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Abstract. The semantics of Statecharts macro steps, as introduced by
Pnueli and Shalev, lacks compositionality. This paper �rst analyzes the
compositionality problem and traces it back to the invalidity of the Law
of the Excluded Middle. It then characterizes the semantics via a par-
ticular class of linear, intuitionistic Kripke models, namely stabilization
sequences. This yields, for the �rst time in the literature, a simple fully-
abstract semantics which interprets Pnueli and Shalev's concept of failure
naturally. The results not only give insights into the semantic subtleties
of Statecharts, but also provide a basis for developing algebraic theories
for macro steps and for comparing di�erent Statecharts variants.

1 Introduction

Statecharts is a well-known design notation for specifying the behavior of em-
bedded systems [6]. It extends �nite state machines by concepts of hierarchy
and concurrency. Semantically, a Statechart may respond to an event entering
the system by engaging in an enabled transition. This may generate new events
which, by causality, may in turn trigger additional transitions while disabling
others. The synchrony hypothesis ensures that one execution step, a so-called
macro step, is complete as soon as this chain reaction comes to a halt.

Pnueli and Shalev presented two equivalent formalizations of Statecharts'
macro-step semantics in a seminal paper [16]. However, their semantics violates
the desired property of compositionality. Huizing and Gerth [10] showed that
combining compositionality, causality, and the synchrony hypothesis cannot be
done within a simple, single-leveled semantics. Some researchers then devoted
their attention to investigating new variants of Statecharts, obeying just two of
the three properties. In Esterel [3] and Argos [15] causality is treated separately
from compositionality and synchrony, while in (synchronous) Statemate [8] and
UML Statecharts [7] the synchrony hypothesis is rejected. Other researchers
achieved combining all three properties by storing semantic information via pre-
orders [14, 17] or transition systems [5, 13]. However, no analysis of exactly how
much information is needed to achieve compositionality has been made, yet.

This paper �rst illustrates the compositionality defect of Pnueli and Shalev's
semantics by showing that equality of response behavior is not preserved by



the concurrency and hierarchy operators of Statecharts (cf. Sec. 2). The reason
is that macro steps abstract from causal interactions with a system's environ-
ment, thereby imposing a closed-world assumption. Indeed, the studied problem
can be further traced back to the invalidity of the Law of the Excluded Middle.
To overcome the problem, we interpret Statecharts, relative to a given system
state, as intuitionistic formulas. These are given meaning as speci�c intuitionistic
Kripke structures [18], namely linear increasing sequences of event sets, called
stabilization sequences, which encode interactions between Statecharts and en-
vironments. In this domain, which is also characterized algebraically via semi-
lattices, we develop a fully-abstract macro-step semantics in two steps. First, we
study Statecharts without hierarchy operators. We show that in this fragment,
stabilization sequences naturally characterize the largest congruence contained
in equality of response behavior (cf. Sec. 3). In the second step, based on a
non-standard distributivity law and our lattice-theoretic characterization of the
intuitionistic semantics, we lift our results to arbitrary Statecharts (cf. Sec. 4).
We refer the reader to [12] for the proofs of our results.

2 Statecharts: Notation, Semantics, & Compositionality

Statecharts is a visual language for specifying reactive systems, i.e., concurrent
systems interacting with their environment. They subsume labeled transition
systems where labels are pairs of event sets. The �rst component of a pair is
referred to as trigger, which may include negated events, and the second as
action. Intuitively, a transition is enabled if the environment o�ers all events in
the trigger but not the negated ones. When a transition �res, it produces the
events speci�ed in its action. Concurrency is introduced by allowing Statecharts
to run in parallel and to communicate by broadcasting events. Additionally, basic
states may be hierarchically re�ned by injecting other Statecharts.
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Fig. 1. Two example Statecharts

As an example, the Statechart depicted in Fig. 1 on the left consists of an
and-state s16, which puts and-state s14 and or-state s56 in parallel. Similarly,
state s14 is a parallel composition of or-states s12 and s34. Each of these or-states
describes a sequential state machine and is re�ned by two basic states. In case
of s12, basic state s1 is the initial state which is connected to basic state s2 via



transition t1. Here, s1 is the source state of t1, state s2 is its target state, \�"
symbolizes its empty trigger, and a is its action. Hence, t1 is always enabled in
the initial state, regardless of the events o�ered by the environment. Its �ring
produces event a and switches the active state of s12 to s2. This initiates a causal
chain reaction, since the generation of a in turn triggers t3 which introduces
event b. As a consequence, t2 is enabled and �res within the same macro step.

The Statechart depicted in Fig. 1 on the right is like the one on the left, except
that and-state s14 is replaced by or-state s79. The latter state encodes a choice
regarding the execution of t4 and t5 from state s7. The trigger of t4 is �b, i.e., t4
is triggered by the absence of event b. Starting with an environment o�ering no
event, thus assuming b to be absent, s59 can autonomously engage in t4. The
generation of a in turn triggers t3, which �res and produces b. However, t4 was
�red under the assumption that b is absent. Since Statecharts is a synchronous
language and no event can be both present and absent within a macro step,
this behavior is rejected as globally inconsistent. Thus, the response of s59 to the
empty environment is not an empty response but failure.

Statecharts Con�gurations and Step Semantics. We formalize the State-
charts language relative to a given set of active states. Let � and T be count-
able sets of events and transition names, respectively. For every event e 2 � ,
its negated counterpart is denoted by e. We de�ne e =df e and write E for
fe j e 2 Eg. With every t 2 T , we associate a transition trg(t)=act(t) consisting of
a trigger trg(t) ��n �[� and an action act(t) ��n � , where trg(t) and act(t) are
required to be �nite sets. For simplicity we also write e1 � � � en=a1 � � � am for tran-
sition fe1; : : : ; eng=fa1; : : : ; amg. The syntax of Statecharts terms is the BNF
C ::= 0 j x j t j CkC j C+C, where t 2 T and x is a variable. Terms not contain-
ing variables are called con�gurations. Intuitively, the con�guration 0 represents
a Statechart state with no outgoing transitions (basic state), CkD denotes the
parallel composition of con�gurations C and D (and-state), and C+D stands for
the choice between executing C or D (or-state). The latter construct + coincides
with Statecharts' hierarchy operator which reduces to choice on the macro-step
level; thus, we refer to operator + also as choice operator. In the standard visual
Statecharts notation, C+D is somewhat more restrictive in that it requires D to
be a choice of transitions; e.g., (t1kt2) + (t3kt4) is prohibited according to Stat-
echarts' syntax, whereas it is a valid con�guration in our setting. Semantically,
however, our generalization is inessential wrt. the semantics of Pnueli and Shalev
which underlies this work (cf. [12]). The set of all con�gurations is denoted by C

and ranged over by C and D. The set of \+"-free, or parallel, con�gurations is
written as PC. We call terms �[x] with a single variable occurrence x contexts
and write �[C] for the substitution of C for x in �[x]. Contexts of the form xkC
and x + C are referred to as parallel contexts and choice contexts, respectively.
We tacitly assume that transition names are unique in every term, and we let
trans(C) stand for the set of transition names occurring in C.

Any Statechart in a given set of active states corresponds to a con�guration.
For example, Statecharts s14 and s79, in their initial states (indicated by small
arrows in Fig. 1), correspond to C14 =df t1kt2 and C79 =df t4 + t5, respectively.



The Statecharts depicted in Fig. 1 are then formalized as C16 =df �56[C14]
and C59 =df �56[C79], respectively, where �56[x] =df xkt3. Moreover, since tran-
sitions are uniquely named in con�gurations and thus may be associated with
their source and target states, one can easily determine the set of active states
reached after �ring a set of transitions; see [16] for details. In this paper, we
do not consider interlevel transitions and state references which would require
an extension of our syntax for con�gurations. However, our semantics should be
able to accommodate these features, too.

To present the response behavior of a con�guration C, as de�ned by Pnueli
and Shalev [16], we have to determine which transitions in trans(C) may �re to-
gether to form a macro step. A macro step comprises amaximal set of transitions
that are triggered by events o�ered by the environment or produced by the �ring
of other transitions, that are mutually consistent (\orthogonal"), and that obey
causality and global consistency. A transition t is consistent with T � trans(C), in
signs t 2 consistent(C; T ), if t is not in the same parallel component as any t0 2 T .
A transition t is triggered by a �nite set E of events, in signs t 2 triggered(C;E),
if the positive, but not the negative, trigger events of t are in E. Finally, we say
that t is enabled in C regarding a �nite set E of events and a set T of transitions,
if t 2 enabled(C;E; T ) =df consistent(C; T ) \ triggered(C;E [

S
t2T act(t)). In-

tuitively, assuming transitions T are known to �re, enabled(C;E; T ) determines
the set of all transitions of C that are enabled by the actions of T and the envi-
ronment events in E. We may now present Pnueli and Shalev's step-construction
procedure for causally determining macro steps:

procedure step-construction(C, E); var T := ;;
while T � enabled(C;E; T ) do choose t 2 enabled(C;E; T ) n T ; T := T [ ftg od;
if T = enabled(C;E; T ) then (return T ) else (report failure)

This procedure nondeterministically computes, relative to con�guration C and
�nite environment E, those sets T of transitions that can �re together in a macro
step. Due to failures raised when detecting global inconsistencies, the construc-
tion might involve backtracking. The role of failures may be highlighted further
by a conservative extension of Pnueli and Shalev's setting that includes an ex-
plicit failure event ? 2 � . It will be instructive to study the semantics with and
without ? in this paper. Now, for each set T returned by the above procedure,
we say that A =df E [

S
t2T act(t) ��n � is a (step) response, in signs C +E A.

When ? is considered, we also require that ? 62 A. If E = ;, we simply write
C + A. Note that E may be modeled by a parallel context consisting of the
single transition �=E, i.e., C +E A i� (Ck � =E) + A. This macro-step semantics
induces a natural equivalence relation � over con�gurations, called step equiva-
lence, satisfying C � D, whenever C +E A i� D +E A, for all E;A ��n � . For
simplicity, � does not account for target states of transitions since these can be
encoded as event names.

The Compositionality Problem. The compositionality defect of the macro-
step semantics manifests itself in the fact that � is not a congruence for the
con�guration algebra. Consider Fig. 1 and assume that states s2, s4, s6, s8,



and s9 are all equivalent. It is easy to see that con�gurations C14 and C79 have
the same response behavior. Both C14 +E A and C79 +E A are equivalent to
A = E [ fag, no matter whether event b is present or absent in environment E.
However, �56[C14] = C16 6� C59 = �56[C79] since C16 + fa; bg but C59 6+ A, for
any A. Hence, the equivalence C14 � C79 is not preserved by context �56[x].
Intuitively, C14 and C79 are identi�ed because the response semantics does not
account for any interaction with the environment. It adopts the classic closed-
world assumption, stating that every environment event is either present from
the very beginning of a given macro step or will never arise. This eliminates the
possibility that events may be generated due to interactions with the environ-
ment, in this case event b in C16 + fa; bg. In short, a compositional macro-step
semantics does not validate the Law of the Excluded Middle b _ :b = true.
Since intuitionistic logic [18] di�ers from classic logic by refuting the Law of the
Excluded Middle, it is a good candidate framework for analyzing Statecharts
semantics. It should be stressed that the compositionality defect is mainly an
issue of operator k and not of +, as we will see below.

Our goal is to characterize the largest congruence ', called step congruence,
contained in step equivalence, where C ' D, if �[C] � �[D] for all contexts �[x].
Of course, C ' D i� [[C]]0 = [[D]]0, for [[C]]0 =df fhA;�[x]i j�[C] + Ag. However,
[[ � ]]0 is a syntactical characterization rather than a semantical characterization
which we will develop below. Note that we intend to achieve compositionality in
the (declarative) sense of a fully-abstract semantics and not in the (constructive)
sense of a denotational semantics.

3 Macro-step Semantics via Stabilization Sequences

We start o� by investigating parallel con�gurations within parallel contexts.
We propose a novel semantics for this fragment, show its relation to Pnueli
and Shalev's original semantics, and derive a full-abstraction result. Section 4
generalizes this result to arbitrary con�gurations within arbitrary contexts.

Our new interpretation of parallel con�gurations C, based on an \open-
world assumption," is given in terms of �nite increasing sequences of \worlds"
E0 � E1 � � � � � En. Each Ei ��n � n f?g is the set of events generated or
present in the respective world. The required absence of ? ensures that each
world is consistent. A sequence represents the interactions between C and a
potential environment during a macro step. Intuitively, the initial world E0 con-
tains all events e which are generated by those transitions of C that can �re au-
tonomously. When transitioning from world Ei�1 to Ei, some events in Ei nEi�1

are provided by the environment, as reaction to the events validated by C when
reaching Ei�1. The new events destabilize world Ei�1 and may enable a chain
reaction of transitions in C. The step-construction procedure, which tracks and
accumulates all these events, then de�nes the new world Ei. Accordingly, we
call the above sequences stabilization sequences. The overall response of C after
n interactions with the environment is the set En.



The monotonicity requirement of stabilization sequences re
ects the fact that
our knowledge of the presence and absence of events increases within the con-
struction of a macro step. Each world contains the events assumed or positively
known to be present. Only if an event is not included in the �nal world, it is
known to be absent for sure; the fact that an event e is not present in a world
does not preclude e from becoming available later in the considered stabiliza-
tion sequence. This semantic gap between \not present" and \absent" makes the
underlying logic intuitionistic as opposed to classic.

Model-theoretic Semantics for Parallel Con�gurations. Formally, a sta-
bilization sequence M is a pair (n; V ), where n 2 N n f0g is its length and V is
a state valuation, i.e., a monotonic mapping from the interval [0; : : : ; n � 1] to
�nite subsets of � n f?g. The �nal world V (n� 1) of M is denoted by M�. We
shall assume that M is irredundant, i.e. V (i � 1) � V (i) for all 0 < i < n, and
identify sequences (1; V ) of length 1 with subsets V (0) ��n � n f?g.

De�nition 1. Let M = (n; V ) be a stabilization sequence and C 2 PC. Then,
M is a sequence model of C, written M j= C, according to the following clauses:
(i) always M j= 0; (ii) M j= CkD i� M j= C and M j= D; (iii) M j= E=A i�

fE \� \V (n� 1) = ; and E \� � V (i)g implies A � V (i), for all 0 � i < n.

Def. 1 is a shaved version of the standard semantics obtained when reading
C 2 PC as an intuitionistic formula [18], i.e., when taking events to be atomic
propositions and replacing a by negation :a, concatenation of events and \k"
by conjunction \^", and \=" by implication \�". An empty trigger, an empty
action, and 0 are identi�ed with true. Then, M j= C i� C holds for the intu-
itionistic Kripke structure M . In the sequel we write SM (C) for fM jM j= Cg.

In our example C79 = b=a + b=a is step-congruent to C 0
79 = b=a k b=a (cf.

Sec. 4) which may be identi�ed with formula (:b � a)^ (b � a). In classic logic,
C 0
79 is equivalent to the single transition C12 = �=a corresponding to formula

true � a. As mentioned before, this is inadequate as both have di�erent opera-
tional behavior, since C 0

79k a=b fails in the empty environment whereas C12k a=b
has step response fa; bg. In our intuitionistic semantics, the di�erence is faith-
fully witnessed by the stabilization sequence M = (2; V ), where V (0) = ; and
V (1) = fa; bg. Here, M is a sequence model of C 0

79 but not of C12.

Characterization of Pnueli and Shalev's Semantics. We now show that
the step responses of a parallel con�guration C, according to Pnueli and Shalev's
semantics, can be characterized as particular sequence models of C, to which we
refer as response models. The response models of C are the sequence models of C
of length 1, i.e. subsets of � n f?g that do not occur as the �nal world of any
other sequence model of C except itself.

De�nition 2. Let C 2 PC. Then, M = (1; V ) 2 SM (C) is a response model
of C if K� =M� implies K =M , for all K 2 SM (C).

Intuitively, the validity of this characterization is founded in Pnueli and Shalev's
closed-world assumption which requires a response to emerge from within the
considered con�guration and not by interactions with the environment.



Theorem 1. Let C 2 PC and E;A ��n �. Then, C +E A i� A is a response
model of C k � =E.

Thm. 1 provides a simple model-theoretic characterization of operational step
responses; e.g., con�guration a=a forces Pnueli and Shalev's step-construction
procedure to fail. Indeed, the only sequence model of a=a of length 1 (and using
only event a) is A = fag. But A is not a response model since it is the �nal world
of K = (2; V ) 2 SM (a=a) with V (0) =df ; and V (1) =df A. Since a=a does not
have any response model, it can only fail. As another example, consider a=b k b=a
which possesses the sequence models (2; V ), where V (0) =df ; and V (1) =df

fa; bg, and (1; V 0), where V 0(0) =df ;. Only the latter is a response model, in
accordance with causality. Thus, (a=b k b=a) + ; is the only response.

Full Abstraction. Sequence models also lead to a fully-abstract semantics for
parallel con�gurations within parallel contexts.

Theorem 2. Let C;D 2 PC. Then, SM (C) = SM (D) i� 8R 2 PC 8E;A��n�:
CkR +E A i� DkR +E A.

Hence, sequence models contain precisely the information needed to capture all
possible interactions of a parallel con�guration with all potential environments.

Characterization of Sequence Models. Of course, Thm. 2 does not mean
that every set of stabilization sequences can be obtained from a (parallel) con-
�guration. In fact, in intuitionistic logic it is known that in order to specify
arbitrary linear sequences, nested implications are needed [18]. Con�gurations,
however, only use �rst-order implications and negations. Their sequence models
may be characterized by simple lattice structures which we refer to as behaviors.

De�nition 3. An A-behavior C, for A ��n �, is a pair hF; Ii, where F � 2Anf?g

and I is a monotonic function that maps every B 2 F to a set I(B) � 2B such
that B 2 I(B) and I(B) is closed under intersection, i.e., B1; B2 2 I(B) implies
B1 \ B2 2 I(B), for all B 2 F . Furthermore, C is called bounded, if A 2 F .

It is not di�cult to show that the pairs of initial and �nal states occurring
together in the sequence models of C 2 PC induce a behavior. More precisely,
if A is the set of events mentioned in C, then the induced A-behavior Beh(C)
of C is the pair hF (C); I(C)i, where

F (C) =df fE � A j 9(n; V ) 2 SM (C): V (n� 1) = Eg

I(C)(B) =df fE � B j 9(n; V ) 2 SM (C): V (0) = E and V (n� 1) = Bg :

Note that the response models B of C are precisely those B 2 F (C) for which
I(C)(B) = fBg. As desired, we obtain the following theorem.

Theorem 3. 8C;D 2 PC: Beh(C) = Beh(D) i� SM (C) = SM (D).

In conjunction with Thm. 2 it is clear that equivalence in arbitrary parallel
contexts can as well be decided by behaviors: Beh(C) = Beh(D) i� 8R 2 PC

8E;A ��n �: CkR +E A i� DkR +E A. In contrast to SM (C), however, Beh(C)
provides an irredundant representation of parallel con�gurations:



Theorem 4. C is a (bounded) A-behavior i� there exists a con�guration C 2 PC

over events A (not using ?) such that C = Beh(C).

{a,b,c}

{b} {c}{a}

{ }

{a,b}

Fig. 2. Bounded
fa; b; cg-behavior

Summarizing, behaviors Beh(C), where C 2 PC, yield
a model representation of SM (C). For each B in F (C),
the set I(C)(B) is a (\;�) semi-lattice with maximal
element B. As a very simple example, consider C =df

bc=a k ac=b k a=a k b=b k c=c over events A = fa; b; cg. Its
corresponding bounded A-behavior Beh(C) is depicted in
Fig. 2. Since F (C) = fAg, we only have the (\;�) semi-
lattice I(C)(A). Generally speaking, SM (C) is the set of se-
quences whose world-wise intersection with A are paths in
the lattice diagrams ending in maximal elements. Moreover,
the maximal elements are the classic solutions of C which
may become actual responses in suitable parallel contexts.

4 Generalizing the Full-abstraction Result

In this section we reduce the problem of full abstraction for arbitrary con�gura-
tions in arbitrary contexts to that for parallel con�gurations in parallel contexts.

Reduction to Parallel Contexts. For extending the full-abstraction result
to arbitrary contexts, one must address a compositionality problem for + which
already manifests itself in Pnueli and Shalev's semantics. Consider con�gurations
C =df a=b and D =df a=b k a=a which have the same responses in all parallel
contexts. However, in the choice context �[x] = (�=e+x)k�=a we have �[D] + fag
but �[C] 6+ fag (as �[C] + fa; eg only). This context is able to detect that D
is enabled by the environment �=a while C is not. Hence, one has to take into
account whether there exists a transition in C that is triggered for a set A of
events. To store the desired information we use the triggering indicator �(C;A) 2
B =df f�; ttg de�ned by �(C;A) =df tt, if triggered(C;A) 6= ;, and �(C;A) =df �,
otherwise.

Lemma 1. Let C;D 2 C. Then C ' D i� 8P 2 PC; A ��n �; b 2 B . (CkP + A
and �(C;A) = b) i� (DkP + A and �(D;A) = b).

Thus, to ensure compositionality for arbitrary contexts we only need to record
[[C]]b1 =df fhA;P i jCkP + A; �(C;A) = b; P 2 PCg, for b 2 B , instead of [[C]]0.

We may view [[C]]tt1 as the collection of active and [[C]]�1 as the collection of passive
responses for C in parallel contexts, according to whether a transition of C takes
part in response A. By Lemma 1, C ' D i� [[C]]tt1 = [[D]]tt1 and [[C]]�1 = [[D]]�1 .

Reduction to Parallel Con�gurations. For eliminating the choice operator
from con�gurations we employ a distributivity law. However, the naive distribu-
tivity law C ' D for C =df (t1 + t2)kt3 and D =df (t1kt03) + (t2k t003), where
transitions t03 and t003 are identical to t3 except for their name, does in general
not hold. Consider ti =df aibi=ci, for 1 � i � 3, and assume that all events are



mutually distinct. Then, in a context in which t2 is enabled but not t1, transi-
tion t3 in C is forced to interact with t2, while in D transition t03 may run by
itself in the summand t1kt

0
3. E.g., if E = fa2; a3g then D +E fc3; a2; a3g, but

the only A with c3 2 A and C +E A is A = fc2; c3; a2; a3g.
The naive distributivity law can be patched by adding con�gurations D1(t3)

and D2(t3) such that C ' t1kD1(t3) + t2kD2(t3). Here, Di(t3) must weaken t3
such that it disables t3, whenever ti is not enabled but t3�i is. A simple way
to achieve this is to de�ne D1(t3) =df D1kt03 and D2(t3) =df D2kt003 , where
Di =df aia3�ib3�i=?k bia3�ib3�i=?, for i 2 f1; 2g. As desired, the \watchdog"
con�guration Di satis�es for all parallel contexts P : DikP + A i� (i) P + A and
(ii) A triggers ti or does not trigger t3�i. It should be clear how this can be gen-
eralized, i.e., how one constructs for any C;D 2 C a con�guration watch(C;D)
such that Pkwatch(C;D) + A i� (i) P + A and (ii) triggered(C;A) 6= ; or
triggered(D;A) = ;.

Lemma 2. Let C1; C2; D 2 C. Then, (C1+C2)kD ' (watch(C1; C2)kC1kD)+
(watch(C2; C1)kC2kD).

The fact that we have available an explicit failure event ? makes this distribu-
tivity law particularly simple. The use of ?, however, is inessential as it can be
eliminated [12]. Now, by repeatedly applying distributivity we may push occur-
rences of operator + to the outside of con�gurations.

Lemma 3. Let C 2 C. Then, there exists a �nite index set ind(C) and Ci 2 PC,
for i 2 ind(C), such that C '

P
i2ind(C) Ci.

Hence, [[C]]1 = [[
P

i2ind(C) Ci]]1. Moreover, since an active response of a sum must
be an active response of one of its summands and since a passive response of
a sum always is a passive response of all of its summands, [[

P
i2ind(C) Ci]]

tt
1 =

S
i2ind(C)[[Ci]]

tt
1 and [[

P
i2ind(C) Ci]]

�
1 =

T
i2ind(C)[[Ci]]

�
1 hold. Thus, we obtain:

Lemma 4. Let C;D 2 C. Then, C ' D i�
S
i2ind(C)[[Ci]]

tt
1 =

S
j2ind(D)[[Dj ]]

tt
1

and
T
i2ind(C)[[Ci]]

�
1 =

T
j2ind(D)[[Dj ]]

�
1 .

Full-abstraction Result. Now, we are able to use our analysis of Sec. 3 to
phrase Lemma 4 in terms of behaviors. All we need to do is to replace the
parallel con�guration P 2 PC in every pair hA;P i 2 [[Ci]]1, for i 2 ind(C), by
its behavior Beh(P ). It turns out that the pairs obtained in this way can be
uniquely determined from the behavior Beh(Ci) of Ci, for any i 2 ind(C).

De�nition 4. Let A ��n �. An A-behavior hF; Ii is called an A-context for
C 2 PC if (i) F = fAg, (ii) A 2 F (C), and (iii) I(A) \ I(C)(A) = fAg.

Note that A-contexts for C are bounded behaviors, i.e., they can be represented
without ?. An A-context P of C represents a set of sequences that all end in
the �nal world A, in which also some sequence model of C must end and which
only have world A in common with the sequence models of C ending in A. These
properties imply CkP + A, for every P with Beh(P ) = P . Hence, A-contexts P
are \relativized complements" of C wrt. the �nal response A.
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Fig. 3. fa; b; cg-contexts

Consider again example C from above, whose
sequence models SM (C) are described by the be-
havior of Fig. 2. To get the A-contexts of C, where
A = fa; b; cg, we must take the \complement"
of I(C)(A), i.e., all B � A that are missing in the
lattice of Fig. 2. As shown in Fig. 3, C has two A-
contexts P1 and P2 covering this complement; con-
�gurations that denote them are P1 =df �=ac k b=b
and P2 =df �=bc k a=a, respectively. These provide
complete information since every A-context must be
contained in P1 or P2. For all C 2 PC and b 2 B we
are �nally led to de�ne [[C]]b2 =df fhA;Pi jA ��n �;
�(C;A) = b; P is A-context of Cg and obtain as a
corollary to Lemma 4 and Thm. 2:

Theorem 5. Let C;D 2 C. Then, C ' D i�
S
i2ind(C)[[Ci]]

tt
2 =

S
j2ind(D)[[Dj ]]

tt
2

and
T
i2ind(C)[[Ci]]

�
2 =

T
j2ind(D)[[Dj ]]

�
2 .

With Thm. 5 we have �nally achieved our goal, as [[C]]2 is satisfactorily se-
mantical and �nite. In combination with Lemma 2 it directly lends itself to
be applied for a model-based implementation of Pnueli and Shalev's seman-
tics, which does not require backtracking for handling failure. Finally, it should
be stressed that the above theorem also holds if we restrict ourselves to \+"-
con�gurations of the form C+t, as in Statecharts, instead of permitting con�gu-
rations C+D, for arbitrary C;D 2 C (cf. Sec. 2). We now return to the example
of Figs. 2 and 3. Let idB be the behavior hfBg; B 7! fBgi, for B � � . We have

[[C]]tt2 = fhfa; b; cg;Pii j i = 1; 2g and [[C]]�2 = ;. The same semantics can be gen-
erated as D1 +D2, where D1 = bc=a k b=b k a=a and D2 = ac=b k b=b k c=c, since

[[Di]]
tt
2 = fhfa; b; cg;Piig, [[D1]]

�
2 = fhfa; bg; idfa;bgig, [[D2]]

�
2 = fhfb; cg; idfb;cgig.

Hence, [[D1]]
tt
2 [ [[D2]]

tt
2 = [[C]]tt2 and [[D1]]

�
2 \ [[D2]]

�
2 = ; = [[C]]�2 . By Thm. 5,

C ' D1 +D2. A similar reasoning reveals C79 ' C 0
79 (cf. Sec. 3).

5 Discussion and Related Work

Our investigation focused on Pnueli and Shalev's presentation of Statecharts and
its macro-step semantics. The elegance of their operational semantics manifests
itself in the existence of an equivalent declarative �xed point semantics [16].
However, as illustrated in [16], this equivalence is violated when allowing dis-
junctions in transition triggers. For example, the con�gurations (a _ b)=a and
a=a k b=a do not have the same response behavior. This subtlety can now be
explained in our framework. In Pnueli and Shalev's setting, a _ b is classically
interpreted as \throughout a macro step, not a or b." In contrast, this paper
reads the con�guration as \throughout a macro step not a or throughout b."

Our framework can also be employed for analyzing various other variants of
Statecharts semantics, such as the one of Maggiolo-Schettini et al. [14] which in



turn is inspired by the process-algebraic semantics presented in [17]. In [14] the
step-construction procedure cannot fail since a transition is only considered to
be enabled, if it is enabled in the sense of Pnueli and Shalev and if it does not
produce any event that violates global consistency. As an example, consider the
con�guration C =df t1kt2, where t1 =df a=b and t2 =df b=a. According to [14],
when C is evaluated for the empty environment, response fag is obtained; in
Pnueli and Shalev's semantics, however, the step construction fails. The dif-
ference can be explained in terms of stabilization sequences. While Pnueli and
Shalev take t1 to stand for the speci�cation a � b and t2 for :b � a, Maggiolo-
Schettini et al. apply the interpretation a � (b _ :b) for t1 and :b � (a _ :a)
for t2. Indeed, as one veri�es, fag then is a response model of t1kt2. Note again
that a _ :a is di�erent from true in intuitionistic logic. Generalizing this exam-
ple, the transition semantics of [14] can be captured in terms of response models
by reading a transition E=A as formula E � (A _ :A), if our setting would be
extended to allowing disjunctions as part of actions.

Our intuitionistic approach is also related to recent work in synchronous
languages, especially for Berry's Esterel [3]. In Esterel, causality was traditionally
treated separately from compositionality and synchrony as part of type-checking
speci�cations. If the (conservative) type checker found causality to be violated,
it rejected the speci�cation under consideration. Otherwise, the speci�cation's
semantics could be determined in a very simple fashion; one may | in contrast
to Statecharts semantics | abstract from the construction details of macro
steps while preserving compositionality, as shown by Broy in [4]. Version 5 of
Esterel [2] replaced the treatment of causality by de�ning a semantics via a
particular Boolean logic that is constructive, as is intuitionistic logic.

Denotational semantics and full abstraction were also studied by Huizing et
al. [10, 11] for an early and later-on rejected Statecharts semantics [9]. That se-
mantics does not consider global consistency, which makes their result largely
incomparable to ours. Finally, it should be mentioned that the lack of compo-
sitionality of Statecharts semantics inspired the development of new languages,
such as Alur et al.'s communicating hierarchical state machines [1].

6 Conclusions

To the best of our knowledge, this is the �rst paper to present a fully-abstract
Statecharts semantics for Pnueli and Shalev's original macro-step semantics [16].
The latter semantics is non-compositional as it employs classic logic for inter-
preting macro steps. In contrast, our semantics borrows ideas from intuitionistic
logic. It encodes macro steps via stabilization sequences which we characterized
using semi-lattice structures, called behaviors. Behaviors capture the interactions
between Statecharts and their environments and consistently combine the no-
tions of causality, global consistency, and synchrony. Moreover, our approach sug-
gests a model-based implementation of Pnueli and Shalev's semantics, thereby
eliminating the need to implement failure via backtracking.
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