
Formal Methods for the Quality Assurance of Digital Systems

Gerald L�uttgen�

Abstract

Formal Methods aim at improving the reliability and safety

of digital systems by applying mathematical speci�cation

and veri�cation techniques. This article gives an introduc-
tion to Formal Methods and illustrates them by means of
an example dealing with parts of a 
ight-guidance system.

Introduction

Formal Methods is an area of research in Computer Science
which aims at improving the reliability and safety of digital

systems by applying mathematical speci�cation and veri�-

cation techniques. It complements traditional approaches
to quality assurance such as reviews and testing.

The absence of malbehavior is of particular importance
for safety-critical systems, such as used in tra�c control,
medicine, aeronautics, and aerospace. Experience shows
that many fatal errors occur very rarely and under excep-
tional circumstances; one major source being the intrinsic
interplay of concurrent processes as well as the inherent
complexity of fault-tolerant systems. Unfortunately, even
sophisticated testing methods do not catch some of these
bugs, as is testi�ed by many incidents, such as the 
oat-
ing point bug in Intel's Pentium processor, several air-
plane crashes, and the Ariane 5 blow-up. Hence, rigorous
techniques are needed for guaranteeing the correctness of
critical computer systems.

The philosophy underlying Formal Methods is simi-
lar to other scienti�c disciplines, such as Computational
Fluid Dynamics. It relies on the construction and math-

ematical analysis of models in order to predict real-world
systems' behavior. This approach often reveals poten-
tial weaknesses in a product's design, which may or may
not have been discovered by standard engineering meth-
ods. Thereby, it also saves enormous costs associated with
testing digital systems or experimenting in wind-tunnels.
In addition, for safety-critical systems the analysis of the
complete behavior of an abstracted model has been proved
to produce better results than conducting tests which
cover only part of a system's behavior. In contrast to

�Institute for Computer Applications in Science and Engineering
(ICASE), Mail Stop 403, NASA Langley Research Center, Hamp-
ton, VA 23681-2199 (email: luettgen@icase.edu). This work was
supported by the National Aeronautics and Space Administration
under NASA Contract Nos. NAS1-97046 and NAS1-19480 while the
author was in residence at ICASE.

systems studied in 
uid dynamics the behavior of digital
systems is not continuous. A slight change in the operat-
ing environment may cause abrupt changes in a system's
behavior. Thus, the mathematics employed in Formal
Methods is founded on logic and deduction, as opposed
to di�erential equations and numerical calculation.

Formal Speci�cation

The spectrum of formal speci�cation languages for the
modeling of systems ranges from higher-order logics, over
process-algebraic formalisms, e.g. LOTOS, to graphical

languages, such as Statecharts. Many speci�cation lan-
guages consist of a small set of elementary constructs for
which a rigorously operational, denotational, or axiomatic

semantics is de�ned. In order to make them appealing
to engineers, syntactic sugar, type systems, and graphi-
cal interfaces are often added. Some of the languages also
provide the possibility to embed desired system properties
within the speci�cation, e.g. by including assertions.

Table 1: Example Speci�cation in PVS

mode : type = {cleared,active}

event : type = {switch,activate,deactivate,clear}

signal: type = {activated,deactivated,null}

react(m:mode, e:event) : [mode, signal] =

if cleared?(m) then

cond

switch?(e) -> (active, activated)

activate?(e) -> (active, activated)

deactivate?(e) -> (m, null)

clear?(e) -> (m, null)

endcond

else

cond

switch?(e) -> (cleared, deactivated)

activate?(e) -> (m, null)

deactivate?(e) -> (cleared, deactivated)

clear?(e) -> (cleared, null)

endcond

endif

Tables 1 & 2 give a 
avor for formal veri�cation lan-
guages. They depict the model of a simple component of
a 
ight-guidance system, the process react, in the spec-
i�cation languages of the veri�cation tools PVS [5] and

1



SPIN [4], respectively. Process react continuously reacts
to an external event by potentially changing its mode and
sending a responding signal to its environment. Note that
PVS has an expressive type system and adapts a func-
tional style, although it is actually a higher-order logic,
whereas SPIN has a simple type system and an imperative
look and feel.

Table 2: Example Speci�cation in SPIN

#define cleared 0

#define active 1

mtype = {switch,activate,deactivate,clear,

activated,deactivated,null }

byte m = cleared;

chan e = [0] of {mtype};

chan s = [0] of {mtype};

proctype react

{do

:: m == cleared ->

if

:: e?switch -> m=active; s!activated

:: e?activate -> m=active; s!activated

:: e?deactivate -> s!null

:: e?clear -> s!null

fi

:: else ->

if

:: e?switch -> m=cleared; s!deactivated

:: e?activate -> s!null

:: e?deactivate -> m=cleared; s!deactivated

:: e?clear -> m=cleared; s!null

fi

od}

Formal Veri�cation

Formal veri�cation uses mathematical proof for showing
the presence of desired and the absence of undesired sys-
tem behavior. Two major research directions have been
pursued: theorem proving [5] and state exploration [2].
In theorem proving systems and properties are ex-

pressed in a higher-order logic. A tool, called theorem
prover, is then used for establishing that a system satis-
�es a property. The user interacts with the tool by in-
voking basic prover commands and proof strategies. The
basic prover commands include deduction rules, induc-

tion schemes, and decision procedures for the built-in data
types. Proof strategies combine basic proof steps together
with proof heuristics in order to perform or �nd parts of
proofs automatically. Although proof strategies continu-
ously mature, theorem provers need to be guided by the
user. They essentially assist the user by checking proof

steps and by discharging simple proof obligations auto-
matically. However, proof ideas have to be provided by
the user, and proofs must be designed and constructed,
having e�ciency, reusability, and tool support in mind.
Reconsider the 
ight-guidance system example, and as-
sume that the system possesses two processes in the style
of react with modes m1 and m2, respectively. Assume fur-
ther that one wants to prove that whenever m1 is cleared
then m2 is active. In PVS this property can be stated as

forall (p:paths) : (ext(p)(m1)=cleared)

implies (ext(p)(m2)=active)

where the type paths encodes the set of all system paths
and the function ext(p) extracts the system state which
is reached by following path p. The above property can
then be proved by induction on the length of p.
An interesting fragment of digital systems, namely those

whose behavior can be modeled by �nite-state machines,
such as communication protocols and hardware, is acces-
sible to completely automated veri�cation methods. Such
methods are referred to as state-exploration methods as
they are based on inspections of state machines. The
most successful state-exploration method employed to-
day is model checking. There, properties are speci�ed in
some temporal logic which can express system safety { e.g.
deadlock-freedom { and liveness { e.g. a stable system
state can eventually be reached. The property mentioned
above can be stated in the temporal logic adapted in SPIN

as follows:

[](m1==cleared -> m2==active)

where \[]" stands for \always", \->" for implication, and
\==" for equality. Note that the operator [] avoids the
complicated formulation of \reachable states" as is nec-
essary with respect to the PVS model. Model check-
ing algorithms, which are based on �xpoint computa-

tion or automata-theoretic techniques, can then determine
whether a given state machine satis�es a given temporal
formula. In case a model violates a property, model check-
ers return diagnostic information which allows the user to
detect the exact cause of malfunctioning in the model un-
der consideration.
Both theorem proving and state exploration have their

strengths and weaknesses. Theorem proving is a general
veri�cation framework which is expressive enough to han-
dle almost any veri�cation task. The price one has to pay
is the required user interaction. Consider for example the
veri�cation of a program loop. Once the user provides a
suggestion for the loop invariant, a theorem prover can
assist in checking whether it is indeed an invariant. In
contrast, state exploration techniques automatically con-
struct invariants. However, their application is usually
restricted to �nite-state systems, where for all practical
purposes `�nite' means actually `small'. For hardware ver-
i�cation an e�cient data structure, namely Binary Deci-

sion Diagrams (BDDs), has been proposed which allows

2



for a compact representation of sets of states. Unfortu-
nately, software systems are much more complicated to
deal with. One approach is to combine theorem proving
and state-exploration methods as follows. The real-world
system is �rst abstracted in a way that the resulting model
is a �nite-state machine and that the abstraction preserves
the properties of interest. The model is then amenable to
state-exploration methods, and one can use theorem prov-
ing for proving that the properties of the model indeed
carry over to the real system.

Formal Methods in Practice

In the past most research e�orts in Formal Methods have
been devoted to develop theoretical foundations and pro-
totypic tools. Less attention has been paid to putting for-
mal techniques into practice which requires to address the
following questions: which phases of a system's life-cycle

can pro�t most from Formal Methods, and what demands
must formal veri�cation tools meet?

Regarding the �rst question, it has been widely agreed
upon that Formal Methods are particularly suitable for
being employed in the requirements phase, i.e. early in
the life-cycle. Whereas existing formal tools, such as type
checkers or test suites, successfully catch errors that are
introduced during the implementation phase, tools em-
ployed for requirements analyses have been proved to be
less reliable. Errors made in the requirements phase often
remain undetected until the delivery of the product to the
customer. Problems with faulty, incomplete, or inconsis-
tent requirements were experienced e.g. with software for
the International Space Station [3]. Giving requirements
not only a formal appearance but also a rigorous seman-
tics makes them accessible to Formal Methods and is the
key to circumvent the mentioned problems.

Concerning the second question, a successful veri�cation
tool has to integrate an attractive speci�cation language
together with intuitively to use validation and veri�cation
routines that do not su�er from cryptic input languages
or unreadable outputs, as academic prototypes do. More-
over, veri�cation tools should be highly automated and
provide natural means for human guidance whenever nec-
essary. Last but not least, they need to be satisfactory
integrated with standard system-engineering methods.

Conclusions and Outlook

Experiences with Formal Methods emphasize their util-
ity for analyzing digital systems. They do not compete
with, but complement, existing approaches to quality as-
surance and help to increase con�dence in the correctness
of safety-critical systems. While the acceptance of For-
mal Methods is continuously growing, especially in the
hardware and aeronautics industry, their transition from

theory to practice has just started. On the one hand, the
application of Formal Methods requires training and ex-

perience; on the other hand, it is unclear to what extent
Formal Methods will be recognized by federal authorities
for the certi�cation of safety-critical systems. Remarkably,
the corresponding FAA document does neither exclude nor
require the application of Formal Methods [6].
ICASE's Formal Methods program aims at evaluating

and developing veri�cation techniques for aeronautic ap-
plications, such as 
ight-guidance systems and integrated

modular avionics, thereby supporting NASA Langley's
Formal Methods program [1].

References

[1] R.W. Butler et al. NASA Langley's research and technol-
ogy transfer program in formal methods. In COMPASS'95,
Gaithersburg, MD, 1995.

[2] E.M. Clarke et al. Automatic veri�cation of �nite-state
concurrent systems using temporal logic speci�cations.
ACM Transactions on Programming Languages and Sys-

tems, 8(2):244{263, 1986.

[3] S. Easterbook et al. Experiences using lightweight formal
methods for requirements modeling. IEEE Transactions on

Software Engineering, 24(1), 1998.

[4] G. Holzmann. Design and Validation of Computer Proto-

cols. Prentice-Hall, 1991.

[5] S. Owre et al. Formal veri�cation for fault-tolerant systems:
Prolegomena to the design of PVS. IEEE Transactions on

Software Engineering, 21(2):107{125, 1995.

[6] J. Rushby. Formal methods and digital systems validation
for airborne systems. NASA Contractor Report 4551, 1993.

About the Author

Gerald L�uttgen received a Diploma in Computer Science
from RWTH Aachen, Germany, in July 1994 and a Doc-
toral Degree in Computer Science from the University of
Passau, Germany, in May 1998. His technical advisor was
Prof. Rance Cleaveland at North Carolina State Univer-
sity, where he has been a visiting researcher in 1995/96,
funded by a doctoral grant from the German Academic
Exchange Service. He joined ICASE in October 1998 as
a Sta� Scientist. His research interests are in the formal
speci�cation, analysis, and veri�cation of concurrent and
distributed systems.

3


