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Abstract. This paper provides new insight into the connection between
the trace-based lower part of van Glabbeek’s linear-time, branching-
time spectrum and its simulation-based upper part. We establish that
ready simulation is fully abstract with respect to failures inclusion, when
adding the conjunction operator that was proposed by the authors in
[TCS 373(1–2):19–40] to the standard setting of labelled transition sys-
tems with (CSP-style) parallel composition. More precisely, we actually
prove a stronger result by considering a coarser relation than failures in-
clusion, namely a preorder that relates processes with respect to inconsis-
tencies that may arise under conjunctive composition. Ready simulation
is also shown to satisfy standard logic properties and thus commends
itself for studying mixed operational and logic languages.

1 Introduction

Basic research in concurrency theory over the past 25 years has resulted in
a wealth of process algebras [2, 8, 13] and temporal logics [4] for specifying
and reasoning about concurrent processes. However, little research has been
conducted on mixing process-algebraic and logic styles of specification in a single
formalism. This is surprising since many popular software-engineering languages,
including UML, permit such mixed specifications.

In [11] we proposed an approach to defining and reasoning about conjunction
on labelled transition systems. Our setting consisted of standard labelled tran-
sition systems, augmented by an inconsistency predicate (cf. Sec. 2). While our
conjunction operator is in essence a synchronous product on visible actions and
an interleaving product on internal actions, the challenge was in dealing with
inconsistencies. Inconsistencies may either arise when conjunctively composing
two processes with different initial action sets (i.e., ready sets), or when a pro-
cess has no other choice for some action than entering an inconsistent state. Our
framework was equipped with ready-tree semantics, which is a variant of van
Glabbeek’s path-based possible-worlds semantics [6] that was inspired by Veg-
lioni and De Nicola [17]. The resulting ready-tree preorder (for divergence-free
consistent systems) turned out to be coarser than ready simulation and finer
than failures inclusion and ready-trace inclusion, which implies the important
feature that ready-tree semantics is sensitive to deadlock. We proved in [11] that



the ready-tree preorder is fully abstract under conjunction with respect to a
naive inconsistency preorder,3 which allows an inconsistent specification only to
be implemented by an inconsistent implementation.

This paper first shows that the ready-tree preorder is inadequate in the pres-
ence of concurrency, as it fails to be compositional for standard parallel com-
position, such as the parallel operator of CSP [8]. A different compositionality
problem for the parallel composition of SCCS was already noted in [6]. We then
establish our main result (cf. Sec. 3), namely that ready simulation [3], which
adds to ordinary simulation the requirement that related processes must have
identical ready sets, is fully abstract with respect to conjunction and parallel
composition, for labelled transition systems with inconsistencies. Along the way,
we adapt ready simulation to dealing with internal actions and inconsistencies.
We also conduct several sanity checks: we verify that our conjunction opera-
tor indeed formalises conjunction regarding ready simulation, and prove further
logic properties desired of ready simulation. Omitted proofs can be found in [12].

Our full-abstraction result provides an interesting insight into van Glabbeek’s
linear-time, branching-time spectrum [6], namely that conjunction on processes
is a tool, via full abstraction, for relating the trace-based lower part of the
spectrum to the simulation-based upper part. In addition, our results testify
to the adequacy of ready simulation as the semantic basis for mixed process-
algebraic and logic languages. Indeed, ready simulation eliminates the necessity
for restrictions on the nesting of process-algebraic and logic constructs, such as
the one employed by Olderog when embedding trace formulas into CSP [14].

2 Logic LTS, conjunction & parallel composition

This section recalls the definitions of Logic Labelled Transition Systems, or Logic
LTS for short, and the conjunction operator on Logic LTS which were introduced
in [11]. It also lifts the parallel composition operator of CSP [8] to Logic LTS.
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Fig. 1. Basic intuition behind conjunctive composition.

Key to our setting is the consideration of inconsistencies which may arise
under conjunctive composition. The idea is to mark a composed state between

3 I.e., the ready-tree preorder is the coarsest precongruence for conjunction which
refines the inconsistency preorder.



two processes as inconsistent, if one offers an action that the other cannot per-
form, i.e., if the processes have different ready sets [15]. Consider the processes p,
q and r of Fig. 1. Process p and q specify that exactly action a and respectively
action b is offered initially, i.e., their ready sets are {a} and respectively {b}.
Similarly, process r specifies that a and b are offered initially and thus has ready
set {a, b}. Hence, p ∧ q as well as p ∧ r are inconsistent (or false) and should be
tagged as such. Formally, our variant of LTS will be augmented by an inconsis-
tency predicate, or false-predicate, F , so that p ∧ q, p ∧ r ∈ F in our example.
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Fig. 2. Backward propagation of inconsistencies.

Inconsistency is a more tricky property, however, as it can propagate back-
wards along transitions. For example, in the conjunction p′ ∧ q′ shown in Fig. 1,
both conjuncts require action a to be performed, whence p′ ∧ q′ should have
an a-transition. But this transition does lead to an inconsistent state and, in
the absence of any alternative a-transition leading to a consistent state, p′ ∧ q′

must itself be considered as inconsistent. In this spirit, inconsistency propagates
backwards for the left process in Fig. 2, whereas it does not for the middle and
right processes, as they can engage in an a-transition, respectively τ -transition,
that leads to a consistent state. As an aside, it is noted that the right process
may be interpreted as a disjunction between the inconsistent process marked F
which has empty behaviour, and the consistent process offering a b-transition.

Logic Labelled Transition Systems. Let A be an alphabet with representatives a
and b, and let Aτ denote A ∪ {τ} with representatives α and β. An LTS is a
triple 〈P,−→, F 〉,4 where P is the set of processes (states), −→⊆ P × Aτ × P
is the transition relation, and F ⊆ P is the inconsistency predicate. We write
(i) p

α
−→ p′ instead of 〈p, α, p′〉 ∈−→, (ii) p

α
−→ instead of ∃p′ ∈ P. p

α
−→ p′ and

(iii) p −→ instead of ∃p′ ∈ P, α ∈ Aτ . p
α

−→ p′. When p
α

−→ p′, we say that
process p can perform an α-step to p′, and we call p′ an α-derivative. A process p
that cannot engage in a τ -transition, i.e., p 6

τ
−→, is called stable. The sort AP of

the LTS (and its processes) is the set of actions occurring in −→.

We also require an LTS to satisfy the following τ-purity condition: p
τ

−→
implies 6 ∃a ∈ A. p

a
−→, for all p ∈ P . Hence, each process represents either an

external or internal (disjunctive) choice between its outgoing transitions. This
restriction reflects the fact that ready sets can only be observed at stable states,

4 The additional, less relevant true predicate of [11] is omitted here for clarity.



so that visible transitions leaving instable states are outside our observation.
The LTSs of interest to us need to satisfy two further properties:

Definition 1 (Logic LTS [11]). An LTS 〈P,−→, F 〉 is a Logic LTS if:

(LTS1) F ⊆ P such that p ∈ F if ∃α ∈ I(p)∀p′ ∈ P. p
α

−→ p′ implies p′ ∈ F ;
(LTS2) p cannot stabilise implies p ∈ F .

The first condition formalises the backward propagation of inconsistencies as
discussed above; here, I(p) stands for the ready set {α ∈ Aτ | p

α
−→} of process p.

The second condition relates to divergence, i.e., infinite sequences of τ -tran-
sitions, where divergence is viewed as catastrophic if a process cannot stabilise.

Before formalising our notion of stabilisation, we introduce several variants of
weak transition relations which will prove useful in the sequel. We write p

ε
=⇒ p′

if p
τ

−→
∗

p′ and p
a

=⇒ p′ if ∃p. p
a

−→ p
ε

=⇒ p′. Note that we do not consider
τ -transitions preceding a visible transition as we only need weak a-transitions
originating from stable processes. If all processes along a computation p

ε
=⇒ p′

or p
a

=⇒ p′, including p and p′, are consistent, then we write p
ε

=⇒F p′ and
p

a
=⇒F p′, respectively. If in addition, p′ is stable, we write p

ε
=⇒| p′ and p

a
=⇒| p′,

respectively. We may now define that a process p can stabilise if ∃p′. p
ε

=⇒| p′.

We will denote a transition p
α

−→ p′ with p, p′ /∈ F by p
α

−→F p′. Moreover,
whenever we mention a process p without stating a respective Logic LTS explic-
itly, we assume implicitly that such a Logic LTS 〈P,−→, F 〉 is given. Finally,
we let ff stand for the only process of the LTS 〈{ff}, ∅, {ff}〉, which represents
the boolean constant false. Intuitively, any given process is either inconsistent,
in which case it is equivalent to ff, or it is equivalent to a process from which
no inconsistent process can be reached; the latter can simply be achieved by
omitting inconsistent processes in LTSs and all transitions leading to them.

Conjunction & parallel composition. Our conjunction operator is a synchronous
product for visible transitions and an asynchronous product for τ -transitions,
analogous to ‖A defined below. However, we need to take care of inconsistencies.
This is because, otherwise, p ∧ q, with p and q defined as in Fig. 1, would be a
consistent process without any transitions.

Definition 2 (Conjunction operator [11]). The conjunction of two Logic
LTSs 〈P,−→P , FP 〉 and 〈Q,−→Q, FQ〉 is the Logic LTS 〈P ∧ Q,−→P∧Q, FP∧Q〉:

– P ∧ Q =df {p ∧ q | p ∈ P, q ∈ Q}
– −→P∧Q is determined by the following operational rules:

p
τ

−→P p′ implies p ∧ q
τ

−→P∧Q p′ ∧ q

q
τ

−→Q q′ implies p ∧ q
τ

−→P∧Q p ∧ q′

p
a

−→P p′, q
a

−→Q q′ implies p ∧ q
a

−→P∧Q p′ ∧ q′



– FP∧Q is the least set such that each p ∧ q ∈ FP∧Q satisfies at least one of
the following conditions:
(C1) p ∈ FP or q ∈ FQ;

(C2) p ∧ q 6
τ

−→P∧Q and I(p) 6= I(q);

(C3) ∃α ∈ I(p ∧ q)∀p′ ∧ q′. p ∧ q
α

−→P∧Q p′ ∧ q′ implies p′ ∧ q′ ∈ FP∧Q;
(C4) p ∧ q cannot stabilise.

We are left with explaining Conds. (C1)–(C4). Firstly, a conjunction is inconsis-
tent if a conjunct is inconsistent. Conds. (C2) and (C3) reflect our intuition of
inconsistency and backward propagation. Cond. (C4) is added to enforce (LTS2).

Definition 3 (Witness). A witness is a set W ⊆ P ∧ Q such that, for all
p ∧ q ∈ W , the following conditions hold:

(W1) p, q /∈ F ;

(W2) p
τ

−→ or q
τ

−→ or I(p) = I(q);

(W3) ∀α ∈ Aτ . p ∧ q
α

−→ implies ∃p′ ∧ q′ ∈ W. p ∧ q
α

−→ p′ ∧ q′;

(W4) p ∧ q can stabilise in W , i.e., p ∧ q
τ

−→ p1 ∧ q1
τ

−→ · · ·
τ

−→ pn ∧ qn 6
τ

−→
with all pi ∧ qi ∈ W .

It is easy to check that the set of consistent processes FP∧Q of P ∧ Q, i.e.,
the complement of FP∧Q, is a witness and is in fact the largest one in P ∧ Q.
This implies the following straightforward proposition, giving us a useful tool
for proving that the conjunction of two processes is consistent:

Proposition 4. p ∧ q /∈ FP∧Q if and only if ∃witnessW. p ∧ q ∈ W .

For example, the concept of witness may be employed to prove the following
properties of conjunctive composition:

Lemma 5. 1. If p ∧ q
τ

−→ p′ ∧ q′ /∈ F and p, q /∈ F , then p ∧ q /∈ F .
2. Let p

ε
=⇒| p′, q

ε
=⇒| q′ and p′ ∧ q′ /∈ F . Then, p ∧ q

ε
=⇒| p′ ∧ q′.

Finally, we adapt the parallel operator ‖A of CSP [8] to our setting, where A ⊆ A
denotes the synchronisation alphabet. Naturally, the parallel composition of two
processes is inconsistent if either process is inconsistent.

Definition 6 (Parallel operator). The parallel composition of two Logic LTS
〈P,−→P , FP 〉 and 〈Q,−→Q, FQ〉 for the synchronisation set A ⊆ A, is the Logic
LTS 〈P ‖A Q,−→P‖AQ, FP‖AQ〉:

– P ‖A Q =df {p ‖A q | p ∈ P, q ∈ Q}
– −→P‖AQ is determined by the following operational rules:

p
α

−→P p′, α /∈ A, (α = τ or q 6
τ

−→Q) implies p ‖A q
α

−→P‖AQ p′ ‖A q

q
α

−→Q q′, α /∈ A, (α = τ or p 6
τ

−→P ) implies p ‖A q
α

−→P‖AQ p ‖A q′

p
a

−→P p′, q
a

−→Q q′, a ∈ A implies p ‖A q
a

−→P‖AQ p′ ‖A q′



– p ‖A q ∈ FP‖AQ if p ∈ FP or q ∈ FQ.

Both conjunction and parallel composition are well-defined, i.e., the compositions
of two Logic LTSs satisfy the conditions of Def. 1. In the sequel, we leave out
indices of relations and predicates whenever the context is clear.

Ready-tree semantics. Our previous work [11] focused only on studying con-
junction on Logic LTSs. It characterised the largest precongruence contained in
the inconsistency preorder, which states that a consistent implementation p does
never refine an inconsistent specification q.5

Definition 7 (Inconsistency preorder [11]). The inconsistency preorder vF

on processes is defined by p vF q if p /∈ F implies q /∈ F .

This definition agrees with the standard verification question whether an imple-
mentation satisfies its specification. When reading ‘satisfies’ logically as ‘implies’,
it is clear that an inconsistent (i.e., ‘false’) specification can only be met by an
inconsistent implementation.

Obviously, the inconsistency preorder is not compositional with respect to
conjunction. Our characterisation of the fully-abstract preorder contained in vF

and presented in [11] is based on a variant of the path-based possible-worlds
semantics of [6, 17], to which we refer as ready-tree semantics. This seman-
tics employs the notion of observation tree. An observation tree is a Logic LTS
〈V,−→, ∅〉 whose processes and transitions form a deterministic tree and whose
processes (vertices) are stable; we refer to the tree’s root as v0. We may now
formalise our desired observations of a process p, called ready trees :

Definition 8 (Ready tree [11]). An observation tree v0 is a ready tree of p,
if there is a labelling h : V −→ P satisfying the following conditions:

(RT1) ∀v ∈ V. h(v) stable and h(v) /∈ F ;

(RT2) p
ε

=⇒|h(v0);

(RT3) ∀v ∈ V, a ∈ A. v
a

−→ v′ implies h(v)
a

=⇒|h(v′);
(RT4) ∀v ∈ V. I(v) = I(h(v)).

Intuitively, nodes v in a ready tree represent stable states h(v) of p (cf. the first
part of Cond. (RT1)) and transitions represent stable, consistent computations
(cf. Cond. (RT3)). Since such computations do not contain inconsistent states,
no represented state must be in F (cf. the second part of Cond. (RT1)). Since p
might not be stable, the root v0 of a ready tree represents a stable process
reachable from p via some internal computation (cf. Cond. (RT2)). Moreover,
v must mimic the ready set of h(v) (cf. Cond. (RT4)). In the following, we
write RT(p) for the set of all ready trees of p; note that ff has no ready tree.

5 The reader familiar with [11] should note that we now write the implementation
to the left and the specification to the right of the preorder symbol, in order to be
consistent with the notational conventions of simulation-based preorders.



Definition 9 (Ready-tree preorder [11]). The ready-tree preorder ⊆RT on
processes is defined as ready-tree inclusion, i.e., p ⊆RT q if RT(p) ⊆ RT(q).

Theorem 10 (Full-abstraction wrt. conjunction [11]). ⊆RT is the largest
precongruence in vF , when considering conjunction as the only operator.
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Fig. 3. Ready-tree semantics is not compositional for parallel composition.

Unfortunately, ⊆RT is not a precongruence for parallel composition ‖A, which
makes the preorder unsuitable for reasoning about concurrency. To see this,
consider the Logic LTSs p, q and r of Fig. 3. Here, p and q have the same ready
trees, but t is a ready tree of q ‖{b} r but not of p ‖{b} r.

3 Full abstraction via ready simulation

We now establish our full-abstraction result of ready simulation wrt. the incon-
sistency preorder, when considering both conjunction and parallel composition.

Definition 11 (Ready simulation on Logic LTS). Let 〈P,−→P , FP 〉 and
〈Q,−→Q, FQ〉 be two Logic LTS. A relation R ⊆ P × Q is a stable ready simu-
lation relation, if the following conditions hold, for any 〈p, q〉 ∈ R and a ∈ A:

(RS1) p, q stable;
(RS2) p /∈ FP implies q /∈ FQ;

(RS3) p
a

=⇒| p′ implies ∃q′. q
a

=⇒| q′ and 〈p′, q′〉 ∈ R;
(RS4) p /∈ F implies I(p) = I(q).

We say that p is stable ready simulated by q, in symbols p @
∼RS

q, if there exists a

stable ready simulation relation R with 〈p, q〉 ∈ R. Further, p is ready simulated

by q, written p vRS q, if ∀p′. p
ε

=⇒| p′ implies ∃q′. q
ε

=⇒| q′ and p′ @
∼RS

q′. We

write ≈RS and =RS for the kernel of @
∼RS

and vRS, respectively.



It is easy to see that @
∼RS

and vRS are preorders, and that p vRS q trivially
holds if p ∈ F . Moreover, ready simulation vRS is contained in the ready-tree
preorder ⊆RT, as essentially stated in [6], and conjunction and parallel compo-
sition are associative and commutative with respect to =RS. Note that there
are several ways how to define ready simulation [3, 6] for settings with inter-
nal actions [5]. Our variant is an adaptation of Glabbeek’s stability respecting
ready simulation may preorder to Logic LTS. Observe that replacing the premise
p

a
=⇒| p′ of (RS3) by p

a
−→F p′ results in a finer preorder, unlike for some other

simulation-based behavioural relations [13].

Theorem 12 (Compositionality).

1. Let p @
∼RS

q, r be stable and A ⊆ A. Then, (a) p ‖A r @
∼RS

q ‖A r as well as

(b) p ∧ r @
∼RS

q ∧ r.

2. Let p vRS q, r be an arbitrary process and A ⊆ A. Then, (a) p ‖A r vRS

q ‖A r and (b) p ∧ r vRS q ∧ r.

Regarding the proof, we only want to point out that it employs the proof tool
of witness in order to reason about the consistency of conjunctively composed
processes in Part (1). The following witness turns out to be sufficient for our
purpose:

Lemma 13. The set W =df W1 ∪ W2 is a witness, where
W1 =df {q ∧ r |∃p. p @

∼RS
q and p ∧ r /∈ F};

W2 =df {q ∧ r |∃p, q, r, p′, r′, q′, a. p @
∼RS

q, p ∧ r /∈ F, p ∧ r
a

=⇒| p′ ∧ r′, p′ @
∼RS

q′,

and q
a

=⇒F q
ε2

=⇒| q′ and r
a

=⇒F r
ε1

=⇒| r′ with {ε1, ε2} = {ε, τ} } .

Full-abstraction result. To prove our main result we encode the full behaviour
of a stable process p into a single ready tree. The idea is to unfold p to a tree
and to eliminate any nondeterminism by placing fresh actions into the tree.

Definition 14 (Characteristic ready tree & context). Let p be a process
with Logic LTS 〈P,−→, F 〉 having sort AP , let q be a process with sort AQ, and

let p
ε

=⇒| p0.

1. The characteristic ready tree P0 of p with respect to p0 and q is a Logic LTS
whose states are paths π ∈ P × (AP × P )∗ of p originating in p0, as well as
such paths concatenated with selection sets D which are subsets of AP ×
P . Formally, the state set P0 and transition relation −→P0

are inductively
defined as follows, where last(π) denotes the last process on path π and the
xD /∈ AP ∪ AQ are fresh actions with respect to p and q:
– p0 ∈ P0;
– π

xD−→P0
πD and πD ∈ P0, if π ∈ P0, ∀〈a, p〉 ∈ D. last(π)

a
=⇒| p in P and

∀a ∈ I(last(π))∃1〈a, p〉 ∈ D;

– πD
a

−→P0
πap and πap ∈ P0, if πD ∈ P0 and 〈a, p〉 ∈ D.



We will write 〈p0〉 instead of p0 when we wish to highlight that not the
process p0 is meant, but the path consisting only of p0.

2. The characteristic context K of p with respect to p0 and q is defined as the
Logic LTS P0 augmented with the fresh process 0 and transitions
– πD

a
−→K 0, if πD ∈ P0, a ∈ AQ and 6 ∃p.〈a, p〉 ∈ D.

Proposition 15. Let P0 be the characteristic ready tree of a process p wrt.
some p0 and q, and let K be the respective characteristic context of p. Then,
P0 is a ready tree of p ‖A 〈p0〉, where A =df AP ∪AQ and 〈p0〉 is the root of K.

Proof. P0 is an observation tree by construction, since it is a deterministic tree
and since all its vertices are stable processes. We define a mapping h0 from
the vertices in P0 to processes in P ‖A K by h0(π) =df last(π) ‖A π and
h0(πD) =df last(π) ‖A πD, and verify Conds. (RT1)–(RT4) of Def. 8:

(RT1) This is trivial since last(π), π and πD are all stable and not in F .

(RT2) We have p ‖A 〈p0〉
ε

=⇒| p0 ‖A 〈p0〉 by construction.

(RT3) If π
xD−→P0

πD, then π
xD−→K πD by construction of K. Since xD is

a “fresh” action, h0(π) = last(π) ‖A π
xD−→F last(π) ‖A πD = h0(πD). If

πD
a

−→P0
πap, then last(π)

a
=⇒| p and πD

a
−→K πap by the construction

of K. As a ∈ A, we have h0(πD) = last(π) ‖A πD
a

=⇒| p ‖A πap = h0(πap).
(RT4) Observe that the ready set of state πD in K is the initial action set

I(last(π)) of the last process of path π in P plus all actions in AQ, whereas
the same state in P0 has only ready set I(last(π)). By the operational rules
for parallel composition we obtain:
– IP‖AK(last(π) ‖A π) = (IP (last(π)) ∩ IK(π) ∩ A) ∪ (IP (last(π)) \ A) ∪

(IK(π) \ A) = ∅ ∪ ∅ ∪ IK(π) = IP0
(π).

– IP‖AK(last(π) ‖A πD) = (IP (last(π))∩IK (πD)∩A)∪(IP (last(π))\A)∪
(IK(πD)\A) = (IP (last(π))∩(IP (last(π))∪AQ)∩A)∪∅∪((IP (last(π))∪
AQ) \A) = IP (last(π)) = IP0

(πD); note that the last equality is due to
the construction of P0 from P . ut

Observe that P0 is not a ready tree of p itself due to the fresh actions inserted
in P0; these actions are added to p via the parallel context K. Together, char-
acteristic ready trees and Prop. 15 are the key for proving our main result:

Theorem 16 (Full abstraction). The largest precongruence contained in vF ,
with respect to parallel composition and conjunction, equals vRS.

Proof. Because of Thm. 12 and Thm. 10 [11], as well as the fact that ready
simulation is contained in the ready-tree preorder ⊆RT and thus in vF [11], it is
sufficient to prove that vRS subsumes the largest precongruence ⊆+

RT
contained

in ⊆RT. Consider processes p and q with Logic LTSs P and Q and sorts AP and
AQ. We let APQ stand for AP ∪AQ, and abbreviate ‖APQ

by ‖.

Now assume p ⊆+

RT
q, and consider some p0 such that p

ε
=⇒| p0. Because of

p ⊆+

RT
q and Prop. 15, we have P0 ∈ RT(q ‖ 〈p0〉) due to some mapping h (cf.



Def. 8); in particular, q /∈ F . Here, P0 is the characteristic ready tree of p with
respect to p0 and q. To prove our claim, it is sufficient to establish that

R0 =df {〈p
′, q′〉 | ∃π. last(π) = p′ and h(π) = q′ ‖ π}

is a stable ready simulation relation. Thus, let 〈p′, q′〉 ∈ R0 due to π.

(RS1) h(π) is stable, whence q′ is. Moreover, last(π) is stable by construction.
(RS2) h(π) /∈ F implies q′ /∈ F .

(RS3) Let p′
a

=⇒| p′′ and π
xD−→ πD with 〈a, p′′〉 ∈ D for some p′′. Then, πD

a
−→

πap′′. Moreover, h(πD) = q′ ‖ πD, whence q′ ‖ πD
a

=⇒|h(πap′′) = q′′ ‖ πap′′

for some q′′ by (RT3), as well as q′
a

=⇒| q′′ and 〈p′′, q′′〉 ∈ R0 due to πap′′.

(RS4) We have p′ /∈ F by construction. Choose some D with π
xD−→ πD, whence

h(πD) = q′‖πD. Now, I(p′) = I(πD) in P0 by construction of P0. The latter
equals I(q′‖πD) by (RT4), which in turn equals the set I(q′) since AQ ⊆
I(πD) ⊆ APQ, for I(πD) in the characteristic context. Hence, I(p′) = I(q′).

Thus, R0 is a stable ready simulation relation. Finally observe h(p0) = q0 ‖ 〈p0〉

for some q0 such that q‖〈p0〉
ε

=⇒| q0‖〈p0〉 (by (RT2)); therefore, q
ε

=⇒| q0 and
〈p0, q0〉 ∈ R0 due to 〈p0〉.

Summarising, we have shown that, for each p0 with p
ε

=⇒| p0, there exists

some q0 satisfying q
ε

=⇒| q0 and p0
@
∼RS

q0. Hence, p vRS q. ut

One way to guarantee the existence of the fresh actions required in the construc-
tion of characteristic ready trees is to assume an uncountable alphabet A and
to restrict ourselves to those processes that are finitely branching with respect
to

a
=⇒| , for all a ∈ A, and have a countable sort. Then, context K and the

characteristic ready trees are also finitely branching and have countable sorts.

Logic properties of ready simulation. We conclude this section by highlighting
some logic properties of ready simulation.

Theorem 17 (∧ is And). (1) r @
∼RS

p ∧ q if and only if r @
∼RS

p and r @
∼RS

q;

(2) r vRS p ∧ q if and only if r vRS p and r vRS q.

As for the compositionality proof of ready simulation wrt. conjunction, the proof
of this theorem uses the concept of witness for reasoning about inconsistencies:

Lemma 18. The set W ′ =df W ′
1 ∪ W ′

2 is a witness, where
W ′

1 =df {p ∧ q |∃r. r @
∼RS

p, r @
∼RS

q and r /∈ F}

W ′
2 =df {p ∧ q |∃r, p, q, r′, p′, q′, a. r @

∼RS
p, r @

∼RS
q, r

a
=⇒| r′, p

a
=⇒F p

ε1
=⇒| p′ and

q
a

=⇒F q
ε2

=⇒| q′ with {ε1, ε2} = {ε, τ}, r′ @
∼RS

p′ and r′ @
∼RS

q′} .

Conjunction also satisfies further standard logic properties:

Proposition 19 (Logic properties of ready simulation).
1. p ∧ ff =RS ff; p ∧ ff ≈RS ff if p stable;
2. p ∧ q vRS p; p ∧ q @

∼RS
p if p, q stable;

3. p ∧ p =RS p;
4. p ∧ q =RS p if and only if p vRS q.



In our previous work we also considered a disjunction operator ∨ on Logic LTSs.
This operator was defined as internal choice, i.e., p ∨ q can perform an internal
τ -transition to both p and q, where p ∨ q is considered to be inconsistent if
both p and q are. Due to space constraints we do not include disjunction here,
but simply note that ready simulation is compositional for disjunction and that
the dual properties to the ones of Prop. 19 hold. The validity of these statements
is not difficult to check. Moreover, the distributivity laws hold, too.

4 Related work

This section briefly discusses related work; a full discussion can be found in [11].
Firstly, our ready-tree semantics is in essence the path-based possible-worlds se-
mantics of van Glabbeek [6] which goes back to Veglioni and De Nicola [17], and
our ready simulation was first suggested by Bloom et al. [3]. However, in con-
trast to the standard notions of these semantics, our setting deals with internal
actions as well as inconsistencies.

Traditional research has often avoided explicitly mixing operational and logic
styles of specification by translating one style into the other. Operational con-
tent may be translated into logic formulas, as is implicitly done in [7, 10], where
logic implication serves as refinement relation [1]. Dually, logic content may be
translated into operational content. This is the case in automata-theoretic work,
such as in Kurshan’s work on ω-automata [9], which includes synchronous and
asynchronous composition operators and uses maximal trace inclusion as refine-
ment relation. However, both logic implication and trace inclusion are insensitive
to deadlock and are thus inadequate in the presence of concurrency.

A seminal approach to compositional refinement in a mixed setting was pro-
posed by Olderog in [14], where process-algebraic constructs are combined with
trace formulas expressed in a predicate logic and where failure semantics forms
the semantic basis of refinement. In this approach, trace formulas can serve as
processes, but not vice versa. Thus, and in contrast to our present work, freely
mixing operational and logic specification styles is not supported and, in partic-
ular, conjunction cannot be applied to processes.

Finally, it should be noted that the term consistency as used here is different
from the one in [16], where two specifications are defined as consistent if they
have at least one implementation in common. In our setting, a process p /∈ F is
called consistent, while p∧q implements both p and q, for arbitrary p, q. Thm. 17
also implies that p and q are consistent in the sense of [16], if p ∧ q /∈ F in our
setting.

5 Conclusions & future work

This paper proved that ready simulation [3] is fully abstract with respect to con-
junction and parallel composition on Logic LTS. In this sense, ready simulation
is indeed a “logical” semantics. Establishing this result was non-trivial due to
the challenges that arise when dealing with inconsistencies under conjunctive



composition. This is evidenced by the complex compositionality proof with re-
spect to conjunction, as well as the two-step “largest” precongruence proof that
relied on our previous full-abstraction work on ready-tree semantics [11].

Our results show that conjunction is a tool for relating trace-based seman-
tics to simulation-based semantics, via the concept of full abstraction. This sheds
additional light onto van Glabbeek’s linear-time, branching-time spectrum [6].
Moreover, our results imply that ready simulation commends itself as a suitable
behavioural relation for reasoning about specifications given in a mixed opera-
tional and logic style. Indeed, future work shall employ ready simulation within
novel algebras that will combine process-algebraic and temporal-logic operators.
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