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STATECHARTS VIA PROCESS ALGEBRA�

GERALD L�UTTGENy, MICHAEL VON DER BEECKz, AND RANCE CLEAVELANDx

Abstract. Statecharts is a visual language for specifying the behavior of reactive systems. The language

extends �nite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity

as a design notation for embedded systems, precisely de�ning its semantics has proved extremely challenging.

In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is

expressive enough for encoding Statecharts in a structure-preserving and semantics-preserving manner. It is

established that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics.

Key words. bisimulation, compositionality, operational semantics, process algebra, Statecharts
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1. Introduction. Statecharts is a visual language for specifying the behavior of reactive systems [7].

The language extends the traditional notation of �nite-state machines with concepts of (i) hierarchy, so

that one may speak of a state as having sub-states, (ii) concurrency, thereby allowing the de�nition of

systems having simultaneously active subsystems, and (iii) priority, so that one may express that certain

system activities have precedence over others. Statecharts has become popular among engineers as a design

notation for embedded systems, and commercially available tools provide support for it [10]. Nevertheless,

precisely de�ning the semantics of the language has proved extremely challenging, with a variety of proposals

[8, 9, 18, 19, 21, 28, 29] being o�ered for several dialects [34] of the language. While the research results

have yielded insight into di�erent aspects of the notation, no de�nitive account has emerged. This has an

obviously undesirable practical rami�cation; tool builders for Statecharts must resort to ad hoc decisions

in their implementations of semantically-based tools, such as model checkers [16, 23], and this means that

designs developed by engineers have a meaning that may vary from implementation to implementation.

The semantic subtlety of Statecharts arises from the language's capability for de�ning transitions whose

enablement disables other transitions. A Statechart may react to an event by engaging in an enabled

transition, thereby performing a so-called micro step, which may generate new events that may in turn

trigger new transitions while disabling others. When this chain reaction comes to a halt, one execution

step, a so-called macro step, is complete. Technically, the di�culty for de�ning an operational semantics

capturing the \macro-step" behavior of Statecharts arises from the fact that such a semantics should exhibit

the following desirable properties: (i) the synchrony hypothesis [2], which guarantees that a reaction to an

external event terminates before the next event enters the system, (ii) compositionality, which ensures that
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the semantics of a Statechart is de�ned in terms of the semantics of its components, and (iii) causality, which

demands that the participation of each transition in a macro step must be causally justi�ed. Huizing and

Gerth showed that an operational semantics in which transitions are labeled purely by sets of events { i.e.,

the \observations" a user would make { cannot be given, if one wishes all three properties to hold [15]. In

fact, the traditional semantics of Statecharts, as de�ned by Pnueli and Shalev [28], satis�es the synchrony

hypothesis and causality, but is not compositional. Other approaches [17, 18, 31] have achieved all three

goals, but at the expense of including complex information regarding causality in transition labels.

While not as well-established in practice, process algebras [1, 12, 24] o�er many of the semantic advantages

that have proved elusive in Statecharts. In general, these theories are operational, and place heavy emphasis

on issues of compositionality through the study of congruence relations, such as bisimulation [24, 25]. Many of

the behavioral aspects of Statecharts have also been studied in the setting of process algebra. For example, the

synchrony hypothesis is related to the maximal progress assumption developed in timed process algebras [11,

35]. In these algebras, event transitions and \clock" transitions are distinguished, with only the latter

representing the advance of time. Maximal progress then ensures that time may proceed only if the system

under consideration cannot engage in internal computation. Clocks may therefore be viewed as \bundling"

sequences of event transitions, which may be thought of as analogous to \micro steps," into a single \time

step," which may be seen as a \macro step." The traditional SOS-style presentations of process algebras

capture a notion of \causality" �a la Statecharts. The concept of priority has also been studied in process-

algebraic settings [4], and the Statecharts hierarchy operator is related to the disabling operator of LOTOS [3].

In this paper, we present a new, process-algebraic semantics of Statecharts. Our approach involves

synthesizing the observations above; speci�cally, we present a new process algebra, called Statecharts Process

Language (SPL), and we show that it is expressive enough for embedding several Statecharts variants. SPL is

inspired by Hennessy and Regan's Timed Process Language (TPL) [11], in that it extends Milner's CCS [24]

by the concept of an abstract, global clock. Our algebra replaces the handshake communication of TPL

by a multi-event communication, and introduces a mechanism to specify priority among transitions as well

as a hierarchy operator [32]. The operational semantics of SPL uses SOS rules [26] to de�ne a transition

relation whose elements are labeled with simple sets of events; then, using traditional process-algebraic

results we show that SPL has a compositional semantic theory based on bisimulation. We connect SPL

with Statecharts by embedding the variant of the language considered by Maggiolo-Schettini et al. in [18].

More precisely, we de�ne a compositional translation from Statecharts to SPL that preserves the macro-step

semantics of the former. This result crucially depends on our treatment of the SPL macro-step transition

relation as a derived one: the standard SPL transition relation becomes in essence a micro-step semantics.

Thus, while our macro-step semantics cannot be compositional (see the result of Huizing and Gerth [15]),

we obtain a compositional theory, in the form of a semantic congruence, at a lower, micro-step level. In

addition to the usual bene�ts conferred by compositional reasoning, this semantics has a practical advantage:

given the unavoidable complexity of inferring macro steps, actual users of Statecharts would bene�t from a

�ner-grained semantics that helps them understand how the macro steps of their systems are arrived at.

The remainder of this paper is organized as follows. The next section gives a brief introduction to

Statecharts, while Section 3 de�nes the process algebra SPL. Sections 4 and 5 formalize our embedding

of Statecharts semantics in SPL and present our main technical results, respectively. Section 6 shows the

exibility of our approach by examining its adaptability to other Statechart variants. Related work is

discussed in Section 7. Finally, Section 8 gives our conclusions and directions for future research.
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2. Statecharts. Statecharts is a speci�cation language for reactive systems [27], i.e., concurrent systems

which are characterized by their ongoing interaction with their environment. They subsume �nite state

machines whose transitions are labeled by pairs of events, where the �rst component is referred to as trigger

and may include negated events, and the second component is referred to as action. Intuitively, if the

environment o�ers the events in the trigger, but not the negated ones, then the transition is triggered

and can be executed; it �res, thereby producing the events in the label's action. Concurrency is achieved

by allowing complex Statecharts to be composed from more simple ones running in parallel, which may

communicate via broadcasting events. Elementary, or basic states in Statecharts may also be hierarchically

re�ned by injecting other Statecharts. Concurrency and hierarchy are especially important concepts, since

they allow for bottom-up and top-down speci�cations of systems.

n9

n1

n3

t3n4 n7

n6

n8

t1 a/b t2

n2 n5

b/a
b/c

Fig. 2.1. Example Statechart

As an example, consider the Statechart depicted in Figure 2.1. It consists of a so-called and-state, labeled

by n9, which denotes the parallel composition of the two Statecharts labeled by n3 and n8. Actually, n3 and

n8 are the names of or-states, describing sequential state machines. The �rst consists of two states n1 and

n2 that are connected via transition t1 with label :a=b. The label speci�es that t1 is triggered by :a, i.e.,

by the absence of event a, and produces event b. States n1 and n2 are not re�ned further and, therefore,

are also referred to as basic states. Or-state n8 is re�ned by or-state n6 and basic state n7, connected via a

transition labeled by b=a. Or-state n6 is further re�ned by basic states n4 and n5, and transition t2 labeled

by b=c.

It should be mentioned that the variant of Statecharts considered here does not include \features" present

in some other variants. In particular, we prohibit interlevel transitions, i.e., transitions crossing borderlines

of states, and triggers of the form inn, where n is the name of a state. Moreover, state hierarchy does not

impose implicit priorities to transitions, where transitions on higher levels of the hierarchy have precedence

over transitions on lower levels; e.g., transition t3 does not have priority over transition t2 in our example.

The impact of altering our approach to accommodate these concepts is discussed in Section 6.

2.1. Statecharts Terms. For our purposes, it is convenient to represent Statecharts not visually but

by terms. This is also done in related work [17, 18, 31], and our approach closely follows the one described

in [18]. Formally, let N be a countable set of names for Statecharts states, T be a countable set of names

for Statecharts transitions, and � be a countable set of Statecharts events. Moreover, we associate with

every event e 2 � its negated counterpart :e. We also lift negation to negated events by de�ning ::e =df e.

Finally, we write :E for f:e j e 2 Eg, if E � � [ f:e j e 2 �g. Then, the set of Statecharts terms is de�ned

to be the least set satisfying the following rules.
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1. Basic state: If n 2 N , then s = [n] is a Statecharts term.

2. Or-state: If n 2 N , s1; : : : ; sk are Statecharts terms for k > 0, T � T � f1; : : : ; kg � 2�[:� �

2� � f1; : : : ; kg, and 1 � l � k, then s = [n : (s1; : : : ; sk); l;T ] is a Statecharts term. Intuitively,

s1; : : : ; sk are the sub-states of s, and T is the set of transitions between these states. The Statechart

s1 is the default state of s, while sl is the state that is currently active; initially, l = 1.

3. And-state: If n 2 N , and if s1; : : : ; sk are Statecharts terms for k > 0, then s = [n : (s1; : : : ; sk)]

is a Statecharts term.

We refer to n as the root of s and write root(s) =df n. If t̂ = ht; i; E;A; ji 2 T is a transition of or-state

[n : (s1; : : : ; sk); l;T ], then we de�ne name(t̂) =df t, out(t̂) =df si, ev(t̂) =df E, act(t̂) =df A, and in(t̂) =df sj .

Table 2.1

States and transitions of Statecharts terms

states([n]) =df fng trans([n]) =df ;

states([n : ~s; l;T ]) =df fng [
S
fstates(si) j 1 � i � kg trans([n : ~s; l; T ]) =df T [

S
ftrans(si) j 1 � i � kg

states([n : ~s]) =df fng [
S
fstates(si) j 1 � i � kg trans([n : ~s]) =df

S
ftrans(si) j 1 � i � kg

We write SC for the set of Statecharts terms, in which (i) all state names and transition names are

mutually disjoint, (ii) no transition t produces an event that contradicts its trigger, i.e., ev(t) \ :act(t) = ;,

and (iii) no transition t produces an event that is included in its trigger, i.e., ev(t) \ act(t) = ;. As a

consequence of (i), states and transitions in Statecharts terms are uniquely referred to by their name. For

convenience, we often identify a Statecharts state s and transition t with its name root(s) and name(t),

respectively. The sets states(s) and trans(s) of all states and transitions of s are inductively de�ned on

the structure of s, as depicted in Table 2.1, where ~s = (s1; : : : ; sk). Finally, let us return to our example

Statechart in Figure 2.1 and present it as a Statecharts term s9 2 SC. For our framework, we choose

� =df fa; b; cg, N =df fn1; n2; : : : ; n9g, and T =df ft1; t2; t3g.

s9 =df [n9 : (s3; s8)] s3 =df [n3 : (s1; s2); 1; fht1; 1; f:ag; fbg; 2ig] s1 =df [n1]

s2 =df [n2] s8 =df [n8 : (s6; s7); 1; fht3; 6; fbg; fag; 7ig] s7 =df [n7]

s4 =df [n4] s6 =df [n6 : (s4; s5); 1; fht2; 4; fbg; fcg; 5ig] s5 =df [n5]

2.2. Statecharts Semantics. In the remainder of this section, we formally present the semantics of

Statecharts terms as is de�ned in [18], which is a slight variant of the \traditional" semantics proposed by

Pnueli and Shalev [28]. More precisely, this semantics di�ers from [28] in that it does not allow the step-

construction function, which we present below, to fail. The semantics of a Statecharts term s is a transition

system, whose states and transitions are referred to as con�gurations and macro steps, respectively. Con�g-

urations of s are usually sets con�g(s) of the names of those states which are currently active [28]. We de�ne

con�g(s) along the structure of s: (i) con�g([n]) =df fng, (ii) con�g([n : (s1; : : : ; sk); l;T ]) =df fng[con�g(sl),

and (iii) con�g([n : (s1; : : : ; sk)]) =df fng [
S
fcon�g(si) j 1 � i � kg. However, for our purposes it is more

convenient to use Statecharts terms for con�gurations, as every or-state contains a reference to its active sub-

state. Consequently, the default con�guration default(s) of Statecharts term s may be de�ned inductively as

follows: (i) default([n]) =df [n], (ii) default([n : (s1; : : : ; sk); l;T ]) =df [n : (default(s1); : : : ; default(sk)); 1;T ],

and (iii) default([n : (s1; : : : ; sk)]) =df [n : (default(s1); : : : ; default(sk))]. As mentioned before, a Statechart

reacts to the arrival of some external events by triggering enabled micro steps, possibly in a chain-reaction{

like manner, thereby performing a macro step. More precisely, a macro step comprises a maximal set of

4



Table 2.2

Step-construction function

function step-construction(s, E); var T := ;;

while T � enabled(s; E; T ) do choose t 2 enabled(s; E; T ) n T ; T := T [ ftg od;

return T

Table 2.3

Function update

update([n]; T 0) =df [n] update([n : ~s]; T 0) =df [n : (update(s1; T1); : : : ; update(sk; Tk))]

update([n : ~s; l;T ]; T 0) =df

8>>>><
>>>>:

[n : ~s; l;T ] if T 0 = ;

[n : (s1; : : : ; update(sl; T
0); : : : ; sk); l;T ] if ; 6= T 0 � trans(sl)

[n : (s1; : : : ; default(sm); : : : ; sk);m;T ] if ; 6= T 0 = fht0; l; E;A;mig � T

[n] otherwise

micro steps, or transitions, that are triggered by events o�ered by the environment or generated by other

micro steps, that are mutually consistent, compatible, and relevant, and that obey causality. The Statecharts

principle of global consistency, which prohibits an event to be present and absent in the same macro step, is

subsumed by the notions of triggered and compatible.

A transition t 2 trans(s) is consistent with T � trans(s), in signs t 2 consistent(s; T ), if t is not in the

same parallel component as any transition in T . Formally,

consistent(s; T ) =df ft 2 trans(s) j 8t0 2 T: t?st
0g : (2.1)

Here, we write t?st
0, if t = t0, or if there exists an and-state [n : (s1; : : : ; sk)] in s, i.e., n 2 states(s), such

that t 2 trans(si) and t0 2 trans(sj) for some 1 � i; j � k satisfying i 6= j.

A transition t 2 trans(s) is compatible to all transitions in T � trans(s), in signs t 2 compatible(s; T ), if

no event produced by t appears negated in a trigger of a transition in T . Formally,

compatible(s; T ) =df ft 2 trans(s) j 8t0 2 T: act(t) \ :ev(t0) = ;g (2.2)

A transition t 2 trans(s) is relevant for s, in signs t 2 relevant(s), if the root of the source state of t is in

the con�guration of s. Formally,

relevant(s) =df ft 2 trans(s) j root(out(t)) 2 con�g(s)g (2.3)

A transition t 2 trans(s) is triggered by a set E of events, in signs t 2 triggered(s; E), if the positive, but

not the negative, trigger events of t are in E. Formally,

triggered(s; E) =df ft 2 trans(s) j ev(t) \ � � E and :(ev(t) \ :�) \ E = ;g (2.4)

Finally, a transition t is enabled in con�guration s regarding a set E of events and a set T of transitions,

if t 2 enabled(s; E; T ), where

enabled(s; E; T ) =df relevant(s) \ consistent(s; T ) \ triggered(s; E [
[

t2T

act(t)) \ compatible(s; T ) (2.5)
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Unfortunately, this formalism is still not rich enough to causally justify the triggering of each transition.

The principle of causality may be introduced by computing macro steps, i.e., sets of transition names, using

the nondeterministic step-construction function presented in Table 2.2. This function is adopted from [18],

where also its soundness and completeness relative to the classical approach via the notion of inseparability of

transitions [28] are stated. Note that the maximality of each macro step implements the synchrony hypothesis

of Statecharts. The set of all macro steps that can be constructed using function step-construction, relative

to a Statecharts term s and a set E of environment events, is denoted by step(s; E) � 2T . For a set

T 2 step(s; E), Statecharts term s may evolve in a (single) macro step to term s0 =df update(s; T ) when

triggered by the environment events in E and, thereby, produce the events in A =df

S
fact(t) j t 2 Tg. We

denote this macro step by s
E

=)I
A

s0. The function update is de�ned in Table 2.3, where ~s =df (s1; : : : ; sk) and

Ti =df T
0\ trans(si), for 1 � i � k. Observe that at most one transition of T may be enabled at the top-level

of an or-state; thus, the \otherwise" case in Table 2.3 cannot occur in our context. Intuitively, update(s; T ),

for T � trans(s), re-de�nes the active states of s when the transitions in T are executed.

2.3. Compositional Characterization of enabled. We conclude this section about Statecharts with

a compositional characterization of enabled, which will be needed later in the paper. For this purpose, we

augment enabled with a fourth argument A � � which contains the events that must not be generated by

enabled transitions. Formally, we de�ne enabled : SC� 2� � 2� � 2T �! 2T by

enabled(s; E;A; T ) =df relevant(s) \ consistent(s; T ) \ triggered(s; E [
[
t2T

act(t)) \ compatible(s; A; T )

where compatible(s; A; T ) =df ft 2 trans(s) j act(t) \ (A [
S

t02T :(ev(t
0) \ :�)) = ;g. It is easy to see that

the new de�nition of enabled extends the old one as follows: enabled(s; E; T ) = enabled(s; E; ;; T ). The

extended version of enabled may now be compositionally characterized as follows.

Proposition 2.1. Let s 2 SC, E;A � �, and T 0 � T .

1. If s = [n] is a basic state, then enabled(s; E;A; T 0) = ;.

2. If s = [n : (s1; : : : ; sk); l;T ] is an or-state, then enabled(s; E;A; T 0) =

8>>>>>><
>>>>>>:

enabled(sl; E;A; T 0)[

ft 2 T j out(t) = sl; t 2 triggered(sl; E) \ compatible(sl; A; T 0)g if T 0 = ;

enabled(sl; E;A; T 0) if ; 6= T 0 � trans(sl)

ft0 j t0 2 triggered(sl; E) \ compatible(sl; A; T 0)g if ; 6= T 0 = ft0g � T; out(t0) = sl

; otherwise

3. If s = [n : (s1; : : : ; sk)] is an and-state, then enabled(s; E;A; T 0) =
S
1�i�k enabled(si; Ei; Ai; Ti),

where Ei =df E [
S
fact(t) j t 2 Tj ; j 6= ig, Ai =df A [

S
f:(ev(t) \ :�) j t 2 Tj ; j 6= ig, and Ti =df

T 0 \ trans(si), for 1 � i � k.

The proof of this proposition can be done by induction on the structure of s.

3. Process-Algebraic Framework. In this section, we present our process-algebraic framework which

is inspired by timed process calculi, such as Hennessy and Regan's TPL [11]. Our language, which we

refer to as Statecharts Process Language (SPL), includes a special action � denoting the ticking of a global

clock. SPL's semantic framework is based on a notion of transition system that involves two kinds of

transitions, action transitions and clock transitions, modeling two di�erent mechanisms of communication
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and synchronization in concurrent systems. The role of actions in process algebras corresponds to the one

of events in Statecharts. A clock represents the progress of time, which manifests itself in a recurrent global

synchronization event, the clock transition, in which all process components are forced to take part. However,

action and clock transitions are not orthogonal concepts that can be speci�ed independently from each other,

but are connected via the maximal progress assumption [11, 35]. Maximal progress implies that progress of

time is determined by the completion of internal computations and, thus, mimics the synchrony hypothesis

of Statecharts. The key idea for embedding Statecharts terms in a timed process algebra is to represent

a macro step as a sequence of micro steps that is enclosed by clock transitions, signaling the beginning

and the end of the macro step, respectively. This sequence implicitly encodes causality and, thus, leads to

a compositional semantics for Statecharts, whose practicality does not su�er from complicated transition

labels including causal orders [17, 18, 31].

Unfortunately, existing timed process algebras are, in their original form, not suitable for embedding

Statecharts. The reason is that Statecharts transitions may be labeled by multiple events and that some

events may appear in their negated form. The former feature implies that { in contrast to standard process

algebras [1, 12, 24] { processes may be forced to synchronize on more than one event simultaneously, and the

latter feature is similar to mechanisms for handling priority [4]. Moreover, our framework must include an

operator similar to the disabling operator of LOTOS [3] for resembling state hierarchy [32]. Our Statecharts

Process Language combines these well-known concepts in a single process algebra, which is expressive and

exible enough for embedding several Statecharts variants, as we will show below.

3.1. Syntax. Formally, let � be a countable set of events or ports, and let � =2 � be the distinguished

clock event or clock tick. Based on �, we de�ne input actions in SPL to be of the form hE;Ni, where

E;N � �, and output actions E to be subsets of �. In case of the input action h;; ;i, we speak of an

unobservable or internal action, which is also denoted by �. Moreover, we let A stand for the set of all

input actions. In contrast to CCS [24], the syntax of SPL includes two di�erent operators for dealing with

input and output actions, respectively. The pre�x operator \hE;Ni:" only permits pre�xing with respect to

input actions hE;Ni which are instantly consumed in a single step. Output actions E are signaled to the

environment of a process by attaching them to the process via the signal operator \[E]�(�)." They remain

visible until the next clock tick � occurs. The syntax of SPL is given by the following BNF

P ::= 0 j X j hE;Ni:P j [E]�(P ) j P + P j P B P j P B� P j P jP j P n L

where L � � is a restriction set, and X is a process variable taken from some countable domain V . We also

allow the de�nition of equations X
def
= P , where variable X is assigned to term P . If X occurs as a subterm

of P , we say that X is recursively de�ned. We adopt the usual de�nitions for open and closed terms and

guarded recursion, and refer to the closed and guarded terms as processes [24]. The symbol P denotes the

set of all processes and is ranged over by P and Q. Finally, the operators B and B� { called disabling and

enabling operator, respectively { allow us to model state hierarchy.

3.2. Operational Semantics. The operational semantics of an SPL process P 2 P is given by a

labeled transition system hP ;A[ f�g;�!; P i, where P is the set of states, A [ f�g the alphabet, �!�

P � (A[ f�g)�P the transition relation, and P the start state. We refer to transitions with labels in A as

action transitions and to those with label � as clock transitions. For the sake of simplicity, we write P
E

�!

N

P 0

instead of hP; hE;Ni; P 0i 2�! and P
�

�! P 0 instead of hP; �; P 0i 2�!. We say that P may engage in a

transition labeled by hE;Ni or �, respectively, and thereafter behave like process P 0. The transition relation
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is de�ned in Tables 3.2 and 3.3 using operational rules. In contrast to CCS [24], our framework does not

provide a concept of output action transitions, such that \matching" input and output action transitions

synchronize with each other and, thereby, simultaneously change states. Instead, output actions are attached

to SPL processes via the signal operator. In order to present our communication mechanism, we need to

introduce initial output action sets, II(P ), for P 2 P . These are de�ned as the least sets satisfying the

equations in Table 3.1. Intuitively, II(P ) collects all events which are initially o�ered by P .

Table 3.1

Initial output action sets

II([E]�(P )) = E II(P +Q) = II(P ) [ II(Q) II(X) = II(P ) where X
def
= P

II(P jQ) = II(P ) [ II(Q) II(P n L) = II(P ) n L

II(P B Q) = II(P ) [ II(Q) II(P B� Q) = II(P )

Table 3.2

Operational semantics (action transitions)

Act
��

hE;Ni:P
E
�!

N
P

Rec
P

E
�!

N
P 0

X
E
�!

N
P 0

X
def
= P Sum1

P
E
�!

N
P 0

P +Q
E
�!

N
P 0

Par1
P

E
�!

N
P 0

P jQ
EnII(Q)
�!

N
P 0 jQ

N \ II(Q) = ;

En
P

E
�!

N
P 0

P B� Q
E
�!

N
P 0 B� Q

Sum2
Q

E
�!

N
Q0

P +Q
E
�!

N
Q0

Par2
Q

E
�!

N
Q0

P jQ
EnII(P )
�!

N
P jQ0

N \ II(P ) = ;

Dis1
P

E
�!

N
P 0

P B Q
E
�!

N
P 0 B� Q

Dis2
Q

E
�!

N
Q0

P B Q
E
�!

N
Q0

Res
P

E
�!

N
P 0

P n L
E
�!

NnL
P 0 n L

E \ L = ;

The operational semantics for action transitions is set up such that P
E

�!

N
P 0 may be read as follows: P

can evolve to P 0 whenever the environment o�ers communications on all ports in E, but none on any port

in N . More precisely, process hE;Ni:P may engage in input action hE;Ni and then behave like P . The

summation operator + denotes nondeterministic choice, i.e., process P +Q may either behave like P or Q.

Process P jQ stands for the parallel composition of P and Q according to an interleaving semantics with

synchronization on common ports. Rule Par1 describes the interaction of process P with its environment Q.

If P can engage in an action transition labeled by hE;Ni to P 0, then P and Q synchronize on the events in

E \ II(Q), provided that Q does not o�er a communication on a port in N , i.e., N \ II(Q) = ; holds. In this

case, P jQ can engage in an action transition labeled by hE n II(Q); Ni to P 0 jQ. Rule Par2 deals with the

symmetric case, where the roles of P and Q are interchanged. The semantics of the disabling and enabling

operators are tightly connected. Process P B Q may behave as Q, thereby permanently disabling P , or as

P B� Q. In the latter case only P may proceed, and Q is temporarily disabled until the next clock tick

arrives. This allows for modeling Statecharts or-states, where process P is on a lower level than Q. The

disabling operator may also be thought of as a non{pre-emptive interrupt operator, where Q is the interrupt

handler (see Section 6). The restriction operator nL encapsulates all ports in L and, thereby, allows the

scoping of events. Accordingly, Rule Res states that process P n L can only engage in an action transition

labeled by hE;Ni, if there is no event in E, which is restricted by L. Moreover, the events in L may be

eliminated from N . Hence, the internal action � is produced from hE;Ni, if the environment o�ers every

8



event in E and if all events in N are restricted. Finally, process variable X , where X
def
= P , is identi�ed with

a process that behaves as a distinguished solution of the equation X = P .

Table 3.3

Operational semantics (clock transitions)

tAct
��

hE;Ni:P
�

�! hE;Ni:P
hE;Ni 6= � tOut

��

[E]�(P )
�

�! P
tSum

P
�

�! P 0 Q
�

�! Q0

P +Q
�

�! P 0 +Q0

tPar
P

�

�! P 0 Q
�

�! Q0

P jQ
�

�! P 0 jQ0

� =2 I(P jQ) tNil
��

0
�

�! 0

tDis
P

�

�! P 0 Q
�

�! Q0

P B Q
�

�! P 0 B Q0

tRes
P

�

�! P 0

P n L
�

�! P 0 n L
� =2 I(P n L) tRec

P
�

�! P 0

X
�

�! P 0

X
def
= P tEn

P
�

�! P 0

P B� Q
�

�! P 0 B Q

The operational rules for clock transitions deal with the maximal progress assumption, i.e., if � 2 I(P ) =df

fhE;Ni j 9P 0: P
E

�!

N

P 0g then a clock tick � is inhibited. The reason that transitions other than those labeled

by � do not have pre-emptive power is that these only indicate the potential of progress, whereas � denotes

real progress in our framework. Rule tNil states that inaction process 0 can idle forever. Similarly, process

hE;Ni:P may idle for clock �, whenever hE;Ni 6= �. The signal operator in process [E]�(P ), which o�ers

communications on the ports in E to its environment, disappears as soon as the next clock tick arrives and,

thereby, enables process P . Time has to proceed equally on both sides of summation, parallel composition,

and disabling, i.e., P + Q, P jQ, and P B Q can engage in a clock transition if and only if both P and

Q can. The side condition of Rule tPar implements maximal progress and states that there is no pending

communication between P and Q. The reason for the side condition in Rule tRes is that the restriction

operator may turn observable input actions into the internal, unobservable input action � (see Rule Res)

and, thereby, may pre-empt the considered clock transition. Finally, Rule tEn states that a clock tick switches

the enabling to the disabling operator. Rule tRec does not require extra explanation.

The operational semantics for SPL possesses several pleasant algebraic properties which are known from

timed process algebras [11, 35], such as (i) the idling property, i.e., � =2 I(P ) implies 9P 0 2 P : P
�

�! P 0, for

all P 2 P , (ii) the maximal progress property, i.e., 9P 0 2 P : P
�

�! P 0 implies � =2 I(P ), for all P 2 P , and

(iii) the time determinacy property, i.e., P
�

�! P 0 and P
�

�! P 00 implies P 0 = P 00, for all P; P 0; P 00 2 P .

Moreover, the summation and parallel operators are associative and commutative.

3.3. A Behavioral Equivalence. As shown above, the SPL operational semantics interprets pro-

cesses as labeled transition systems. However, from a semantic point of view, several transition systems

might describe the same observable system behavior. For coping with this situation, standard process alge-

bras introduce behavioral equivalences which relate processes, or transition systems, that describe the same

intuitive behavior. One popular behavioral equivalence is bisimulation [24] which may be adapted to cater

for SPL as follows.

Definition 3.1 (Bisimulation). Bisimulation equivalence, �� P �P, is the largest symmetric relation

such that whenever P � Q, the following conditions hold.

1. II(P ) � II(Q)

2. If P
E

�!

N

P 0 then 9Q0 2 P : Q
E

�!

N

Q0 and P 0 � Q0.

9



Note that SPL states { in contrast to traditional process algebras { also contain information in the form of

initial output action sets. This special situation is taken care of by Condition (1). Traditional results in

process algebra show that the above de�nition is well-formed and that bisimulation equivalence is indeed an

equivalence. Other work [33] may be used to establish that � is a congruence for SPL.

4. Embedding of Statecharts. In this section, we present an embedding of Statecharts terms in SPL,

which is de�ned to be a mapping [[�]] from Statecharts terms to SPL processes. Although the semantics of

SPL is de�ned on a \micro-step level," our process algebra allows us to encode the synchrony hypothesis

of Statecharts via maximal progress. More precisely, a macro step in Statecharts semantics corresponds

to a sequence of SPL action transitions which is enclosed by clock transitions; such sequences implicitly

contain the causal order inherent in a Statecharts macro step. This correspondence is the key for proving a

one-to-one relationship between a Statechart and its embedding.

4.1. Formalization of the Embedding. We start o� by instantiating the process algebra SPL. We

choose �[:� for the set of ports � and N [fn̂ jn 2 Ng[T for the set of process variables V . The necessity

for including negated events in � will become obvious later. We de�ne the embedding [[�]] : SC �! P

inductively along the structure of Statecharts terms, as follows, where
P

is the indexed version of + satisfying
P

i2; Pi =df 0.

1. If s = [n], then [[s]] =df n where n
def
= n̂

def
= 0.

2. If s = [n : (s1; : : : ; sk); l;T ] and ni = root(si), for 1 � i � k, then [[s]] =df n, where n
def
= n̂l

and n̂i
def
= ni B

P
ff[t]g j t 2 T and root(out(t)) = nig, together with the equations produced by

[[s1]]; : : : ; [[sk]]. The translation f[t]g of a transition t will be de�ned later.

3. If s = [n : (s1; : : : ; sk)], then [[s]] =df n where n
def
= n̂

def
= root(s1) j � � � j root(sk), together with the

equations produced by [[s1]]; : : : ; [[sk]].

First, observe that the image of the embedding mapping is a process, de�ned via a process equation system,

where the left-hand side of the equations are process variables taken from the names of states and transitions.

A basic state semantically corresponds to the inaction process 0, whereas an or-state can either behave

according to the process semantics of the embedding of the currently active state sl, or it may leave sl by

engaging in a transition t 2 T with out(t) = sl. Observe that an or-state is mapped using the disabling

operator which semantically resembles state hierarchy. The translation of an and-state, which allows one

to specify parallel composition, straightforwardly maps its component states to the parallel composition of

the processes resulting from the translations of each of these states. The interesting part of the de�nition

of [[�]] is the translation f[t]g of a transition ht; i; E;A; ji. In the following, E0 stands for E \ �, the set of

positive events contained in E, and N 0 denotes the set :(E \ :�)[:A, which includes the negated negative

events in E and the negation of the events in A. We de�ne f[t]g =df hE0; N 0i:t where t
def
=[A [ (E \ :�)]�(n̂j),

i.e., the translation splits a Statecharts transition ht; i; E;A; ji in two parts, one handling its trigger E and

one executing its action A. In order to execute its trigger all positive events in E must be o�ered by the

environment, and all negative events in E must be absent. However, there is one more thing we have to obey

when triggering a transition: global consistency. Especially, we must ensure that there is no transition in

the same macro step, which �res because of the absence of an event in A. Therefore, we include :e, where

e 2 A, in the set N 0. Events of the form :e are o�ered by process t, whenever transition t triggers due to the

absence of event e. Hence, f[t]g can evolve via a SPL transition labeled by hE0; N 0i to process t, whenever the

trigger of t is satis�ed and whenever global consistency is guaranteed. Process t signals that transition t has
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Table 4.1

Embedding of the Example Statechart

n83n

t1 n8

b{a , }
c{ }{b}

t1

b{a , }

t3n3

a{ }
{b}

{b}

a{ }

n3 0

t1 0

0 0

b{a , }

t30

a{ } {b} b{a , }

,{ }c,a b

,{ }a b

,a b{ }

,{ }a b

n3 t2

t2 n3 h

t1 h

0 h

c{ }

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

{a}

{a}

{c}
σ

[[s9]] = n9
def
= n3 jn8

[[s3]] = n3
def
= n̂1

n̂1
def
= n1 B h;; fa;:bgi:t1

t1
def
= [fb;:ag]�(n̂2)

[[s1]] = n1
def
= n̂1

def
= 0

[[s2]] = n2
def
= n̂2

def
= 0

[[s8]] = n8
def
= n̂6

n̂6
def
= n6 B hfbg; f:agi:t3

t3
def
= [fag]�(n̂7)

[[s6]] = n6
def
= n̂4

n̂4
def
= n4 B hfbg; f:cgi:t2

t2
def
= [fcg]�(n̂5)

[[s4]] = n4
def
= n̂4

def
= 0

[[s5]] = n5
def
= n̂5

def
= 0

[[s7]] = n7
def
= n̂7

def
= 0

been triggered. Accordingly, it o�ers the events in A until the current macro step is completed, i.e., until a

clock transition is executed. In order to ensure global consistency, process t also o�ers the events in E \:�.

It is worth noting that SPL's two-level semantics of action and clock transitions allows for broadcasting

events using SPL's synchronization mechanism together with its maximal progress assumption.

We now return to our introductory example by presenting its formal translation to SPL in Table 4.1,

left-hand side. The embedding's operational semantics is depicted on the right-hand side of Table 4.1, where

t̂2
def
= t2 B� hfbg; f:agi:t3, and ĥ

def
= 0 B hfbg; f:agi:t3. Moreover, the initial output action set II(P ), for

some P 2 P , is denoted next to the ellipse symbolizing state P , and the sets N 0 appearing in the label

of transitions are underlined in order to distinguish them from the sets E0. Let us have a closer look at

the leftmost path of the transition system, which passes the states (n3 jn8), (t1 jn8), (t1 j t̂2), (0 j ĥ), (0 j t3),

and (0 j0). The �rst three states are separated from the last three states by a clock transition. Hence, the

considered sequence corresponds to two \potential" macro steps. We say \potential," since macro steps only

emerge when composing our Statecharts embedding with an environment which triggers macro steps. The

events needed to trigger the transitions and the actions produced by them can be extracted from a macro-

step sequence as follows. For obtaining the trigger, consider all transition labels hE;Ni occurring in the

sequence, add up all events in components E, and include the negations of all positive events in components

N . Regarding the generated actions, consider the set of positive events in the initial output action sets of

the states preceding the clock transition which signals the end of the macro step. Thus, the �rst potential

macro step of the example sequence is triggered by :a and produces events b and c, whereas the second is

triggered by b and produces a. The state names along a sequence also indicate the transitions which have

�red. More precisely, whenever a state includes a variable t 2 T at its top-level, transition t participates in

the current macro step. Thus, for the �rst potential macro step, transitions t1 and t2 are chosen, whereas
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the second consists of transition t3 only. Note that t3 is not enabled in states (t1 jn8) or (t1 j t̂2), since event

:a is in their initial output action sets and a 2 act(t3). Hence, our embedding respects global consistency

which prohibits t1 and t3 to occur in the same macro step.

4.2. Generalization of the Embedding. As a technical means for proving the main result of this

paper which is stated in the next section, we generalize the embedding function to [[�; �]] : SC� 2T �! P in

order capture micro steps. Intuitively, [[s; T ]] identi�es the SPL process which [[s]] reaches when it engages in

the transitions in T . Formally [[s; T ]] is de�ned inductively over the structure of s as follows.

1. If s = [n], then [[s; T 0]] =df n.

2. If s = [n : (s1; : : : ; sk); l;T ], then

[[s; T 0]] =df

8>>>><
>>>>:

[[sl; T
0]] B

P
ff[t]g j t 2 T; out(t) = slg if T 0 = ;

[[sl; T
0]] B�

P
ff[t]g j t 2 T; out(t) = slg if ; 6= T 0 � trans(sl)

t0 if ; 6= T 0 = ft0g � T; out(t0) = sl

0 otherwise

3. If s = [n : (s1; : : : ; sk)], then [[s; T 0]] =df [[s1; T1]] j : : : j [[sk; Tk]], where Ti =df T
0\trans(si), 1 � i � k.

In our proof context, T is a pre�x of a sequence of transitions generated by the step-construction function,

i.e, II([[s; T ]]) =
S

t2T
act(t) holds. The mapping [[�; �]] is a generalization of [[�]] since [[s]]

:
= [[s; ;]], for all s 2 SC.

Here, the symbol
:
= stands for syntactic equality on processes up to \unfolding" of recursion. Formally,

:
= is

the largest congruence on P that contains syntactic equality and obeys the following property: C
:
= Q and

C
def
= P implies P

:
= Q.

5. Semantic Correspondence. For formalizing our intuition of the semantic relation between State-

charts terms and their SPL embeddings, we de�ne a notion of SPLmacro step by combining several transitions

to a single step, as outlined in Section 4.1. Accordingly, we write P
E

=)
A

P 0 if there exists some P 00 2 P such

that (EnvE jP ) n �
;

�!
;

�(EnvE jP 00) n �
�
�! (0 jP 0) n � and II(P 00) = A, where EnvE

def
=[E]�(0). Intuitively,

P is placed in the context (EnvE j �) n�, in which EnvE models a generic, single-step environment that o�ers

the events in E until clock tick � occurs.

5.1. Step Correspondence. The following relation, which we refer to as step correspondence, provides

the formal foundation for relating Statecharts macro steps and SPL macro steps.

Definition 5.1 (Step Correspondence). A relation R � SC � P is a step correspondence if for all

hs; P i 2 R and E;A � � the following conditions hold:

1. 8s0 2 SC: s
E

=)I
A

s0 implies 9P 0 2 P : P
E

=)
A

P 0 and hs0; P 0i 2 R.

2. 8P 0 2 P: P
E

=)
A

P 0 implies 9s0 2 SC: s
E

=)I
A

s0 and hs0; P 0i 2 R.

We say that s is step-correspondent to P , if hs; P i 2 R for some step correspondence R.

Theorem 5.2 (Semantic Correspondence). Every s 2 SC is step-correspondent to [[s]].

Proof sketch. It is su�cient to establish that R =df fhs; [[s]]i j s 2 SCg is a step correspondence, which

can be done by induction on the structure of s. Intuitively, one can show that, if T = (t1; : : : ; tk) is a

sequence of transitions of s 2 SC generated by the step-construction function relative to the environment

E � �, then there exists a sequence of k internal transitions from (EnvE j [[s]])n� to a process which can only

engage in a clock transition to (0 j [[update(s; T )]])n�. Moreover, the lth internal transition, where 1 � l � k,
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corresponds to the �ring of tl in s. Vice versa, if (EnvE j [[s]]) n � is the origin of an SPL path to a process

which can only engage in a clock transition to (0 jP 0) n � and which mimics the triggering of a transition

sequence T = (t1; : : : ; tk), then T can be generated by the step-construction function relative to s and E.

Moreover, [[update(s; T )]]
:
= P 0.

The formalization of the above intuition requires the following auxiliary properties, where s 2 SC and

E;A � �. Here, T stands for an arbitrary pre�x of the above transition sequence (t1; : : : ; tk) interpreted as

set, i.e., T = ft1; : : : ; tlg for some 0 � l � k, and act(T ) stands for
S

t2T
act(t).

1. 9t 2 enabled(s; E;A; T ) n T implies [[s; T ]]
E

0

�!

N
0
P 0 for some E0; N 0 � � and P 0 2 P , such that P 0

:
=

[[s; T [ ftg]], E0 = (ev(t) \ �) n act(T ), and N 0 = :(ev(t) \ :�) [ :act(t).

2. [[s; T ]]
E

0

�!

N
0
P 0 for some E0 � E, N 0 \ (E [ :A) = ;, and P 0 2 P implies 9t 2 T : P 0

:
= [[s; T [ ftg]],

t 2 enabled(s; E;A; T ) n T , E0 = (ev(t) \ �) n act(T ), and N 0 = :(ev(t) \ :�) [ :act(t).

3. enabled(s; E;A; T ) n T = ; implies [[s; T ]]
�
�! P 0 for some P 0 2 P , where P 0

:
= [[update(s; T ); ;]], and

8hE0; N 0i 2 I([[s; T ]]): E0 nE 6= ; or N 0 \ (E [ :A) 6= ;.

4. [[s; T ]]
�
�! P 0 for some P 0 2 P and E0 n E 6= ; or N 0 \ (E [ :A) 6= ; for all hE0; N 0i 2 I([[s; T ]])

implies enabled(s; E;A; T ) n T = ; and P 0
:
= [[update(s; T ); ;]].

The above properties establish a micro-step level relationship between Statecharts terms and the processes

occurring in their embedding. The proof of each property can be done by induction on the structure of s and

uses our extensions of the enabled function (cf. Section 2.3) and the embedding mapping (cf. Section 4.2).

5.2. Preservation Results. We close the technical part by returning to the behavioral relation � of

bisimulation equivalence. First, we state a preservation result involving � and SPL's macro-step semantics.

Theorem 5.3. Let P; P 0; Q 2 P such that P � Q and P
E

=)
A
P 0. Then 9Q0 2 P: Q

E

=)
A
Q0 and P 0 � Q0.

The validity of this theorem relies on the congruence property of � for SPL. When combining the insights

obtained by establishing Theorems 5.2 and 5.3, one may derive the following corollary which relates bisim-

ulation equivalence and Statecharts macro-step semantics.

Corollary 5.4. Let E;A � �, s 2 SC, and P 2 P such that [[s]] � P . Then

1. 8s0 2 SC: s
E

=)I
A

s0 implies 9P 0 2 P : P
E

=)
A
P 0 and [[s0]] � P 0.

2. 8P 0 2 P: P
E

=)
A
P 0 implies 9s0 2 SC: s

E

=)I
A

s0 and [[s0]] � P 0.

6. Adaptability to Other Statecharts Variants. For Statecharts, a variety of di�erent semantics

has been introduced in the literature. The comparison paper [34] surveys over twenty Statecharts variants.

In this section, we show how our approach can be adapted to these variants and, thereby, testify to its

exibility. We focus on the most relevant issues of Statecharts semantics, which are identi�ed in [34].

As is immanent in this paper, we favor an operational semantics over a denotational one, since we

feel that operational models are more intuitive and, therefore, easier to understand. Moreover, operational

models provide an immediate interface to veri�cation tools which implement state-exploration techniques.

An important observation of this paper is that the concept of a single, global clock together with maximal

progress is the key to providing a compositional, causal state-machine semantics for Statecharts. Although

the semantics is de�ned on the micro-step level, it allows for an easy identi�cation of macro steps. The clock

enforces global synchronizations which mark the beginning and end of macro steps. Thus, macro steps are

represented as sequences of micro steps, which encode the underlying causality of Statecharts semantics.
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In the Statecharts variant examined in this paper, two features are left out which are often adopted in

other variants. One feature concerns inter-level transitions, i.e., transitions which cross the \borderlines"

of Statecharts states and, thus, permit a style of \goto"-programming. Unfortunately, when allowing inter-

level transitions the syntax of Statecharts terms cannot be de�ned compositionally and, consequently, nor

its semantics. The second feature left out is usually referred to as state reference and permits the triggering

of a transition to depend on the fact whether a certain parallel component is in a certain state. Such state

references can be encoded in SPL's communication scheme by introducing special events inn, for n 2 N ,

which may appear in the trigger of transitions and which are signaled by a process if it is in state n.

Another issue of Statecharts semantics concerns the question whether there exists a di�erence in sensing

internal and external events. Usually, internal events are sensed within a macro step, but external events

are not. Hence, events are instantaneous, i.e., an event exists only for the duration of the macro step under

consideration. We achieve this semantics by using the signal operator which stops the signaling of events as

soon as the next clock tick arrives. However, in the semantics of Statemate [8] an event is only sensed in the

macro step following the one in which it was generated. This behavior can be encoded in our embedding by

basically splitting every state t 2 T into two states that are connected via a clock transition.

The Statecharts concept of negated events forces transitions to be triggered only when certain events are

absent. Negated events may be used for imposing priority between transitions and, thereby, for resolving

nondeterministic choices. SPL adopts this concept by requiring input actions to be pairs of sets of events, one

containing the events which must be present and the other the events which must be absent for triggering a

transition. However, when permitting negated events in a macro-step semantics, one has to guarantee that

the e�ect of a transition is not contradictory to its cause. Regarding this issue, one may distinguish two

concepts: global consistency and local consistency. The former prohibits a transition, containing a negative

trigger event :e, to be executed if a micro step in the same macro step produces e. This is enforced in our

embedding by o�ering :e, whenever a transition triggers due to the absence of e. Moreover, :e is included

in the set of events which need to be absent in all Statecharts transitions producing e. When leaving out

the events :e in our embedding, we obtain the weaker notion of local consistency, i.e., once an event e is

signaled in a micro step, no following micro step of the same macro step may �re if its trigger contains :e.

Local consistency implicitly holds in our embedding since an event is always signaled until the next macro

step begins, i.e., until a clock transition is executed.

In addition to the possibility of encoding priorities between transitions via negated events, one may also

introduce an implicit priority mechanism along state hierarchy, as is done, e.g., in Statemate [10]. More

precisely, a transition leaving an or-state is given priority over any transition within this state, i.e., or-states

may be viewed as pre-emptive interrupt operators. Considering this behavior in SPL requires one to modify

the semantics of the disabling operator, accordingly. However, such a modi�cation does not introduce any

new semantic issues, since the necessary concept of pre-emption is the same as for the synchrony hypothesis.

7. Related Work. Achieving a compositional semantics for Statecharts is known to be a di�cult task.

The problems involved were systematically analyzed and investigated by Huizing and Gerth in the early

nineties in the more general context of real-time reactive systems [15], for which three criteria have been

found to be desirable: (i) responsiveness, which corresponds to the synchrony hypothesis of Statecharts,

(ii) modularity, which refers to the aspect of compositionality, and (iii) causality. Huizing and Gerth proved

that these properties cannot be combined in a single-leveled semantics. As a consequence, we followed their

suggestion to study two-leveled semantics. In our approach, the three properties hold on di�erent levels:
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compositionality holds on the micro-step level, i.e., the level of SPL action transitions, whereas responsiveness

and causality is guaranteed on the macro-step level, i.e., the level on which sequences of SPL action transitions

between global synchronizations, caused by clock ticks �, are bundled together.

Uselton and Smolka [31] and Levi [17] also focused on achieving a clean, compositional semantics for

Statecharts by referring to process algebras. In contrast to our approach, Uselton and Smolka's notion of

transition system involves complex labels of the form hE;�i, where E is a set of events and � a transitive,

irreexive order on E, for encoding causality. Unfortunately, their semantics su�ers from some serious

problems, as pointed out in [17, 18]. Essentially, the semantics does not correspond { as intended { to the

Statecharts semantics of Pnueli and Shalev [28]. Levi repaired this shortcoming by modifying the domains of

the arguments of � to sets of events and by allowing empty steps to be represented explicitly. However, we

believe that our semantics, where labels do not contain any order at all, pro�ts from improved readability.

Maggiolo-Schettini et al. considered a hierarchy of equivalences for Statecharts, including isomorphism

and bisimulation, and studied congruence properties with respect to Statecharts operators [18]. For this

purpose, they de�ned a compositional, operational macro-step semantics of Statecharts, which slightly di�ers

from the one of Pnueli and Shalev since it does not allow the step-construction function to fail. In their

semantics, labels of transitions consist of four-tuples which include information about causal orderings,

global consistency, and negated events. This complexity prohibits an intuitive understanding of Statecharts

semantics and an easy integration with existing analysis and veri�cation tools. However, it should be noted

that the semantic framework presented in [18] serves well for the purpose of studying certain algebraic

properties of equivalences on Statecharts, such as fully-abstractness results and axiomatizations [14, 15].

Another popular design language with a visual appeal like Statecharts and, moreover, a solid algebraic

foundation is Argos [20]. However, the semantics of Argos, de�ned via SOS rules as labeled transition systems,

signi�cantly di�ers from classical Statecharts semantics. For example, Argos is deterministic, abstracts from

\non-causal" Statecharts by semantically identifying them with a failure state, and allows a single parallel

component to �re more than once within a macro step.

Interfacing Statemate [10] to model-checking tools is a main objective in [16] and most recently also

in a series of papers by Mikk et al. [21, 22, 23]. The �rst paper of this series includes a formalization of

the semantics of Statemate, as de�ned in [8], within the speci�cation formalism Z [30]. The second paper

describes a translation from a subset of Statemate to hierarchical state automata which may be mapped to

the speci�cation language of the veri�cation tool Spin [13], as shown in Mikk's third paper.

8. Conclusions and Future Work. This paper presented a process-algebraic approach to de�ning a

compositional semantics for Statecharts. Our technique translates Statecharts terms to terms in the process

algebra SPL which is expressive enough to model the semantic principles underlying Statecharts. SPL allows

one to encode a \micro-step" semantics of Statecharts in the traditional SOS-style; it is at this level that

our semantics is compositional, as bisimulation may be shown to be a congruence for the language. The

macro-step semantics may then be given in terms of a derived transition relation. This semantics cannot

be compositional, as results of Huizing and Gerth have shown [15]. However, the algebraic basis of our

semantics permits the investigation of, e.g., the largest congruence consonant within this semantics. Also,

since these sequences essentially encode total closures of causal orders, partial order methods might be useful

for avoiding unnecessary state explosion in practice [6]. Note that, although SPL is a newly developed process

algebra, all of its semantic ingredients have already been studied in the process-algebra community.
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We demonstrated the utility of our technique by formally embedding the Statecharts semantics of [18],

which is a slight variant of Pnueli and Shalev's semantics [28], in SPL. Our embedding is sound and complete

in the sense that Statecharts terms and their embeddings mutually simulate each other. The bene�ts of

our approach include (i) a uniform semantic framework for intuitively modeling the semantics for several

Statecharts variants in a compositional style, (ii) a simple method to interfacing Statecharts to existing

veri�cation tools, such as the Concurrency Workbench of North Carolina (CWB-NC) [5], (iii) the possibility

of lifting behavioral equivalences from process algebras to Statecharts. We illustrated the viability of this

last point by showing that bisimulation equivalence, which is a congruence for SPL, preserves Statecharts

macro-step semantics. Finally, the paper gave insight in the close semantic relationship between process

algebras and Statecharts and, thereby, testi�ed to the practical importance of process algebras for design

tools for reactive systems.

Regarding future work, we plan to continue our investigation of behavioral equivalences for Statecharts

in general, and \weak" equivalences in particular, by studying them for SPL. It may also be interesting to

characterize the \Statecharts sub-algebra" of SPL. Moreover, we intend to implement SPL and our embedding

in the CWB-NC.
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