and - for sequence concatenation. For R C M; x Mo,
we write my Rma if (my,ms) € R and let R™! = {(ma, m1) | (m1,m2) € R}. If
XCM,Y C M, welet XoR={mg € My |3Im € X:(my,ms) € R} and
RoY ={my € My | Imy € Y : (m1,ma) € R}, which are, e.g., used to describe
the successors, resp. predecessors, of a transition relation. For ~~ C Mj x £ x Mo,
we define the set of outgoing labels of my € My by O.(my) ={a € L] 3Imz €
My @ mq ~ ma}, and let % stand for the relation {(m1,m2) | mq & ma}.
Relation ~ is deterministic if Vm, a : |{m}o % | < 1. Depending on the context,
a function f : M} — M, is also interpreted as a higher order function from
P(My) to P(Mz) with f(X) = {f(m1) | m1 € X}.

Definition 1. A transition system (TS) T is a tuple (S, S°, —) such that S is
its set of states, S° C S its non-empty set of initial states, and — C SxLx S its
transition relation. T is finite if |S| < oo, and it is deterministic if |S°| = 1 and
— 18 deterministic. Tqyey denotes the set of all deterministic transition systems.
(DetTSs), which we also call implementations.

5 State predicates can be encoded via transition labels and are therefore omitted.
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Fig. 1. Vending machine example.

Note that DetTSs (up to equivalence) are the natural model for implementations
in the context of open systems, where communication with the environment takes
place via actions: the executions behave deterministically up to the behavior of
the environment, which can only control the kind of communication (i.e., which
action is executed). Since it is unusual in system modeling to specify exactly one
implementation, abstract models are used to describe sets of implementations. In
the context of closed systems, this is commonly done by a Kripke structure or by
an automaton (it describes a set of traces, known as its language). Analogously
we are looking for abstract models in the context of open systems, i.e., looking
for models that describe sets of DetTSs, as illustrated by the following example:

Ezxample 1. Consider a part of a vending machine specification, as shown in Fig.
1(a). The TS is nondeterministic, since following a req action it can either ask for
$1 or for $2. This nondeterminism is desired, because the specification should
be refinable to either a cheap machine (requesting $1, shown in Fig. 1(b)) or
an expensive machine (requesting $2, shown in Fig. 1(c)). However, it depends
on the employed refinement setting whether these two implementations can be
modeled without also modeling the undesired implementation shown in Fig. 1(d),
which gives the user the choice whether to pay $1 or $2. For instance, in failure
pair semantics [4] model (a) has the undesired implementation (d), whereas in
ready pair semantics [27] it has not.

Many equivalences on TSs are introduced in the literature, see [17] for an
overview. Their preorders lead to different refinement notions; however, if re-
stricted to DetTSs, they collapse as was first observed by Park [28] and further
examined by Engelfriet [10]. Therefore, it is sufficient to present as equivalence
notion on DetTSs only one of them, e.g., bisimulation.

Definition 2. R C S X S; is a simulation between two TSs T; and Ty if
Vsy € Y : 3sy € SY ¢ (s1,82) € R, and for all (s1,82) € R, a € L we have
Vs) € {s1}o 51: 3sh € {sa}o Bo: s\ Rsh, which can equivalently be written as
({s1}o %1) € Ro ({sa}o 53). We say that T; is simulated by 7o if there is a
simulation R between 71 and Ta. Further, we say that Ty and Tz are bisimilar (or
simply equivalent ), and then write Ty = Ta, if there is a simulation R between
71 and T3 such that R~ is a simulation between To and ;.



We can now define refinement settings as families of models, into which DetTSs
are embedded, with an order relating them.

Definition 3. A refinement setting 2 is a tuple (A, Af, < h), where A is a set
of so called models, AT C A is a distinguished subclass of so called finite models,
=< s a preorder on A, called refinement, and h : Tyqet — A is an embedding,
i.e., VI1,73 € Taet : 71 = T2 < h(T1) = h(T2). The language A(«) of a model
a € A (also called its set of implementations or its possible worlds) is the set
of refining implementations of a, i.e., {T € Tqet | K(T) = a}.

Though this is not required by the definition, it is best to first think of h(Tqet)
as the bottom elements of the refinement preorder <. They correspond to the
implementations. Then, equivalence on DetTSs (7; = 73) must imply “refine-
ment equivalence”, i.e., h(77) < h(7z), and, directly implied by equivalence of
=, h(72) = h(71) on these bottom elements. For the other direction, refinement
between models on the implementation level must be enough to establish equiv-
alence on DetTSs, which makes sure that every implementation can be specified
alone, without any other, non-equivalent refining implementations.

Now in fact, the definition also allows non-implementations below implemen-
tation level, i.e., below elements of h(Tqet). These appear, e.g., in (disjunctive)
mixed transition systems [26] and are unsatisfiable, i.e., have an empty language.
Our notion of expressiveness is based on the expressible languages of a refinement
setting:

Definition 4. Let 2 = (A, Af, <, h) be a refinement setting. A language-pre-
serving transformation from 2y to s is a total function f : A{ — Ag such that
A1 (a) = Aa(f()) for all a € A{. We say that 2, is at least as expressive as
Ay if there is a language-preserving transformation from s to A .

Reconsider Ex. 1 where we claimed that model (a) expresses, with respect to
ready pair semantics, implementations (b) and (c), whereas it also has the further
implementation (d) with respect to failure pair semantics. If we show that there is
also no other specification that expresses exactly (b) and (c) (up to equivalence)
in failure pair semantics, we know that there can be no language-preserving
transformation from ready pair semantics to failure pair semantics. To prove
that ready pair semantics is more expressive than failure pair semantics, we also
have to prove that every language expressible in failure pair semantics can also
be expressed in ready pair semantics.

By Def. 4, language-preserving transformations are mapping finite abstract
models to finite abstract models (though implementations may be infinite). We
are especially interested in such mappings because they preserve the (direct)
amenability to applications like model checking. Furthermore, expressiveness
results for infinite models are mostly trivial, because infinite initial state sets
can be used to describe any desired language (by dedicating one initial state to
each desired implementation).



3 A wide collection of refinement settings

This section recalls popular refinement settings that have been studied in the
literature, where models are either TSs, synchronously communicating TSs [12],
modal/mized TSs [25, 7], or disjunctive modal/mized TSs [26]. It is easily checked
that all these settings are indeed refinement settings.

Transition systems. First note that TS-based models equipped with trace inclu-
sion or simulation, when taking h as the identity function, do not yield refinement
settings, since DetT'Ss cannot be embedded into these refinement preorders, i.e.,
DetTSs 77, 73 can be found such that h(77) < h(72) but 77 # T3, e.g., 71 = =0

and 7o = —>0-%0. Therefore, preorders in refinement settings must preserve, in
both directions, the enabledness of actions when comparing DetTSs, e.g., every
refinement of 75 above must have action a enabled in its root state, which 77 has
not. We present refinement settings based on failure pairs (also called failures)
[4], failure traces (also called refusal) [29], ready pairs (also called readiness) [27],
ready traces [1], possible worlds [32], and ready simulations [2]°. For a TS T,

— a ready trace of s € S is a trace starting in s, together with the sets of
enabled actions after every subtrace. Formally, the set of ready traces of T is
the smallest set Trip € S x ((P(L)-L)*-P(L)) with (s, 0_(s)) € Trky and
((s',0) € Trgp A s 5 ') = (s,0_(s)ac) € Trgy, for any 5,5’ € S, a € L.

— a ready pair of s € S is a trace starting in s, together with the set of
enabled actions after the complete trace. Formally, the set of ready pairs
Trh C S x (L£*-P(L)) is the set of traces from Triy where each but the last
element from P (L) is removed.

— a failure pair of s € S is a trace starting in s, together with a set of actions
that are not enabled after the complete trace. Formally, the set of failure
pairs Trk C S x (L£*-P(L)) is the set of traces that can be obtained by
replacing the last element (the one from P(L£)) in a trace from Tr} by any
subset of its complement.

— a failure trace of s € S is a trace starting in s, together with, for every
subtrace, a set of actions that are not enabled after the subtrace. Formally,
the set of failure traces Trry € S x ((P(L) - £)* - P(L)) is the set of traces
that can be obtained by replacing every element in P(£) from a trace in
TrgT by any subset of its complement.

Now the refinement settings of ready pair inclusion T, ready trace inclusion Ty,
failure pair inclusion Ty, failure trace inclusion Tg, ready simulation T.s and
possible worlds inclusion Ty, consist of T'Ss, the identity embedding on DetTSs,

and the refinement notion given by ready pair inclusion: (SYoTrZ') C (S0 Tri?);
resp. ready trace inclusion: (SQoTrah) C (S90Trfz); resp. failure pair inclusion:
(SY OTrgl) C (S9o Trg?); resp. failure trace inclusion: (S o Trng) C (S8 OTrg%F);
resp. ready simulation: 77 is ready simulated by 75 if there exists a simulation R

5 For space reasons, compact definitions, conforming with the standard ones, are used.
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Fig. 2. Illustration of the refinement preorders on TSs, where <, stands for refinement
with respect to refinement notion x. These examples are derived from Counterexamples
5, 6, and 8 of [17].

between 77 and 73 (i.e., 77 is simulated by 73) such that the enabled actions are
the same for related elements, i.e., (s1,52) € R = O_,,(s1) = O_,,(s2); resp.
possible worlds inclusion: Tys(77) C Tys(72). Fig. 2 illustrates some differences
between the refinement notions. In all these cases, and also in the forthcoming
ones when we will consider other more sophisticated classes of transition systems,
a system is finite if and only if its set of states is finite.

Synchronously-communicating transition systems. Synchronously-communica-
ting TSs [12] extend TSs by a predicate e(s) on states s that indicates which
actions must be present (i.e., enabled) at s and thus cannot be removed by
refinements. Formally, a synchronously-communicating transition system (STS)
without fairness is a tuple (7, e) such that 7 is a TS and e : S — P(L) is its
existence predicate. It is must-saturated if a € e(s) implies the existence of an
outgoing transition labeled by a, i.e., Vs € S : e(s) C O_(s). For the definition
of the refinement settings S of STSs and S5 of must-saturated STSs, DetTSs
are embedded by taking e to be O_,, and (71, e1) refines (73, e2) if there exists
a simulation R between 77 and 73 such that (s1,s2) € R = ea(s2) C e1(s1). For

example, —~0-—>0-%0 is an implementation of the STS on the left of Fig. 3,

b .
whereas —0—>0—>0 is not.

Modal/mized transition systems. Mixed TSs [7] have must-transitions (that must
be present in an implementation) and may-transitions (nothing else may be
present in an implementation). A modal TS [25] has the additional requirement
that every must-transition also has to be a may-transition. Formally, a mized
transition system is a tuple (7,<) such that 7 is a TS, where its transition
relation is called may-transition relation here, and — C S x £ x S is its must-
transition relation. It is a modal transition system if — C —. For the definition
of the refinement settings M of mized T'Ss and My,,q of modal TSs, DetTSs are
embedded by taking — as the must-transition relation, and (77,<1) refines
(73,2 if there exists a simulation R between 7; and 7 such that R~! is a
simulation between (Sa2, 0, <—2) and (51,0, <—1).

Modal/mixed TSs, as well as their disjunctive variants presented in the fol-
lowing, were originally designed for general transition systems as implementa-
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Fig. 3. An example STS (left) and disjunctive mixed TS (right).

tions. Interpreting them with respect to DetTS leads to new kinds of modeling
techniques, which improve the succinctness of these settings, allowing for more
compact representations, as, e.g., discussed in [14]. For example, two a-labeled
must-transitions from the same state leading to states s; and ss require any
implementation to implement, after the only possible a-step, both the behavior
of s1 and so. We call such behavior conjunctive behavior.

Disjunctive modal/mized transition systems. Disjunctive modal/mixed TSs [26]
generalize modal/mixed TSs by introducing hypertransitions that point to sets
of states rather than single states. A must-hypertransition t indicates that the
implementation must have a transition with corresponding label to a state that
is related to at least one element in the target set of ¢, i.e., the targets are
interpreted disjunctively. We present disjunctive modal TSs as a special case of
their mixed version, where must-hypertransitions need not necessarily occur as
may-transitions: a disjunctive mized transition system is a tuple (7', —) such that
7T is a TS, where its transition relation is called may-transition relation here and
— C S x LxP(S) is its must-hypertransition relation. It is a disjunctive modal
transition system if all must-hypertransition target sets are non-empty and only
have elements that are also targets of may-transitions, i.e., Vs € S,a € £,5 €
{s}o%: S £PAS C {s}o-%. For the definition of the refinement settings I of
disjunctive mized TSs and Dy,0q of disjunctive modal TSs, DetTSs are embedded
by taking {(s,a,{s'}) | s = s’} as must-hypertransitions, and (77,+) refines
(72,+—2) if there is a simulation R between 7; and 73 such that V(s1,s2) € R,
a€L,S € {so}o %yt 39, € {s1}o ¥51: Vs € Sy ds, € Sy si Rsh. For

example, »O#O@ b is an implementation of the disjunctive mixed TS on

the right of Fig. 3, whereas —~0-%0-%0 is not.

4 Comparison

This section establishes an expressiveness hierarchy constructively by presenting
language-preserving transformations or showing their non-existence by counter-
example. In particular, we have paid attention to simple transformations and
small-sized transformed models. All transformations also work for infinite-state
systems but, not surprisingly, their mappings are not guaranteed to be finite.
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Fig. 4. Illustration of the transformations’ images 72 and 7¢. Targets of transitions
without source indicate initial states. Transitions having a set as label indicate a set
of transitions, one for each label. The numbers of the state names in the left and right
systems correspond to the state subset encoding.

To begin with, the identity function is a transformation from S5 into S; from
Miyod into M from Dyyeq into D5 from Tpy into Trg; and from Ty into Tpy.

Trace inclusions. Due to the coinductive definition of simulation, checking re-
finement in simulation-based settings only depends on what remains to be con-

sidered in the future, e.g., 90 =< is not an implementation of Ty, of Fig. 6

in simulation-like approaches, because the refinement relation has to decide for
one of the two initial states. This is different in trace-like approaches, where at
any time it is possible to go back in a trace and resolve nondeterminism differ-

ently, as long as the traces still coincide. Consequently »O =< isa refinement

of Tyt in trace-like settings. A transformation from a trace-hke setting to Tyg
therefore has to make every previous nondeterministic choice explicit in the state
space. Hence, power sets over states are used in the transformations from T,
resp. from Ty, as illustrated in Fig. 4.

Transformation 1. For any TS T, T (7T) = Tys(TL) = T (72) and T (7T) =
Tos(7¢) = Tri(TE) = T (T2) with

T = (P(S), ¥4 (SY), {(Saé’)mecASfespg(Soi)}),where
< e{=C} and W(S)={{se S| O_(s)<aL}|LCL}\{0}

Transformations from pair to trace approaches are similar, except that all reach-
able states with respect to the underlying label trace are collected (since a fail-
ure/ready pair has as history information only the underlying label trace and
no intermediate failure/ready sets). Hence, pairs of original states and allowed
labels are the state set of these transformations, as illustrated in Fig. 5.

Transformation 2. For any TS T, T(T) = Tys(7?) = Ty (72) = T, (7?) and
T:(7) = ']I‘rs(Té’) = Trt(Tg”) = Tft(Tg”) = Tr(Tgp) = ']Tf(Tg”) with

T4 = (P(S) x P(L), ¥4(5°),{((5,L),a,Z') |a € LA Z" € W4(So %)}),
d wg(S

a
where < € {=,C} and W5(S) = {(85, E)|33€§:O_>(s) <L}
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Fig. 5. Illustration of the transformations’ images 72 and 7Z. In the right picture,
states that have the same targets are identified. A transition pointing to an oval indi-
cates a set of transitions pointing to each element inside the oval. The numbers (resp.
labels) of the state names in the left and right pictures correspond to the state (resp.
label) subset encoding in the respective transformation.
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Fig. 6. TSs illustrating increases of expressiveness.

The increase of expressiveness of these settings is illustrated in Fig. 10: the
failure approach cannot express an exclusive alternative between two labels.
However, the ready approach can do it, as shown by 7,y in Fig. 6. This is re-
flected by the axiom ¢.P, + ¢.P, = ¢.P, + ¢.Py + ¢(P, + Py), which is valid for
failure semantics, but not for the semantics based on ready sets. In pair ap-
proaches, behavior can only be described up to alternatives having the same
label path histories, whereas a trace approach can also distinguish alternatives
that have the same label path history but different next-step possibilities (up
to failure or ready interpretation). For example, no TS with respect to failure

pair, resp. ready pair, can have 90%8 b o and —~0-%0 as implementa-
b

tions, without also having —0-%0-50 as implementation. However, 7y, of

Fig. 6 defines such a language via failure trace (resp. ready trace). Ready simu-

lation increases the expressiveness even more by distinguishing also alternatives

with the same label path history and next-step possibilities, but different future
behaviors in the past. For example, no TS with respect to a trace approach

b
can have 90%8%0 and 90%8 b as implementations, without also
b b

having 90&8 However, 7., of Fig. 6 defines such a language via ready
b

simulation. The following lemma summarizes the above results, from which the
‘strictly greater’ expressiveness results for the T'S-based settings are derived by
transitivity arguments.

Lemma 1. For Ty ¢ Teo v, Trs e in Fig. 6 and arbitrary T, we have:
Tr(,];,ft) 7é Tft(T)a Tft(ﬂt,r) 7& Tr(T) and ITrs(,];s,rt) 7é Trt(T)
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Fig. 7. Example of the transformation from S,.s to Tys. For STSs, the image of e is
depicted close to the state. The numbers (resp. labels) of the state names in the right
picture correspond to the state (resp. label) subset encoding of the transformation.

The following proposition shows how our transformations and the efficient deci-
sion procedures for simulation-like preorders [6] can be used to decide the corre-
sponding inclusion problems. However, in general such derived algorithms would
have limited practical relevance since deciding trace-like preorders is PSPACE-
complete [31], but in some particular cases the complexity of the decision pro-
cedure is certainly much lower.

Proposnslon 1. 7 is ready trace (failure trace, ready pazr fazlure pazr) included
in T iff T (resp. T, T2, TE) is ready simulated by Tt (resp. T, g, 77, Tp)

Ready simulation and must-saturated STS. T,s is transformed to Sy,s by setting
the existence predicate to the set of labels for which an outgoing transition exists.

Transformation 3. For any TS T, Ts(7) = Sus((7,02)).

For transforming S;,s to T, every state s is combined with a ready set L C L, in-
dicating that exactly these labels may not be removed. The incoming transitions
are determined by the incoming ones of s. Fig. 7 presents a simple example.

Transformation 4. For any must-saturated STS (T, e), Sms((T,€)) = Ty ((S,
SN (SYx P(L)),—")) with

S'={(s,L) | e(s) CLCO_(s)}, —'={((s,L),a,(s',L"))| s> s NacL}

S is indeed strictly more expressive than T,s, because the latter does not allow
one to specify the empty language.

Lemma 2. For the STS =%, and arbitrary T, we have S( {a}) # Tws(T).

If we allow the initial set of a TS to be empty and therefore not to have any
DetTS as refinement, we obtain, by the following algorithm, that S and S5 are
equally expressive. Hence, the empty set is the only language that increases the
expressive power of S and any other equally expressive refinement setting.

Proposition 2. An STS can be linearly transformed to an equivalent must-

saturated one (possibly with an empty initial state set) by successively removing
those states s and their in- and outgoing transitions, for which e(s) € O_(s).

10



hody B

[12]
a 7\\ a a i
[ — 2 b ]
P /\ [ = b — ey 7 8

/

%@ b b

SR B =)
¢ &\ (”/ b

Fig. 8. Example of the transformation from D to S. For disjunctive mixed TSs, solid
(dashed) arrows model must-transitions (resp. may-transitions). Branching solid arrows
model must-hypertransitions. The numbers of the state names in the right picture
correspond to the state subset encoding; e.g., the self loop of state {2,3} is obtained
by choosing g and h such that ¢g(2) = 3, ¢(3) = 2, h({2}) = 2, and h({2,3}) = 2.

Remaining settings. S is transformed to M by modeling predicate e via must-
transitions to a special state s, that is refined by each implementation state.

Transformation 5. For any STS (7T ,e), S((T,e)) = M(((S U {san}, 5%, —
U({san} X £ x {san)})), ")) with san ¢ S and —'= Usesist x e(s) x {san}-

M (resp. Mpoq) is transformed to D (resp. Dy,0q) by turning each must-transition
pointing to s into a must-hypertransition pointing to {s}.

Transformation 6. Let —'= {(s,a,{s'}) | s < s'}. Then for any mized TS
(T,—), M((T,—)) =D((T,~")), and for any modal transition system (T, ),
Minod((7,)) = Dimoa((T, "))

We proceed with the transformation from D to S. The new states are subsets
S C S, with the intuition that a related implementation state has to be related
to all elements of S. Transitions from S lead to those subset states that consist
of a combination of targets of must-hypertransitions from states s € S, together
with one may-target for each s € S. In the definition of these successor sets Cs,
we use choice functions h : P(S) — S for the selection of an element from a must-
hypertransition target, and g : S — S for the selection of a may-transition target.
The existence predicate holds for a at S iff there is a must-hypertransition with
label a and leaving a state in S. Fig. 8 shows an example of this transformation.

Transformation 7. For any disjunctive mived TS (7,—), D((T,—)) =
S((P(S), {{s"} | 80 € §°), Uscgaec (S} x {a} x %), 0_)) with 5 = {g(8) U
h(So+%) |Vse S:s% g(s) AVS' € (So+s) : h(S") € S'}.

Finally, we present the transformation from D to My,,q with complexity
O((2!5H1£l) and, by restriction to M, obtain a transformation from M into Mi,eq
with complexity O(]S]| I£1 ).

A first observation is that M,,q can represent conjunctive behavior since
the properties described by all must-transition targets have to hold after the
step. However, a state in M,,,,q cannot enforce the existence of a label a and,

11



at the same time, model disjunctive behavior after the execution of a (via non-
determinism) because, as soon as an outgoing must-transition (with implicit
may-transition) exists, all further outgoing may-transitions with the same label
are redundant: in deterministic refinements, the unique transition of the im-
plementation already has to match with the may-transition corresponding to
the must-transition. The solution is to distribute the needed requirements to
multiple states, where one state (s,—) enforces action existence, and several
further states (s, S), with § C S, encode the nondeterministic behavior. Must-
transitions to all these states make sure that each of them is related to a single
implementation state, which therefore has to meet all of the requirements. These
must-transitions originate from another kind of state (s, f) € S x Fg, which en-
codes a complete resolution of the next-step nondeterminism in the D-system.
Here, F; is a set of functions that collect, per label a, a set from C’?s}, i.e., an el-
ement from every must-hypertransition target together with one may-transition
target. The resulting collection contains those D-states to which the successor of
a related implementation state must be related. To be precise, no element can be
collected if no must-transition is present (a ¢ O, (s) A g(a) = 0). For contradic-
tory states, Fy is empty. A state (s, f) points, via a-labeled must-transitions, to
every element of g(a) x ({—}UP(S)). A state (s, —) encodes the labels necessary
in s via must-transitions to state sy, which is refined by any implementation
state. A state (s,S) is used to model the nondeterministic behavior of (i) the
must-hypertransition target S, or (ii) the may-transitions if § = {s}o 5. This
is achieved by outgoing may-transitions to every element s’ of S, combined with
any value of Fy . For technical reasons, (s, S ) points to sy if S does not corre-
spond to a must-hypertransition target or to the may-transition targets. Fig. 9
shows an example of this transformation.

Transformation 8. For any disjunctive mized TS (T,—), D((7,—)) =
Mimoa(((S7, 8, =), ")) with CY,y as in Transf. 7 and

Fs={f:L—=P(S)|VaeL: fla) € C{,y V(agO(s)A f(a) =0)}
S' ={san}U{(s,z) | s€ SAxz e FsU{-}UP(S)}
S ={(s,2) | s€ SNz €F,} Wo = ({s}o %) U {{s}o %}
—' =" U({san} x £ x {san}) U{((s,2),a,5.1) | z € {=YUP(S)\ W2} U
{((5,5),a,(s', f)) |8 € SAS e WeAf €Fy}
=" ={((s,f),a,(s',a")) | f €Fs ns' € fla) na' e {=}UP(S)}U
{((57_)’0'73&11) | a € O,_,(S)}

Here, we allow the initial state set to be empty; this does not affect expressiveness,

a
since, e.q., the modal TS »Oégso also describes the empty language.
a

This concludes our presentation of transformations since all remaining transfor-
mations can be obtained by composition, yielding quite competitive (efficient)
equivalent models.

12
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O 3,0,2 H 3,0,12 H 3,0,23 H 3,0,13 ‘ ‘
J

Fig.9. Example of the transformation from D to Muedq. On the right, the may-
transitions that are implied by must-transitions are omitted, and the symbols of the
state names correspond to the encoding of the transformation: (i) pairs with second
element “—” correspond to the states that encode the existent labels; (ii) the remain-
ing pairs, which have a subset as second element, encode the may-transition targets
and the must-hypertransitions (states (s, S) are omitted if § ¢ W2 U W?, since they
do not influence refinement); (iii) a triple corresponds to states that have a complete
resolution where the second (resp. third) component encodes the image of a (resp. b).
To improve readability, several copies of state sai are used.

Consistency checking and expressiveness hierarchy. As a corollary, our transfor-
mations also yield a technique for checking consistency, i.e., whether the language
of a model is non-empty. This is trivial for trace-like settings, ready simulation
settings and must-saturated STSs, because these settings cannot describe the
empty language.

Corollary 1. For a disjunctive mized (resp. disjunctive modal, mized, modal,
synchronously-communicating) TS, consistency can be checked by transforming
it via our transformations into an STS, applying the algorithm given in Prop. 2,
and finally checking if the initial state set is mon-empty.

Corollary 2. Our transformations yield the expressiveness hierarchy of refine-
ment settings depicted in Fig. 10.

5 Related work

For trace and tree languages, many transformations have been developed be-
tween automata having different fairness constraints (Biichi, Muller, Rabin,
Streett, parity), see, e.g., [19] and the references therein. Transformations be-
tween non-automata settings are given in [5] and [24], where the must-testing
and ready simulation (%-bisimulation) preorders, respectively, are transformed
to prebisimulation. In [16], forward /backward simulation and trace inclusion are
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Considered refinement settings:
D: Disjunctive mixed transition systems S, Mmod, M, Dmod, D
Dmod: Disjunctive modal transition systems
M: Mixed transition systems
Minod: Modal transition systems
S: Synchronously-communicating transition systems
Sms: Must-saturated s.-c. transition systems
Tpw: Possible worlds inclusion
T,s: Ready simulation
Ty¢: Ready trace inclusion
T,: Ready pair inclusion
Ty : Failure trace inclusion
T¢: Failure pair inclusion

more expressive

Fig. 10. Refinement settings for DetT'Ss ordered with respect to their expressiveness.

transformed to disjunctive modal TSs (underspecified TSs). These transforma-
tions implicitly demonstrate that the transformed settings are less or equally
expressive with respect to the describable sets of (not necessarily deterministic)
TSs. Transformations preserving the complete preorder (and not only the lan-
guages) are given in [15] and [18], where [15] proves that disjunctive modal TSs
can be transformed into 1-selecting modal TSs but not vice versa, whereas [18]
presents transformations between modal TS variants with transition labels and
predicates on states.

An alternative approach to the examination of expressiveness is taken, e.g.,
in [11,17], where preorders are compared regarding their coarseness. This com-
parison approach obviously does not lead to applicable transformations between
settings.The obtained hierarchy — known as the linear-time branching-time spec-
trum — coincides with ours for many TS-based settings, but not in general, as is
illustrated by possible worlds semantics and ready simulation semantics: by def-
inition of possible-worlds semantics, they trivially have the same expressiveness
in our language-based sense although the possible worlds preorder is finer than
the ready simulation preorder. For the coinciding settings, our results cannot be
immediately derived from the corresponding results in [17]. Consider, e.g., the
increase of expressiveness between ready trace inclusion and ready simulation. It
cannot be derived from Counterexample 8 of [17], illustrated here in Figs. 2(d)
and (e), since both systems have exactly the same sets of implementations, both
with respect to ready trace inclusion and ready simulation.

Yet another approach to studying the expressiveness of refinement settings is
via modal logics in the style of Hennessy-Milner [20]. While much work focuses
on characterizing preorders on general TSs, [3] shows a correspondence between
the preorder underlying modal TSs and the prime and consistent formulas of
Hennessy-Milner logic.

The problem of consistency checking is considered, e.g., in [21]. The authors
present an algorithm, along with a complexity study, for checking the consistency
of sets of modal TSs, i.e., for checking non-emptiness of the intersection of the
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modal TSs’ implementation sets in terms of general TSs. [23] gives algorithms
and complexity results of consistency checks for several refinement notions.

Further refinement settings have been proposed in the literature, albeit for
general TSs rather than DetTSs, e.g., in [22,8,9, 30, 13, 14]. We believe that all of
them (when ignoring their possible fairness constraints) can be transformed into
disjunctive mixed/modal TSs and vice versa while preserving their languages in
terms of general TSs.

6 Conclusions

This paper studied the expressiveness of popular TS-based specification for-
malisms with respect to their describable languages in terms of deterministic
TSs. Our results are summarized in the expressiveness hierarchy depicted in
Fig. 10. Our work is of importance for system designers and verification-tool
builders alike. The established expressiveness hierarchy aids system designers in
selecting the right specification formalism for a problem in hand, while our trans-
formations allow tool builders to reuse refinement checking algorithms across
different formalisms. The results of this paper reveal that STSs combine expres-
siveness with succinctness and easy-to-comprehend models and thus seem to be
a good choice for modeling sets of DetTSs.

Regarding future work, we wish to examine the succinctness of our refine-
ment settings, show that our transformations lie in optimal complexity classes,
and compare refinement settings based on preorders that abstract from internal
computation, e.g., those mentioned in [23].
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