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Abstract. Interface theories allow systems designers to reason about
the composability and compatibility of concurrent system components.
Such theories often extend both de Alfaro and Henzinger’s Interface Au-
tomata and Larsen’s Modal Transition Systems, which leads, however, to
several issues that are undesirable in practice: an unintuitive treatment of
specified unwanted behaviour, a binary compatibility concept that does
not scale to multi-component assemblies, and compatibility guarantees
that are insufficient for software product lines.

In this paper we show that communication mismatches are central to
all these problems and, thus, the ability to represent such errors seman-
tically is an important feature of an interface theory. Accordingly, we
present the error-aware interface theory EMIA, where the above short-
comings are remedied by introducing explicit fatal error states. In addi-
tion, we prove via a Galois insertion that EMIA is a conservative gener-
alisation of the established MIA (Modal Interface Automata) theory.

1 Introduction

Today’s software systems are increasingly composed from off-the-shelf compo-
nents. Hence, software developers desire to detect incompatibilities between com-
ponents early. This is supported by interface theories [1,2,4,6,7,9,17,20,21], which
may serve as specification theories for component-based design [2,4,8,15], soft-5

ware product lines [17], web services [5] and the Internet of Things [19]. Interface
theories may also be employed as contract languages or behavioural type theories
when transitioning from software design to implementation [3,13].

Many interface theories [4,6,17,20,21] extend de Alfaro and Henzinger’s Inter-
face Automata (IA) [1,2] and Larsen’s Modal Transition Systems (MTS) [16,18].10

In order to express compatibility assumptions of components on the communi-
cation behaviour of their environment, IA divides an interface’s action alphabet
into input (‘?’), output (‘!’) and an internal action τ . A communication mismatch,
or error, arises between parallelly composed components P and Q, if P may issue
an output a! while Q is not ready to receive the input a? in its current state.15

Orthogonally, MTS permits one to specify required and optional behaviour. Tak-
ing stepwise decisions on the optional behaviour allows for a component-based,
incremental design, which is supported by a compositional refinement preorder.
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Unfortunately, interface theories combining IA and MTS have several issues
that impact their practical use. Issue (A): Forbidden inputs are preserved by the20

resp. refinement preorder but are widely ignored by parallel composition, such
that behaviour that is forbidden in one component may be re-introduced in the
composed system if another component defies this prohibition. This unintuitive
treatment of communication mismatches and, in particular, unwanted behaviour,
is dangerous for safety-critical applications. Issue (B): Pairwise binary compati-25

bility of multiple components does not guarantee their overall compatibility when
being considered as a multi-component assembly, and vice versa, even if paral-
lel composition is associative. To address this, Hennicker and Knapp [14] have
introduced assembly theories that extend interface theories by a separate level
of assemblies where multi-component compatibility is checked. However, these30

assemblies have to be re-interpreted as interfaces to be of further use. Issue (C):
Optional behaviour, modelled via may-transitions as in MTS, may be employed
to express variability inherent in software product lines. In current interface the-
ories, two product families may be considered compatible only if all products of
one family are compatible with all products of the other. However, one would35

prefer a more detailed set of guarantees, such that one may distinguish if all,
some or none of the product lines’ products are compatible [17]. Issue (D): MTS
and MTS-based interface theories have some subtle differences wrt. modalities,
resulting in different composition concepts: in MTS, components unanimously
agree on transitions of their composition; in interface theories, an error arises if40

the components’ requirements do not match. Each theory makes a global choice
of a composition concept, which is tightly bound to a respective compatibility
notion and does not allow one to mix different compatibility and composition
concepts that are suitable for the application at hand.

This paper shows that communication mismatches are central to Issues (A)–45

(D) above. Hence, the ability to represent such errors semantically is an impor-
tant feature that is missing in current interface theories. We illustrate this in
Sec. 2 by an example wrt. Issue (A). In Sec. 3 we present our interface theory
Error-aware Modal Interface Automata (EMIA), for which we remedy Issues (A)–
(D) by making communication mismatches explicit in form of fatal error states50

and by employing an error-aware refinement preorder. In contrast, current in-
terface theories [1,2,4,6,7,9,17,20,21] remove such information about the causes
and possible resolutions of communication mismatches. As is typical for inter-
face theories, EMIA also includes conjunction and disjunction operators, which
enables systems designers to combine operational and declarative specification55

styles. In Sec. 4 we show that a Galois insertion [10] renders our refined seman-
tics a conservative extension of the arguably most general interface theory to
date, MIA (Modal Interface Automata) [6]. Sec. 5 revisits the example of Sec. 2
in terms of EMIA, and discusses how fatal error states solve Issues (A)–(D).
The resulting specification theory tightly integrates MTS, interface theories and60

assembly theories, and allows systems designers to combine the different com-
position concepts of these theories within a single interface specification. Due to
space constraints, the proofs of our results are included in a technical report [12].
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Fig. 1. Example of a driving assistant system including a garage G and a car C.
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Fig. 2. Parallel product in IA or MIA (left), and parallel composition in IA (middle)
and MIA (right) of the components depicted in Fig. 1.

2 Motivating Example

In this section we discuss compatibility problems of current interface theories by65

means of an illustrative example highlighting Issue (A). Consider a driving assis-
tance system that enables a car to drive into and out of a garage autonomously.
Such a system must communicate with the garage in order to make it open and
close its door. In Fig. 1 we show specifications G and C of the garage’s and the
car’s interfaces, resp. Starting in state g0, the garage is ready to receive a passage70

request (rqstPass?). After such a request, the garage opens its door (openDoor!),
waits for a car driving in or out (drive?) and, finally, closes the door (closeDoor!)
again. The car starts in state c0 waiting for a user’s request (rqstCar?). Upon
receiving such a request, the car requests passage from the garage (rqstPass!)
and then drives into or out of the garage (drive!), reaching state c0 again.75

Specifications G and C have a communication mismatch due to the drive!-
transition at state c2 and the fact that no drive?-transition is specified at state
g1. Hence, in the parallel product G⊗C shown in Fig. 2 (left), state 〈g1, c2〉 is
considered illegal. In pessimistic theories, e.g., [4,20], the parallel composition of
G and C is undefined, because the illegal state 〈g1, c2〉 is reachable from the ini-80

tial state 〈g0, c0〉. Optimistic theories, e.g., [1,2,6,7,9,17,20,21], assume a helpful
environment that tries to steer away from communication mismatches by con-
trolling the composed system via its input transitions. A state is optimistically
illegal if a communication mismatch is reachable via uncontrollable actions, i.e.,
output- or τ -transitions. Parallel composition G ‖C is obtained from G⊗C by85
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removing all illegal states. In our example, state 〈g1, c2〉 is illegal, just as state
〈g0, c1〉 from which 〈g1, c2〉 is reachable by an output (rqstPass!). This pruning
leaves a single state 〈g0, c0〉 with no transitions; all other states are unreachable.
The rqstCar?-transition at state 〈g0, c0〉, which would allow one to reach illegal
states when triggered by the environment, is also removed. However, in order90

to ensure compositionality of refinement, rqstCar? must be permitted with ar-
bitrary behaviour afterwards (cf. [6]); IA-based refinement [1,2,20] allows this
implicitly for all unspecified inputs (Fig. 2, middle). In MTS-based interface
theories, where unspecified transitions represent forbidden behaviour, compo-
sitionality is achieved by replacing pruned behaviour by an explicit optional95

transition to a special, universally refineable state u (Fig. 2, right) [6].
Due to this possibility of introducing arbitrary behaviour in case of a com-

munication mismatch, stepwise refinement may re-introduce behaviour that has
previously been removed due to the mismatch. Hence, optimistic theories accept
a car driving into or out of the garage before the door is opened as a valid im-100

plementation of G ‖C. This contradicts G’s sensible constraint that driving in
or out is only permitted after the door has been opened, i.e., the meaning of a
car crashing into the door can simply be ‘refined’ to not being an error. In other
words, the assumptions and guarantees expressible in current interface theories
are insufficient for expressing unwanted behaviour.105

Bujtor and Vogler [7] have shown that keeping or removing illegal states
on a purely syntactic level are equivalent for IA wrt. preserving compatibility.
In this spirit, current interface theories [1,2,4,6,7,17,20,21] eliminate erroneous
behaviour either by regarding it as undefined (pessimistic) or by pruning (opti-
mistic); all errors are treated semantically equivalent. Due to this equivalence,110

theories combining IA and MTS cannot remove illegal states completely but
must replace them by a special, arbitrarily refinable behaviour as mentioned
above. However, because optional transitions (i.e., may-transitions) allow for
underspecification in MTS-based interface theories, one may distinguish poten-
tial errors that can be resolved by a suitable refinement from actual, unresolvable115

errors that arise when an output is required and the corresponding input is for-
bidden. That is, specifications based on MTS contain more information wrt.
compatibility, which we make explicit in EMIA. EMIA guarantees that compat-
ible specifications have only compatible implementations, potential errors have
both compatible and erroneous implementations, and actual errors have only120

erroneous implementations (cf. Sec. 5, Issue (C)).

3 Error-aware Modal Interface Automata

Our interface theory Error-aware Modal Interface Automata (EMIA), which we
present in this section, is equipped with a parallel composition operator mod-
elling concurrency and communication, a conjunction operator permitting the125

specification of a component from different perspectives, and a compositional
refinement preorder enabling the substitution of an interface by a more concrete
version. In addition to these standard requirements on interface theories, EMIA
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solves Issues (A)–(D) of Sec. 1. We achieve this by introducing fatal error states,
which represent unresolvable incompatibilities between interfaces. This enables130

EMIA to deal with errors on a semantic level, since forbidden behaviour can be
modelled by input transitions leading to a fatal error state.

Definition 1 (Error-aware Modal Interface Automata). An Error-aware
Modal Interface Automaton (EMIA) is a tuple P := (SP , IP , OP ,−→P , P ,
S0
P , DP ), where SP is the set of states, IP , OP are the disjoint alphabets of input135

and output actions not including the silent action τ (we define AP := IP ∪ OP
and ΩP := OP ∪{τ}), −→P ⊆ SP × (AP ∪{τ})×P(SP ) is the disjunctive must-
transition relation (P denotes the power set operator), P ⊆ SP×(AP ∪{τ})×
SP is the may-transition relation, S0

P ⊆ SP is the set of initial states, and
DP ⊆ SP is the set of fatal error states. We also adopt syntactic consistency140

from MTS, i.e., for all α ∈ AP ∪ {τ} and p
α−→ P ′, we have ∀p′ ∈P. p α

p′.

Our definition of weak transitions that abstract from internal behaviour is adop-
ted from the one in MIA [6]:

Definition 2 (Weak Transition Relations). Let P be an EMIA. We define
weak must- and may-transition relations, =⇒ and resp., as the smallest rela-145

tions satisfying the following conditions, where we use P ′
α̂

=⇒ P ′′ as a shorthand

for ∀p ∈ P ′ ∃Pp. p
α̂

=⇒ Pp and P ′′ =
⋃
p∈P ′ Pp:

WT1. p
ε

=⇒ {p} for all p ∈ P ,

WT2. p
τ−→ P ′ and P ′

α̂
=⇒ P ′′ implies p

α̂
=⇒ P ′′,

WT3. p
a−→ P ′ and P ′

ε
=⇒ P ′′ implies p

a
=⇒ P ′′,150

WT4. p
ε

p,
WT5. p

ε
p′′

τ
p′ implies p

ε
p′,

WT6. p
ε

p′′
α

p′′′
ε

p′ implies p
α

p′.

We write
a→ ε⇒ for transitions built up according to WT3 and call them trailing-

weak must-transitions. Similarly,
a ε

stands for trailing-weak may-transitions.155

Our error-aware modal refinement preorder vEA corresponds to standard modal
refinement from MTS [16,18] but reflects and preserves fatal error states. Intu-
itively, P vEA Q for an implementation P and a specification Q, enforces that
P ’s may-transitions are permitted by Q while for any of Q’s disjunctive must-
transitions at least one of the branches is implemented by P . In contrast to160

DMTS [18], we require that all branches of a disjunctive transition have the
same label. This is sufficient for our purposes and does away with technical
complications of parallel composition in the presence of τ -transitions (cf. [12]).

Definition 3 (Error-aware Modal Refinement). Let P and Q be EMIAs
with equal alphabets, i.e., IP = IQ and OP = OQ. A relation R ⊆ SP × SQ165

is an error-aware modal refinement relation (EA-refinement) if, for all 〈p, q〉 ∈
R \ (DP ×DQ), the following conditions hold:

R1. p 6∈ DP and q 6∈ DQ,
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R2. q
i−→ Q′ implies ∃P ′. p i→ ε⇒ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. 〈p′, q′〉 ∈ R,

R3. q
ω−→ Q′ implies ∃P ′. p ω

=⇒ P ′ and ∀p′ ∈ P ′ ∃q′ ∈ Q′. 〈p′, q′〉 ∈ R,170

R4. p
i
p′ implies ∃q′. q i ε

q′ and 〈p′, q′〉 ∈ R,

R5. p
ω

p′ implies ∃q′. q ω
q′ and 〈p′, q′〉 ∈ R.

We write p vEA q if there is an EA-refinement R with 〈p, q〉 ∈ R, and P vEA Q
if, for each p ∈ S0

P , there is a q ∈ S0
Q with p vEA q. If p vEA q and q vEA p, we

employ the symbol p wvEA q, and similar for EMIAs P,Q.175

The refinement relation vEA is reflexive and transitive and, hence, a preorder.
Moreover, we have p ∈ DP iff q ∈ DQ for all 〈p, q〉 ∈ R due to R1. Optional
input-transitions, which may be refined to required or forbidden behaviour, are
expressed as a disjunctive must-transition containing a fatal error state in its set
of target states. For example, optional a?-transitions from a state p0 to states180

p1 and p2 are modelled as p0
a?−→ {p1, p2, p3} for some fatal error state p3 ∈ DP .

IA’s parallel composition operator synchronises input and output transitions
to τ -transitions. In contrast, we define a multicast parallel composition, where
an output can synchronise with multiple input transitions, as in MI [21] and
MIA [6]. We leave out MIA’s separate hiding due to space constraints.185

Definition 4 (Parallel Composition). Let P and Q be EMIAs. We call P
and Q composable if OP ∩ OQ = ∅. If P and Q are composable, the multicast
parallel composition P ‖Q is defined by SP ‖Q := SP ×SQ, IP ‖Q := (IP ∪ IQ) \
OP ‖Q, OP ‖Q := OP ∪OQ, S0

P ‖Q := S0
P×S0

Q, DP ‖Q := (DP×SQ)∪(SP×DQ),
and the transition relations are given by the following rules:190

P1. 〈p, q〉 α−→ P ′ × {q} if p
α−→ P ′ and α 6∈ AQ,

P2. 〈p, q〉 α−→ {p} ×Q′ if α 6∈ AP and q
α−→ Q′,

P3. 〈p, q〉 a−→ P ′ ×Q′ if p
a−→ P ′ and q

a−→ Q′ for some a ∈ AP ∩AQ.

P4. 〈p, q〉 α 〈p′, q〉 if p
α

p′ and α 6∈ AQ,

P5. 〈p, q〉 α 〈p, q′〉 if α 6∈ AP and q
α

q′,195

P6. 〈p, q〉 a 〈p′, q′〉 if p
a
p′ and q

a
q′ for some a ∈ AP ∩AQ.

We also write p ‖ q for 〈p, q〉. IA-based interface theories usually define a com-
munication mismatch for p at q as a situation where an action a ∈ OP ∩ IQ is
permitted at p and not required at q. In EMIA, such a situation is modelled with
the help of an a?-must-transition from q to a target set Q′ that includes some200

fatal error state q′ ∈ DQ, as explained above. Parallel composition is associative
and commutative. Further, vEA is a precongruence wrt. ‖:
Proposition 5 (Compositionality). If P1, P2, Q are EMIAs s.t. P1 vEA P2

and P2, Q are composable, then P1 and Q are composable and P1 ‖Q vEA P2 ‖Q.

Perspective-based specification is concerned with specifying a system component205

from separate perspectives s.t. the component satisfies each of these perspective
specifications; for example, each requirement for a component might describe a
perspective. The component’s overall specification is the most general specifi-
cation refining all perspective specifications, i.e., it is the greatest lower bound
wrt. the refinement preorder. This conjunction operator is defined in two stages:210
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Definition 6 (Conjunctive Product). Let P , Q be EMIAs with equal alpha-
bets. The conjunctive product of P and Q is P &Q := (SP &Q, I, O,−→P &Q,

P &Q, S
0
P &Q, DP &Q) with SP &Q := SP ×SQ, S0

P &Q := S0
P ×S0

Q, DP &Q :=
DP ×DQ, and the transition relations are given by the following rules:

C1. 〈p, q〉 i−→ {〈p′, q′〉 | p′ ∈ P ′, q i ε
q′} if p

i−→ P ′ and q
i ε

,215

C2. 〈p, q〉 i−→ {〈p′, q′〉 | p i ε
p′, q′ ∈ Q′} if p

i ε
and q

i−→ Q′,

C3. 〈p, q〉 ω−→ {〈p′, q′〉 | p′ ∈ P ′, q ω
q′} if p

ω−→ P ′ and q
ω

,

C4. 〈p, q〉 ω−→ {〈p′, q′〉 | p ω
p′, q′ ∈ Q′} if p

ω
and q

ω−→ Q′,

C5. 〈p, q〉 i 〈p′, q′〉 if p
i ε

p′ and q
i ε

q′,

C6. 〈p, q〉 ω 〈p′, q′〉 if p
ω

p′ and p
ω

q′,220

C7. 〈p, q〉 τ 〈p′, q〉 if p
τ

p′,

C8. 〈p, q〉 τ 〈p, q′〉 if q
τ

q′.

A state 〈p, q〉 of P &Q is a candidate for refining both p and q. Because 〈p, q〉
cannot require and forbid the same action a or be at once fatal and non-fatal,
some states p and q do not have a common refinement. In such cases, 〈p, q〉 is225

called inconsistent and has to be removed from the candidates, including the
removal of all states that require transitions leading to inconsistent states.

Definition 7 (Conjunction). The set F ⊆ SP &Q of logically inconsistent
states is defined as the smallest set satisfying the following rules:

F1. 〈p, q〉 ∈ (DP × (SQ \DQ)) ∪ ((SP \DP )×DQ) implies 〈p, q〉 ∈ F ,230

F2. 〈p, q〉 6∈ DP &Q, p
i−→ and q 6 i implies 〈p, q〉 ∈ F ,

F3. 〈p, q〉 6∈ DP &Q, p 6 i and q
i−→ implies 〈p, q〉 ∈ F ,

F4. 〈p, q〉 6∈ DP &Q, p
ω−→ and q 6ω implies 〈p, q〉 ∈ F ,

F5. 〈p, q〉 6∈ DP &Q, p 6ω and q
ω−→ implies 〈p, q〉 ∈ F ,

F6. 〈p, q〉 α−→ R and R ⊆ F implies 〈p, q〉 ∈ F .235

The conjunction P ∧Q is obtained from P &Q by deleting all states in F . This
deletes all transitions exiting deleted states and removes all deleted states from
targets of must-transitions. If S0

P ∧Q = ∅, then P and Q are called inconsistent.

Fatal states are excluded in Rules F2 through F5 because we do not care about
consistency for fatal error states. Note that the states in D and F are different240

in nature: D-states represent states with possible but unwanted behaviour. F -
states represent contradictory specifications that are impossible to implement.
Conjunction is the greatest lower bound wrt. the refinement preorder vEA:

Proposition 8 (∧ is And). If P and Q are EMIAs with equal alphabets, then
(i) ∃R.R vEA P and R vEA Q iff P and Q are consistent. Further, if P and Q245

are consistent, then, for any R, (ii) R vEA P and R vEA Q iff R vEA P ∧Q.

As a standard category theoretic result, Prop. 8 implies that ∧ is associative:

Corollary 9 (Associativity of ∧). Conjunction is strongly associative, i.e.,
for all EMIAs P , Q, and R, if one of P ∧ (Q∧R) and (P ∧Q)∧R is defined,
then both are defined and P ∧ (Q∧R) wvEA (P ∧Q)∧R.250
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We close this section with a remark on alphabet extension. Conjunction, disjunc-
tion and refinement are defined for EMIAs with equal alphabets. For perspective-
based specification, it is of interest to consider EMIAs with different alpha-
bets [6]. Following the lines of MI and MIA, the operations on EMIAs can be
lifted to different alphabets by extending the alphabets of the operands by their255

mutually foreign actions. When a specification’s alphabet is extended, the least
possible assumptions should be made on a new action a, while the same specifi-
cation wrt. known actions should hold before and after a. This can be achieved
by adding an optional a-loop to each state. For output actions this is straightfor-
ward, but the exact meaning of optional input transitions depends on the desired260

composition concept (cf. Sec. 1, Issue (D)). Therefore, a separate alphabet ex-
tension operator has to be defined for unanimous, broadcast and error-sensitive
parallel composition. Besides this, there is nothing surprising to expect from
alphabet extension, and we leave out the formal definition here for brevity.

4 Relation to other Interface Theories265

The majority of IA-based interface theories prune errors. Therefore, it is im-
portant to investigate the relation between such error-pruning interface theories
and our non-pruning EMIA theory. We do this for MIA [6] because it is the
most general IA-based interface theory to date in that it is nondeterministic
rather than deterministic and optimistic rather than pessimistic, thus subsuming270

MI [21] and MIO [4] (wrt. strong compatibility), resp. We establish here a Ga-
lois insertion between MIA and EMIA, i.e., a Galois connection 〈γ, α〉 for which
α◦γ = idMIA [10] (up to wvMIA). Recall that states from which a communication
mismatch is reachable via output- or τ -transitions are called illegal. Intuitively,
α abstracts from EMIAs by considering all illegal states to be equivalent, and275

γ concretises MIAs as EMIAs without any loss of information. Note that γ is
different from the error-completion presented in [22] that is motivated by algo-
rithmic considerations only. Error-completion preserves an interface’s semantics
when replacing missing inputs by transitions to an error state. In contrast, EMIA
refines the semantics of MIA by retaining error states.280

Definition 10 (MIA [6]). Modal Interface Automata (MIA) are defined like
EMIAs (cf. Def. 1), except that, instead of DP , there is a universal state uP
that is only permitted as target of input may-transitions.

An important difference between fatal error states and uP is revealed in the
different notion of refinement. While EMIA employs a variant of modal refine-285

ment [18] that preserves and reflects fatal error states, MIA adopts (ordinary)
modal refinement in general but provides the possibility to employ IA-refinement
where necessary. This is achieved by state uP , which may be refined arbitrarily.

Definition 11 (MIA-Refinement [6]). Let P , Q be MIAs with equal alpha-
bets. R ⊆ SP × SQ is a MIA-refinement relation if, for all 〈p, q〉 ∈ R \ (SP ×290

{uQ}), the rules of Def. 3 hold when replacing R1 by: MR1. p 6= uP .
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Parallel composition of MIAs is defined through reachability of illegal states:

Definition 12 (Backward Closure). Let P be a MIA or EMIA and S ⊆ SP .
The Ω-backward closure of S in P is the smallest set bclΩP (S) ⊆ SP s.t. S ⊆
bclΩP (S) and, for all ω ∈ ΩP and p′ ∈ bclΩP (S), if p

ω
p′, then p ∈ bclΩP (S).295

Definition 13 (MIA-Parallel Composition [6]). For composable MIAs P ,
Q, the parallel product P ⊗Q is defined by ignoring fatal error states in Def. 4.
We say that there is a communication mismatch for p at q, in symbols mis(p, q),

if there is an a ∈ OP∩IQ with p
a

and q 6 a . The set of illegal states is defined

as EP ⊗Q := bclΩP ⊗Q({〈p, q〉 | mis(p, q) or mis(q, p)} ∪ (SP × {uQ}) ∪ ({uP } ×300

SQ)). The parallel composition P ‖Q is the MIA given by the state set SP ‖Q :=
(SP ⊗Q \EP ⊗Q)∪{uP ‖Q}, the alphabets IP ‖Q := IP ⊗Q and OP ‖Q := OP ⊗Q,
and the transition relations obtained from P ⊗Q by replacing all i?-transitions

of states 〈p, q〉 having an i?-transition to EP ⊗Q by a transition 〈p, q〉 i
uP ‖Q.

If S0
P ⊗Q ⊆ EP ⊗Q, then S0

P ‖Q := {uP ‖Q}, else S0
P ‖Q := S0

P ⊗Q \ EP ⊗Q.305

The set bclΩP (DP ) \DP of an EMIA P corresponds roughly to the set of illegal
states in IA, EIO, MI and MIA. In contrast to these theories, EMIA requires one
to match transitions of such states during refinement. The resulting refinement
relation is comparable to other refinement preorders for error-free interfaces, but
is more detailed for erroneous ones. Indeed, MIA can be seen as an abstraction of310

EMIA, where all states in bclΩP (DP ) \DP are deemed equivalent (cf. Thm. 19).

Definition 14 (MIA-Conjunction [6]). Let P and Q be MIAs with equal
alphabets. The MIA-conjunctive product is defined by ignoring fatal error states
in Def. 6 and adding the following rules for u:

CE1. 〈p, uQ〉
α−→ P ′ × {uQ} if p

α−→ P ′,315

CE2. 〈uP , q〉
α−→ {uP } ×Q′ if q

α−→ Q′,

CE3. 〈p, uQ〉
α 〈p′, uQ〉 if p

α
p′,

CE4. 〈uP , q〉
α 〈uP , q′〉 if q

α
q′.

The MIA-conjunction is obtained from the MIA-conjunctive product by pruning
logically inconsistent states according to Rules F2 through F6 of Def. 7.320

An input i forbidden at state p is modelled as a missing transition in MIA
and, equivalently, as an i-must-transition from p to a fatal error state in EMIA.
Hence, a MIA’s behaviour can be modelled by an EMIA where non-fatal states
are input-enabled. We write EMIA′ for the collection of such EMIAs.

The Galois insertion between MIA and EMIA consists of a concretisation325

γ : MIA → EMIA′ and an abstraction α : EMIA′ → MIA s.t. 〈γ, α〉 is a Galois
connection and (α ◦ γ)(Q) wvMIA Q. The main idea behind α is to consider the
states bclΩP (DP ) \ DP as equivalent, yielding equivalence classes of EMIAs; α
assigns a MIA to each of these equivalence classes. Vice versa, γ assigns to each
MIA the disjunction of an equivalence class of EMIAs.330
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Definition 15 (Abstraction Function from EMIA′ to MIA). Let P ∈ EMIA′

and CP := bclΩP (DP ) \ DP . The MIA-abstraction of P is the MIA α(P ) :=
(Sα(P ), IP , OP ,−→α(P ), α(P ), S

0
α(P ), uα(P )) with the state sets Sα(P ) := (SP \

(CP ∪ DP ))∪̇{uα(P )} and S0
α(P ) := S0

P ∩ Sα(P ). The transitions of α(P ) are
obtained from P by replacing all i?-transitions leading from a state p to states335

in CP by p
i?

uα(P ). The kernel equivalence ≡α ⊆ EMIA′ × EMIA′, which is
defined by P ≡α Q iff α(P ) wvMIA α(Q) and has equivalence classes [P ]α, yields
a canonical bijection ᾱ : EMIA′/≡α → MIA.

To define the concretisation function γ we need a disjunction operator:

Definition 16 (Disjunction). For a family of EMIAs P := (Pj)j∈J with equal340

alphabets, we define the disjunction of P as the EMIA:∨
j∈J Pj := (

⋃̇
j∈JSPj

, I, O,
⋃̇
j∈J −→Pj

,
⋃̇
j∈J Pj

,
⋃̇
j∈JS

0
Pj
,
⋃̇
j∈JDPj

).

Proposition 17 (∨ is Or). If Pj, for j ∈ J , and R are EMIAs with equal
alphabets, then

∨
j∈J Pj vEA R iff Pj vEA R for all j ∈ J .

Disjunction on MIAs is defined analogously by ignoring fatal error states and345

replacing uP and uQ by uP ∨Q. Obviously, α is homomorphic wrt. disjunction.

Definition 18 (Concretisation Function from MIA to EMIA′). The con-
cretisation function γ : MIA→ EMIA′ is defined as γ(P ) :=

∨
ᾱ−1(P ).

The mappings α and γ defined in Defs. 15 and 18 are monotonic, which is key
to the proof of our main result that α and γ form a Galois insertion:350

Theorem 19 (Galois Insertion). The maps α : EMIA′ → MIA and γ : MIA→
EMIA′ defined in Defs. 15 and 18 form a Galois insertion between MIA and EMIA′

up to wvMIA, i.e., P vEA γ(Q) iff α(P ) vMIA Q and (α ◦ γ)(Q) wvMIA Q.

Proof (sketch). α ◦ γ = idMIA by homomorphicity of α wrt.
∨

; standard mono-
tonicity and extensivity arguments establish 〈γ, α〉 as a Galois connection. ut

α is homomorphic wrt. parallel composition but not wrt. conjunction: although
α(P ∧Q) vMIA α(P )∧α(Q) holds for P,Q ∈ EMIA′ because α is monotonic, the355

converse direction “wMIA” does not hold in general, because MIA’s replacement
of illegal states by u—which must be reproduced by α—is a non-continuous
operation. For the same reason, γ is not homomorphic wrt. parallel composition;
however, γ satisfies the inequality γ(P ‖Q) wEA γ(P ) ‖ γ(Q) for MIAs P,Q.

5 Discussion360

In this section we illustrate how the fatal error states employed in EMIA solve
Issues (A)–(D) criticised in Sec. 1. In particular, we establish that EMIA treats
unwanted behaviour more intuitively (Issue (A)), that EMIA, in contrast to
MIA, is an assembly theory (Issue (B)), that EMIA provides better support for
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Fig. 3. Driving assistant system in EMIA and its Galois abstraction.
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Fig. 4. Corrected car C′, user interfaces U and V , and product families D and W .

specifying product families (Issue (C)), and that EMIA unifies the composition365

concepts of MTS and interface theories (Issue (D)). We do this mostly along
the example of Sec. 2 and also use this example to demonstrate the Galois
abstraction from EMIA to MIA.

Issue (A): In EMIA, the garage’s constraint that a car shall not drive in or out
in state g1 would be specified by a drive?-transition to a fatal error state ∗, which370

represents an unresolvable error as is illustrated in specification G′ in Fig. 3. In
the resulting parallel composition G′ ‖C, also shown in Fig. 3, driving in or out
too early in state 〈g1, c2〉, when the door is still closed, leads to the fatal error
state ∗, where the car crashes into the door. This information is not removed and
cannot be redefined to not being an accident by refining G′ ‖C. Keeping this375

information is essential for pinning down the location and the cause of the error
within the specification. Because G′ forbids action drive? between rqstPass? and
openDoor! but allows drive? after openDoor!, we can infer that specification C
must be aware of action openDoor! in order to be compatible with G′. This way,
a software design tool based on EMIA can propose possible specification changes380

to the designer. For example, the tool may propose to add action openDoor? to
the car’s alphabet and to insert an openDoor?-transition between rqstPass! and
drive!, so as to avoid the fatal error state ∗ that is reachable from 〈g1, c2〉. The
resulting specification is shown as C ′ in Fig 4.

Galois abstraction: Fig. 3 (right) illustrates the abstraction function α of the385

Galois insertion between MIA and EMIA. We have CG′ ‖C := bclΩG′ ‖C(DG′ ‖C)\
DG′ ‖C = {〈g1, c2〉, 〈g0, c1〉} (cf. Sec. 4). The rqstCar?-must-transition at 〈g0, c0〉
leading to CG′ ‖C is replaced by a rqstCar?-may-transition to uα(G′ ‖C). Due to
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α being a homomorphism wrt. ‖, this result corresponds exactly to the MIA
shown in Fig. 2 (right).390

Issue (B): When adding the specification of a simple user interface, shown as U
in Fig. 4, as a third component to the specifications G and C of Fig. 1, the three
components G, C and U are pairwise optimistically compatible. However, the
composed system G ‖C ‖U is incompatible, because the mismatch for action
drive! is reachable from the initial state 〈g0, c0, u0〉. In other words, MIA is not395

by itself an assembly theory. A different but related problem arises in pessimistic
theories: the user interface specification V in Fig. 4 promises to never request a
car. The components G and C are pessimistically incompatible and (G ‖C) ‖V
is undefined. However, G ‖ (C ‖V ) is a perfectly valid composition.

To lift their interface theory MIO to an assembly theory, Hennicker and400

Knapp propose an enrichment EMIO of MIO by error states similar to our fa-
tal errors [14]. However, they do not develop EMIO into a full interface theory:
EMIOs are only employed to describe the result of a multi-component paral-
lel composition and to check the communication safety of such an assembly. In
addition, refinement is lifted to assemblies by providing an error-preserving re-405

finement relation for EMIOs, which is similar to EA-refinement. However, no
further operations like parallel composition or conjunction are defined for as-
semblies; instead, EMIO forms a second layer on top of MIO, and an EMIO
is re-interpreted as MIO via an encapsulation function that removes all error-
information. In contrast to this loose integration, EMIA provides a uniform and410

tight integration of interfaces and assemblies by directly including its canonical
assembly theory in the sense of [14]. In particular, EMIA does not need two
separate refinement relations for interfaces and assemblies.

Theorem 20 (Assembly Theory). EMIA induces a canonical assembly the-
ory (i.e., where encapsulation is equivalent to parallel composition).415

The proof is straightforward by checking the conditions of the definitions in [14]i
(cf. [12]). Because encapsulation corresponds to ‖ and the assembly refinement
preorder to vEA, EMIA directly includes its canonical assembly theory.

Translating the above examples of assemblies with U and V into EMIA, the
composition G′ ‖C ‖U resembles G′ ‖C (Fig. 3), except that action rqstCar is an420

output instead of an input. Further, (G′ ‖C) ‖V and G′ ‖ (C ‖V ) are equivalent
in EMIA. In both examples, compatibility is checked via reachability of fatal
error states. However, it is up to the system designer to decide which error
behaviour yields an incompatibility, i.e., compatibility is not necessarily a global
concept as is the case for optimistic and pessimistic compatibility.425

Issue (C): Consider specifications D and W of a car and a user interface prod-
uct family, resp., both of which are shown in Fig. 4. These specifications allow
product variations of a car and a user interface, which enable drivers to initiate
the automatic driving assistance manually (go!), e.g., when parking in a different
garage that is not equipped with an automatic door opener. Obviously, a user430

interface that provides this feature is incompatible with a car that does not,
i.e., although some product combinations of D and W are compatible, some of
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D′ ‖W : 〈d0, w0〉 〈d1, w1〉

〈d2, w1〉〈d3, w1〉〈d0, w1〉

∗

rqstCar!

rqstPass!

openDoor?drive!

go!
go!

Fig. 5. Composition of product lines D′ and W in EMIA.

them are not. Hence, D and W are incompatible, and no information that might
help finding compatible product combinations is provided in current interface
theories (see also the discussion about actual and potential errors in Sec. 2). In435

EMIA, the optional go?-transition at state d0 would be modelled as a disjunc-
tive go?-must-transition from d0 to {d3, ∗}, for a fatal error state ∗. We refer
to this specification as D′. The specified error information is still present in the
parallel composition of D′ and W, so that one may derive additional conditions
on the go-transitions. These conditions result in compatible refinements of D′440

and W, which describe compatible sub-families of the original product families.
For example, refining the optional go?-transition into a mandatory one in D′, or
removing the optional go!-transition in W; both result in appropriate restrictions
to sub-families. The necessary error information is present in the EMIA parallel
composition of D′ and W (cf. Fig. 5).445

Issue (D): MTS and interface theories combining IA with MTS share many as-
pects of the modality semantics wrt. refinement. However, the meaning of may-
and must-modalities differs wrt. parallel composition. Required and forbidden
actions never cause an error in a parallel composition in MTS: either all compo-
nents unanimously agree on implementing an action, or the action is forbidden in450

the composed system. The possibility to disagree on transitions enables an envi-
ronment to control all transitions of an MTS, such that they may be interpreted
as input-transitions from an interface theoretic view. However, the MTS parallel
composition does not directly scale to output actions, because these cannot be
controlled by the environment. Consequently, previous interface theories have455

adopted an IA-like error-aware parallel composition that is tightly bound to a
global compatibility concept. In contrast, EMIA’s explicit error representation
allows for a local description of compatibility that is independent of composi-
tion. Thus, EMIA unifies unanimous and error-aware parallel composition, i.e.,
it permits the mixing of these composition concepts within a specification. As460

an aside, note that EMIA collapses to MTS when considering input actions only.

6 Conclusions

Our interface theory EMIA is a uniformly integrated specification framework
that is applicable at different levels of abstraction, e.g., component-based de-
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sign, product line specification and programming with behavioural types. EMIA465

bridges the gaps between MTS [18], interface theories [1,2,4,6,7,9,17,20,21] and
assembly theories [14]. It is based on a concept of error-awareness, whereby
EMIA’s refinement preorder reflects and preserves fatal error states. While re-
cent interface theories [6,21] considered the problem of how to enforce required
behaviour, our finer-grained error semantics also solves the dual and previously470

open problem of how to forbid unwanted behaviour.
We proved that EMIA is related to the IA-based interface theory MIA [6] via

a Galois insertion, rendering MIA into an abstraction of EMIA. In the abstract
theory, errors may be considered as models of unknown behaviour for which
no guarantees can be made, while in EMIA errors model unwanted behaviour475

for which we know that it must not be implemented. This difference between
EMIA and related interface theories can be captured in a more concise way when
considering error states axiomatically. In related theories [6,21], an error state e
satisfies the laws e ‖ q = e, meaning that a composed system is in an erroneous
state if a component is, and e v p ⇒ p = e, meaning that an error cannot480

be introduced when refining an ordinary state. In EMIA, the additional law
p v e ⇒ p = e is satisfied, i.e., refining cannot redefine an erroneous situation
to be non-erroneous.

Regarding future work we intend to add alphabet extension and quotienting,
and wish to capture differences and commonalities of different interface theories485

via axiomatisations. We also plan to implement EMIA in a formal methods tool,
e.g., Mica [8], the MIO-Workbench [4] or MoTraS [15], and to adapt EMIA as
a behavioural type theory for the Go Programming Language [13]. Such tools
would enable us to evaluate EMIA on larger, more realistic examples, e.g., the
docking system studied in the context of IA in [11].490
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