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Abstract. Choosing a good variable order is crucial for making sym-
bolic state-space generation algorithms truly efficient. One such algo-
rithm is the MDD-based Saturation algorithm for Petri nets implemented
in SmArT, whose efficiency relies on exploiting event locality.
This paper presents a novel, static ordering heuristic that considers place
invariants of Petri nets. In contrast to related work, we use the functional
dependencies encoded by invariants to merge decision-diagram variables,
rather than to eliminate them. We prove that merging variables always
yields smaller MDDs and improves event locality, while eliminating vari-
ables may increase MDD sizes and break locality. Combining this idea of
merging with heuristics for maximizing event locality, we obtain an algo-
rithm for static variable order which outperforms competing approaches
regarding both time-efficiency and memory-efficiency, as we demonstrate
by extensive benchmarking.

1 Introduction

Petri nets [26] are a popular formalism for specifying concurrent and distributed
systems, and much research [32] has been conducted in the automated anal-
ysis of a Petri net’s state space. Many analysis techniques rely on generating
and exploring a net’s reachable markings, using algorithms based on decision

diagrams [10, 29] or place invariants [17, 31, 34, 35].
While decision diagrams have allowed researchers to investigate real-world

nets with thousands of places and transitions, their performance crucially de-
pends on the underlying variable order [1, 23]. Unfortunately, finding a good
variable order is known to be an NP-complete problem [2]. Thus, many heuris-
tics for either the static or the dynamic ordering of variables have been proposed,
which have shown varying degree of success; see [18] for a survey.

In the state-space exploration of Petri nets, place invariants find use in ap-
proximating state spaces [28], since every reachable state must by definition sat-
isfy each invariant, and in compactly storing markings by exploiting functional

dependencies [6, 19, 27]. This latter use of invariants is also considered when en-
coding places with decision-diagram variables, as it eliminates some variables,
offering hope for smaller decision diagrams during state-space exploration [17].
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The contributions of this paper are twofold. First, we show that eliminat-

ing variables based on invariance information may actually increase the sizes
of decision diagrams, whence the above ‘hope’ is misplaced. Instead, we show
that merging variables is guaranteed to lead to smaller decision diagrams. While
our merging technique is obviously not applicable for Binary Decision Diagrams
(BDDs), it is compatible with techniques using Multi-way Decision Diagrams
(MDDs), such as SmArT’s Saturation algorithm for computing reachable mark-
ings [10]. In addition, merging variables improves event locality, i.e., it decreases
the span of events over MDD levels, rather than worsening it as is the case with
variable elimination. This is important since algorithms like Saturation become
more efficient as event locality is increased.

Second, we propose a new heuristic for static variable ordering which is suit-
able for Saturation. This heuristic combines previous ideas, which only took the
height and span of events into account [39], with variable merging based on lin-
ear place invariants. We implement our heuristic into SmArT [9], generating the
invariants with GreatSPN [7], and show via extensive benchmarking that this
heuristic outperforms approaches that ignore place invariants, with respect to
both time-efficiency and memory-efficiency. Indeed, the benefits of our heuris-
tic are greatest for practical nets, including large instances of the slotted-ring

network [30] and the kanban system [40], which have been tractable only using
ad-hoc variable orderings and mergings found through our intuition and exten-
sive experimentation. This shows that exploiting invariants is key for optimizing
the performance of symbolic state-exploration techniques, provided one uses in-
variance information for merging variables and not for eliminating them.

2 Preliminaries

In this section we briefly cover the class of Petri nets considered, self-modifying

nets, and their two main analysis approaches, reachability and invariant analysis.
Then, we discuss decisions diagrams and how they can encode sets of markings
and the transformations that transitions perform on markings. Finally, we survey
a range of symbolic state-space generation algorithms, from the simple breadth-
first iteration to our own Saturation algorithm.

2.1 Petri nets and self-modifying nets

We consider self-modifying nets with inhibitor arcs, described by a tuple of the
form (P , T ,F−,F+,F◦,minit), where

– P and T are sets of places and transitions satisfying P∩T = ∅ and P∪T 6= ∅.
A marking m ∈ N

P assigns a number of tokens mp to each place p ∈ P .
– F−:P×T ×N

P →N, F+:P×T ×N
P →N, and F◦:P×T ×N

P →N∪{∞} are
|P|×|T | incidence matrices; F−

p,t, F+
p,t, and F◦

p,t are the marking-dependent

[8, 41] cardinalities of the input, output, and inhibitor arcs between p and t.
– minit is the initial marking.
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The evolution of the net from a marking m is governed by the following rules,
keeping in mind that the cardinality of any arc is evaluated in the current mark-
ing, i.e., prior to the firing of any transition:

Enabling: Transition t is enabled in marking m if, for each place p, the input
arc is satisfied, mp ≥ F−

p,t(m), and the inhibitor arc is not, mp < F◦
p,t(m).

Firing: Firing enabled transition t in marking m leads to marking n, where,
for each place p, np = mp − F−

p,t(m) + F+
p,t(m). We write Nt(m) = {n}, to

stress that, for general discrete-state formalisms, the next-state function Nt

for event t, applied to a single state m, returns a set of states. Then, we can
write Nt(m) = ∅ to indicate that t is not enabled in marking m.

2.2 Reachability analysis and invariant analysis

The two main techniques for Petri net analysis are reachability analysis and
invariant analysis. The former builds and analyzes the state space of the net
(or reachability set), defined as M = {m : ∃d,m ∈ N d(minit)} = N ∗(minit),
where we extend the next-state function to arbitrary sets of markings X ⊆
N

P , Nt(X ) =
⋃

m∈X Nt(m), write N for the union of all next-state functions,
N (X ) =

⋃
t∈T Nt(X ), and define multiple applications of the next-state function

as usual, N 0(X ) = X , N d(X ) = N (N d−1(X )), and N ∗(X ) =
⋃

d∈N
N d(X ).

Invariant analysis is instead concerned with deriving a priori relationships
guaranteed to be satisfied by any reachable marking, based exclusively on the
net structure. In nets where the arcs have a constant cardinality independent
of the marking, i.e., ordinary Petri nets with or without inhibitor arcs [26],
much work has focused on the computation of p-semiflows [14, 15], i.e., non-
zero solutions w ∈ N

P to the linear set of “flow” equations w · F = 0, where
F = F+ −F−. Since any linear combination of such solutions is also a solution,
it suffices to consider a set of minimal p-semiflows from which all others can be
derived through non-negative linear combinations. A semiflow w specifies the
constraint

∑
p∈P wp ·mp = C on any reachable marking m, where the constant

C =
∑

p∈P wp · minit
p is determined by the initial marking. When marking-

dependent arc multiplicities are present, linear p-semiflows [8], or even more
general relationships [41], may still exist. However, invariant analysis provides
necessary, not sufficient, conditions on reachability; a marking m might satisfy
all known invariants and still be unreachable.

In this paper, we use invariants to improve (symbolic) state-space generation.
We assume to be given a self-modifying net with inhibitor arcs (or a similar
discrete-state model whose next-state function is decomposed according to a
set of asynchronous events), and a set W of linear invariants, each of the form∑

p∈P Wv,p · mp = Cv, guaranteed to hold in any reachable marking m. Then,

– Support(v) = {p ∈ P : Wv,p > 0} is the support of the vth invariant.
– W ∈ N

|W|×|P| describes the set of invariants. In addition, observe that the
case |Support(v)| = 1 is degenerate, as it implies that the marking of the
place p in the support is fixed. We then assume that p is removed from
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the net after modifying it appropriately, i.e., substituting the constant minit
p

for mp in the marking-dependent expression of any arc and removing any
transition t with F−

p,t > minit
p or F◦

p,t ≤ minit
p . Thus, each row of W contains

at least two positive entries.
– The marking of any one place p ∈ Support(v) can be expressed as a function

of the places in Support(v) \ p through inversion, i.e., in every reachable
marking m, the relation mp = (Cv −

∑
q∈P\{p} Wv,q ·mq)/Wv,p holds.

We say that a set of non-negative integer variables V ′ is functionally depen-

dent on a set of non-negative integer variables V ′′ if, when the values of the
variables in V ′′ are known, the values of the variables in V ′ are uniquely deter-
mined. In our linear Petri-net invariant setting, V ′ and V ′′ correspond to the
markings of two sets of places P ′ and P ′′, and functional dependence implies
that the submatrix WW′,P′ of W, obtained by retaining only columns corre-
sponding to places in P ′ and rows corresponding to invariants having support
in P ′ ∪ P ′′, i.e., W ′ = {v ∈ W : Support(v) ⊆ P ′ ∪ P ′′}, has rank |P ′|. This
fundamental concept of functional dependence is at the heart of our treatment,
and could be generalized to the case of nonlinear invariants where not every
place in Support(v) can be expressed as a function of the remaining places in
the support. To keep presentation and notation simple, we do not discuss such
invariants.

2.3 Decision diagrams

The state-space generation algorithms we consider use quasi-reduced ordered

multi-way decision diagrams (MDDs) [22] to store structured sets, i.e., subsets

of a potential set Ŝ = SK × · · · × S1, where each local set Sl, for K ≥ l ≥ 1,
is of the form {0, 1, ..., nl − 1}. Formally, an MDD over Ŝ is a directed acyclic
edge-labeled multi-graph such that:

– Each node p belongs to a level in {K, ..., 1, 0}, denoted p.lvl.
– There is a single root node r? at level K or 0.
– Level 0 may only contain the terminal nodes 0 and 1.
– A node p at level l > 0 has nl outgoing edges, labeled from 0 to nl − 1. The

edge labeled by i ∈ Sl points to node q at level l− 1 or 0; we write p[i] = q.
– Given nodes p and q at level l, if p[i] = q[i] for all i ∈ Sl, then p = q.
– The edges of a node at level l > 0 cannot all point to 0 or all point to 1.

An MDD node p at level l encodes, with respect to level m ≥ l, the set of tuples
B(m, p) = Sm × · · · × Sl+1 ×

(⋃
i∈Sl

{i} × B(l− 1, p[i])
)
, letting X × B(0, 0) = ∅

and X × B(0, 1) = X . If m = l, we write B(p) instead of B(l, p). Fig. 1 contains
an example where K = 4, showing the composition of the sets Sl (a), the MDD
(b), and the set of tuples encoded by it (c). Here, as in [11], we employ a dynamic

MDD variant where the sets Sl are not fixed but are grown as needed, so that
the MDD can be used to encode arbitrary (but finite) subsets of N

K . The only
overhead in such a data structure is that, since a set Sl may grow and change the
meaning of an edge spanning level l and pointing to node 1, only edges pointing
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Fig. 1. An example of an MDD and the set of 4-tuples it encodes.

to node 0 are allowed to span multiple levels, while node 1 can be pointed only
by edges from nodes at level 1. Fig. 1(d) shows how this requires the insertions
of nodes 3 and 6 along edge 2 from 8; we employ a simplified representation
style where terminal nodes and edges to 0 are omitted.

For our class of nets, it might be difficult (and it is generally impossible) to
compute an upper bound on the marking of a place. To store a set of reachable
markings during symbolic state-space generation, we could then use dynamic
MDDs over N

|P|, so that a marking m is simply a tuple encoded in the MDD.
However, this simplistic approach has several drawbacks:

– Even if the (current) bound Bp on the marking of a place p is tight, i.e.,
there is a reachable marking m with mp = Bp, the local set Sp might have
“holes”, i.e., no reachable marking n might have np = c, for some 0≤c<Bp.
This may waste memory or computation during MDD manipulation.

– If many different markings for p are possible, Sp and thus the nodes at level
p might be too large, again decreasing the efficiency of MDD manipulations.
It might then be better to split a place over multiple MDD levels. This is
actually necessary if the implementation uses BDDs [3], which are essentially
our MDDs restricted to the case where each Sl is just {0, 1}.

– On the other hand, our symbolic algorithms can greatly benefit from “event
locality” which we will discuss later. To enhance such locality, we might
instead want to merge certain places into a single MDD level.

– If some invariants are known, we can avoid storing some of the |P| compo-
nents of the marking, since they can be recovered from the remaining ones.

For simplicity, and since we employ MDDs, we ignore the issue of splitting a place
over multiple levels, but assume the use of K ≤ |P| indexing functions that
map submarkings into natural numbers. Given a net, we partition its places
into K subsets PK , ...,P1, so that a marking m is written as the collection
of the K submarkings (mK , ...,m1). Then, m can be mapped to the tuple of
the corresponding K submarking indices (iK , ..., i1), where il = ψl(ml) and
ψl : N

|Pl| → N ∪ {null} is a partial function. In practice, each ψl only needs to
map the set Ml of submarkings for Pl known to be reachable so far, to the range
{0, ..., |Ml| − 1} of natural numbers. We can then define ψl dynamically:

– Initially, set Ml = {minit
l } and ψl(m

init
l ) = 0, i.e., map the only known

submarking for Pl, the initial submarking, to the first natural number.
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– For any other ml ∈ N
|Pl| \Ml, i.e., any submarking not yet discovered, set

ψl(ml) to the default value null.
– When a new submarking ml for Pl is discovered, add it to Ml and set
ψl(ml) = |Ml| − 1.

This mapping can be efficiently stored in a search tree and offers great flexibility
in choosing the MDD variables (xK , ...,x1) corresponding to the possible values
of the indices at each level. We can have as little as a single variable (when K=1,
S1 = S and we perform an explicit reachability set generation), or as many as
|P| variables, so that each place corresponds to a different level of the MDD.

2.4 Symbolic algorithms to generate the state space of a net

We now focus on building the state space of a net using MDDs, i.e., on computing
S ⊆ Ŝ corresponding to M. Since the functions ψl,K ≥ l ≥ 1, provide a bijection
between markings and K-tuples, knowledge of S implies knowledge of M. As
they manipulate sets of tuples, not individual tuples, all symbolic state-space
generation algorithms are some variation of the following:

“Build the MDD encoding S, defined as the smallest solution to the
fixpoint equation S = S ∪ N (S) subject to S ⊇ Xinit”,

where the next-state function N is now applied to tuples instead of markings.
Of course, N is also encoded using either MDDs or related formalisms. The

most common choice is a 2K-level MDD with interleaved levels for the cur-

rent variables x and the next variables x′, i.e., if i′ ∈ N (i), there is a path
(iK , i

′
K , ..., i1, i

′
1) from the root of the MDD encoding N to node 1. In our asyn-

chronous context, a disjunctive partition [4] can be used, where each transition
t ∈ T is encoded as a separate 2K-level MDD. This is the case in the standard
breadth-first algorithm Bfs shown in Fig. 2. Function Union returns the root of
the MDD encoding the union of the sets encoded by the arguments (all encoded
as K-level MDDs), while function Image returns the root of the MDD encoding
the set of states reachable in one application of the second argument (a 2K-level
MDD) from any state encoded by the first argument (a K-level MDD); both
functions are easily expressed in recursive form. In the figure, we identify sets
and relations with the MDDs encoding them; thus, for example, Nt[i][i

′] denotes
the node in the MDD encoding Nt which is reached by following the edge labeled
i from the root and then the edge labeled i′ from the resulting node.

To improve over breadth-first iterations, we have proposed algorithms [12, 13]
that exploit chaining [33] and event locality. Chaining is based on the observation
that the number of symbolic iterations might be reduced if the application of
asynchronous events (transitions) is compounded sequentially; see BfsChaining

in Fig. 2. While the search order is not strictly breadth-first anymore, the set of
known states at the dth iteration of the repeat-until loop is guaranteed to be at
least as large with chaining as without.

However, the efficiency of symbolic state-space generation is determined not
just by the number of iterations but also by their cost, i.e., by the size of the
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mdd Bfs( mdd Xinit )

1 S ← Xinit;
2 repeat
3 X ← ∅;
4 foreach t ∈ T do
5 X ← Union(X , Image(S ,Nt));
6 S ← Union(S ,X );
7 until S does not change;
8 return S ;

mdd BfsChaining( mdd Xinit )

1 S ← Xinit;
2 repeat
3 foreach t ∈ T do
4 S ← Union(S , Image(S ,Nt));
5 until S does not change;
6 return S ;

void Saturation( mdd Xinit )

1 for l = 1 to K do
2 foreach node p at level l on a path from Xinit to 1 do
3 Saturate(p); • update p in place

void Saturate( mdd p )

1 l ← p.lvl;
2 repeat
3 choose t s.t. Top(t) = l, i ∈ Sl, i

′ ∈ Sl s.t. p[i] 6= 0 and Nt[i][i
′] 6= 0;

4 p[i′]← Union(p[i′], ImageSat(p[i],Nt[i][i
′]));

5 until p does not change;

mdd ImageSat( mdd q, mdd2 f )

1 if q = 0 or f = 0 then return 0;
2 k ← q.lvl; • f.lvl = k as well
3 s← new level-k node with edges set to 0;
4 foreach i ∈ Sk, i′ ∈ Sk s.t. q[i] 6= 0 and f [i][i′ ] 6= 0 do
5 s[i′]← Union(s[i′], ImageSat(q[i], f [i][i′]));
6 Saturate(s);
7 return s.

Fig. 2. Breadth-first, chaining, and Saturation state-space generation.

MDDs involved. In practice, chaining has been shown to be quite effective in
many asynchronous models, but its effectiveness can be greatly affected by the
order in which transitions are applied. Event locality can then be used to define
a good ordering heuristic [12], as we will explain next.

Given a transition t, we define VM (t) = {xl : ∃i, i′∈Ŝ, i′∈Nt(i)∧ il 6= i′l} and

VD(t) = {xl : ∃i, j∈Ŝ, ∀k 6= l, ik = jk ∧ Nt(i) 6= ∅ ∧ Nt(j) = ∅}, i.e., the variables
that can be modified by t, or that can disable t, respectively. Moreover, we let
Top(t) = max{l : xl ∈ VM (t)∪VD(t)} and Bot(t) = min{l : xl ∈ VM (t)∪VD(t)}.

We showed experimentally in [12] that applying the transitions t ∈ T in
an order consistent with their value of Top, from 1 to K, results in effective
chaining. Locality is easily determined for our nets since the enabling and firing
effect of a transition t depend only on its input, output, and inhibitor places,
plus any place appearing in the cardinality expression of the corresponding arcs.

Recognizing locality, however, offers great potential beyond suggesting a good
chaining order. If Top(t) = l and Bot(t) = k, any variable xm outside this range,
i.e., above l or below k, is not changed by the firing of transition t. When com-
puting the image in line 4 of BfsChaining , we can then access only MDD nodes at
level l or below and update in-place only MDD nodes at level l, without having
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to access the MDD from the root. While Kronecker [25] and matrix diagram [24]
encodings have been used to exploit these identity transformations in Nt, the
most general and efficient data structure appears to be a decision diagram with
special reduction rules [13]. In this paper, we assume that Nt is encoded with
an MDD over just the current and next variables between Top(t) and Bot(t)
included, instead of a 2K-level MDD. If there are no marking-dependent arc
cardinalities, the structure of this MDD is quite simple, as we just need to en-
code the effect of every input, inhibitor, and output arc connected to t; the result
is an MDD with just one node per ‘unprimed’ level. For general self-modifying
nets, a “localized” explicit enumeration approach may be used [13], although a
completely symbolic approach might be preferable.

We can now introduce our most advanced algorithm, Saturation, also shown
in Fig. 2. An MDD node p at level l is saturated [10] if

∀t ∈ T , Top(t) ≤ l ⇒ B(K, p) ⊇ Nt(B(K, p)).

To saturate node p once its descendants are saturated, we compute the effect of
firing t on p for each transition t such that Top(t) = l, recursively saturating
any node at lower levels which may be created in the process, and add the result
to B(p) using in-place updates. Thus, Saturation proceeds saturating the nodes
in the MDD encoding the initial set of states bottom-up, starting at level 1 and
stopping when the root at level K is saturated.

Only saturated nodes appear in the operation cache (needed to retrieve the
result of an ImageSat or Union call, if it has already been issued before with
the same parameters) and the unique table (needed to enforce MDD canonicity
by recognizing duplicate nodes). Since nodes in the MDD encoding the final
S are saturated by definition, this unique property – not shared by any other
approach – is key to a much greater efficiency. Indeed, we have experimentally
found that both memory and run-time requirements for our Saturation approach
are usually several orders of magnitude smaller than for the traditional symbolic
breadth-first exploration, when modeling asynchronous systems.

3 Structural invariants to improve symbolic algorithms

Structural invariants have been proposed for variable elimination. For example,
[17] suggests an algorithm that starts with an empty set of boolean variables
(places of a safe Petri net) and examines each place in some arbitrary order,
adding it as new (lower) level of the BDD only if it is not functionally depen-
dent on the current set of variables. This greedy elimination algorithm reduces
the number of levels of the BDD, with the goal of making symbolic state-space
generation more efficient. However, we argue that this invariant-based elimina-
tion severely hurts locality and is generally a bad idea, not only for Saturation,
but even for the simpler BFS iterations (if properly implemented to exploit lo-
cality). To see why this is the case, consider a transition t with an input or
inhibitor arc from a place p, i.e., p ∈ VD(t). If p is in the support of invariant
v and is eliminated because all other places in Support(v) already correspond

8



to BDD levels, the marking of p can indeed be determined from the marking of
each place q ∈ Support(v) \ {p}. However, this not only removes p from VD(t)
but also adds Support(v) \ {p} to it. In most cases, the span of transition t, i.e.,
the value of Top(t)−Bot(t)+1, can greatly increase, resulting in a more costly
image computation for Nt.

The solution we present in Sec. 3.1, enabled by our use of MDDs instead of
BDDs, is to perform variable merging. This achieves the same goal of reducing
the number of levels (actually resulting in more levels being eliminated, since
it considers groups of variables at a time, not just individual ones as in [17]),
without negatively affecting locality and actually improving it for a meaningful
class of nets. Then, having at our disposal the invariants, we turn to the problem
of variable ordering, and show in Sec. 3.2 how our previous idea of minimizing
the sum of the top levels affected by each transition [39] can be extended to take
invariants into account as well, treating an invariant analogously to a transition
and its support as if it were the set of places “affected” by the invariant.

3.1 Using structural invariants to merge state variables

As one of our main contributions, we first present and prove a general theorem
stating that merging two MDD variables based on functional dependence guar-
antees to reduce the size of an MDD. In contrast, we show that placing variables
in the support of an invariant close to each other without merging them, as
suggested by many static and dynamic variable reordering techniques [19, 21],
may actually increase the size of the MDD. We then adopt our merging theorem
to improve Petri-net state-space encodings with place invariants, and present a
greedy algorithm to iteratively merge MDD variables, given a set of place invari-
ants obtained from a structural analysis of a net. Thus, our goal is to determine
both a merging of the MDD variables and an ordering of these merged variables.

Variable merging based on functional dependence. To discuss what hap-
pens to the size of an MDD when merging variables based on functional depen-
dence, one must take into account both the number of nodes and their sizes. To
be precise, and to follow what is done in an efficient “sparse node” implemen-
tation, the size of an MDD node is given by the number of its non-zero edges,
i.e., the number of outgoing edges that do not point to node 0. Thus, since a
node has always at least one non-zero edge, the size of a node for variable xl can
range from one to |Sl|. First, we recall a theorem on the number of MDD nodes
required to encode a boolean function f .

Theorem 1 [38] Using the variable order (xK , ..., x1), the number of MDD
nodes for variable xl ∈ Sl (for K ≥ l ≥ 1) in the MDD encoding of a boolean
function f(xK , ..., x1) equals the number of different subfunctions obtained by
fixing the values of xK , ..., xl+1 to all the possible values iK ∈ SK , ..., il+1 ∈ Sl+1.

In the following, we denote by f [xk1
ik1
, ..., xkn

ikn
] the subfunction obtained from f by

fixing the value of xk1
, ..., xkn

to ik1
, ..., ikn

, and we use the same symbol for a
boolean function and its MDD encoding, once the variable order is given.
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Theorem 2 Consider an MDD f encoding a set X ⊆ SK×· · ·×S1 with variable
order π = (xK , ..., x1). If xm is functionally dependent on {xK , ..., xk}, with
k > m, then define a new variable xk,m ≡ xknm + xm, where nm = |Sm|,
having domain Sk,m = {0, ..., |Sk × Sm| − 1}. Let the MDD g encode Λ(X )
with variable order π = (xK , ..., xk+1, xk,m, xk−1, ..., xm+1, xm−1, ..., x1), where
Λ(xK , ..., x1) = (xK , ..., xk+1, xk,m, xk−1, ...., xm+1, xm−1, ..., x1).

Then, (1) f [xk
ik
, xm

im
] ≡ g[ xk,m

iknm + im
]; and (2) g requires strictly fewer MDD

nodes and non-zero edges than f .

Proof. Property (1) follows directly from the definition of xk,m, Λ, and g.
Let νl and νl be the number of nodes corresponding to variable xl in g and f ,
respectively. Analogously, let εl and εl be the number of non-zero edges leaving
these nodes. To establish Property (2), we prove that νk,m = νk and εk,m = εk,
νl = νl and εl = εl for xl ∈ {xK , ..., xk+1, xm−1, ..., x1}, and νl ≤ νl and εl ≤ εl
for xl ∈ {xk−1, ..., xm+1}. These relations, in addition to the fact that f contains
νm > 0 additional nodes corresponding to xm (each of them having exactly one
non-zero edge, because of the functional dependence), show that g is encoded
using at least νm = εm fewer nodes and edges than f . We now prove these
relations by considering the different possible positions of variable xl in π.

Case 1: xl ∈ {xm−1, ..., x1}. Since f [xk
ik
, xm

im
] ≡ g[ xk,m

iknm + im
], we let f1 and g1 be

f1 = f [xk
ik
, xm

im
][xK

iK
, ..., xk+1

ik+1
, xk−1

ik−1
, ..., xm+1

im+1
, xm−1

im−1
, ..., xl+1

il+1
]

g1 = g[ xk,m
iknm + im

][xK
iK
, ..., xk+1

ik+1
, xk−1

ik−1
, ..., xm+1

im+1
, xm−1

im−1
, ..., xl+1

il+1
]

and conclude that f1 ≡ g1. Recall that the number of nodes of variable xl in f
is the number of different subfunctions f [xK

iK
, ..., xl+1

il+1
], for all possible iK , ..., il+1.

Since f and g have the same set of such subfunctions, we must have νl = νl. To
see that εl = εl as well, simply observe that each pair of corresponding MDD
nodes, e.g., f1 and g1, must have the same number of non-zero edges, since
f1 ≡ g1 implies f1[

xl
il
] ≡ g1[

xl
ii

] for any il ∈ Xl, and the edge il is non-zero if and
only if f1[

xl
il
] 6≡ 0.

Case 2: xl ∈ {xk−1, ..., xm+1}. Consider two different nodes of xl in g, encoding
two different subfunctions g1 and g2 which obviously satisfy g1 6≡ 0 and g2 6≡ 0:

g1 ≡ g[xK
iK
,...,xk+1

ik+1
, xk,m
iknm + im

,xk−1
ik−1

,...,xl+1
il+1

] g2 ≡ g[xK
jK
,...,xk+1

jk+1
, xk,m
jknm + jm

,xk−1
jk−1

,...,xl+1
jl+1

].

Then, define f1 and f2 as follows, which obviously satisfy f1 6≡ 0 and f2 6≡ 0,
too:

f1 ≡ f [xK
iK
, ..., xk+1

ik+1
, xk

ik
, xk−1

ik−1
, ..., xl+1

il+1
] f2 ≡ f [xK

jK
, ..., xk+1

jk+1
, xk

jk
, xk−1

jk−1
, ..., xl+1

il+1
].

We prove by contradiction that f1 and f2 must be different and therefore encoded
by two different nodes of variable xl in f . Since xm is functionally dependent
on {xK , ..., xk} and the value of (xK , ..., xk) is fixed to (iK , ..., ik) for f1 and to
(jK , .., j1) for f2, there must exist unique values im and jm such that f1[

xm
im

] 6≡ 0
and f2[

xm
jm

] 6≡ 0. If f1 and f2 were the same function, we would have im = jm and
f1[

xm
im

] ≡ f2[
xm
jm

]. From Property (1), we then obtain g1 ≡ f1[
xm
im

] ≡ f2[
xm
jm

] ≡ g2,
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(a) original MDD (b) reordered MDD (c) merged MDD

0:(c=0,a=0), 1:(c=0,a=1),

2:(c=1,a=0), 3:(c=1,a=1)

0:d=0, 1:d=1

0:c=0, 1:c=1

0:b=0, 1:b=1

0:a=0, 1:a=1

0:d=0, 1:d=1

0:c=0, 1:c=1

0:b=0, 1:b=1

0:a=0, 1:a=1

0:d=0, 1:d=1

0:b=0, 1:b=1

Fig. 3. An example where moving support variables closer increases the MDD size.

which is a contradiction. Thus, distinct nodes of g must correspond to distinct
nodes of f , i.e., νl ≤ νl. Again, to see that εl ≤ εl, observe that the MDD nodes
encoding f1 and g1 must have the same number of non-zero edges because, for
all il ∈ Sl, g1[

xl
ii

] ≡ f1[
xm
im

][xl
il
]. Furthermore, if multiple nodes in f correspond to

the same node of g, i.e., if νl < νl, we also have εl < εl.

Case 3: xl ∈ {xK , ..., xk+1, xk,m}. Observe that g ≡ Λ(f) and g[xK
iK
, ..., xl+1

il+1
] ≡

Λl(f [xK
iK
, ..., xl+1

il+1
]), where Λl is defined analogously to Λ, i.e., Λl(xl, ..., x1) =

(xl, xk+1, xk+m, xk−1, ..., xm+1, ..., xm−1, ..., x1). As for Case 1, we can prove that
νl = νl and εl = εl by observing that g and f must have the same subfunctions,
and the MDD nodes encoding these subfunctions must have the same number
of non-zero edges. 2

Intuitively, merging variable xm with xk is not that different from moving it
just below xk in the variable order, the commonly suggested approach for BDDs
to help reduce the number of nodes [19, 21]. However, the example in Fig. 3
illustrates that the latter can instead increase the BDD size. Fig. 3(a) shows an
example of MDDs that encodes a boolean function with initial variable order
(d, c, b, a), satisfying the invariant a + c + d = 2. Fig. 3(b) shows the result of
reordering the MDD to put variables a, c, and d close to each other, by swapping
variables b and a. Note that the number of nodes in the second MDD increases
from six to seven, and the number of non-zero edges from seven to eight. Fig. 3(c)
shows instead the result of merging variables a and c, where the number of nodes
decreases from six to five and the number of non-zero edges from seven to six,
in accordance with Thm. 2. The meaning of the elements of Sl in terms of the
value of the variables assigned to level l is shown to the right of each MDD. We
stress that this reduction in the number of nodes can only be achieved if the
MDDs are implemented natively, not as the interface to BDDs implemented in
[22, 36]; this is apparent since Fig. 3(b) is exactly the BDD that would be built
if the MDD of Fig. 3(c) was implemented using BDDs.

Focusing now on Petri nets, we restate Thm. 2 in Petri net terminology and
use place invariants to determine functional dependence.

Theorem 3 Consider a Petri net with an ordered partition π of P into the
sets (PK , ...,P1) and mappings ψPl

: N
Pl → N ∪ {null}, for K ≥ l ≥ 1. Let the
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Partition InvariantBasedMerging (Invariants WW,P)

1 K ← |P|;
2 π ← ({pK}, ..., {p1}); • Initialize the partition with one place per class
3 repeat
4 for m = K−1 to 1 do
5 k = LevelToMerge(K, m,π,WW,P );
6 if k > m then
7 π ← (πK , ..., πk+1, πk ∪ πm, πk−1, ..., πm+1, πm−1, ..., π1);
8 K ← K − 1; •The partition is now one class smaller

9 until π does not change;
10 return π;

int LevelToMerge (int L, int m, Partition (QL, ...,Q1), Invariants WW,P )

1 foreach k = L downto m + 1 do
2 W ′ ← {v ∈ W | Support(v) ⊆ Qm ∪

SL

l=k
Ql};

3 if |Qm| = Rank(WW′,Qm
) then

4 return k;
5 return m;

Fig. 4. A greedy algorithm to iteratively merge MDD variables using Thm. 3.

ordered partition π be the one obtained by merging Pk and Pm into P{k,m}, with
k > m, resulting in the order (PK , ...,P{k,m},Pk−1, ...,Pm+1,Pm−1, ...,P1) and

the same mappings as before, except for the new ψ{Pk,Pm} : N
P{k,m} → N∪{null}

to replace ψk and ψm, which satisfies ψ{Pk,Pm}(mPk
,mPm

) = null if and only
if ψk(mPk

) = null or ψm(mPm
) = null. Then, if Pm is functionally dependent

on
⋃

K≥l≥k Pl, the MDD encoding of any nonempty set of markings X requires
strictly fewer nodes and edges with π than with π.

Proof. The proof is a specialization of the one of Thm. 2, noting that, there,
we used the mapping xk,m = xknm + xm for simplicity. In reality, any mapping
where xk,m can uniquely encode any reachable combination of xk and xm may
be employed. This is necessary in practice when using dynamic MDDs, where
the sets Sl, i.e., the bounds on the net places, are not known a priori. 2

Greedy algorithm to merge MDD variables. Based on Thm. 3, Fig. 4
illustrates a greedy algorithm to merge as many MDD variables as possible,
given a set of place invariants, while guaranteeing that the number of nodes and
non-zero edges can only decrease.

For a Petri net, procedure InvariantBasedMerging in Fig. 4 takes a set of
linearly independent place invariants, in the form of a matrix WW,P , as input
and assumes one place per variable in the initial MDD variable order (line 2).
The procedure then traverses each level m of the MDD, from top to bottom ac-
cording to the given partition π, and calls procedure LevelToMerge to compute
the highest level k such that the mth partition class πm functionally depends on
P ′ =

⋃
K≥l≥k πl. It does so by determining the set W ′ of invariants whose sup-

port is a subset of πm∪P ′, and by performing Gaussian elimination on submatrix
WW′,πm

to check whether it has full column rank (line 3 of LevelToMerge). If
such level k exists, then πm is merged with πk, otherwise the partition remains
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unchanged. Procedure InvariantBasedMerging repeats this merging process until
no more merging is possible, then it returns the final partition π.

The procedure has polynomial complexity, since it computes O(|P|3) matrix
ranks in the worst case. In practice, due to the sparsity of matrix W, the per-
formance is excellent, as discussed in Sec. 4 We leave a discussion of whether
it achieves the smallest possible number of MDD levels, without increasing the
number or size of the nodes according to Thm. 3, to future work.

3.2 Using structural invariants to order state variables

It is well-known that the variable order can greatly affect the efficiency of decision
diagram algorithms, and that computing an optimal order is an NP-complete
problem [2]. Thus, symbolic model-checking tools must rely on heuristics aimed
at finding either a good order statically, i.e., prior to starting any symbolic
manipulation, or at improving the order dynamically, i.e., during symbolic ma-
nipulation.

Focusing on static approaches, our locality-based encoding suggests that vari-
able orders with small span Top(t)−Bot(t)+1 for each transition t are preferable,
both memory-wise when encoding Nt, and time-wise when applying Nt to com-
pute an image. Furthermore, since Saturation works on the nodes in a bottom-up
fashion, it prefers orders where most spans are situated in lower levels. In the
past, we have then considered the following static heuristics [39]:

• SOS: Minimize the sum of the transition spans,
∑

t∈T (Top(t) − Bot(t) + 1).

• SOT: Minimize the sum of the transition tops,
∑

t∈T Top(t).

• Combined SOS/SOT: Minimize
∑

t∈T Top(t)α · (Top(t) − Bot(t) + 1).

The combined heuristic encompasses SOS and SOT, since the parameter α con-
trols the relative importance of the size of the span vs. its location. When α = 0,
the heuristic becomes SOS, as it ignores the location of the span, while for α� 1,
it approaches SOT. For the test suite in [39], α = 1 works generally well, con-
firming our intuition about the behavior of Saturation, namely that Saturation
tends to perform better when both the size and the location of the spans are
small.

We now propose to integrate the idea of an ordering heuristic based on tran-
sition locality with the equally intuitive idea that an order where variables in
the support of an invariant are “close to each other,” is preferable [29]. How-
ever, given the lesson of the previous section, we also wish to apply our greedy
merging heuristic. There are four ways to approach this:

– For each possible permutation of the places, apply our merging heuristic.
Then, evaluate the score of the chosen objective function (among the three
above), and select the permutation that results in the minimum score. Of
course, this results in the optimal order with respect to the chosen objective
function, but the approach is not feasible except for very small nets.

– Choose one of the objective functions and, assuming one place per level,
compute an order that produces a low score. Note that this is not necessarily
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the minimum score, as this is itself an NP-complete problem. Then, apply
either our greedy merging heuristic, or a modified version of it that ensures
that the achieved score is not worsened.

– Given an initial ordering of the places, use our greedy merging heuristic.
Then, compute an order that produces a low, not necessarily minimal, score
for the chosen objective function, subject to the constraints of Thm. 3, to
keep the node size linear. For example, if ma+mb+mc =N in every marking
m, if places a and b are not covered by any other invariant, if a and b have
been merged together, and if they are at a level below that of c, then we
cannot move them above c. If we did, a node encoding ma and mb could
have O(N2) nonzero edges, since ma+mb is not fixed until we know mc.

– Consider an invariant just like a transition, i.e., modify the chosen objective
function to sum over both transitions and invariants, where the support of
an invariant is treated just like the dependence list of a transition. Once the
order is obtained, apply our greedy merging heuristic.

We adopt the last approach in conjunction with the SOT objective function,
for several reasons. First, it is very similar in spirit to our original ordering
approach, yet it adds novel information about invariants to guide the heuristic.
Second, we have reasonably fast heuristics to solve SOT (indeed we even have
a logn approximation algorithm for it), while the heuristics for SOS are not
as fast, and those for the combined SOS/SOT problem are even slower. More
importantly, when applying our greedy merging algorithm after the variable
ordering heuristic, the span of an event is changed in unpredictable ways that
do not preserve the optimality of the achieved score.

A fundamental observation is that, if place p is in the support of invariant v,
any transition t that modifies p must also modify at least one other place q in the
support of v. Thus, if p and p′ are the lowest and highest places of the support of
v according to the current MDD order, merging p with the second lowest place
r in the support will not change the fact that p′ is still the highest place in the
support of v. Analogously, the highest place p′′ determining Top(t) is at least
as high as q, which is at least as high as r; thus, again, p′′ will still determine
the value of Top(t). Of course, the levels of p′ and p′′ are decreased by one,
simply because the level of p, below them, is removed. Unfortunately, the same
does not hold when p only controls the enabling or firing of a transition t, i.e.,
if there is an inhibitor arc from p to t or if p appears in the marking-dependent
cardinality expression of arcs attached to t. In that case, merging p to a higher
level k might increase the value of Top(t) to k. Thus, for standard Petri nets
with no inhibitor arcs and for the restricted self-modifying nets considered in
[8], merging is guaranteed to improve the score of SOT, although it does not
necessarily preserve optimality.

One danger of treating invariants like transitions in the scoring heuristic
is that the number of invariants can be exponentially large, even when limiting
ourselves to minimal ones (i.e., those whose support is not a superset of any other
support). In such cases, the invariants would overwhelm the transitions and the
resulting order would de facto be based almost exclusively on the invariants. To
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avoid this problem, we compute a set of linearly independent invariants and feed
only those to our heuristic for SOT; clearly, this set will contain at most |P|
elements, whence it is of the same order as |T | in practical models.

4 Experimental results

We have implemented our static variable ordering ideas based on place invariants
in the verification tool SmArT[9], which supports Petri nets as front-end and reads
an invariant matrix generated by the Petri-net tool GreatSPN [7]. This section
reports our experimental results on a suite of asynchronous Petri net benchmarks
for symbolic state-space generation.

We ran our experiments on a 3GHz Pentium workstation with 1GB RAM.
Benchmarks mmgt, dac, sentest, speed, dp, q, elevator, and key are safe Petri
nets taken from Corbett [16]. Benchmarks knights (board game model), fms

and kanban [40] (manufacturing models), and slot [30], courier [42], and ralep

[20] (protocol models) are Petri nets (without marking-dependent arcs, since
GreatSPN does not accept this extension) from the SmArT distribution.

Results. The first five columns of Table 1 show the model name and parame-
ters, and the number of places (#P ), events (#T ) and place invariants computed
by GreatSPN (#I). The remaining columns are grouped according to whether
the static variable order, computed via a fairly efficient logarithmic approxima-
tion for SOT, uses just the place-event matrix (Event) or the combined place-
event+invariant matrix (Event+Inv). The approximation uses a randomized
procedure, whence different parameters for the same model may result in differ-
ent performance trends. For example, with Event, merging reduces the runtime
of courier from 251 to 68sec when the parameter is 40, but has negligible effect
when the parameter is 20.

The time for static variable ordering is stated in column Time Ord. For
each group, we further report results according to whether variable merging is
employed; method No Merge just uses the static order and therefore has one
MDD variable per place of the Petri net, while Merge starts from the static
order and merges variables using the proposed greedy algorithm of Fig. 4.

In addition, we state the run-time, peak, and final memory usage if the state-
space generation with Saturation completes within 30 minutes. For Merge, we
also report the number of MDD variables merged (#M). The run-time spent
on merging variables is not reported separately because it is quite small, always
less than 5% of the total run-time, for any of the models. The time needed by
GreatSPN to compute the invariants is shown in column Time Inv.

Discussion. From Table 1, we see the effectiveness of the new static variable
ordering by comparing the two No Merge columns for Event and Event+Inv.
The latter performs much better than the former on mmgt, fms, slot, courier, and
kanban, slightly worse on elevator and knights, and similarly on the remaining
benchmarks. The run-time for variable order computation is normally a small
percentage of the run-times. The same can be said for invariant computation,
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Table 1. Experimental results (Time in sec, Memory in KB;“>1800” means that run-time exceeds 1800 sec or memory exceeds 1GB).

Event Event+Inv

Model N #P #T #I Time No Merge Merge Time Time No Merge Merge

Ord Time PeakFinal Time PeakFinal#M Inv Ord Time PeakFinal Time PeakFinal#M

mmgt 3 122 172 47 4.0 1.85 1575 83 1.78 1485 77 12 0.02 3.0 0.96 838 46 0.93 829 43 12

mmgt 4 158 232 48 6.0 18.05 20645 295 17.10 19294 280 14 0.02 5.0 4.71 5385 142 4.78 5375 132 14

dac 15 105 73 183 1.0 0.24 30 26 0.20 21 19 28 0.02 1.0 0.24 28 27 0.18 20 19 28

sentest 75 252 102 3315 2.0 0.55 49 44 0.25 20 17 157 1.07 2.0 0.53 49 45 0.23 20 17 157

sentest 100 327 127 5665 5.0 0.71 70 65 0.32 27 24 207 3.48 5.0 0.94 64 61 0.3 24 22 208

speed 1 29 31 10 0.0 0.07 48 6 0.06 32 4 10 0.01 0.0 0.09 44 6 0.07 29 4 10

dp 12 72 48 48 0.0 0.16 19 15 0.09 9 7 36 0.01 1.0 0.17 18 15 0.09 9 7 36

q 1 163 194 492 5.0 0.84 715 349 0.72 619 294 27 0.09 5.0 0.77 524 336 0.65 442 280 29

elevator 3 326 782 693 28.0 47.06 6570 1620 45.39 6532 1412 9 1.87 21.0 49.73 7403 1654 47.71 7359 1443 9

key 2 94 92 774 0.0 0.26 86 72 0.23 90 58 16 0.45 0.0 0.25 91 71 0.26 102 58 15

key 3 129 133 5491 3.0 0.54 231 161 0.53 210 145 18 127.11 2.0 0.51 211 146 0.46 196 136 18

knights 5 243 401 91 2.0 9.20 3321 60 7.03 2138 39 25 0.03 2.0 12.37 4084 60 9.5 2584 39 25

fms 20 38 20 27 0.0 2.58 1388 334 2.76 1371 317 3 0.01 0.0 0.39 189 66 0.5 180 57 3

fms 40 38 20 27 0.0 26.34 10480 1786 27.20 10418 1724 3 0.01 0.0 2.28 755 250 2.57 749 244 3

fms 80 38 20 27 0.0 93.59 19159 9068 110.20 18923 8831 3 0.01 0.0 31.16 9420 1383 32.7 9301 1263 3

slot 20 160 160 42 2.0 >1800 – – >1800 – – – 0.01 2.0 1.57 1658 122 1.35 1213 90 41

slot 40 320 320 82 12.0 >1800 – – >1800 – – – 0.03 8.0 10.96 11802 481 8.56 8540 353 81

courier 20 45 34 13 0.0 7.35 6985 871 7.20 6816 775 13 0.01 1.0 4.14 2693 267 3.89 2441 229 13

courier 40 45 34 13 0.0 251.06 108562 4260 68.22 39397 1126 13 0.01 1.0 25.38 12282 1127 24.99 11413 994 13

courier 80 45 34 13 1.0 >1800 – – >1800 – – – 0.01 1.0 191.34 57385 5902 187.28 50540 5212 13

kanban 20 16 16 6 0.0 307.66 51522 33866 192.56 44343 26687 4 0.01 0.0 0.93 513 55 1.23 443 45 4

kanban 40 16 16 6 0.0 539.11 134734 49478 402.62 113223 45753 4 0.01 0.0 7.61 3043 240 8.91 2777 206 4

kanban 80 16 16 6 0.0 >1800 – – >1800 – – – 0.01 0.0 85.02 20404 1249 99.07 19367 1124 4

ralep 7 91 140 21 2.0 22.73 25767 3424 20.64 21552 2526 21 0.01 3.0 23.00 27704 3349 22.82 24258 2613 21

ralep 8 104 168 24 2.0 99.79 90499 9166 106.03 80117 6572 24 0.01 6.0 85.20 88486 7872 81.5 66893 6006 24

ralep 9 117 198 27 2.0 359.68 238313 17531 429.62 223186 12605 27 0.01 3.0 361.09 232590 15463 387.61 196297 11891 27

1
6



with the exception of two models, sentest and key, where GreatSPN computes a
large number of (non-minimal) invariants and requires more run-time than state-
space generation itself (pathologically so for key with parameter 3). However,
it must be stressed that the run-times for state-space generation are the ones
obtained using our heuristic; if we were to use random or even just not as good
orders, the state-space generation run-times would be much worse.

To see the effectiveness of invariants-based variable merging, one can compare
the No Merge and Merge columns of Table 1, for either Event or Event+Inv.
Merging almost always substantially improves the peak and final memory usage
and results in comparable or better run-time performance, with up to a factor
of three improvement in memory and time.

Even if merging is guaranteed to reduce the size of a given MDD, applying
this idea is still a heuristic. This is because it changes the value of Top for
the transition in the net in such a way that Saturation may apply them in a
different order, resulting in a larger peak size (in our benchmarks, this happens
only for key with parameter 2). Overall, though, we believe that our ordering
and merging heuristics can pave the way to a fully automated static ordering
approach. This has a very practical impact, as it does not require one to come
up with a good order, and it reduces or eliminates altogether the reliance on
dynamic variable reordering which is known to be quite expensive in practice.

5 Related work

Most work on developing heuristics for finding good variable orders has been
carried out in the context of digital-circuit verification and BDDs. Our focus in
this paper is on static ordering, i.e., on finding a good ordering before construct-
ing decision diagrams. In circuit verification, such approaches are typically based
on a circuit’s topological structure and work on the so-called model connectivity

graph, by either searching, evaluating, or decomposing this graph. Grumberg,
Livne, and Markovitch [18] present a good survey of these approaches and pro-
pose a static ordering based on “experience from training models”. Dynamic
grouping of boolean variables into MDD variables is proposed in [36]; however,
invariants are not used to guide such grouping.

Our approach to static variable ordering with respect to Petri nets is unique
in that it considers place invariants and proposes variable merging instead of
variable elimination. It must be pointed out that Pastor, Cortadella, and Roig
mention in [29] that they “choose the ordering with some initial support from
the structure of the Petri net (the P-invariants of the net)”; however, no details
are given. More fundamentally, though, our work here shows that ordering using
invariants is simply not as effective as ordering and merging using invariants.

Invariants are one popular approach to analyzing Petri nets [32, 34]. With
few exceptions, e.g., work by Schmidt [35] that utilizes transition invariants and
research by Silva and his group [5] on performance throughput bounds, most
researchers focus on place invariants. On the one hand, place invariants can help
in identifying upper bounds of a Petri net’s reachable markings. Indeed, place
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invariants provide necessary but not sufficient conditions on the reachability of
a given marking. This in turn can benefit state-space generation algorithms, as
is demonstrated, e.g., by Pastor, Cortadella, and Peña in [28].

On the other hand, place invariants can be used to reduce the amount of
memory needed for storing a single marking [6, 35], by exploiting the functional
dependencies described by each invariant. When storing sets of markings via
decision diagrams, this eliminates some decision-diagram variables. To determine
which exact places or variables should be dropped, Davies, Knottenbelt, and
Kritzinger present a heuristic in [17]. In that paper they also propose an ad-hoc
heuristic for the static variable ordering within BDDs, based on finding pairs of
similar subnets and interleaving the corresponding places’ bit-vectors.

General functional dependencies have also been studied by Hu and Dill [19].
In contrast to work in Petri nets where generated invariants are known to be
correct, Hu and Dill do not assume the correctness of given functional depen-
dencies, but prove them correct alongside verification. Last, but not least, we
shall mention the approach to static variable ordering taken by Semenov and
Yakovlev [37], who suggest to find a “close to optimal ordering” via net unfold-
ing techniques.

6 Conclusions and future work

This paper demonstrated the importance of considering place invariants of Petri
nets when statically ordering variables for symbolic state-space generation. Pre-
vious work focused either solely on optimizing event locality [39], or on eliminat-
ing variables based on invariance information [17]. The novel heuristic proposed
in this paper enhances the former work by exploiting place invariants for merging

variables, instead of eliminating them as is done in all related research. While
merging is not an option for BDDs, it is suitable for MDD-based approaches,
including our Saturation algorithm [10]. We proved that merging MDD vari-
ables always reduces MDD sizes, while eliminating variables may actually en-
large MDDs. In addition, for standard Petri nets, merging never breaks event
locality and often improves it, thus benefiting Saturation.

The benchmarking conducted by us within SmArT [9] showed that our heuris-
tic outperforms related static variable-ordering approaches in terms of time-
efficiency and memory-efficiency. Most importantly, this is the case for practical
examples, such as large instances of the slotted-ring network and the kanban
system which had been out of reach of existing state-space exploration technol-
ogy before. Hence, using invariants in variable-ordering heuristics is crucial, but
it must be done correctly. In particular, the widespread practice of eliminating
variables based on invariance information is counter-productive and should be
abandoned in favor of merging variables.

Future work should proceed along two directions. On the one hand, we wish
to explore whether our greedy merging algorithm is optimal, in the sense that
it reduces an MDD to the smallest number of MDD variables according to our

18



merging rule. On the other hand, we intend to investigate whether place invari-
ants are also beneficial in the context of dynamic variable ordering.

Acknowledgments. We wish to thank the anonymous reviewers for their con-
structive comments and suggestions.
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