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Abstract. Many techniques for the verification of reactive systems rely
on the analysis of their reachable state spaces. In this paper, a new al-
gorithm for the symbolic generation of the state spaces of asynchronous
system models, such as Petri nets, is developed. The algorithm is based
on previous work that employs Multi-valued Decision Diagrams for effi-
ciently storing sets of reachable states. In contrast to related approaches,
however, it fully exploits event locality, supports intelligent cache man-
agement, and achieves faster convergence via advanced iteration control.
The algorithm is implemented in the Petri net tool SMART, and run-
time results show that it often performs significantly faster than existing
state-space generators.

1 Introduction

Many state-of-the-art verification techniques rely on the automated construction
of the reachable state space of the system under consideration. Unfortunately,
state spaces of real-world systems are usually very large, sometimes too large to
fit in a computer’s memory. One contributing problem is the concurrency inher-
ent in reactive systems, such as those specified by Petri nets [18]. Consequently,
many research efforts in state-exploration techniques concentrated on the effi-
cient exploration and storage of large state spaces. These may be categorized
according to whether sets of states are stored explicitly or symbolically.

Explicit techniques represent state spaces by trees, hash tables, or graphs,
where each state corresponds to an entity of the underlying data structure.
Thus, the memory needed to store the state space of a system is linear in the
number of the system’s states, which in practice limits these techniques to fairly
small systems having at most a few million states.

Symbolic techniques allow one to store reachability sets in sublinear space.
They often use Binary Decision Diagrams (BDDs) as a data structure for ef-
ficiently representing Boolean functions [1], into which state spaces may be
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mapped. The advent of BDD-based techniques pushed the manageable sizes
of state spaces to about 10?° states [4]. In the Petri net community, BDDs were
applied by Pastor et al. [19, 20], Varpaaniemi et al. [23], and others for the
generation of the reachability sets of Petri nets. Recently, symbolic state-space
generation for Petri nets has been significantly improved [17] by considering
Multi-valued Decision Diagrams (MDDs) [15] instead of BDDs. MDDs essen-
tially represent integer functions and allow one to efficiently encode the state of
an entire subnet of a Petri net using only a single integer variable, where the state
spaces of the subnets are built by employing traditional techniques. Experimen-
tal results reported in [17] show that this approach enables the representation
of even larger state spaces of size 100 and even 10%%° states for particularly
regular nets. However, the time needed to generate some of these state spaces
ranges from minutes for the dining philosophers [20], with 1000 philosophers, to
hours for the Kanban system [7], with an initial token count of 75 tokens. Thus,
state-space generation shifts from a memory-bound to a time-bound problem.

The objective of this paper is to improve on the time efficiency of symbolic
state-space generation techniques for a particular class of systems, namely asyn-
chronous systems. Our approach aims at exploiting the concept of event locality
inherent in such systems. In Petri nets, for example, event locality means that
only those sub-markings belonging to the subnets affected by a given transition
need to be updated when the transition fires. Whereas event locality was in-
vestigated in explicit state-space generation techniques [6], it has been largely
ignored in symbolic techniques. Only the MDD-based approach presented in [17]
touches on event locality, but it exploits this concept only superficially. In par-
ticular, this approach does not support direct jumps to and from the part of the
MDD corresponding to the sub-markings that need to be updated when a transi-
tion fires. The present paper develops a new algorithm for building the reachable
state spaces of asynchronous systems. Like [17], it uses MDDs for representing
state spaces; unlike [17], it fully exploits event locality. Moreover, it introduces
an intelligent mechanism for cache management and also achieves faster con-
vergence by firing events in a specific, predefined order. The new algorithm is
implemented in the tool SMART [6]. When applied to a suite of well-known Petri
net models, it proves to be significantly faster than the one presented in [17],
while inducing only a small overhead regarding space efficiency. The algorithm
can be employed immediately for verifying safety properties, such as the absence
of deadlocks. Moreover, the developed MDD manipulation techniques may also
provide a basis for implementing MDD-based model checkers [10].

2 Structured State Spaces and MDDs

We choose to specify finite-state asynchronous systems by Petri nets [18]; how-
ever, the concepts presented here are not limited to this choice. Thus, we inter-
changeably use the notions net and system, subnet and sub-system, transition
and event, marking and (global) state, as well as sub-marking and local state.



Consider a Petri net with a finite set P of places, a finite set £ of events, and
an initial marking so € N'PI. The semantics of Petri nets defines how the firing of
an event e can move the net from some state s to another state s'. We denote the
set of successor states reachable from state s via event e by N (e, 5). If N'(e, s) =
(), event e is disabled in s; otherwise, it is enabled. For Petri nets, \ is essentially a
simple encoding of the input and output arcs; thus, AN'(e, s) contains at most one
element. For other formalisms, however, A/ (e, s) might contain several elements.
We are interested in exploring the set S of reachable states of the considered net.
S is formally defined as the smallest set that (i) contains s and (ii) is closed
under the “one-step reachability relation,” i.e., if s € S, then N(e,s) C S, for
any event e € £.

As in [17], our encoding of the state space of a Petri net requires us to
partition the net into K subnets by splitting its set of places P into K subsets.
This implies a partition of a global state s of the net into K local states, i.e.,
s has the form (sg,sx_1,...,51); the “backwards” numbering will prove to
be a reasonable convention when representing global states using MDDs. The
partition of P must satisfy a fundamental product-form requirement [8] which
demands for function N to be written as the cross-product of K local functions,
ie, Ne,s) = Ni(e,sk) x Nk_1(e,sx—1) x --- x Ni(e,s1), for all e € £ and
s € §. Furthermore, in practice, each subnet should be small enough such that
its reachable local state space Sp = {Sk,0,5k,1,--- ,5k.No.—1} can be efficiently
computed by traditional techniques, where Ny € N is the number of reachable
states in subnet k. Note that this might require the explicit insertion of additional
constraints to allow for the correct computation of S in isolation, or one may
use a small superset of Sj, obtained by employing p-invariants [18]. For all the
examples we present, the computation of the local state spaces requires negligible
time. Once S has been built, we can identify it with the set {0,1,..., N, —1}.
Moreover, a set S of global states can then be encoded by the characteristic
function fs : {0,... ,Nx — 1} x --- x {0,... ,N; — 1} — {0,1} defined by
fs(sk,sK—-1,.-.,s1) = 1if and only if (sk,skx—1,...,51) € S.

Multi-valued Decision Diagrams. Multi-valued Decision Diagrams [15], or
MDDs, are data structures for representing integer functions of the form

Fe{0,... ,Ng =1} x---x{0,...,Ny =1} — {0,..., M — 1}

where K, M € N and N € N, for K > k > 1. When M = 2 and N = 2,
for K > k > 1, function f is a Boolean function, and MDDs coincide with the
better known Binary Decision Diagrams (BDDs) [1, 2]. We use the special case
M = 2 to store the characteristic functions of the previous section.
Traditionally, integer functions are often encoded by walue tables or decision
trees. Figure 1, left-hand side, shows the decision tree of the minimum function
min(a,b,c), where the variables a, b, and ¢ are taken from the set {0, 1,2}. Hence,
K =3 and N; = N, = N3 = M = 3. Each internal node, which is depicted by
an oval, is labeled by a variable and has arcs directed towards its three children.
The branch labeled with ¢ corresponds to the case where the variable of the
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Fig. 1. Representation of min(a,b,c) as decision tree (left) and as MDD (right)

node under consideration is assigned value i. Moreover, all paths through the
tree have the same wvariable ordering, which in our example is a < b < c. Leaf
nodes, depicted by squares, are labeled by either 0, 1, or 2. Each path from the
root to a leaf node corresponds to an assignment of the variables to values. The
value of the leaf in a given path is the value of the function with respect to the
assignment, for this path.

An MDD is a representation of a decision tree as directed acyclic graph, where
identical subtrees are merged. More precisely, MDDs are reduced decision trees
which do not contain any non-unique or redundant node: a node is non-unique,
if it is a replica of another node, and redundant, if all its children are identical.
Together with a fixed variable ordering, these two requirements ensure that
MDDs provide a canonical representation of integer functions [15]. Note that
the elimination of redundant nodes implies that arcs can skip levels, e.g., the arc
labeled with 0 connecting node a to leaf node 0 in Fig. 1, right-hand side, skips
levels b and ¢. Hence, the value of the function is 0, whenever a is 0. For many
functions, MDD representations can be exponentially more compact than their
corresponding value tables or decision trees. However, the degree of compactness
depends on the considered function and the chosen variable ordering.

Data Structures for MDDs. We organize MDD nodes in levels ranging
from K at the top to 1 at the bottom. Additionally, there is the special level 0
which contains either or both leaf nodes corresponding to the values 0 and 1,
indicating whether a state is reachable or not. The addresses of the nodes at a
given level are stored within a hash table, to provide fast access to them and
to simplify detection of non-unique nodes. Hence, we have K hash tables which
together represent an MDD; we also refer to this data structure as unique table.
Note that we could as well use a single unique table for representing MDDs, but
this would require us to store the level for each node; furthermore, the level-wise
organization of our data structures will prove very useful below. Each node at
level k consists of an array of N node addresses, which contains the arcs to
the children of the node. Since we enforce the reducedness property, we use the
value of this array to compute the hash value of the node. In the following, we let



Table 1. Union operation on MDDs

Union(in p : mddAddr, in q : mddAddr) : mddAddr

1. if p=1(0,1) or ¢ = (0, 1) return (0,1); o deal with the base cases first
2. if p=1(0,0) or p = q return g;

3. if ¢ =10,0) return p;

4. k<= Maz(p.lvl, q.lvl); e maximum of the levels of p and ¢
5. if LookUpInUC (k,p,q,r) then return r; e found in the union cache
6. r < CreateNode(k); e otherwise, the union needs to be computed in 7
7. fori=0to Ny —1do

8. if k> p.lvl then u <= Union(p, g—dwli]); e p is at a lower level than ¢
9. else if & > q.lvl then w < Union(p—dwl[i], q); e g is at a lower level than p
10. else u < Umon(p—)dw[ ], g—dwli]); e p and g are at the same level
11. SetArc(r,i,u); e make u the i-th child of r
12. r < CheckNode(r); e store r in the unique table
13. InsertinUC (k,p,q,T); e record the result in the union cache
14. return r;

mddNode denote the type of nodes and mddAddr the type of addresses of nodes.
For convenience, we write (lvl,ind) for the node ¢ stored in the lvl-th unique
table at position ind, and g—dwli] for the i-th child of ¢. Finally, we use nodes
(0,0) and (0, 1) to indicate the Boolean values 0 and 1 at level 0, respectively.

The Union Operation on MDDs. An essential operation for generating
reachable state spaces is the binary union on sets. Since in our context all sets
are represented as MDDs, an algorithm is needed which takes two MDDs as
parameters and returns a new MDD, representing the union of the sets encoded
by its arguments. This algorithm, which is very similar to the one used in [17], is
shown in Table 1. It recursively analyzes the argument MDDs when descending
from the maximum level k& of the argument MDDs to the lowest level 0 and
builds the result MDD when finishing the recursions by ascending from level 0
to level k. Note that the maximum of the levels of the argument MDDs is the
highest level the result MDD can have.

The base cases of the recursive function Union are handled in Lines 1-3,
where the MDDs (0, 0) and (0, 1) encode the empty set and the full set, respec-
tively. If k£ > 0, a cache — the so-called union cache —is used to check whether the
union of the arguments p and g has been computed previously. If so, the result
stored in the cache is returned. Otherwise, a new MDD node at level k is created,
whose i-th child is determined by recursively building the union of the i-th child
of p and the i-th child of ¢, for all 0 < i < Ny (cf. Lines 7-11). However, one
needs to take care of the fact that some child might not be explicitly represented,
namely if it is redundant (cf. Lines 8 and 9). Finally, to ensure that the resulting
MDD is reduced, node r is checked by calling function CheckNode(r). If r is re-
dundant, then CheckNode destroys r and returns r’s child, and if r is equivalent
to another node 7’ having the same children, then CheckNode destroys r and
returns r'. Otherwise, CheckNode inserts node r in the unique table and returns
it. Note that the algorithm in Table 1 can be easily adapted for computing other
binary operations, such as intersection, by modifying Lines 1-3.



Table 2. Iterative state-space generation

MDDgeneration(in m : array[l, ... , K] of int) : mddAddr
1. for k=1 to K do ClearUT(k); e clear unique table
2. q < SetInitial(m); e build the MDD representing the initial state
3. repeat e start state-space exploration
4. for k =1 to K do ClearUC (k); e clear union cache
5. for k =1 to K do ClearFC(k); e clear firing cache
6. mddChanged < false; e true if MDD changes in this iteration
7. foreach event e do Fire(e,q, mddChanged) e fire e, add newly reached states
8. until mddChanged = false; e keep iterating until fixed point is reached
9. return g; e return MDD representing the reachable state space

MDD-based State-space Construction. Table 2 shows a naive, iterative, and
MDD-based algorithm to build the reachable state space of a system represented
by a Petri net. As explained earlier, a global state (sx,sk—1,...,s1) is stored
over the K levels of the MDD, one substate per level. Recall that this requires
us to partition Petri nets into subnets. While this can in principle be done
automatically, it is still an open problem how to efficiently find “good” partitions,
i.e., those that lead to small MDD representations of reachable state spaces;
see [17] for a detailed discussion on partitioning.

The semantics of the Petri net under study is encoded in procedure Fire (cf.
Table 2), which updates the MDD rooted at g according to the firing of event e by
appropriately applying the Union operation. For efficiency reasons, it also makes
use of another cache, which we refer to as firing cache. The procedure additionally
updates a flag mddChanged, if the firing of e added any new reachable states.
After first clearing the unique table, the initial marking m of the Petri net under
consideration is stored as an MDD via procedure SetInitial. The algorithm then
proceeds iteratively. In each iteration, every enabled transition is fired, and the
potentially new states are added to the MDD. This is done until the MDD does
not change, i.e., until no more reachable states are discovered. Finally, the root
node ¢, representing the reachable state space of the Petri net, is returned.

3 The Concept of Event Locality

Our improvements for the MDD-based generation of reachable state spaces rely
on the notion of event locality, which asynchronous systems inherently obey.
Event locality is defined via the concept of independence of events from subnets.
An event e is said to be independent of the k-th subnet of the net under consid-
eration, or independent of level k, if s, = s}, for all s = (sx,sx-1,...,51) € S
and s' = (s, 8% 1,...,81) € N(e,s). Otherwise, e depends on the k-th sub-
net, or on level k. If an event depends only on a single level k, it is called
a local event for level k; otherwise, it is a synchronizing event [17]. We let
First(e) and Last(e) denote the maximum and minimum levels on which e de-
pends. Hence, e is independent of every level k satisfying K > k > First(e) or
Last(e) > k > 1, while e might or might not depend on levels strictly between
First(e) and Last(e). For asynchronous systems in particular, the range of af-



fected levels is usually significantly smaller than K for most events e. We assume
that all local events for level k are merged into a single macro event [, satisfying
Nk, ) =ar Ueee: pirst(e)=rLast(e)=k Nk (€, 8), for all s € S. This convention does
not only simplify notation, but also improves the efficiency of our state-space
generation algorithm.

Our aim is to define MDD manipulation algorithms that exploit the con-
cept of event locality. Since an event e affects local states stored between levels
First(e) and Last(e), firing e only causes updates of MDD nodes between these
levels, plus possibly at levels higher than First(e), but only when a node at level
First(e) becomes redundant, and possibly levels lower than Last(e), but only
until recursive Union calls stop creating new nodes. To benefit from this obser-
vation, we need to be able to access MDD nodes by “jumping in the middle” of
an MDD, namely to level First(e), rather than always having to start manipu-
lating MDDs at their roots, as is done in traditional approaches and in [17]. This
is the reason why we partition the unique table into a K-dimensional array of
lists of nodes. However, two problems need to be addressed when accessing an
MDD directly at some level First(e).

Implicit Roots. When one wants to explore an MDD from level First(e), all
nodes at this level should play the role of root nodes. However, some of them
might not be represented explicitly, since redundant nodes are not stored. This
happens whenever there is a node p at a level higher than First(e) pointing to a
node q at a level k satisfying First(e) > k > Last(e). This situation is illustrated
in Fig. 2, left-hand side. Conceptually, we have to re-insert these “implicit roots”
at level First(e) when we explore and modify the MDD due to the firing of
event e. There are two approaches for doing this. The first approach stores a bag
(multiset) of upstream arcs in each node ¢, corresponding to the downstream arcs
pointing to ¢. Hence, for each i such that p—dwli] = ¢, there is an occurrence
of p in the bag of ¢’s upstream arcs. Implicit roots can then be detected by
scanning each node stored in the unique tables for levels First(e) + 1 through
Last(e) and by checking whether the node possesses one or more upstream arcs
to a node at a level above First(e). If so, an implicit root, i.e., a redundant
node, is inserted at level First(e). Note that at most one implicit root needs
to be inserted per node, regardless of how many arcs reach it; in our example,
the arcs from both p and p’ are re-routed to the same new implicit root. These
redundant nodes will be deleted after firing event e, if they are still redundant.
Our second approach keeps all unique redundant nodes, so that downstream arcs
in the resulting MDD exist only between subsequent levels. Then, the nodes at
level First(e) are exactly all the nodes from which we need to start exploring the
underlying MDD when firing event e. Note that this slight variation of MDDs
still possesses the fundamental property of being a canonical representation.
We refer to the two variants of our algorithm as upstream-arcs approach
and forwarding-arcs approach. The latter approach, when compared to the for-
mer, eliminates the expensive search for implicit roots. However, both involve
some memory penalty, the former for the storage of upstream arcs, which can
in the worst case double the space requirements, and the latter because of the



Explicit nodes need to be inserted in order
to deal with implicit roots at level First(e).

Fig. 2. Illustration of the problem of implicit roots

preservation of redundant nodes. We have implemented both approaches, and
experimental results show that these memory overheads are compensated by a
smaller peak number of MDD nodes when compared to [17] (cf. Sec. 6).

In-place Updates. Once all explicit and implicit nodes at level First(e) are
detected, one can update the MDD to reflect that the firing of event e may
lead to new, reachable states. Our routine Fire implementing this update is
described in Sec. 5. It relies on the Union operation, as presented in Table 1,
i.e., new MDD nodes are created and appropriately inserted, as needed. However,
there is one important difference with respect to existing approaches. Our Fire
operation stops creating new MDD-nodes as soon as it reaches level First(e)
when backtracking from recursive calls. At this level our algorithm just links the
new sub-MDDs at the appropriate positions in the original MDD, in accordance
with event locality. The only difficulty with the in-place update of a node p arises
when it becomes redundant or non-unique. In the former case, p must be deleted
and its incoming arcs be re-directed to its unique child node g. In the latter case,
p must be deleted and its incoming arcs be re-directed to replica node q.

In the upstream-arcs approach, either operation can be easily accomplished
since p knows its parents. In the forwarding-arcs approach we keep redundant
nodes; thus, we eliminate p only if it becomes non-unique. Instead of scanning
all nodes in level First(e)+ 1 to search for arcs to p, which is a costly operation,
we mark p as deleted and set a forwarding arc from p to g. The next time a node
accesses p, it will update its own pointer to p, so that it points to ¢ instead. Since
node q itself might be marked as deleted later on, forwarding chains of nodes
can arise. In our implementation, the nodes in these chains are deleted after all
events at level First(e) have been fired and before nodes at the next higher level
are explored.



It is important to note that, although these in-place updates change the
meaning of MDD-nodes at higher levels, they do not jeopardize the correctness
of our algorithm; this is due to the property of event locality. Rather than per-
forming in-place updates, existing approaches reported in the literature create
an MDD encoding the set of global states reachable from the current states in
the state space by firing event e. This is a K-level MDD, i.e., it is expensive to
build compared to our sub-MDD, especially when MDDs are tall and the effect
of e is restricted to a small range of levels.

Summarizing, it is the notion of event locality that allows us to drastically
improve on the time efficiency of MDD-based state-space generation techniques.
Exploiting locality, we can jump in and out of the “middle” of MDDs, thereby
exploring only those levels that are affected by the event under investigation.
While the approach reported in [17] also exploits locality, it just considers some
simplifications and improvements of MDD manipulations in the case of local
events. However, it does not support localized modifications of MDDs, neither
for synchronizing nor for local events.

4 Improving Cache Management and Iteration Control

The concept of event locality also paves the road towards significant improve-
ments in cache management and iteration control.

Intelligent Cache Management. The technique of in-place updates allows
us to enhance the efficiency of the union cache. In related work, including [17],
the lifetime of the contents of the union cache cannot span more than one iter-
ation, since the root of any MDD is deleted and re-created whenever additional
reachable states are incorporated in the MDD.

In contrast, in our approach the “wave” of changes towards the root, caused
by firing an event e, is stopped at level First(e), where only a pointer is updated.
This permits some union cache entries to be reused over several iterations until
the referred nodes are either changed or deleted. For this purpose, MDD nodes
in our implementation have two status bits attached, namely a cached flag and
a dirty flag. Instead of thoroughly cleaning up the union cache after each itera-
tion, we can now perform a selective purging according to the above flags. If an
MDD node associated with a union cache entry is not deleted and if the copies
present in the cache are not stale, the result may be kept in the union cache.
Experimental studies show us that the rate of reusability of union cache entries
averages about 10% and that the overall performance of our algorithm can be
improved by up to 13% when employing this idea.

Additionally, we devise a second optimization technique for the union cache,
which is based on prediction. Our prediction relies on the fact that if Union(p, q)
returns r, then also Union(p,r) and Union(g,r) will return r. Thus, these two
additional results can be memorized in the cache, immediately after storing the
entry for Union(p, q). Experiments indicate that this heuristics accelerates our
algorithm by up to 12%. The reason for such a significant improvement is the



following. Assume we are exploring the firing of event e in node p at level k,
and assume j € Nj(e,i). Then, the set of states encoded by the MDD rooted
at p—dw[i] needs to be added to the set of states encoded by the MDD rooted
at p— dw[j]. Let r be the result of Union(p— dwl[i],p— dw[j]), which becomes
the new value of p — dw[j]. In the next iteration, and assuming that p has
not been deleted, we explore event e in node p again and, consequently, find
out that e is enabled in local state 7. Hence, we need to perform the update
p— dwlj] <= Union(p— dwl[i], p— dw[j]) again. However, if p has not changed,
Union(p— dwli],p— dw[j]) is identical to Union(p— dw[i],r) = r. By having
cached r in the previous iteration, we can avoid computing this union.

Advanced Iteration Control. Event locality also allows us to reduce the
number of iterations needed for generating state spaces. Existing MDD-based
algorithms for Petri nets [17, 20] fire events in some arbitrary order within each
iteration, as indicated in Line 7 of function MDDgeneration in Table 2. In our
version of MDDgeneration, however, we presort events according to function
First(-). Our algorithm then starts at level 1 and searches for the states that
can be reached from the initial state by firing all events e satisfying First(e) =1
and Last(e) > 1, i.e., the macro event I;. When reaching level k, the algorithm
finds the states that can be added to the current state space by firing all events e
satisfying First(e) = k and Last(e) > 1, i.e., the local macro event [ at level k
and all synchronizing events that affect only level £ and some levels below.
Moreover, in our implementation we repeatedly fire each event as long as it
is enabled and as long as firing it adds new states. This specific sequence of
firing events is essential for the correctness and efficiency of the implementation
of our cache management. By working from the bottom to the top levels we
can clear the union and firing caches selectively, thus, extending the lifetime of
cache entries. Moreover, the access pattern to the caches is more regular. Our
firing sequence also enables delayed node deletion which allows for the efficient
collection and removal of non-unique and disconnected nodes.

In [17], repeatedly firing events is only applied for local events which are
relatively inexpensive to process, while synchronizing events are still fired once
and in no particular order. We stress that while the new iteration control means
that our iterations are potentially more expensive than those in [17], they are
also potentially fewer. More precisely, our algorithm generates state spaces in at
most as many iterations as the maximum synchronizing distance of any reach-
able state s, which is defined in [17] as the minimal number of synchronizing
events required to reach s from the initial state. We stress that the advanced
iteration control we use implies a much finer management of MDD nodes than
the one resulting from the use of breadth-first, mixed breadth-first/depth-first
BDDs [25], or other techniques for reducing the intermediate sizes of BDDs [21].

5 Details of the New Algorithm

We now present some details of our new algorithm and argue for its correctness;
we refer the reader to [5] for the complete pseudo-code.
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Fig. 3. Example of an MDD-modification in response to firing an event

Illustration of MDD-based Firing of Events. At each iteration of our al-
gorithm, enabled events are fired to discover additional reachable states which
are then added to the MDD representing the currently-known portion of the
reachability set. Function Fire(e,-,-) implements this behavior with respect to
event e. Figure 3 illustrates how Fire works: the example net is partitioned into
six subnets, each of them having four possible local states, numbered from 0 to 3.
Hence, our MDD has six levels, and each MDD node has four downstream arcs;
here, we do not draw node (0, 0), nor any arc to it. Let the current state space,
depicted on the left in Fig. 3, be Scurr = {(0,0,%,0,0,0), (3,1,0,0,0,0)}, where
“x” stands for any local state. Assume further that event e is enabled in every
state of the form (x,%,3,0,0,*) and that the new state reached when firing e is
(%,%,0,1,1, %), i.e., First(e) =4 and Last(e) = 2. Hence, if the net is in a global
state described by local state 3 at level 4 and local state 0 at levels 3 and 2,
event e can fire and the local states of the affected subnets are updated to 0, 1,
and 1, respectively.

Exploiting event locality, our search for enabling sequences starts directly at
level First(e) = 4. The sub-MDDs rooted at this level are searched to match the
enabling pattern of e. At level 4, only the MDD rooted at (4,0) contains such
a pattern, along the path (4,0)i>(3,0)i>(2,0)i>(1,0>. Then, our algorithm
generates a new MDD rooted at node (4,2), representing the set of substates
for levels 4 through 1 that can be reached from (4,0) via e. This MDD is de-
picted in Fig. 3 in the middle. Note that only nodes at levels First(e) through
Last(e) might have to be created, since those below Last(e) can simply be linked
to existing nodes, such as node (1,0) in our example. Indeed, in our implemen-
tation even node (4,2) is actually not allocated, since we explore it one child
at a time. This MDD corresponds to all states of the form («,0,1, 1, 3), where
a is any substate leading to node (4,0) and where 3 is a substate reachable
from the 0-th arc of node (2,0). In our example, a and 3 can only be the sub-
states (0,0) and (0), respectively. In other words, the set of states to be added by



firing e in node (4,0) is Saqa = {(0,0,0,1,1,0)}. Finally, the 0-th downstream
arc of node (4,0) is updated to point to the result of the union of the MDDs
rooted at nodes (3,0) and (3,1), which is stored in an MDD rooted at the new
node (3,2), as depicted on the right in Fig. 3. Hence, the resulting state space
Snext 1s {(0,0,%,0,0,0), (0,0,0,1,1,0), (3,1,0,0,0,0)}. Observe that our ver-
sion of Fire(e) is more efficient than the one in [17] since it exploits the locality
of e and, thus, operates on smaller MDDs. This is important as the complexity
of the Union operation is proportional to the sizes of its operand MDDs.

Further Implementation Details. MDD nodes store not only the addresses of
their children, but also Boolean flags for garbage collection and intelligent cache
management, as well as information specific to the upstream-arcs approach and
to the forwarding-arcs approach.

In our implementation, nodes are stored using one heap array per MDD level.
The pages of the heap array are created only upon request and accommodate
dynamic deletion and creation of nodes. Therefore, existing nodes may not be
stored contiguously in memory. For fast retrieval we maintain a doubly-linked
list of nodes. Upon deletion, a node is moved to the back of the list, thereby,
allowing for garbage collection (but not garbage removal) in constant time.

The unique table, the union cache, and the firing cache are organized as
arrays of hash tables, i.e., one hash table per level. For the unique table, the
hash key of a node is determined using the values in its dw-array. For the union
cache, the addresses of the two MDD nodes involved in the union are used to
determine the hash key. Together with the cached and dirty flags, this allows us
to reuse union cache entries across iterations without danger of accessing stale
values. Finally, the hash key for firing cache entries is determined using only
the address of the MDD node to which the firing operation is applied. Note
that the identity of the event is implicit, since the firing cache is cleared when
moving from one event to the next. The alternative approach, i.e., allowing the
co-existence of entries referring to different events, would require a larger cache
with a key based on a pair of MDD node and event. However, this would not
bring enough benefits as the major cost of processing the event firing lies in the
Union operations, and these can indeed be cached across operations.

For the upstream-arcs approach, MDD nodes include the addresses of their
parents, which we store in a bag. Our implementation uses a dynamic data
structure for bags rather than a static data structure, since the number of parents
of a node is not known in advance and may be very large, in the range of several
thousand nodes. While this memory overhead is still acceptable, the approach
also puts a burden on time efficiency, since each update of a downstream arc must
be reflected by an update of the corresponding upstream arc. Moreover, the bag
of some node ¢ only stores the addresses of parents p, as well as the number of
indexes ¢ such that p—dw[i] = ¢, but not the indexes themselves. Thus, a linear
search in p—dw must be performed to find these indexes. The alternative of
storing these indexes in ¢ would require even more memory overhead.

Regarding the forwarding-arcs approach, time efficiency is improved by allow-
ing redundant nodes to be represented explicitly. As a consequence, MDD nodes



do not need to store bags of parents’ addresses, but simply a counter indicating
the number of incoming arcs [17]. When this counter reaches zero, it indicates
that the node has become disconnected and can be deleted. Experiments show
that the memory overhead of this approach, due to the storage of redundant
nodes and the delayed deletion of non-unique nodes, is about the same as the
memory overhead of the upstream-arcs approach. However, the forwarding-arcs
approach is more time-efficient, as confirmed by the results in Sec. 6.

Correctness of the Algorithm. Here, we informally argue for the correctness
of our algorithm since the formal proof is quite lengthy and, thus, omitted. Our
comments concern three main features of the algorithm: (i) in-place updates,
(ii) iteration control, and (iii) cache management.

The correctness of performing in-place updates is implied by the notion of
event locality, i.e., by the asynchronous semantics of Petri nets. Formally, con-
sider a snapshot of our algorithm where the MDD under construction currently
encodes some state set S* C S and where event e will be fired next. Assume
further that e is enabled in some s = (sk,Sk_1,...,51) € §* and that s’ =
(%> S%_1,--.,81) is the state reached by firing it. Due to event locality we know
that s, = s, for all k satisfying K > k > First(e) or Last(e) > k > 1. Further,
we may conclude r’ =g¢ (1k, . - ,rpirst(e)Jrl,s’First(e), o ’SlLast(e)’TLaSt(e)*l’ ey
r1) € S,forallr = (rg,rk—1,...,r1) € S*. Hence, one may simultaneously add
all these states r’ to the MDD for S* as is done by our in-place updates.

The exact ordering in which events are fired by the iteration control does not
influence which MDD is returned by our algorithm. Unless an event is ignored
forever during the iterations, which is not the case with our iteration control, the
algorithm computes the unique least fixed point of the next-state function [11],
i.e., the unique MDD encoding the reachable state space of the net under consid-
eration. Additionally, it is obvious that our algorithm terminates for finite-state
systems, since each iteration of the body of the algorithm — except the last one
in which termination is detected — adds new states to the reachability set.

The correctness of our cache management could be hard to establish, as it
is closely intertwined with iteration control and the implementation of Fire. For
now, however, we adopt a conservative cache purging protocol to ensure that no
stale entries can be accessed. Advanced protocols that achieve an even higher
“hit ratio” in the union and firing caches will be the subject of further study.

6 Experimental Studies

In this section we present several performance results regarding the two variants
of our algorithm and compare them with the approach most closely related to
ours, namely the one reported in [17]. The variants of our algorithm are imple-
mented in the Petri net tool SMART [6]. We apply the tool to the four Petri
net models also considered in [17], i.e., the dining philosophers, the slotted-ring
system, the flexible manufacturing system (FMS), and the Kanban system. The
former two models, originally taken from [20], are composed of N identical safe
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Fig. 4. Petri nets used in our experiments: dining philosophers (upper left), Kanban
system (upper right), FMS (lower left), and slotted ring (lower right)

subnets, i.e., each place contains at most one token at a time. The latter two mod-
els, originally taken from [7], have a fixed number of places and transitions, but
are parameterized by the number IV of initial tokens in certain places. The Petri
nets for these systems are depicted in Fig. 4. To use MDDs, we adopt the “best”
partitions found in [17]: we consider two philosophers per level and one subnet
per level for the slotted-ring protocol, while we split the FMS and the Kanban
system into 19 subnets (each place in a separate subnet except for { P, My, M1},
{P12M3, M3}, and {PyMs, M>}) and 4 subnets ({pmx, PrackX,Poutx,Px } for
X =1,2,3,4), respectively.

Table 3 presents several results for the two variants of our new algorithm, as
well as the best-known existing algorithm [17], obtained when running SMART
on a 500 MHz Intel Pentium IT workstation with 512 MB of memory and 512 KB
cache. For each model and choice of N we give the size of the state space and
the final number of MDD nodes, which is of course independent of the algorithm
used. Then, for each algorithm we give the peak number of MDD nodes allocated
during execution and the corresponding memory consumption (in KBytes), the
number of iterations, and the CPU time (in seconds). The number of iterations



for the upstream-arcs and forwarding-arcs approaches coincide. The peak num-
ber of nodes and the memory consumption reported for our approach refer to
the forwarding-arcs approach. For the upstream-arcs approach, the peak number
of nodes reported should be decreased by one for the FMS and the Kanban sys-
tem, while the memory consumption should be increased by 6-8% for the dining
philosophers, 31-33% for the slotted-ring net, 41-45% for the FMS, and 1-5%
for the Kanban system. This implies that, even without introducing redundant
nodes, essentially all arcs already connect nodes between adjacent levels. Thus,
in our examples, the only memory overhead in the forwarding arcs approach is
due to postponed node deletion.

For the models we ran, our new approach is up to one order of magnitude
faster and with few exceptions uses fewer MDD nodes than the one in [17]. The
improvement mainly arises from the structural changes made to the core routine
Fire, which reflect the notion of event locality. Other improvements — most
importantly our cache optimizations — contribute in average about 7-13%, and
up to 22% in total, to the overall improvement in time efficiency. A comparison
between the run-times for the new algorithm and the ones for the algorithm
in [17] indicates an increase factor in speed ranging from approximately constant
for the Kanban and FMS nets to what appears to be almost linear (in N) for
the slotted-ring model and the dining philosophers. Moreover, the forwarding-
arcs approach is slightly faster than the upstream-arcs approach, except for
the Kanban system on which we comment below. Since both variants of our
new algorithm require significantly fewer peak MDD nodes, where the Kanban
system is again an exception, our memory penalty is more than compensated.

The two models whose parameter N affects the height of the MDD, namely
the dining philosophers and the slotted-ring model, provide a good testbed for
our ideas since they give rise to tall MDDs with a high degree of event locality.
For these models, the CPU times are up to 15 times faster than the ones for [17],
and the gap widens as we continue to scale-up the nets. The main reason for
this is that the number of explored nodes per event fired is more contained in
our approach, compared to [17]. When MDD heights are small, such as for the
FMS and the Kanban system, our algorithm is still faster than the one in [17],
but the difference is not as impressive due to our book-keeping overhead.

The memory consumption figures for the Kanban system are poor compared
to the ones for our other examples, although the number of iterations is reduced
from 2+ N + 1 to 4 due to our advanced iteration control, and the solution
time is still better than the one of [17]. There are several reasons for this. First,
splitting the Kanban net into only four subnets leads to an MDD with a small
depth, but a very large breadth, i.e., extremely large nodes. Clearly, any attempt
to exploit locality in this case cannot have much pay-off. Second, our garbage
collection policy in the forwarding-arcs approach contributes to the proliferation
of deleted nodes which are not truly destroyed until the end of the iteration.
Combined with the reduced number of iterations in our approach, the garbage
collection bin grows very rapidly. Usually, late node deletion is beneficial, since
doing garbage collection in bulk reduces the number of times nodes are scanned



Table 3. Results: (A) dining philosophers, (B) slotted ring, (C) FMS, (D) Kanban

Approach in [17]

Our new approach

N |S| final | peak | mem.| # | time | peak| mem. | # time (sec.)
nodes| nodes| (KB)| it.| (sec.) |nodes| (KB)| it.| upstr. fwd.
A 10| 1.8610° 171 45 3l 2 0.03] 28 4 2 0.02] o0.01
50| 2.2310%! 371 285 22 2 0.74] 168 26| 2 0.11 0.10
100| 4.97-10%2 197| 585 58| 2|  3.04] 343 54 2| 0.30 0.28
200( 2.4710'2%|  397| 1,185 129] 2| 12.23] 693 109 2 1.00,  0.90
300 1.2310%%|  597| 1,785 198 2| 28.10| 1,043 164| 2 2.16 2.12
400 6.1010%%°|  797| 2,385 265 2| 54.16| 1,393 219 2 3.95 3.80
500/ 3.0310%'3| 997 2,985 333| 2| 81.83| 1,743 274 2 6.33 6.02
600 1.51.10%7%| 1,197 3,585 400| 2| 125.74| 2,093 329 2 9.19  8.77
700| 7.4810%%8| 1,397| 4,185 468 2| 181.61| 2,443| 384/ 2| 12.56| 12.03
800[ 3.72:10°°'| 1,597| 4,785 535 2| 247.97| 2,793 439 2| 16.43] 15.79
900| 1.85.10%¢%| 1,797| 5,385 602 2| 305.16| 3,143| 493 2| 20.67] 19.88
1,000/ 9.1810%%%| 1,997| 5,985 669| 2| 386.26| 3,493 548 2| 25.51| 24.59
B 10| 8.29-10° 60| 691 39 71 1.25] 509 41 71 0.65] 0.56
20[ 2.7310%° | 220| 4,546 263| 12| 28.64| 3,197 259 12| 11.04] 8.75
30/ 1.0410%* | 480|15,101| 973| 17| 212.62(10,433 845| 17| 70.25| 53.53
40| 4.16-10% 840(37,066| 2,149 22| 935.75(25,374| 2,055 22| 282.02| 210.52
50| 1.72:10%2 | 1,300(76,308| 5,342| 27|3,036.88|47,806/ 4,208 27| 861.17| 635.15
C 5[2.9010° 149 433 21[ 10  0.48] 240 10l 10]  0.22] 018
10| 2.50-10° 354/ 1,038 66| 15|  2.08] 600 34/ 15|  0.82| 0.67
15| 2.17-10"! 634| 1,868 145| 20 5.63| 1,110 78| 20 2.31 1.79
20| 6.0310%2 | 989| 2,923| 267 25| 11.97| 1,770 149 25|  5.23]  3.89
25| 8.54-10%% | 1,419| 4,203 441| 30| 23.86| 2,580,  253| 30| 10.59 7.42
50| 4.24-10%7 | 4,694/13,978| 2,410| 55| 213.89| 8,880| 1,469 55| 168.23| 65.64
750 6.9810%° | 9,844/29,378| 7,035/ 80| 863.62/18,930] 4,399| 80| 538.29| 265.03
100| 2.70-10%* |16,869/50,403|15,439(105(2,362.63(32,730|  9,792|105|1,529.50| 740.82
D 5| 2.5510° 71 47 3l 11 0.07] 56 14 4 005 0.04
10[ 1.01-10° 12 87 22/ 21 1.10| 156 182| 4| 0.54] 0.48
15| 4.70-10'° 171 1271 86| 31 6.34) 306 1,005 4 3.07] 2.73
20| 8.05-10*! 22| 167 238| 41| 22.87| 506 3,595 4 11.67] 10.45
25| 7.68-10"2 27| 207| 541| 51| 63.70] 756 9,923] 4| 33.88) 30.37
30| 4.99-10*3 32| 247 1,068 61| 150.28| 1,056 23,068 4| 85.59| 76.74
40| 9.94-10** 42| 327| 3,823| 81| 583.01| 1,806 89,189 4| 378.73| 343.72
50| 1.04-10%¢ 52| 407| 9,510[101|1,703.69| 2,756|258,306| 4/|1,221.40|1,106.75

for removal. However, in case of the Kanban system we see how this can backfire.
It is worth noting that using a finer and not particularly “good” partition of the
Kanban net, with one place per level, drastically changes the results, as shown in
Table 4. We only need to scale-up the model to N = 20 to see an improvement of
about a factor 70 with respect to [17]. This observation testifies to the suitability
of our algorithm (mostly) in cases when a good partitioning cannot be found
automatically or by hand, e.g., due to insufficient heuristics.




Table 4. Results for the Kanban net with 16 levels (one place per level)

Approach in [17] Our new approach

N |S| final | peak | mem.|#| time | peak | mem.|#| time (sec.)

nodes| nodes| (KB)|it.| (sec.) | nodes| (KB)|it.|upstr.| fwd.
1| 1.60-107 32| 112 31| 5 0.79 56 58| 6| 0.20| 0.19
2| 4.60-10% 51 271 81| 7 2,46 110 124| 6| 0.44| 0.31
3| 5.8410* 73| 521 231|110 6.56| 221 230/ 6] 0.62| 0.54
4| 4.5410° 98| 895| 428|13| 14.21| 373| 389| 6| 1.00| 0.82
5[ 2.5510° 126| 1,414| 705|16| 25.46| 587| 613| 6] 1.56| 1.28
8| 1.34.108 228| 4,015| 2,099|25| 113.01| 1,833| 1,914| 6| 4.49| 3.70
10| 1.01-10° 311| 6,838 3,629|31| 237.11| 3,402| 3,552| 6| 8.01| 6.56
15/ 4.7010%°| 571|19,061|10,185|46|1,032.12|11,507|12,013| 6| 24.93|20.12
20( 8.0510% | 906|40,741|21,902|61(3,340.99(29,137(30,419| 6| 62.34|48.31

7 Related Work

A variety of approaches for the generation of reachable state spaces of syn-
chronous and asynchronous systems have been suggested in the literature, where
state spaces are represented either in an explicit or in a symbolic fashion.

Ezxplicit state-space generation techniques construct the reachable state space
of the system under consideration by successively iterating its next-state func-
tion (see, e.g., [3, 7]). To achieve space efficiency, numerous techniques have
been introduced, out of which multi-level data structures and merging common
bitvectors deserve special mentioning. Multi-level data structures exploit the
structure of the underlying system representation, e.g., the approach reported
in [7] is based on a decomposition of a Petri net into subnets. As the name sug-
gests, merging common bitvectors aims at compressing the storage needed for
each state — a bitvector — by merging common sub-bitvectors [3, 14]; indeed, the
result is somewhat analogous to the one obtained using BDDs. While explicit
methods still require space linear in the number of states, they usually possess
some advantages for numerical state-space analyses [16].

To avoid the problem of state-space explosion when building the explicit
state space of concurrent, asynchronous systems, researchers developed three key
techniques: (i) compositional minimization techniques build the state space of a
concurrent system stepwise, i.e., parallel component by parallel component, and
minimize the state space of each intermediate system according to a behavioral
congruence or an interface specification [13]; (ii) Partial-order techniques exploit
the fact that several traces of an asynchronous system may be equivalent with
respect to the properties of interest [12, 22, 24]; thus, it is sufficient to explore
only a single trace of each equivalence class; (iii) techniques exploiting symmetries
in systems — such as those with repeated sub-systems — can be used to avoid the
explicit construction of symmetric subgraphs of the overall state spaces [9].

Symbolic state-space generation techniques have largely concentrated on (syn-
chronous) hardware systems rather than on (asynchronous) software systems [1,



4, 10, 15]. For safe Petri nets, Pastor et al. [20] developed a BDD-based algo-
rithm for the generation of the reachability sets by encoding each place of a
net as a Boolean variable. The algorithm is capable of generating state spaces
of very large nets within hours; similar techniques were also implemented by
Varpaaniemi et al. [23] in the Petri net tool PROD. In recent work, Pastor and
Cortadella introduced a more efficient encoding of nets by exploiting place in-
variants [19]. However, the underlying logic is still based on Boolean variables.
In contrast, our work uses a more general version of decision diagrams, namely
MDDs [15, 17], by which the amount of information carried in each single node
of a decision diagram can be increased. In particular, MDDs allow for a straight-
forward encoding of arbitrary, i.e., not necessarily safe, Petri nets. Since we have
already compared our approach to related MDD-based techniques in the previous
sections, we refrain from a repetition of the issues here.

8 Conclusions and Future Work

This paper presented a novel algorithm for constructing the reachable state
spaces of asynchronous systems. As in previous work [17], state spaces are sym-
bolically represented via Multi-valued Decision Diagrams (MDDs). In contrast
to previous work, our algorithm fully exploits event locality in asynchronous
systems, integrates an intelligent cache management, and achieves faster con-
vergence via an advanced iteration control. Experimental results for examples
well-known in the Petri net community show that our algorithm is often sig-
nificantly faster than the one introduced in [17], with no or usually neglectable
decrease in space efficiency. To the best of our knowledge, our algorithm is the
first symbolic algorithm taking advantage of event locality.

Regarding future work, we would like to further explore various approaches
to iteration control and to partitioning, as well as the mutual influences between
partitioning and variable ordering. Moreover, we plan to employ our MDD ma-
nipulation algorithms as a basis for implementing a model checker in SMART,
such that not only safety properties but also liveness properties can be automat-
ically checked by the tool. Finally, we intend to parallelize our algorithms for
shared-memory and distributed-memory architectures.
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