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ABSTRACT

Comprehension of C programs containing pointer-based dy-
namic data structures can be a challenging task. To tackle
this challenge we present Data Structure Investigator (DSI),
a new dynamic analysis for automated data structure iden-
tification that targets C source code.

Our technique first applies a novel abstraction on the
evolving memory structures observed at runtime to discover
data structure building blocks. By analyzing the intercon-
nections between building blocks we are then able to iden-
tify, e.g., binary trees, doubly-linked lists, skip lists, and
relationships between these such as nesting. Since the true
shape of a data structure may be temporarily obscured by
manipulation operations, we ensure robustness by first dis-
covering and then reinforcing evidence for data structure
observations.

We show the utility of our DSI prototype implementation
by applying it to both synthetic and real world examples.
DSI outputs summarizations of the identified data struc-
tures, which will benefit software developers when main-
taining (legacy) code and inform other applications such as
memory visualization and program verification.

CCS Concepts

eSoftware and its engineering — Software mainte-
nance tools; Data types and structures; Software
reverse engineering;

Keywords

Data structure identification, program comprehension, dy-
namic data structures, pointer programs

1. INTRODUCTION

C programs are notoriously difficult to comprehend, and
this is especially true for legacy or low-level code, e.g., that
found in OSs or device drivers. In such situations it is not
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uncommon to see programmers employ complex usages of
pointers, types and memory allocation to achieve the de-
sired behavior or efficiency. These constructs are often used
to implement the dynamic data structures of a program,
and thus data structures can form a major obstacle in pro-
gram analysis. To partially alleviate this obstacle we pro-
pose Data Structure Investigator (DSI), a dynamic analysis
for the automatic identification of dynamic data structures
in C programs.

DSI relies on a front-end module to perform an online
trace recording of the program under analysis, which we sup-
ply for C source code. This is followed by an offline trace
analysis, which first discovers the building blocks of com-
plex data structures, that are essentially singly-linked lists
(SLLs), and then analyzes any relationships that exist be-
tween the lists. Lists may be either tightly connected, where
they comprise some part of a more complex data structure,
e.g., the two lists running in opposite directions through a
doubly-linked list (DLL) or those forming the left and right
branches of a binary tree, or loosely connected, where they
describe relationships between specific data structures, e.g.,
the parent-child relationship found in nested lists.

Challenges. We address two key challenges in this
work. The first is the variety and complexity of imple-
mentation techniques used to realize data structures in C
programs, which arise due to efficiency concerns or sim-
ply the freedom offered by the C language. We tackle this
by employing an abstraction of memory based on identify-
ing the building blocks of data structures as lists, rather
than as nodes which is common in other approaches, e.g.,
ARTISTE [11], DDT [19], HeapDbg [23], and MemPick [16].
This key difference can be seen in a DLL: our approach con-
siders this as two separate artifacts in the abstraction (i.e.,
lists) that happen to be connected in a specific way, while
node-based approaches would consider a DLL as one arti-
fact. Our approach allows for some interesting possibilities,
such as identifying a cyclic list with one head node embed-
ded in a node of a different type, recognizing a list with
several nodes embedded in one type, and the handling of
custom memory allocation out of the box.

The second key challenge arises due to manipulation op-
erations that temporarily transform a stable shape into a de-
generate shape. For example, consider how the key feature
of a DLL is broken during the insertion of a node; if one were
to inspect the shape at such an intermediate state, then it
may be difficult to give it the correct label, i.e., name, of the
data structure. Approaches such as dsOli [30] and DDT [19]
handle this by trying to find data structure operation bound-



aries, while MemPick [16] attempts to perform identification
only in the “quiescent periods” of a data structure. In both
cases, identification is performed when it is likely that the
data structure has a stable shape.

DSI includes degenerate shapes but overrides their influ-
ence by observing the context in which a shape appears.
Context arises from two sources: structural repetition, which
occurs when there exist many structures performing the
same role, e.g., the multiple child lists found in parent-child
nested lists, and temporal repetition, which occurs when the
same structures exist over multiple program time steps. By
discovering evidence for specific observations of data struc-
tures and then reinforcing this evidence through structural
and temporal repetition, our approach enables identification
even when transient degenerate shapes are encountered.

Contributions. Our contributions are as follows:

e an abstraction of memory designed to cope with the
complexities arising in C programs;

e a taxonomy of data structures and connections be-
tween data structures based on this abstraction;

e assignment of evidence to data structure observations,
with weight based on the structural complexity of the
underlying shape;

e a method to aggregate evidence both within one pro-
gram time step and over multiple time steps, to miti-
gate the effect of transient degenerate shapes.

We apply our approach on textbook and synthetic exam-
ples, as well as examples taken from the literature [5] and
real-world programs such as libusb [2]. In all cases, DSI iden-
tifies the associated data structure correctly, and the high
weight of evidence collected for each correct interpretation
confirms the robustness of our approach. Furthermore, due
to the generality of our memory abstraction and thus in
contrast to related work [16,19], DSI is able to provide rich
descriptions of data structures over a variety of implemen-
tation techniques commonly appearing in C programs.

Applications. To illustrate the utility of our approach
we track variables that represent entry points to dynamic
data structures, and annotate these with summarizations of
the reachable data structure, e.g., “Entry point ep points
to a Skip List with nested DLLs”. However, DSI’s output
has application beyond that of program comprehension [29].
For example, our approach can guide memory graph visual-
ization [8,23] to produce visually intuitive layouts. In par-
ticular, the transition between DSI’s various abstractions
provides a natural zoom function to handle large graphs.

The notion of stable/degenerate shape can aid data struc-
ture operation identification [19,30]. By monitoring the
changes in the data structure, e.g., in terms of how the
building blocks change between stable shapes, the operation
boundaries can be estimated and the behavior identified,
e.g., to determine that an SLL is used as a stack or queue.

Dynamic data structures are one of many contributing fac-
tors that make formal verification difficult. The approach
prototyped in [24] employs information about data struc-
ture usage to generate program annotations, such as func-
tion contracts, to support the verification process.

Additional applications for DSI include profiling and op-
timization [20,26], detecting abnormal data structure behav-
ior [18], constructing program signatures [13] and, with a
suitable front-end for object code, reverse engineering [16].
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Figure 1: Complexities of C heaps: (a) custom al-
locator, (b) cache efficient list [9], (c) Linux kernel
cyclic DLL [3]; ep denotes an entry point. SLoi,
SLo2 & SLj are skip list implementations (visualized
in Fig. 3). Examples of SLo; and SLo2 appear in
tests/forester-regre/test-f0021.c and tests/skip-
list/jonathan-skip-list.c of Forester [5], resp.

The remainder of this paper is organized as follows: in
Sec. 2 we discuss the complexities of data structures in C
heaps, which motivates many of the design decisions we have
made for DSI. Sec. 3 describes our approach from a high
level with an illustrative example, and in Sec. 4 we dive into
the details. We report results obtained from our prototype
implementation in Sec. 5, discuss related work in Sec. 6, and
finally present our conclusions and suggestions for future
work in Sec. 7.

2. HEAP USAGE IN C PROGRAMS

The type safety of modern programming languages such as
Java and C# constrains the actions that a programmer may
take, and results in programs having relatively well struc-
tured heaps. However, in languages frequently used for OS
programming such as C, where pointer arithmetic and type
casting may be freely applied and memory management is
in the hands of the programmer, the heap can be formed
in a more ad-hoc manner. In this section we describe some
of the challenging C code we have seen in practice, and in
Sec. 3 we outline how our approach copes with these chal-
lenges. Firstly, we briefly introduce a points-to graph, which
describes a snapshot of program memory by representing
memory chunks, i.e., stack/global variables and dynamically
allocated memory, as vertices and pointers as edges.

A typical assumption is that a memory chunk corresponds
to a single node of a data structure; however, in practice
this is broken in a number of situations. Firstly, if a cus-
tom memory allocator is employed, but memory chunks are
detected at the level of the system memory allocator, then
multiple nodes of potentially multiple data structures may
appear in the same memory chunk (Fig. 1(a)). Secondly,
cache-efficient data structures combine multiple nodes into
a single memory chunk to enhance performance (Fig. 1(b)).
Thirdly, head nodes of multiple lists may be embedded in
the same memory chunk (Fig. 1(c)); this is common prac-
tice with the cyclic DLL (CDLL) type struct list_head
employed by the Linux kernel [3], which is designed to be
embedded inside another struct. Given the cyclic property
of the Linux CDLL, a natural interpretation is to treat the



head node uniformly with the remainder of the list. This
gives rise to an alternative view, i.e., as a list where the
nodes occupy memory chunks of varying sizes. In the above
case, a list of length n consists of one node in a memory
chunk of one type and n — 1 nodes each in a memory chunk
of another type.

The key insight to model all of these situations uniformly
is to relax the assumption that a list linkage offset should
occur at a fixed offset from the memory chunk start address.
Thus, instead of grouping the nodes of a list by the entire
memory chunk type, as is done in [16,19,23], it is necessary
to group the nodes of a list by linkage or, equivalently, allow
nodes to be some sub region of an outer type. In the next
section we show how our approach handles this by deter-
mining the minimal subregions of memory chunks needed to
establish list linkage.

We now consider the complexities regarding connections
between lists. A connection may be made either by over-
lay, where at least one node from each list occupies the
same memory chunk, or by indirection, where there exists
a pointer, or a chain of pointers, from the memory chunk
holding the node of one list to a memory chunk holding a
node of another list. To illustrate this we consider just some
of the possible ways to implement a skip list; C snippets
are given in Fig. 1(e-f), and each implementation is visu-
alized in Fig. 3. Firstly, if the number of levels are known
a priori, then it is common to employ a struct where each
member represents one level (SLo1). Thus, when multiple
levels run through the same node, these are connected by
overlay. Secondly, all nodes in the skip list may be of the
same type (SLo2); hence, lists are also formed in the vertical
direction and overlay connections are present between these
and the horizontal lists. Lastly, consider a skip list where
each level is represented by a node of different type (SLr).
Since only the horizontal linkage forms lists, the downward
link is an indirect connection between lists.

3. OVERVIEW OF OUR APPROACH

In this section we give an overview of our approach and
provide motivation with the example in Fig. 2, which also
depicts our approach as a pipeline. The example shows two
time steps in the construction of a SLL of DLLs; note that
at time step t, there exists a degenerate DLL child. In favor
of a succinct explanation, details are delayed until Sec. 4.

We commence from the classical implementation of an
SLL, which is a sequence of memory chunks all of the same
type, where the entirety of each chunk constitutes one node
in the list. A chain of pointers between these chunks may
fulfill a linkage condition, which states that all pointers orig-
inate at the same linkage offset from the start of the chunk
and terminate at the start address of the next chunk.

Strands. To handle the scenarios in Sec. 2, we relax the
notion that the nodes of the list occupy the whole memory
chunk, and instead try to discover what we term strands,
which form the basic building blocks of the structures we
seek to identify. A strand represents a sequence of subregions
of memory chunks, each termed a cell, such that the same
linkage condition can be established between the cells. Thus,
the linkage offset is now given relative to the start address of
a cell. Strands (.5;) are shown by block arrows in Fig. 2(a).

Strand Connections (SCs). Our approach is driven
by relationships between strands, which we term strand con-
nections (SCs). Each SC describes exactly one way in which
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Figure 2: Left: our approach’s pipeline; right: the
illustrative example of Sec. 3.

the cells of two strands are related and is thus comprised of a
set of cell pairs. Since cells from two strands may be related
in more than one way, there may exist multiple SCs between
a pair of strands. We construct a strand graph, where ver-
tices represent strands and edges represent SCs (Fig. 2(b)).
Since only two adjacent time steps of the program are con-
sidered in the illustrative example, it is unsurprising that
both strand graphs have the same structure. For now note
that SCs with the same edge style denote the same relation-
ship type; for example, the DLL strands form an overlay
SC, which is bi-directional, e.g., S3 can be reached from
S2 and vice-versa. Two kinds of indirect SCs are formed
between the parent SLL and each child DLL, which are uni-
directional, e.g., S1 cannot be reached from Ss.

Memory Structures. We use the term memory struc-
ture to speak collectively about data structures and connec-
tions between data structures, i.e., both the tight and loose
connections mentioned in Sec. 1. The memory structures
in-scope for our approach are given in Fig. 3. An illustra-
tive points-to graph accompanies each memory structure,
where cells are drawn as circles and strands as block arrows;
note that our illustrations do not depict all corner cases. A
connection between cells by overlay is represented by a box
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Figure 3: Illustrations of memory structures identified by our approach, grouped by area condition. (Cyclic)
SLLs are implicitly identified by our abstraction as strands. I1 and I2+ are catch-all cases for SCs with 1 or
2+ cell pairs connecting the strands, resp., and Sharing (S) represents two strands that share the same tail
cell sequence. The O and I subscripts denote whether the SCs are made by overlay or indirect connections,
resp. Consult Fig. 1 for details of the three skip lists presented. Large arrows between memory structures
represent a generalization — specialization relationship as discussed in Sec. 4.2, and small circled numbers
assign priorities necessary to resolve ambiguities due to these relationships (see Alg. 1).

enclosing both cells. Each box should not be understood as
a unique memory region; it is quite acceptable for multiple
boxes to reside in the same memory region. Connections by
indirection are simply represented by pointers.

A memory structure observation is made on the strand
graph and requires a particular configuration of strands and
SCs to be present. The subgraph of the strand graph corre-
sponding to such a configuration is determined by a memory
structure’s area condition. For example, a DLL’s area con-
dition requires exactly two strands connected by an overlay
SC, while nesting requires SCs from a parent strand to mul-
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tiple child strands. The memory structures in Fig. 3 are
grouped by area condition (regions with dashed lines), and
multiple memory structures may belong to a single region.
Thus, satisfying the area condition is necessary but insuffi-
cient to confirm the observation of a memory structure, and
therefore we additionally check that the subgraph satisfies
a memory structure’s shape predicate, which typically per-
forms a detailed inspection of SCs in terms of cells. Such a
two-stage process is often used (c.f. [16,23]) to isolate exactly
the elements to be checked by a shape property.

Observe that differences in the implementation of a mem-



ory structure can result in differences when that memory
structure is viewed in terms of strands and SCs. This is
a consequence of our choice to track linkages rather than
nodes to cope with the complexities arising in C heaps, and
can clearly be seen when considering the skip lists of Fig. 1.

Evidence Gathering. For each observation of a mem-
ory structure on the strand graph we record the associated
evidence of that observation. The evidence consists of a
label, uniquely identifying the memory structure (i.e., the
acronyms introduced in Fig. 3), and a weight. We typically
record evidence on all SCs mentioned by the area condition,
which provides (a) a convenient mechanism to aggregate ev-
idence via identification of structural and temporal repeti-
tion and (b) a method of deriving a suitable weight of an
observation from the shape predicate. The weight is guided
by the structural complexity of the observed memory struc-
ture, which intuitively means we wish to count the number
of things that have gone “right” to interpret it as such a
memory structure. We represent this count by the number
of cell pairs comprising an SC, and the way in which they
are accessed by the shape predicate.

For example, the shape predicate 12+ (lists intersect on
24 nodes) must check that the number of connections be-
tween the two strands is at least two, thus the weight is
simply the number of cell pairs in the connection. On the
other hand, the DLL shape predicate must inspect the spe-
cific content of each cell pair in the SC to ensure that the
forward /reverse property of the DLL holds. This results in
a count of 3 for each cell pair: 1 for the existence of the cell
pair, and 2 since both cells in the cell pair must be analyzed.

Evidence weights for the example are shown in Fig. 2(b).
The degenerate DLL in time step t has an evidence count of 2
for 1240; however, when the DLL regains the correct shape
at t+1, it has a count of 9 based on the three cell pairs that
must exist and that their internal structure must be checked,
i.e.,, 3% 3. Nesting (Ni) only requires the existence of one
cell pair connecting the parent strand to the child, hence
each occurrence has a count of 1. Further, this evidence is
deposited over each SC identified by NI’S area condition.

Some memory structures are specializations of others, and
thus, if we are not careful, the more general form can be
matched, leading to unnecessarily imprecise results. We give
more details of this in Sec. 4, but for now it suffices to say
that memory structure recognition is attempted in the order
given by the circled numbers on the taxonomy in Fig. 3.
On the successful observation of a memory structure, all
SCs given by the area condition are removed from further
consideration, with the rationale being that we have already
found the most interesting interpretation of that structure,
and there is no need to bloat the strand graph with the
evidence from additional interpretations.

Structural Repetition. Structural repetition is used
to group elements of the strand graph that perform the same
role within one program time step. This grouping is real-
ized via a merge algorithm that results in a folded strand
graph (Fig. 2(c)), where the vertices have now become sets
of strands. Since the folding process also merges SCs, it
serves to reinforce the evidence assigned during the previ-
ous step. Thus, it provides part of our solution to address
the problem of manipulation operations obscuring the cor-
rect shape, i.e., if SCs representing degenerate shape can be
grouped with those representing the correct shape, then the
majority can override the minority. In Fig. 2(c), this is seen
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between strands {S2, S4+} and {Ss3, S5} at time ¢.

The correct shape is generally in the majority, because de-
generate shapes are produced by operations that typically
only have a local effect. Furthermore, memory structures
that match degenerate shapes normally have much lower
structural complexity than the memory structure that would
match the stable shape, resulting in less contradictory evi-
dence being added.

Temporal Repetition. To track the temporal behav-
ior of a memory structure and enable the identification of
temporal repetition, we must determine which strands rep-
resent the same data structure building block over multiple
time steps. This is a very difficult task to do globally as lists
will be split, joined, created and deleted at runtime, and any
labeling system will end up with some amount of disconti-
nuity. Instead, we tackle this problem by considering the
labeling from the point of view of each entry point to a data
structure separately, since entry points are inherently stable
over their lifetimes.

For each time step that an entry point exists, we extract
the subgraph of the folded strand graph reachable from that
entry point. The subgraphs are then merged into an ag-
gregate strand graph, and thus temporal repetition is identi-
fied whenever multiple graph elements are merged together.
Naturally, the evidence embedded in those elements is also
merged, thus providing the second part of our solution to
address degenerate shapes. Vertices of this graph become
abstract descriptions of the original strands in terms of their
linkage conditions (S¥©). The aggregate strand graph of our
example is shown in Fig. 2(d); note that the evidence for a
DLL is overwhelming. Only at the end of the trace do we
interpret the evidence by setting the label for each SC to the
one with the most evidence, and labeling each strand with
SLL/CSLL as appropriate (Fig. 2(e)).

Output & Applications. We gather the artifacts pro-
duced by DSI during its offline analysis into an XML file and
provide this for use in additional back-end modules. Recall
from the introduction that we outlined several use cases for
DST’s output including memory visualization [8], formal ver-
ification [24], optimization [20,26], signature generation [13]
and, with a suitable front-end for recording traces from ob-
ject code, reverse engineering [16]. In the following we de-
scribe our back-end module for program comprehension.

Naming Data Structures. While the aggregate strand
graph is highly useful for program comprehension, in some
situations it is preferable to have a linear summarization of
the identified data structure, e.g., a natural language string
may be employed to annotate the source code of an entry
point declaration. We propose a simple naming module that
functions by iteratively grouping the vertices of the aggre-
gate strand graph, and assigning a textual label to the re-
sulting group. These grouped elements now form an atomic
vertex in subsequent groupings. For example, in Fig. 2(f)
we show the result of grouping the two vertices connected
by a DLL SC. The order in which vertices are grouped must
be carefully chosen to ensure the most suitable summary
is generated. In practice we have found that the following
rules work well: (a) group the vertices in the order shown
by the letters in square boxes in Fig. 3 (from [A] to [F]), and
(b) if there should exist multiple conflicting SCs between
two vertices, then present all interpretations, with the ex-
ception of nesting which overrules all other interpretations.
Ultimately, we end up with a graph like in Fig. 2(g).
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Figure 4: Details of (a) a strand S with linkage con-
dition SY“ = (7,0) and both linear and cyclic cell
sequences, (b) an overlay SC S; <% S> and (c) an
indirect SC S, LN S2. Memory chunks have black
outline, cells are dashed, and strands are indicated
with block arrows.

4. DETAILS OF OUR APPROACH

We now formalize the concepts presented in the illustra-
tive example of Sec. 3.

4.1 Memory Abstraction

To identify data structures we reconstruct a sequence of
points-to graphs (G%',...,GPY) from an execution of the
program under analysis. This reconstruction is enabled by
first instrumenting the program using the front-end module,
which results in the capture of program events at runtime
such as pointer writes and dynamic memory (de)allocation.
The result of the program event at time step t is represented
by GP', where 1 <t < n and G%' is empty. In the following
we drop time step subscripts (¢) until Sec. 4.3, as until then
a single time step is sufficient for our presentation.

Definition 1. A points-to graph G?' = (V,€) is a di-
rected graph comprising a vertex set V representing memory
chunks and an edge set £ C V x N x V x N representing
pointers.

An edge (vs, as, v¢, at) € € captures the points-to relation-
ship between two memory chunks established by a pointer
with source address as, encapsulated by vertex vs, and tar-
get address a¢, encapsulated by vertex v;. A memory chunk
is either a heap chunk (a memory region returned from dy-
namic memory allocation, e.g., malloc) or a stack/global
chunk. Our points-to graphs only consist of reachable mem-
ory, so if a leak occurs, all unreachable chunks are removed.

A heap chunk becomes (partially) typed with a standard
C type when it (or a subregion) is accessed by a non-void
pointer. Usages of a memory chunk (or subregions) must be
typed consistently, i.e., if a memory address a is accessed
via pointer types t1* and t2*, then the overlapping parts
of t1 and t2 must be structurally equivalent. Since structs
may be nested, and thus multiple structs may start at an
address, a function TYPE(a) returns the set of types starting
at address a.

Definition 2. A stack/global chunk v € V is an entry
point if it (a) contains a pointer variable with a target ad-
dress in the heap or (b) contains a strand cell (e.g., holds
the “head” node in a list).

We begin the formalization of a strand using a pointer
that establishes a linkage condition between two cells, see
Fig. 4(a) for details in the following. Set operators with a

bar, €, C and N, function on memory ranges, e.g., a C b
determines if the range of a is included in the range of b.

Definition 3. A cell c is a subregion of a memory chunk,

i.e., Ju € V : ¢ C v, with beginning and end addresses,
c.bAddr and c.eAddr, respectively.

Definition 4. A linkage condition L = (7,0) ezists be-

tween two cells cs <> ¢, with cell type T and linkage offset o

if:

(., asy—,at) EE : as € ¢s A ar = ¢t bAddr A 0o = as—cs.bAddr
AT € TYPE(Cs.bAddr) N TYPE(ct.bAddr) A cs N ¢ = &.

The linkage condition may be extended to n cells (n > 2)
in the expected, straightforward manner. We are inter-
ested in the maximal linkage condition L that maximizes

the length of the cell sequence c; i) ) i) c3...;if L is not
unique, then we choose the one with type 7 of smallest size.

Definition 5. A strand S represents the cell sequence cap-
tured by a mazimal linkage condition, to which we refer as
SEC . The cell sequence CELLS(S) comprises a linear start
S~ and a cyclic tail SO, and at least one must be non-empty.
When both sequences are non-empty, we have:

Vie 1,187 —1]: S7[]] & 87+ 1] AST[|S7]] 2 So[1]

AVi € [1,]159] — 1] : SOfi] £ Sofi 4 1] A S9]|50]] £> SOT1]

The set S of strands captures every unique cell sequence.
Strands are removed when all their cells cease to exist.

As the key to our approach is the reinforcement of ev-
idence via grouping elements that perform the same role,
we must ensure that identical SCs are grouped wherever
possible. Thus, due to the issues discussed in Sec. 2, all SC
parameters (w, z, y and z in the following) are given relative
to the cells, linkage pointers and target addresses, i.e., quan-
tities that are independent of a cell’s position in a memory
chunk (see Figs. 4(b) and (c)). It is for this reason that the
SCs of Fig. 2 are drawn with different line styles; those with
the same style have identical parameters. Lastly, note that
indirect SCs can be generalized to sequences of pointers.

The set of SCs present is denoted C and in the following,
MER(c) finds the Mazimum Enclosing memory sub-Region of
a cell ¢, i.e., the memory sub-region of the outermost struct
that contains c.

scribes exactly one way in which a subset of the cells of Si
are related to a subset of the cells of Sa. An SC' is defined by

ship between cell pairs (and by extension between strands)
may be (a) overlay c1 & ey if S # S2AMER(c1) = MER(c2)
with parameters w = (c2.bAddr + LINKAGEOFFSET(S2)) —
c1.bAddr and x = (c1.bAddr+LINKAGEOFFSET(S1))—c2.bAddr
(see Fig. 4). Alternatively, (b) indirect c; 2 co if Je =
(o, as,—,a:) € € : as € MER(c1)Aay € MER(c2) and there is no
linkage condition on e. In this case, the parameters are: y =
as —c1.bAddr and z = (c2.bAddr+ LINKAGEOFFSET(S2)) —at.

To uniquely track the strands reachable from an entry
point over multiple time steps, we introduce entry point con-
nections for each type of entry point given in Def. 2. These
are essentially specialized SCs, where the starting offset is
given from the memory chunk’s start address and is there-
fore absolute. This is important as it allows us to uniquely
identify a data structure building block under an entry point
for evidence reinforcement over multiple time steps.



Definition 7. An entry point connection v, R
from an entry point vep € V of type Def. 2(a) to a cell c €
CELLS(S) via a non-linkage condition edge (vVep, as, vt, at) €
& is defined by two parameters: T = as — Vep.bAddr and y =
(c.bAddr+LINKAGEOFFSET(S)) —a;. An entry point connec-
tion vep = S from an entry point ve, € V of type Def. 2(b)

to a cell ¢ € CELLS(S) such that ¢ C vep is defined by one
parameter: z = (c.bAddr+ LINKAGEOFFSET(SS)) — Vep.bAddr.

Definition 8. A strand graph G° = (V*,£°) is composed
of a vertex set V*, where v € V*® represents either a strand
(v € S) or an entry point, and an edge set £°, where e € £°
represents either an SC (e € C) or an entry point connection.

4.2 [Evidence Discovery and Reinforcement

With the strand graph G° to hand, we proceed to first
discover and then, in Sec. 4.3, reinforce evidence for obser-
vations of the memory structures in Fig. 3. As we prefer the
discovery of complex memory structures, we check them in
the order of area condition size, from large to small. How-
ever, recall from Sec. 3 that some memory structures are
specializations of others and, thus, must be treated carefully.
Generalizations are indicated in the taxonomy of Fig. 3 by
bold arrows pointing from the general form to the specialized
form. For example, I1; is a specialization of Ni correspond-
ing to nesting from a parent to a single child. We resolve
such ambiguities by imposing a minimum area size on the
more general form and always checking for its existence first,
i.e., following the priority of circled numbers @) in Fig. 3. In
this case, the Ni memory structure is required to have a
minimum of at least two children.

In other situations, the generalization/specialization rela-
tionship may be read both ways (double-ended bold arrows
in Fig. 3), such as between I1o and BT. Here, I1o could be
a specialization of BT with only one branch. Alternatively,
BT could be a specialization of I1o, since the position of the
cell connection matters in BT (from any cell in the parent
strand to the first cell of the child strand) but does not mat-
ter in I1o. Again, such situations are handled by imposing
a minimum area size (BT must have at least 3 levels) and an
ordering (BT is checked before I1p). Similar methods are
used to resolve the remaining ambiguities; where there is no
ambiguity, the checking order has been chosen arbitrarily.

Definition 9. A memory structure M comprises a func-
tion AREACONDITION, which determines the subgraph of G*°
potentially containing M; a SHAPEPREDICATE, which con-
firms an observation of M by performing a detailed analy-
sis of the subgraph from AREACONDITION; and a function
ASSIGNEVIDENCE, which imparts suitable evidence for M
onto the SCs in G*.

A full formalization of these concepts for all memory struc-
tures is available from [6]. In the following, we present se-
lected formalizations to highlight points of interest, starting
with the DLL memory structure briefly presented in Sec. 3:

DLL.AREACONDITION(Clnit, —, —, ) =
if Cinit = St PN S5 then ret {Cinit} else ret ()
DLL.SHAPEPREDICATE = S¥ = A ST =0 A

Vi € [0..LENGTH(S1) — 1] 3(e1, c2) € PAIRS(S1 <5 Sa)
ST[i +1] = c1 A S3[LENGTH(S2) — 4] = c2

DLL.ASSIGNEVIDENCE(G?®) =
S1 &% So (in G) «+ “DLL” : |PAIRS(S1 <% S2)| * 3
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. Crem — C
: label LOOP: while C™™ # () do
Chnit <— CHOOSE(C™™)
for each M from @ to @3 do > @ in Fig. 3
Carca = M.AREACONDITION(Cinit, C*™, S, C)
if Carea # 0 A M.SHAPEPREDICATE then
M .ASSIGNEVIDENCE(G?)
Cr™ + C*™ \ Carea; goto LOOP
Crem % Crem \ {Clnlt}

Algorithm 1: Assign Evidence to Strand Graph G*

AREACONDITION is used by Alg. 1. For now we note that
it ensures that Cinit, which is the “seed” SC around which
an area is found, must be an overlay SC. We often need
to refer to graph elements identified by AREACONDITION in
SHAPEPREDICATE. To indicate this, any bound variable ap-
pearing above in red with a highlight is exported for subse-
quent usage (usages are shown in blue).

DLL.SHAPEPREDICATE requires that both strands have
only linear cell sequences and, for every cell in the forward
direction S7[i + 1], there exists a connection to the appro-
priate cell in the reverse direction S7[LENGTH(S2) — ] (the
choice of direction is arbitrary at this point). Note that this
can easily be extended to a CDLL by finding a cyclic per-
mutation of the cyclic cell sequences which establishes the
DLL property.

Recall that evidence is derived from the SHAPEPREDICATE,
i.e., it checks each pair € PAIRS(S: <> eS2) (count of
1 for each pair) and then opens pair = (c1,c2) to ensure
that the DLL shape property holds by examining ¢; and
c2 (count of 1 for each opened element examined). Thus,
DLL.ASSIGNEVIDENCE places “DLL” : [PAIRS(S1 &% S2)| * 3
evidence on S; &% S5 in G*, in the form Label : Weight.

The process of imparting evidence on G* is performed
by Alg. 1. Recall that the sets S and C give the strands
and SCs, resp. The set C™™ holds the remaining SCs to
be checked whether they potentially belong to a whole or
part observation of a memory structure. An SC Cinit is
chosen from C™™ and then, for a memory structure M, it
is checked whether an area condition can be found for M
containing Cinit. If so, the shape predicate is checked and,
if found to be true, then evidence is imparted on G* by
M .ASSIGNEVIDENCE. Finally, all SCs included in the area
condition of a successfully observed memory structure are
removed from C™™, and the process repeats. The algorithm
terminates when C™™ is empty.

In some situations we must associate a direction with the
evidence label, so that the memory structure can still be
understood unambiguously. This is the case with all mem-
ory structures in Fig. 3 with an arrow above their acronym.
To exemplify this, consider No and observe that, when the
children strands are grouped due to the structural repetition
step, the overlay SC can be read in either direction; hence
the need to add a direction to No. ‘We now formalize No:
No.AREACONDITION (Cipit, C*™, S, C) =

if 35, €S,S. CS,CCC x,w € N: Cinis € C

AVS. €S : (S, &% S.) e ™ — (C1)
(Sp &% S.) ECAS. €8
AVS. €8.: (S, &5 S.) eC)A|C| =|S.| (C2)
A|Se] > 2
then ret C else ret ()



No.SHAPEPREDICATE = ALLLINKAGECONDSEQUAL(S,)

No.ASSIGNEVIDENCE(G®) = for all S, € S, do
S, &% 5. (in G°) Mo : 1

NO.AREACONDITION showcases a complex area condition
that requires the discovery of a parent strand S,, a set of
children strands S., a set of SCs C, and a direction on the
overlay SCs using x and w. We typically wish to find maxi-
mal area conditions, and in this case condition (C1) ensures
that all possible children are included, and (C2) checks that
there are no unwanted strands or SCs.

Finally, note that No.SHAPEPREDICATE is this simple, i.e.,
it only checks that all children have the same linkage con-
dition, because many other possibilities have already been
filtered out due to the priority system (Alg. 1, line 4), i.e.,
trees and skip lists have already failed to match. Thus, nest-
ing becomes the only possible interpretation. Interestingly,
this is the only memory structure for which we cannot derive
the evidence weight directly from the shape predicate. In-
stead, by construction, there must be at least one pair in the
cell-pairs relationship for each SC, and as we do not inspect
this further, the evidence is simply 1 per SC.

4.3 Evidence Reinforcement

With the discovered evidence for all memory structure
observations added to the strand graph, we now wish to
reinforce the evidence to mitigate the effect of degenerate
shapes. The first step in this process is the computation of
a folded strand graph.

Definition 10. A folded strand graph G* is a summa-
rization of G°. Vertices represent entry points or sets of
strands; edges represent entry point connections or merged
SCs. G is computed by detecting structural repetition.
Structural repetition is found by successively locating
those strands in G° that conceptually perform the same role,
and then merging them. Duplicate SCs resulting from the
strand merge are also merged, thus aggregating any associ-
ated evidence. Two strands S1 and S2 are merged if SlLC

S¥C and there exists (a) a merge parent S3 with SCs S3

two lists with a shared tail (“Sharing” in Fig. 3).

The parent merging process is shown in Fig. 2(b-c), where,
e.g., S1 functions as the parent, and Sz and Sy are merged.

The next step in the mitigation of degenerate shapes is
the discovery of temporal repetition, i.e., locating strands
that perform the same role over multiple time steps and ag-
gregating the evidence of the associated SCs. As mentioned
previously, we do not attempt a global solution and instead
solve the problem from the point of view of each entry point
ep, where that local solution is represented as follows:

as

Definition 11. An aggregate strand graph G¢, is com-
posed of a vertex vep, and entry point connections originating
from vep. The remaining vertices represent linkage condi-
tions, and the remaining edges are SCs. Gg, is computed by
detecting temporal repetition using Alg. 2.

To describe Alg. 2, we first reintroduce the time step
subscript t. For each time step ¢ € [ep.tStart, ep.tEnd] in
ep’s lifetime, we use EXTRACTREACHABLESG to extract the
subgraph G} of G reachable from Vep, and cumulatively
merge these subgraphs together resulting in Gg;. To ab-
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: G 4 EXTRACTREACHABLESG (G, (Gtart- ©P)
: for each t from ep.tStart + 1 to ep.tEnd do
G + EXTRACTREACHABLESG (G, ep)
Gwmes < MCSINCLUDINGVERTEX(GY, Géy, Vep)
for each SC € Gucs do

SC (in G&3)

AGGREGATEEVIDENCE(SC (in Gg3), SC (in G}))

G+ G5 U (G \ Gues)

Algorithm 2: Compute Aggregate Strand Graph Gg;

S I o ol o

stract over multiple time steps, EXTRACTREACHABLESG re-
labels all vertices that represent a strand S to include only
the associated linkage condition S¥“, which, unlike strands,
is time step independent.

To perform the merge, we compute the mazimum com-
mon subgraph (MCS) of G} and G2 that contains vep. Any
structure appearing in the MCS means temporal repetition
has been discovered and, thus, evidence on an SC of the
MCS in G} is aggregated with that on the corresponding
SC in Gg;. The remaining elements of @G, not included in
the MCS are unioned with Gg;. These elements represent
the new parts of ep’s data structure added in time step t,
and will likely be reinforced by appearing in the MCS of
subsequent merges. Temporal aggregation in our example is
shown in Fig. 2(c-d); the MCS is simply the complete graph
since no new structure is created at t + 1.

5. EVALUATION

We have prototyped DST’s offline phase in Scala (9K LOC)
and also written a front-end module to perform the online
trace recording phase for C programs in the style of [30],
which employs CIL [25] to inject instrumentation into C
source code (1K LOC OCaml & 600 LOC C). All experi-
ments were run on an Intel i7-4800MQ with 32GB of RAM.

Benchmark & Instrumentation. We apply our pro-
totype to examples from textbooks (tb), self-written syn-
thetic examples (syn), examples taken from Forester / Pred-
ator [5] (1it), and real-world programs from benchmarks [4,
7], plus bash and libusb. The latter provides access to usb
devices from userspace and is a particularly interesting ex-
ample as it exercises many of the features offered by DSI.
All these 16 examples have one main data structure that
may be composed of several memory structures. We have
made the source code of our self-written examples available
at [6]; the others may be obtained from the corresponding
references. We employ the front-end module to perform a
full instrumentation of all examples, with the exception of
bash, for which we only instrument the files array.c and
xmalloc.c to evaluate our approach on a real-world exam-
ple of a non-Linux CDLL.

As DSI only observes behavior that a program exhibits
at runtime, we provide drivers (available from [6]) for the
syn and tb examples to exercise the data structures. Ex-
amples from [4,5,7] exercise the data structures out of the
box, while we invoke bash with a piped command, e.g., 1s |
grep pattern, and exercise libusb using the included util-
ity listdevs. libusb allows multiple simultaneous usages
within one executable via several struct libusb_contexts,
which form a parent DLL. This behavior is not visible in
listdevs by default, so we augment the example with two
additional contexts (modified listdevs are available at [6]).



Table 1: Results obtained from our prototype implementation

ID Naming Module Evidence % Supporting
Output Counts Evidence

tbl [28] SLL None since no SCs present

tb2 [31] DLL DLL: 1440, I2+¢: 220 87%

synil CDLL CDLL: 15, I2+4: 10, 48%

DLL: 6

syn2 Binary Tree BT: 248, No: 6, I1po: 3 97%

syn3 SLL + nest. SLL Ni: 6, Il: 2 5%

synd SLL + nest. SLL No: 10, SHN: 6 63%

syn5 DLL + nest. DLL Avg. 84%

Child DLLfywq

Child DLLyey )

DLL: 345, 12+4: 2

litl [5] DLL of (DLL, DLL) OR Intersecting(2xDLL) Avg. 96%

DLL: 1818, I2-+4: 108, SHN: 9

DLLIfwd

DLL: 1623,
12+: 162, SHN: 9

DLL:1980,
12+44: 725, 12+: 54, SHN: 9

SHN: 9

12+4: 703,
SHN: 9

DLL: 1785, 12+: 108, SHN: 9

1it2 [5] Skip List SLg2: 1242, BT: 72, No: 58, 90%
I1o: 8, SHN: 3
1it3 [5] SLL + nest. Intersecting(2x CDLL) Avg. 88%
No: 96, No: 44,
I1,: 10 No: 42, T14: 37 N Jlo: 36

CDLL 774,
0, DLL: 1

I1,: 104
lit4 [5] SLL + nest. SLL + nest. SLL + nest. SLL Avg. 85%
Np: 54, I1;: 28 Ni: 136, I1: 14 NI 286, I1y: 7
bash | CDLL CDLL: 68529, 124: 72, DLL: ~100%
6
treeadd [4] Binary tree BT: 256 100%
treebnh [7]  Binary tree BT: 930 100%
libusb [2] CDLL + nest. Intersecting(2x CDLL) Avg. 88%

DLL: 21789, I24¢: 15

No: 1978, No: 1975, No: 3945, No: 3942,

o 1y 742 Io: 742 Mo

Ilo: 742 ° - 742 No: 1977,
Ily: 742

No: 3943,
Io: 742

CDLL: 24291
12+¢: 2

CDLL: 126963,
I2+4: 313

Child DLL2rev ‘

I14: 2720

I1y: 2717

Il 2717

Identification Results & Robustness. In total, the
examples exercise 13 out of the 18 memory structures given
in Fig. 3 and, as Table 1 shows, evidence for the correct
observation is always in the majority (blue text), which nat-
urally leads to the correct naming (green text). The suit-
ability of our abstraction of memory is further substantiated
by the variety and quantity of C code in the examples.

We turn to demonstrate that our approach can robustly
identify data structures even in the presence of degenerate
shapes, and to do so we dive into the details of Table 1.
To simplify the presentation, the table only contains details
for the longest running entry point of each example. In the
evidence column we list all evidence counts for each observed
memory structure; for examples with more than one SC, we
show the aggregate strand graph (minus the entry point)
annotated with the aggregated evidence. In the final column
we give the percentage of evidence supporting the correct
data structure name, and for examples with more than one
SC, we give the supporting evidence as an average.

The evidence counts in Table 1 show that evidence for
the stable shape always builds much faster than evidence
for the competing degenerate interpretations, and often be-
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comes overwhelming. This behavior enables a robust and
correct naming of the data structure. Of all memory struc-
tures, skip lists build correct evidence at the fastest rate due
to their high level of structural complexity. This is seen in
syn6 and 1it2, where the competing degenerate interpreta-
tions No and BT are quickly ruled out.

Example syn1 effectively represents the worst case sce-
nario for our approach, since the trace is short and the
CDLL is constantly operated on, meaning it frequently is
in a degenerate shape; nevertheless, it is named correctly.
However, realistic programs do not spend all their time ma-
nipulating a single data structure; thus, while other actions
are performed, a memory structure is typically held in a
stable shape, which builds evidence. Such realistic scenarios
appear in examples synb and syn6, where there exist many
DLL children and, at each time step, only one is in a degen-
erate shape, and in examples bash and 1ibusb, where other
actions are performed besides manipulating the CDLL(s).

Utility for Program Comprehension. To show the
value of our approach for program comprehension, we con-
sider the aggregate strand graphs and output of the naming
module (cf. Sec. 3), beginning with the simpler example syn5



and then moving on to more complex examples. Note that
we manually verify the ground truth we evaluate against.

syn5 contains a DLL of nested DLLs, where the first node
of the child resides in a node of the parent. The naming
algorithm first groups the strands of the DLLs together (in-
dicated by dashed boxes) and then combines them with nest-
ing, which results in the name: “DLL + nest. DLL”.

1litl comprises two DLLs running in parallel through a
sequence of nodes, and is the only example with an ambigu-
ous reading of the aggregate strand graph, i.e., the forward
strand of one DLL can be matched with either DLL’s re-
verse strand. Interestingly, the naming algorithm’s output
“DLL of (DLL, DLL) OR Intersecting (2x DLL)” highlights
a different ambiguity regarding the combination of the two
DLLs. Thus, the example serves to highlight the richness
of our approach in describing connections between lists, in-
cluding those that are non-obvious via code inspection.

1it3 and libusb represent the most structurally challeng-
ing examples. To illustrate this we concentrate on libusb,
which employs a parent CDLL of libusb_context. Child
elements record both a CDLL of devices and a CDLL of
associated file descriptors. The naming algorithm’s output
“CDLL + nest. Intersecting(2x CDLL)” clearly indicates
this structure, and we believe this is very helpful in under-
standing the high-level data structure of the almost 7k LOC
of libusb. Note that all CDLLs in 1it3 and libusb are
Linux CDLLs that are embedded in structs, and thus our
abstraction based on cells is mandatory to understand the
cyclic nature of the lists (cf. Sec. 2).

6. RELATED WORK

Dynamic analyses such as TIE [21], Howard [27] and Re-
wards [22] perform a low-level identification of data struc-
tures, e.g., by discovering the internal layout of a struct, but
do not give details on the high-level usages of the discovered
structs, e.g., that a struct type forms a list or tree. We
believe MemPick [16] and DDT [19] represent the state-of-
the-art in heuristic guided identification of data structures.
Both function on object code; in contrast, DSI’s current
front-end requires source code, which facilitates the discov-
ery of data structures running through nodes of different
types and those allocated via custom memory allocation.
Regarding data structure variety, MemPick and DDT per-
form a detailed classification of trees (which could be incor-
porated into DSI), while DST handles skip lists and produces
a richer description of the connections between data struc-
tures. Lastly, as discussed earlier, both MemPick and DDT
rely on degenerate shapes not appearing in their analysis, in
contrast to DSI’s evidence-based approach.

The dynamic analysis HeapDbg [23] employs abstract in-
terpretation [12] to provide safe reasoning about program
heaps. Information joins are similar to our usage of struc-
tural and temporal repetition but, as an over-approximation
is required, information is inevitably lost. While this works
for HeapDbg’s tree label, because trees do not typically form
degenerate shapes during manipulations, a related approach
ARTISTE [11] includes DLLs and, if temporal joins were to
be performed on degenerate shapes, then the precision of
the DLL label would be lost. In contrast, our evidence-
based approach essentially performs the join at the end of
the analysis and is thus robust against such situations.

Modern shape analysis tools, such as Predator [15] and
Forester [17], employ symbolic execution to learn shape pred-
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icates that allow memory safety to be checked automatically.
In particular, Forester summarizes repetitive graph struc-
tures with forest automata to handle skip lists and trees.
However, neither approach can deal with the recursion com-
monly found in tree operations, and their focus is on mem-
ory safety, not program comprehension. Nevertheless, it
would be interesting to compare such synthesized predicates
to DSI’s strand-based abstraction.

Finally, dsOli [30] and DDT [19] seek to additionally dis-
cover the operations that manipulate the data structures.
DDT accomplishes this by assuming that data structures
are accessed via well-defined interfaces, while dsOli employs
a machine learning approach to locate repetitive code seg-
ments indicative of operations. Recently, an approach [14]
based on Predator has been used to transform low-level
pointer assignments into equivalent high-level operations.

7. CONCLUSIONS & FUTURE WORK

We presented DSI, a dynamic analysis that automatically
identifies the dynamic data structures appearing in a C pro-
gram during execution. By decomposing complex structures
into strands and then analyzing the resulting strand con-
nections, we are able to identify many data structures typi-
cally appearing in C heaps, such as (cyclic) singly and dou-
bly linked lists, trees, skip lists, and relationships between
data structures such as nesting. To handle the complexities
arising in C heaps, we proposed an abstraction of memory
that allows memory chunks and structs to contain multiple
nodes of data structures. Furthermore, in contrast to re-
lated work that tries to avoid degenerate shapes [16,19,30],
we permit degenerate shapes in our analysis and employ ev-
idence based on structural complexity — which is reinforced
by structurally and temporally repetitive heap structures —
to override degenerate shapes.

Experimental evaluation with a prototype DSI implemen-
tation showed that a significant variety and quantity of com-
plex C code can be handled and that, in each case, our
evidence-based approach leads to the correct data structure
identification. With the exception of a detailed analysis of
trees, we believe that DSI today provides the most robust,
rich description of data structures for program comprehen-
sion when C source code is available.

Regarding future work, we plan to move DSI away from
a research prototype by addressing some performance con-
siderations. DSI’s execution times range from a few seconds
for simple examples up to tens-of-minutes, and memory con-
sumption is in the range of 500MB to 4GB. The trace of
our largest example comprises 6.2MB and 32861 time steps.
Note that the majority of time (> 95 %) is spent discov-
ering evidence, which is an embarrassingly parallel problem
but for which our prototype uses a sequential solution.

Furthermore, we plan a number of improvements to DSI’s
functionality, including a richer classification of nesting and
trees, e.g., unique/shared child strands and balance prop-
erties [16, 19], respectively. Lastly, we wish to further in-
vestigate applications of DSI’s output including combining
operation detection with DSI in a style similar to that of [30],
and employing techniques from machine learning to inform
formal verification as is done in [10, 24].
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