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1 Introduction

Process algebras [1-5] provide a widely studied framework for reasoning about
the behavior of concurrent systems. Early approaches, including Milner’s Cal-
culus of Communicating Systems (CCS) [5], focused on semantic issues for
asynchronous processes where the relative speeds between processes running
in parallel are not bounded, i.e., one process may be arbitrarily slower or faster
than another. This leads to a simple and mathematically elegant semantic
theory that deals with the functional behavior of systems by describing their
causal interactions with their environments. To include time as an aspect of
system behavior, timed process algebras [6-12] were introduced. They usually
model synchronous systems where processes running in parallel are under the
regime of a global clock and have a fixed speed.! A well-known representa-
tive of discrete timed process algebras is Hennessy and Regan’s Timed Process
Language (TPL) [7] which extends CCS by a timeout operator and a clock
prefix demanding that exactly one time unit must pass before activating the
argument process. Research papers on timed process algebras usually do not
relate processes with respect to speed; the most notable exception is work by
Moller and Tofts [15] which considers a faster—than preorder within a CCS—
based setting, where processes have lower time bounds attached to them [8].

In practice, often upper time bounds, determining how long a process may de-
lay its execution, are important to system designers since these can be used to
compare the worst—case timing behavior of processes; this corresponds to the
progress assumption in [16] and can be realized in other formalisms as well,
e.g., in timed automata [17] by employing node invariants. The assumption
of upper time bounds for asynchronous processes, where the relative speeds
of system components are indeterminate, is already exploited in distributed
algorithms, as shown by Lynch in [18] in the context of I/O automata. From a
concurrency—theoretic point of view, the upper—time-bound assumption was
investigated by the second author in the setting of Petri nets [19-21] and was
based on De Nicola and Hennessy’s notion of testing [22], where the derived
must—preorder is interpreted as faster-than relation. Recently, these results
have been transferred to a process—algebraic setting [23,24] whose semantics,
however, is still based on testing. The fundamental ideas of these approaches,
which are also advocated in this paper, are particularly applicable to the
analysis of those distributed systems whose behavior is dominated by com-
plex interactions with system environments and between system components.
Several case studies in the literature involving mutual exclusion protocols [16]
and implementations of buffers [25] testify to this point.

! Note that we distinguish this form of synchrony from the one employed in syn-
chronous languages, such as in SCCS [13] and Esterel [14], where the notions of
clock and time are implicit rather than explicit.



In this paper we develop a novel (bi)simulation—based approach to compare
asynchronous systems with respect to their worst—case timing behavior. To
do so, we extend CCS by a rather specific notion of clock prefixing “c.”,
where o stands for one time unit or a single clock tick. In contrast to TPL
we interpret ¢.P as a process which may delay at most one time unit before
executing P. Similar to TPL, however, we view the occurrence of actions as
instantaneous. This results in a new process calculus extending CCS, to which
we refer as Timed Asynchronous Communicating Systems (TACS). To make
our intuition of upper—bound delays more precise, consider the processes 0.a.0
and a.0, where a denotes an action or port as in CCS. While the former
process may delay an enabled communication on port a by one time unit,
the latter process must engage in the communication. In this sense, action a
is non—urgent in 0.a.0 but urgent in a.0. However, if a communication on
port a is not enabled, then process a.0 may wait until some communication
partner is ready. Technically, we allow a.P to wait in any case; to enforce
a communication resulting in the internal action 7, a time step in TACS
is preempted by an urgent 7, e.g., by a 7 resulting from the synchronized
occurrence of two matching urgent communication actions. This is similar
to timed process algebras employing the mazimal progress assumption [7,12];
however, in these algebras and in contrast to TACS, any internal computation
is considered to be urgent. For TACS we introduce a (bi)simulation—based
faster—than preorder which exploits the knowledge of upper time bounds: a
process is faster than another if both are linked by a relation which is a strong
bisimulation for actions and a simulation for time steps.

The main contribution of this paper is the formal underpinning of our preorder
which justifies why it is a good candidate for a faster-than relation on pro-
cesses. There are at least two very appealing alternative definitions for such
a preorder. First, one could allow the slower process to perform extra time
steps when simulating an action or time step of the faster process. Second
and probably even more important is the question of how exactly the faster
process can match a time step and the subsequent behavior of the slower one.
In order to illustrate this issue, consider the runs acob and cacb which might
be exhibited by some processes. One can argue that the first run is faster than
the second one since action a occurs earlier in the run and since action b occurs
at absolute time 2 in both runs, measured from the start of each run. With
this observation in mind we define a second variant of our faster—than preorder
where a time step of the slower process is either simulated immediately by the
faster one or might be performed later on. As a main result we prove that
both variants and two relations that combine their underlying ideas coincide
with our faster—than preorder that has a more elegant and concise definition.
This justifies our faster-than preorder as a reference preorder for relating
asynchronous processes with respect to their worst—case timing behavior. In
addition, this paper develops the semantic theory of the faster—than preorder
which fails to be substitutive regarding the operators choice and parallel com-



position. We first characterize the coarsest precongruence contained in our
preorder, demonstrate that TACS with this precongruence is a conservative
extension of CCS with bisimulation, and then axiomatize our precongruence
for finite sequential processes. We also study the corresponding weak faster—
than preorder, which abstracts from internal computation, and its semantic
theory. Two examples of applications of the new theory are offered, one deal-
ing with mail delivery and one relating to two implementations of a simple
storage system.

The remainder of this paper is organized as follows. The next section presents
the process algebra TACS, while Sec. 3 introduces several variants of a faster—
than preorder and shows all of them to coincide. Sec. 4 develops the semantic
theory of our preorder and its “weak” corresponding version, which is then
applied to two examples in Sec. 5. Finally, Secs. 6 and 7 discuss related work
and present our conclusions, respectively. The appendix contains proofs or
proof sketches of some auxiliary statements, which are omitted in the main
body of the paper.

2 Timed Asynchronous Communicating Systems

This section defines the syntax and semantics of our novel process algebra
Timed Asynchronous Communicating Systems (TACS) which conservatively
extends Milner’s CCS [5] by a concept of global, discrete time. This concept
is introduced by a non—standard interpretation of clock prefixing “o.” as men-
tioned in the introduction. Intuitively, a process o.P can delay at most one
time unit before behaving like P, provided that P can engage in a communi-
cation with the environment or in some internal computation. The semantics
of TACS is based on a notion of transition system that involves two kinds of
transitions, action transitions and clock transitions. Action transitions, like in
CCS, are offers for local handshake communications in which two processes
may synchronize to take a joint state change together. In our view, the progress
of time manifests itself in a recurrent global synchronization event, the clock
transition. As indicated in the introduction, action and clock transitions are
not orthogonal concepts since a clock transition can only occur if the process
under consideration cannot engage in an urgent internal computation.

Syntax of TACS. Let A be a countable? set of actions, or ports, not includ-
ing the distinguished unobservable, internal action 7. With every a € A we
associate a complementary action a. We define A =4 {@|a € A} and take A

2 Most of our results are also valid for finite action sets. However, for our coarsest—
precongruence results we must always be able to find “fresh” actions.



Table 1
Urgent action sets

UO.P) =40  UO0) =U(z) =40 UP\ L) =4U(P)\ (LUT)
U(a.P) =gf{a}t UP+Q) =aUU(P)UU(Q) U(P[f]) =ar{f(e)|aeU(P)}
U(pz.P)=aU(P) U(P|Q) =ar U(P)UU(Q) U{T |[U(P) NU(Q) # B}

to denote the set A U A U {r} of all actions. Complementation is lifted to
A U A by defining @ =4 a. As in CCS [5], an action a communicates with
its complement @ to produce the internal action 7. We let a, b, ... range over
AUA and o, 3,... over A and, moreover, we represent (potential) clock ticks
by the symbol ¢. The syntax of our language is then defined as follows:

Pu=20|z|aP|oP|P+P|PP|P\L|PY| paP

where x is a wariable taken from a countably infinite set ) of variables,
L C A\ {7} is a finite restriction set, and f : A — A is a finite relabel-
ing. A finite relabeling satisfies the properties f(7) = 7, f(@) = f(a), and
[{or| f(a) # a}| < co. The set of all terms is abbreviated by P and, for con-
venience, we define I =4 {@|a € L}. We use the standard definitions for free
and bound variables (where pz binds z), open and closed terms, and contexts
(terms with one occurrence of a “hole”). P[Q/x] stands for the term that re-
sults when substituting every free occurrence of x in P by (). A variable is
called guarded in a term if each occurrence of the variable is in the scope of an
action prefix. We require for terms of the form pz.P that x is guarded in P.
Closed, guarded terms are referred to as processes, with the set of all processes
written as P, and syntactic equality is denoted by =.

Semantics of TACS. The operational semantics of a TACS term P € P
is given by a labeled transition system (”ﬁ,flu {0}, —, P) where P is the
set of states, AU {0} the alphabet, — C P x AU {o} x P the transition
relation, and P the start state. Before we proceed, it is convenient to introduce
sets U(P), for all terms P € P, which include the urgent actions in which P
can initially engage. As indicated in the introduction, the urgent actions are
exactly those initial actions that are not in the scope of a o—prefix, e.g., a is
urgent in a.P. We inductively define #(P) along the structure of P, as shown
in Table 1. Observe that if 7 arises from a communication of visible actions a
and @, then it is urgent if so are a and @.

Now, the operational semantics for action transitions and clock transitions
can be defined via structural operational rules which are displayed in Tables 2
and 3, respectively. For action transitions, the rules are exactly the same as
for CCS, with the exception of the rule for our new clock—prefix operator and
the rule for recursion. The latter rule is however equivalent to the standard
CCS rule [26]. For clock transitions, our semantics is set up in such a way



Table 2

Operational semantics for TACS (action transitions)

. [e% ! & /
Act m Pre # Rec 11_> P
a.P — P o.P — P! pzr.P — P'[puz.P/z]
PP % Q)
Suml 5 Sum?2 @ —>aQ
P+Q— P P+Q—q
Comt L2 F' Q=5¢ 3PP Q5Q
PlQ = P'|Q P|lQ - Pl PlQ — P'|Q'
PP PP —
Rel f(% Res 7) - a¢ LUL
Pl 14 Py P\L = P'\L
Table 3
Operational semantics for TACS (clock transitions)
— P P PP
tNil > tRec > S 7)
0—0 px.P — P'[pz.P/x] P\L— P'\L
— PP Q' P P
tAct ~ tSum — ©—Q S —
a.P — a.P P+Q— P +Q P[f] — P'[f]
_ P o P! o 1
tPre _ tCom LT @@ yyipig)
oP — P P|Q — P'|Q’

that, if 7 € U(P), then a clock tick o of P is inhibited, in accordance with our
adapted variant of maximal progress. For the sake of simplicity, let us write
P - P'instead of (P,v, P') € —, for v € AU {0}, and say that P may
engage in 7y and thereafter behave like P'. Sometimes it is also convenient to
write P —» for 3P'. P -5 P

According to our operational rules, the action—prefiz term «.P may engage in
action a and then behave like P. If o # 7, then it may also idle, i.e., engage
in a clock transition to itself, as process 0 does. The clock—prefiz term o.P
can engage in a clock transition to P and, additionally, it can perform any
action transition that P can engage in, since o represents a delay of at most
one time unit. The summation operator + denotes nondeterministic choice



such that P + ) may behave like P or (). Time has to proceed equally on
both sides of summation, whence P + () can engage in a clock transition
and delay the nondeterministic choice if and only if both P and () can. As a
consequence, e.g., process 0.a.0 + 7.0 cannot engage in a clock transition; in
particular, a is not urgent, but nevertheless it has to occur without delay if
it occurs at all. The restriction operator \ L prohibits the execution of actions
in L U L and, thus, permits the scoping of actions. P[f] behaves exactly as P
where actions are renamed by the relabeling f. The term P|Q stands for
the parallel composition of P and () according to an interleaving semantics
with synchronized communication on complementary actions resulting in the
internal action 7. Again, time has to proceed equally on both sides of the
operator. The side condition ensures that P|@ can only progress on o, if
it cannot engage in any urgent internal computation, in accordance with our
notion of maximal progress. Note that predicates within structural operational
rules, such as the predicate 7 ¢ U(P|Q) in Rule (tCom), are well understood;
see [27] for details on rule formats that treat predicates explicitly and the
congruences they imply. Finally, ux. P denotes recursion, i.e., the term px. P
is a solution to the equation z = P.

The operational semantics for TACS possesses several important proper-
ties, in analogy to many timed process algebras [7,12]. First, it is time—
deterministic, i.e., processes react deterministically to clock ticks, reflecting
the intuition that progress of time does not resolve choices. Formally, P — P’
and P -2 P" implies P' = P", for all P, P!, P" € P. Second, by our variant of
mazimal progress, a guarded term P can engage in a clock transition exactly
if it cannot engage in an urgent internal transition. Formally, P -~ if and
only if 7 ¢ U(P), for all guarded terms P. Third, the interplay between action
transitions and clock transitions can be made precise as follows.

Lemma 1 Let P, P', P" be processes, with no occurrence of parallel composi-
tion in P, and let o € A.

(1) P 5 P' > P" implies P — P".
(2) P25 P' and P =+ P" implies P' -*+ P".

As with the properties of time determinism and maximal progress, the lemma
can be proved by induction on the structure of P. Part (1) of Lemma 1 high-
lights the nature of upper time bounds in TACS, while Part (2) is the persis-
tence property employed, e.g., in TCCS [28]. Note that both statements are
invalid for processes involving parallel composition; as an example, consider
the process P = 0.a.0 | 0.b.0 and action o = a.

We conclude this section by two simple lemmas which will be used in the next
sections. The first one highlights the interplay between our transition relation
and substitution.



Lemma 2 Let P,P',Q € P and vy € AU {c}.

(1) P L P implies Pluz.Q/z] - P'[uz.Q/x].
(2) x guarded in P and Pluz.Q/z] - P'[uz.Q/z] implies
JP" € P.P - P" and P'[ur.Q/x] = P"[ux.Q/x].

The second lemma concerns the sort of a term P, which is the set of labels
of all transitions reachable in the transition system with start state P, i.e.,
sort(P) =4t {a € A|IP". P —* P' -3}, where —* denotes the reflexive
and transitive closure of — (when abstracting from transition labels).

Lemma 3 The set sort(P) of any term P € P is finite.

This statement follows from the facts that terms have finite length and that
relabelings f satisfy the condition |{a| f(a) # a}| < co. A more detailed
justification can be given along the lines of the proof for a corresponding
statement for PAFAS [23]. The above lemma establishes the well-definedness
of some terms constructed below, as TACS just provides a binary summation
operator, i.e., only finite summations can be expressed.

3 Design Choices

In the following we define a reference faster—than relation, called naive faster—
than preorder, which is inspired by Milner’s notion of simulation [29] and
Park’s notion of bisimulation [30]. Our main objective is to convince the reader
that this simple faster—than preorder with its concise definition is not chosen
arbitrarily. This is done by showing that it coincides with several other pre-
orders which formalize a notion of faster—than as well and which are possibly
more intuitive. The semantic theory of our faster—than relation will then be
developed in the next section.

Definition 4 (Naive faster—than preorder)
A relation R C P xP is a naive faster—than relation if the following conditions
hold for all (P,Q) € R and o € A.

(1) P - P' implies 3Q".Q — Q' and (P, Q') € R.
(2) Q — Q' implies AP'. P = P' and (P, Q") € R.
(3) P25 P implies 3Q".Q = Q' and (P',Q') € R

We write P 3. Q if (P,Q) € R for some naive faster-than relation R.

v

Note that the behavioral relation 2 _ . as well as all other behavioral relations
on processes defined in the sequel, can be extended to open terms by the means
of closed substitution [5],i.e., P3_ @ if P|[R/Z]3. Q[R/Z], for terms P, Q with
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free variables in ¥ = (z1,...,2,) and processes R= (Ry,...,Ry). It is fairly
easy to see that J s a preorder, i.e., it is transitive and reflexive; moreover,
., 18 the largest naive faster—than relation. Technically speaking, the naive
faster—than preorder refines bisimulation on action transitions by requiring
simple simulation on clock transitions. Intuitively, P 2_ @ holds if P is faster
than (or at least as fast as) @, and if both processes are functionally equivalent
(cf. Clauses (1) and (2)). Here, “P is faster than @)” means the following: if P
may let time pass and the environment of P has to wait, then this should also
be the case if one considers the slower (or equally fast) process @ instead (cf.
Clause (3)). However, if @ lets time pass, then P is not required to match this
behavior. Intuitively, we use bounded delays and are accordingly interested
in worst—case behavior. Hence, clock transitions of the fast process must be
matched, but not those of the slow process; behavior after an unmatched clock
transition can just as well occur quickly without the time step, whence it is
catered for in Clause (2). We come back to this issue shortly.

As the naive faster-than preorder is the basis of our approach, it is very im-
portant that its definition is intuitively convincing. There are two immediate
questions which arise from our definition and with which we are dealing sep-
arately in the following sections.

3.1 Question I

The first question emerges from the observation that Clauses (1) and (3) of
Def. 4 require that an action or a time step of P must be matched with just this
action or time step by ). What if we are less strict? Maybe we should allow
the slower process () to perform some additional time steps when matching
the behavior of P. This idea is formalized in the following definition of our
first variant of the faster—than preorder, which we refer to as delayed faster—
than preorder. Here, —2" and —%+" stand for the transitive and the transitive
reflexive closure of the clock transition relation ——, respectively.

Definition 5 (Delayed faster—than preorder)
A relation R C P x P is a delayed faster—than relation if the following con-
ditions hold for all (P,Q) € R and « € A.

(1) P %5 P implies 3Q". Q "% -5 Q' and (P, Q') € R.
(2) Q = Q' implies AP'. P =+ P' and (P, Q') € R.
(3) P -5 P' implies 3Q". Q iy Q' and (P',Q') € R.

We write P,%dlyQ if (P,Q) € R for some delayed faster—than relation R.



Asusual, one can derive that J diy is a preorder and that it is the largest delayed
faster—than relation. In the following we will show that both preorders 2 .
and 3 aly coincide. The proof of this first coincidence result is based on a
syntactic relation > on terms, which is defined next and which is similar to
the progress preorder used in [23]. The objective of its definition is to provide
a useful technical handle on the relation between clock transitions and speed;

it is constructed such that property
P =5 P’ implies P' >~ P, (1)
holds for any P, P' € P (cf. Prop. 9(1)).

Definition 6 The relation = C P x P is defined as the smallest relation
satisfying the following properties, for all P, P',Q,Q" € P.

1) P-P (2) P»>o.P

3) Pl@" > P|Q 4) PP+Q>P+Q
5) P\L>P\L  (6) P'[f]> P[f]

7) P'lpz. P/x] = px. P

Always:

(
IfP'>=P,Q > Q: (
(
(

If P' = P, x gquarded in P:

Note that relation > is not transitive and that it is not only defined for pro-
cesses but for arbitrary, open terms. The crucial clauses of the above definition
are Clauses (2) and (7). Since we want P — P’ to imply P’ = P, we clearly
must include Clause (2). Additionally, Clause (7) covers the unwinding of
recursion; for its motivation consider, e.g., the transition pz.o.a.0.b.x —
a.0.b.uzr. o.a.0.b.x.

To establish the desired Property (1) of > we need to state and prove some
technical lemmas. The first lemma is concerned with the preservation of >
under substitution as well as with the preservation of substitution by >.

Lemma 7 (Preservation results)

(1) Let P,P' € P such that P' = P, and let y € V. Then, y is guarded in P
if and only if y is guarded in P,

(2) Let P,P',QQ € P such that P' = P, and let y € V. Then, P'|Q/y] >
PlQ/y]. .

(8) Let P,Q,Q',R € P and z € V guarded in Q' such that P >~ @Q =
Q'|px.R/x]. Then there exists some P' € P satisfying P = P'[uz.R/x]
and P' > @Q'.

10



Part (3) will be of importance in the following section (cf. Lemma 35). The
next lemma relates > to our notion of urgent action sets.

Lemma 8 Let P,Q € P.

(1) If x is guarded in P, then U(P[Q/z]) = U(P).
(2) If Q = P, then U(Q) D U(P).

The proof of Part (1) is an easy induction on the structure of P. Part (2)
follows by induction on the inference length of () > P. Here, one needs to use
Part (1) for Case (7) of Def. 6; note that x is guarded in P’ by Lemma 7(1).

Now we have established the machinery needed to prove the above Property (1)
and, equally important, to prove that > is a naive faster—than relation.

Proposition 9

(1) P -Zs P' implies P' = P, for all terms P, P’ € P.

(2) The relation > satisfies the defining clauses of a naive faster—than re-
lation, also on open terms; hence, = restricted to processes is a naive
faster—than relation, i.e., =pxp=a> N(P xP) C I,

PROOF. The proof of Part (1) is a straightforward induction on the length

of inference of P —— P'. For proving Part (2) we show that, for P’ = P, the

three clauses in the definition of J are satisfied. This is done by induction
on the inference length of P’ = P. We only consider the interesting parts for

some of the cases of Def. 6.

(2) P> 0.P: Our semantics states that P — P’ if and only if 0.P - P’,
for some P’, thereby implying the first two clauses in Def. 4. If P 7+ P’
then 0.P 5 P and P’ = P by Part (1).

(3) P'|Q = P|Q: If P'|Q" — P[|Q', for some P/, due to P' —=s P| (cf.
Rule (Coml)), then P -+ P, with P/ = P, and Q' > Q by the induc-
tion hypothesis. Hence, P|Q — P;|Q and P/|Q' = P1|Q. The other cases
involving Rules (Com2) and (Com3) are similar.

If P'|Q" — P[|Q), for some processes P, and @}, due to P' -~ P] and
Q' ~% Q! (cf. Rule (tCom)), then P % P, and Q —Z» @, with P = P;
and @} > @1 by the induction hypothesis. Using Lemma 8(2) we conclude
from P'|Q' - P/|Q} that P|Q = P.|Q; and P/|Q} - P1|Q;.

(7) P'lpz.P/z] > px.P: By Rule (Rec) any a-transition of ux.P is of the
form pz.P -5 Pi[ux.P/z], for some P, with P -5 P;. Then, by the
induction hypothesis, P’ >+ P] for some P| satisfying P/ = P;. Hence,
P'luz.P/x] = P![ux.P/z] by Lemma 2(1) since z is guarded in P’ by
Lemma 7(1), and we obtain P|[uz.P/x] > Pi[ux.P/x] by Lemma 7(2).

Further, any a-transition of P'[uz.P/x] is of the form P'[uz.P/x] —

o7

P/[uz.P/z] for some Pj, where P’ — P/ for some P{' € P such that

11



P/[ux.P/x] = P/[pz.P/z] by Lemma 2(2), since z is guarded in P’ by
Lemma 7(1). Thus, by the induction hypothesis, P — P; with P{' = P, as
well as uz.P — Pi[uz.P/x] and Pj[ux.P/z] = P{'|uz.P/x] = P\[ux.P/z]
by Lemma 7(2). The treatment of clock transitions is analogous.

The other parts are easier to prove and, therefore, are omitted. O

We are now able to state and prove our first main result.

Theorem 10 (Coincidence I) The preorders 3, and 3, coincide.

PROOF. Clearly, any naive faster-than relation is a delayed one, includ-
ing > pxp according to Prop. 9(2). Thus, it suffices to show that the largest
delayed faster—than relation J diy is a naive faster-than relation. Hence, con-
sider some arbitrary processes P and () such that P 3 dlyQ'

If P %5 P' for some process P, then Q = Qy — Q; — --- — @,, and
P',E',dly Qn, for some n > 1 and some processes Qo, @1, ... ,Q,. By Prop. 9(1)
we get Qp > +++ = Q1 > Q. Since =ipxp € J (see above) and since Raty 15
transitive, we conclude P’ 2 dly Q1.

If P % P' for some process P’ and some action «, then we have Q =
Q = Q1 5 - =5 Qg — @, = Q and P'3, Q' for some
n > 1 and some processes Qo, Q1, ... ,Qn-1,Q,_;,Q'. Hence, we may conclude
P';Ldly ' _, in analogy to the previous case. Since Q,—1; > --- > Qg by
Prop. 9(1), we infer by repeated application of Prop. 9(2) Q; —— Q, for
0 <i<mn-—1,such that Q,_; > --- > Qy = Q". As above, this implies
P’,;l,dly Q" and Q = Q".

The case @ — @', for some process P’ and some action «, is obvious. O

This coincidence result justifies our preference of the simple and technically
more elegant naive faster—than preorder 2 over the probably more intuitive
delayed faster—than preorder 2 dy” Nevertheless, 2 dly could in practice be more
useful since there exist delayed faster—than relations that are not naive faster—

than relations, such as the relation
{{a.0,0".a.07.0), (.0, a.0?.0), (0, 07 .0), (0, 0)},
for any fixed 7 > 1 or j > 1, where o* stands for the nesting of i clock prefixes.

Note that this refers to the relations that define the preorders and not to the
preorders themselves.
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3.2 Question I

We now turn to a second question which might be raised regarding the defi-
nition of the naive faster—than preorder 2 _ . Should one add a fourth clause
to the definition of J that permits, but not requires, the faster process P
to match a clock transition of the slower process Q7 More precisely, P might
be able to do whatever () can do after a time step, or P might itself have
to perform a time step in order to match (. Hence, a candidate for a fourth
clause is

(1) Q% @ implies (P,Q) € R or 3P".P 75 P' and (P, Q) € R.

Unfortunately, this requirement is not as sensible as it might appear at first.
Consider the processes P =4r 0™.a.0|a.0|a@.0 and @ =4 0".a.0|0".a.0]|@.0,
for n > 1. Obviously, we expect P to be faster than ). However, () can engage
in a clock transition to Q' =4 0™ 1.a.0| 0™ *.a.0|@.0. According to Clause (4)
and since P2+, we would require P to be faster than @’. This conclusion,
however, should obviously be deemed wrong according to our intuition of
“faster than.”

The point of this example is that process P, which is in some components faster
than (), cannot mimic a clock transition of () with a matching clock transi-
tion. However, since P is equally fast in the other components, it cannot simply
leave out the time step. The solution to this situation is to remember within
the relation R how many clock transitions P missed out and, in addition, to al-
low P to perform these clock transitions later. Thus, the computation () —Z,"
a.0|a.0/@.0 = 0|a.0|@.0 — 0|0|a@.0 of Q, where we have no clock tran-
sitions between the two action transitions labeled by a, can be matched by P
with the computation P -5 ¢".4.0|0|@.0 -=" ¢.0|0|a.0 - 0|0]a.0.
This matching is intuitively correct, since the first @ occurs faster in the trace
of P than in the trace of (), while the second a occurs at the same absolute
time measured from the system start; only the time relative to the first a is
greater for P. Observe that this example also testifies to the need to remem-
ber arbitrary large numbers of time steps, as n > 1 is finite but arbitrary. We
formalize the above ideas in the definition of the indexed faster—than preorder.

Definition 11 (Family of indexed faster—than preorders)

A family (R;)ien of relations over P, indezed by natural numbers (including0),
is a family of indexed faster—than relations if, for alli € N, (P,Q) € R;, and
ac A:

(1) P =5 P' implies 3Q".Q — Q' and (P', Q') € R;.

(2) Q@ = Q' implies AP'. P - P' and (P', Q') € R;.

(3) P -5 P' implies (a) 3Q".Q - Q' and (P',Q') € R;, or
(b)i>0 and (P',Q) € R; 1.
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(4) Q@ = Q' implies (a) AP'. P 5 P' and (P', Q") € R;, or
(b) (P,Q) € Rit1.

We write P 2, Q if (P,Q) € R; for some family of indeved faster-than rela-
tions (R;)ien-

Intuitively, P 3. means that process P is faster than process () provided
that P may delay up to ¢ additional clock ticks which () does not need to
match. For our purposes, we are mostly interested in relation 2. Note that
there exists a family of largest indexed faster—than relations, but it is not clear
that these relations are transitive. For J this follows from the more interesting
result stating that our naive faster—than preorder 2 coincides with J,. The
proof of this result uses a family of purely syntactic relations >;, for i € N,
similar to relation > in Def. 6.

Definition 12 The relations =; C P x P, for i € N, are_defined as the
smallest relations such that, for all P,P',Q,Q",P,... ,P, € P andi,j € N:

1) P>; P
2a) P, =; 07.P,
2b) O'P >'z+1 P

Always: (
(
(
3) PQ > P|Q P +Q = P+Q
(
(
(

P =Py= = P,
If PP~ P, Q = Q:

)

5) P'\NL»; P\L (6) P'[f] =i P[f]

7a) P'ux. P/x] »; ux. P

7b) px. P! ~; Plux. P'/z]

If P' =; P, x guarded in P:
If P' =; P, x guarded in P':

Observe that Clauses (7a) and (7b) deal with an unwinding of recursion on
both sides of ;. This is related to our aim to match clock transitions from
both sides of R;. Similarly, we allow the addition of ¢ on both sides of >; in
Clauses (2a) and (2b) and also in more general situations than in Def. 6. The
exact form of Clause (2a) is technically motivated; it relies on the fact that,
if P; is faster than P;;; (for 1 < i < n) for syntactic reasons, then P; is faster
than P,, and even more so if we burden P, with additional time steps.

Before presenting our main theorem of this section we state two lemmas whose
proofs can be found in the appendix.

Lemma 13 Let P,(),R € P such that P = @, and let a € A.
(1) R >y R, forallREP

(2) Let P, Q € P such that P =; Q, and let o € A. Then, P -5 P' implies
3Q.Q = Q and P' —; Q'.
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(8) Let P,Q € P such that P =; Q, and let o € A. Then, Q -2 Q' implies
jr.pP =% P and P'=; Q).
(4) Let P,Q € P such that P =¢ Q. Then, U(P) D U(Q).

This lemma states that >, is reflexive and that the relations >; only relate
functionally equivalent terms, in the sense of strong bisimulation. Moreover,
it builds a bridge between the relation >y and urgent action sets. The next
lemma establishes properties similar to those of Clauses (3) and (4) in Def. 11.

Lemma 14 Let P >; () for some P,(Q € P.

(1) P -5 P' implies
e cither: i =0 and 3Q".Q % Q' and P' =; Q',
e or:i>0 and P' =;_1 Q.

(2) Q@ = Q' implies P =;,1 Q'

Using the above lemmas we can now prove the following result.

Theorem 15 (Coincidence IT) The preorders 2, —and 3, coincide.

PROOF. Let (R;)ien be a family of indexed faster—than relations. Then, ac-
cording to Defs. 11 and 4, Ry is a naive faster—than relation, whence J, C
.. For the reverse inclusion consider the largest naive faster-than rela-
tion 3 and define the family R;, fori € N, by PR; Q if dR. P2 R >; Q,
for P,Q € P. We check that these R; satisfy Def. 11. Consider P 2_ R >=; Q.

(1) If P —= P’ for some process P', then R — R' for some process R’
with P'3 R’ by the definition of 2 . as well as @ 25 @' for some
process ' with R >; @' by Lemma 13(2).

(2) The case @ — Q' for some Q' is analogous and uses Lemma 13(3).

(3) If P = P', then R - R' for some R' with P'J R'. Lemma 14(1)
shows Q@ -2+ ' for some process @' with P' Ry (Q’, for i = 0, and
P'R;,_1 @, otherwise.

(4) If Q = @' for some process @', then R ;1 Q' by Lemma 14(2). Thus,
PRi1Q'.

This finishes the proof, since Lemma 13(1) implies 3 € Ry C 3, O
3.8 Combining Both Variants

The delayed and indexed faster-than preorders discussed above reflect two
different, but orthogonal ideas for varying the definition of our naive faster—
than preorder. It is therefore natural to expect that combining the two ideas
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also yields a preorder identical to the naive faster-than preorder. Indeed, this
turns out to be the case. Our formal account begins with the definition of the
combined preorder, which we refer to as delayed—indexed faster—than preorder.

Definition 16 (Family of delayed—indexed faster—than preorders)

A family (R;)ien of relations over P, indexed by natural numbers (including0),
is o family of delayed—indexed faster—than relations if, for alli € N, (P, Q) €
R;, and o € A:

1) P -2 P! implies 3Q". Q -5 -2 53" Q' and (P!, Q') € R,.
(1) p :
2) Q = Q' implies IP'. P =5 P' and (P',Q") € R;.
(2)
3) P 25 P' implies (a 3(2’.CQL>Jr Q' and (P, Q") € R;, or
(3) p : :
(b)i>0 and (P',Q) € R; 1.
5 Q' implies (a) IP'.P = P' and (P', Q") € R;, or
(4) @ — Q' implies (a) : ,
(b) (P, Q') € Rit1.
We write P 3, . Q if (P,Q) € R; for some family of delayed—indezed faster—

~dly,i
than relations (R;)ien-

Theorem 17 (Coincidence III) The preorders 2 and Raiy0 coincide.

PROOF. It is sufficient to show the validity of Rao € Ray = Ry = ~o ©
Rdlyo - The first inclusion is a consequence of the fact that any delayed—indexed
faster—than relation with index 0 is a delayed faster—than relation according
to Def. 5. Similarly, for the second inclusion observe that any indexed faster—
than relation is a delayed-indexed faster-than relation according to Def. 16.

The two equalities are the statements of Thms. 10 and 15, respectively. O

The next section develops the semantic theory of the faster—than preorder.
In particular, it will turn out that our preorder is not a precongruence, and
consequently we will characterize the largest precongruence contained in it. In
this light, the above coincidence results are very strong since they state that
not only the largest precongruences coincide but already the preorders do.
However, this is not always the case as turns out when studying yet another
variant of our naive faster—than preorder, or the delayed—indexed faster—than
preorder, which differs from the others considered so far, although the largest
precongruences coincide. At first sight it might be reasonable to expect that
replacing Conds. (1) and (3) of Def. 16 by

(') P -2 P implies 3Q' Tk, 1> 0. Q "% %' @ and (P!, Q") € Riyp
(3’) P —= P’ implies (a) 3Q" Ik > 0. Q okt Q' and (P, Q') € Rix, or
(b) 7> 0 and <P’, Q) €ER;1
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respectively, would not alter the delayed—indexed faster—than preorder. Unfor-
tunately, this is not true although it is obvious from Def. 11 that the altered
preorder, which we denote by Rait 07 includes the indexed faster—than preorder
and thus, by Thm. 15, the naive faster—than preorder. However, the reverse
inclusion is not valid as one can inspect by studying the following counterex-
ample: P =4 a.0.7.0+a.7.0 and @ =4 a.7.0. Then the family (R;);cn defined
by Ro =ar {{P, @), (7.0,7.0),(0,0)}, R1 =4t {(0.7.0,7.0)}, and R; =4 0, for
1 > 2, is a family of delayed—indexed faster—than relations, in the sense of
Conds. (1’) and (3), i.e., P 3 0 @- In particular, transition P 25 0.7.0 is

matched by Q@ —— — 7.0 such that (0.7.0,7.0) € R, suffices. But P %dlw Q
and P Z_ @, as can easily be verified. Nevertheless, the largest precongruences
contained in J_ and ’;I-’alt,O coincide, as will be shown in the next section.
Summarizing, we hope to have convinced the reader that our naive faster-than
preorder is a sensible candidate for a faster—than preorder, as it coincides with
several other candidates that seem to be at least equally appealing but are
technically not as simple.

4 Semantic Theory of our Faster—than Preorder

This section focuses (i) on developing a fully—abstract precongruence based
on our naive faster-than preorder, (ii) on establishing its semantic theory,
and (iii) on introducing a corresponding “weak” variant which abstracts from
internal, unobservable actions.

4.1 A Fully-abstract Faster—than Preorder

A shortcoming of the naive faster-than preorder 2 _ . as introduced above, is
that it is not compositional. As an example, consider the processes P =4 0.a.0
and @ =g4¢ 0.0, for which P 3 @ holds according to Def. 4. Intuitively, how-
ever, this should not be the case since we expect P = 0.Q) to be strictly
slower than ). Technically, if we compose P and @) in parallel with pro-
cess R =g4; @.0, then P|R > 4.0|a.0, but Q|R—7+, since any clock transition
of Q|R is preempted due to 7 € U(Q|R). Hence, PIR 2 Q|R,ie., 2 _ is not

a precongruence.

The reason for P and @) being equally fast according to 2. lies in our SOS-
rules: we allow @) to delay arbitrarily since this might be necessary in a context
where no communication on a is possible; thus, an additional potential delay
as in P makes no difference; in fact, P and @ have exactly the same transitions.
As R shows, we have to take a refined view once we fix a context, and the
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example indicates that, in order to find the largest precongruence contained
in J_ . we have to take the urgent action sets of processes into account. The
preorder J which repairs the precongruence defect of J_  is defined next.

According to J we generally have that P is strictly faster than ¢.P, which is
to be expected intuitively.

Definition 18 (Strong faster—than precongruence)
A relation R C P x P is a strong faster—than relation if the following holds
for all (P,Q) € R and o € A.

(1) P =5 P' implies 3Q".Q - Q' and (P', Q') € R.
(2) Q@ = Q' implies AP'. P % P' and (P, Q') € R.
(3) P25 P' implies U(Q) CU(P) and 3Q".Q - Q' and (P', Q") € R.

We write P 2 Q if (P,Q) € R for some strong faster—than relation R.

Again, it is easy to see that J is a preorder, that it is contained in J _ , and
that J is the largest strong faster-than relation. Note that >, when restricted
to processes, is not only a naive, but also a strong faster—than relation accord-
ing to Lemma 8(2) and Prop. 9(2).

Theorem 19 (Full abstraction)

The preorder 3 is the largest precongruence contained in 3, .

PROOF. We first need to establish that J is a precongruence. This can be
done in the usual fashion [5]. Indeed, when comparing our technical framework
to the bisimulation approach for the timed process algebra CSA developed
in [31], which in turn extends CCS, then most cases of the compositionality
proof can be easily adapted. One exception is our clock—prefix operator in
TACS, for which we need to show that P 3 () implies 0.P 2 0.Q). This is
obvious, however, since the initial clock transition of ¢.P can be matched
by the initial clock transition of ¢.() and since all action transitions of o.P
and 0.Q) are those of P and @ according to Rule (Pre). In addition, we present
the compositionality proof for parallel composition, as it involves the rather
unusual side condition regarding urgent action sets. By the definition of 3, it
suffices to prove that R =4 {(P|R,Q|R)| P 2 Q, R € P} is a strong faster—
than relation. Therefore, let (P|R, Q|R) € R.

e Action transitions: The cases P|[R — S and Q|R —= S, for some o € A
and some S € P, follows along the lines of the corresponding cases in CCS [5]
and, therefore, are omitted here.

e Clock transitions: Let P|[R —» S for some S € P. According to the
only applicable Rule (tCom) we know that (i) P - P’ for some P' € P,
(ii) R = R’ for some R' € P, (iii) U(P)NU(R) = 0 as well as 7 ¢ U(P) and
7 ¢ U(R), and (iv) S = P'|R'. Since P 2 @, there exists a process @' such
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that U(Q) C U(P), @ = @', and P' 2 Q'. Therefore, we may conclude
QIR % Q'|R' by Rule (tCom) since U(Q) N U(R) = B, and U(Q|R) =
UQ)U U(R) CU(P)U U(R) = U(P|R), by the definition of urgent action
sets and the fact that 7 ¢ U(P), 7 ¢ U(Q), and 7 ¢ U(R). Moreover,
(P'|R',@'|R") € R holds by the definition of R.

The proof of the compositionality of recursion requires one to introduce a
notion of strong faster—than up to. This definition and the compositionality
proof itself is very similar to the one in CCS regarding strong bisimulation [5].

We are left with establishing that J is the largest precongruence contained
in 2 . The proof is a slight adaptation of one for CSA in [31]. As it is non—
standard, it is worth presenting it in full here. From universal algebra, it is
known that the largest precongruence 27 contained in the preorder 2 _ exists,
and that P 37 @ if and only if C[P] 3 C[Q] for every TACS context Clz],
where a TACS context C|z] is a TACS term with one free occurrence of
variable z and no free occurrences of other variables. Recall that, for any con-
text C[z], term C|[P] is obtained by substituting P for z in C|z] without any
a—conversion, i.e., free variables in P might be captured. As J is a precon-
gruence contained in 3, we have 3 C 27  and it remains to show that
P 2 @, for some processes P,Q € P, whenever C[P] 3 C[Q], for all TACS
contexts C[z]. For this it suffices to consider the relation

D oue =dt P, Q)| C[P] 2., Cr[Q] for some finite £ D sort(P) U sort(Q)} .

Here, Cr[x] =4¢ x| H; and
H[; =df /,LQ?(GO+Z{T(DL +dL.’L') | L Q Z}),

where Dy, is defined as > 47, d.0. Note that H, is well-defined according to
Lemma 3 due to the finiteness of £. The actions e and d;, and their comple-
ments are supposed to be “fresh” actions. In this section we do not exploit the
presence of the distinguished action e, but we do so when re—using the above
context in the proof of Thm. 32. Note that J_  is a preorder; while its reflex-
ivity is obvious, transitivity follows from the property that C7[P]3 Cr[Q]
implies Cp/[P]3  Cr/[@Q], for all L' O L D sort(P) U sort(Q). To finish off our
proof of Thm. 19, it is sufficient to establish the inclusion 2, C 2, since
the inclusion ,Q,fw C 2, Obviously holds.

We show that 2 is a strong faster—than relation according to Def. 18. Let
P, Q € P such that P3_ @, ie., we have Cc[P]2 C,[Q] for some finite
L 2 sort(P) U sort(Q) by the definition of 3 . In the following we consider
two cases distinguishing whether process P performs an action transition or a
clock transition. In each case the transition of P leads to a transition of C[P].
According to the definition of J . matching transitions must exist which
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mimic each step. From their existence we may conclude additional conditions
which are sufficient to establish 2~ as a strong faster-than relation.

e Situation 1: Let P -+ P’ for some process P' and some action a. According
to our operational semantics we have C.[P] = P|H; — P'|H; = C[P'].
This transition can only be matched by a corresponding transition of @),
say Q@ — @' for some @'. This is even true in case a = 7, because the 7
successors of H, have the distinguished actions d; enabled. Therefore, we
have C[Q] = QIH, = Q'|Hy = C¢[Q'] and C¢[P'] 3 C,[Q']. Because
sort(P') C sort(P) and sort(Q") C sort(Q), we have £ D sort(P’) U sort(Q’),
whence P'2  @Q'. A transition Q — @' can be matched analogously.

~auzr

e Situation 2: Let P -2+ P' for some process P'.

P | H, 3 Q H,

P(Dy+dp.He) 2 Q| (Dy +dy.Hy)

Nnv

P'|(Dp+dyp.He) 2. Q'|(Dr+dg.He)

Nnv

dL dL

P'| H, 2 Q' H,

As illustrated in the above figure we let C;[P] perform a 7-transition
to P‘HL, where HL =df DL + dL-H[, and L =df {E ‘ cE (SOI’t(P) U SOFt(Q)) \
U(P)}; note that L C L. Then, P|Hy can perform a clock transition to
P'|Hj, according to Rule (tCom). Finally, we let P'|H}, engage in the dj—
transition to P'|H;. Process C,[(Q] has to match the first step by a 7—
transition to @Q|Hy since only this term has the distinguished action dy,
enabled.

Now we take a closer look at the second step. We have to match a
clock transition. Therefore, (Q has to perform a clock transition to some ',
and Hp, has to idle, i.e., Q|H, —— Q'|H. According to Rule (tCom), the

condition U(Q) NU(Hy) = () has to be satisfied. Because of the choice of L,
this implies U(Q) C U(P).
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Finally, the last step can only be matched by the transition Q'|Hy, N
QI|H£. Thus, C[’[P,] = Pl‘Hﬁ ,.%m]QI‘Hﬁ = CE[QI]

Since sort(P’) C sort(P) as well as sort(Q') C sort(Q®), it follows in analogy
to Situation (1) that P'J Q'

Thus, 2. is a strong faster—than relation, ie., 2~ C 2 according to Def. 18.

Hence, 2° C J .~ C 2 which together with the inclusion g C J? obtained
nv

earlier vields 3 = 3¢  as desired. O
~J Nnru’

In Sec. 3 we showed that the naive faster—than preorder coincides with several
other variants, in particular the delayed faster—than preorder and the indexed
faster-than preorder. This very strong result immediately implies the coinci-
dence of the largest precongruences contained in these preorders. It should be
noted that alternative characterizations of the delayed faster-than precongru-
ence and the indexed faster-than precongruence can be given similar in style
to the definitions of the corresponding preorders. Since these characterizations
are not of importance for the remainder of this paper, they are omitted here.

We are now able to finish our study of alternative definitions of our faster—
than preorder from Sec. 3.3 by establishing that the precongruences induced
by the naive faster—than preorder and the altered delayed—indexed faster—than
preorder coincide.

Theorem 20 (Coincidence IV)

The largest precongruences & = J° and 2%, coincide.
K

The claim follows by universal algebra from the inclusion chain 3¢ C 3¢ = C

Ny — ~alt,0 —

which implies 3 = 3¢ = 3¢ . The first inclusion of this chain is
~ ~ny ~alt,0

implied by 2= 3J, € 2,,, Which immediately follows from Thm. 15 and

the definitions of these preorders. The second inclusion J°, = C J_is more

challenging to establish. We first define an auxiliary relation

|
Nn'l)’

R =t UL, Q) | (PIK)\L I 0 (QIEL)\ L
for some finite £ D sort(P) Usort(Q) },

where

K¢ =gt px. (h.0+ 1.(0.7.0 + foz) + > 7.(1.0+ f7.0 + @.z)),
acl

and h, f,, and fz, for a € L, are distinguished actions, i.e., they and their
complements are not actions in L. This reduces the proof to establishing
Ry & 2, Which can be done in a fashion similar in style to the largest
precongruence part of the proof of Thm. 19; see the appendix for more de-
tails.
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We conclude this section by showing that TACS is a conservative extension
of CCS [5]. Observe that, due to the format of Rules (tNil) and (tAct), TACS
is not an operational conservative extension in the sense of [32]. Our notion of
conservativity relates our strong faster—than precongruence with strong bisim-
ulation in CCS [5]. As noted earlier we can interpret any process not containing
a o—prefix as a CCS process, since then all relevant semantic rules for action
transitions are identical to the ones in CCS. Moreover, for all TACS terms,
we can adopt the equivalence strong bisimulation [5], denoted by ~, which
is defined just as J when omitting the third clause of Def. 18. Furthermore,
we denote the term obtained from some term P € P when deleting all o’s
by o—strip(P). We may now state the following conservativity results.

Theorem 21 (Conservativity) Let P, QQ € P.

(1) Always P 2 Q implies P ~ Q.

(2) If P and @ do not contain any o-prefizes, then P 23 Q if and only if
Q2P if and only if P ~ Q.

(3) Always P ~ o—strip(P); furthermore, P — P' implies P ~ P'.

PROOF. Part 1 is an immediate consequence of the definitions of ~ and 32 .

Part 2 follows by the fact that terms without o—prefixes (i) can only engage
in a clock transition to themselves, namely if and only if no internal transition
is enabled, and (ii) possess the same urgent actions whenever they are related
by 2 or ~, since any action they can perform is urgent. 3

For the first claim of Part 3, one shows by induction on the structure of
process P that the action transitions of o—strip(P) are exactly all transitions
o -strip(P) — o-strip(P') where P — P'. For the second claim of the third
part, one first proves that P - P’ implies that o—strip(P) and o—strip(P')
are identical up to unfolding of recursion. Then, one applies the first claim to
finish the proof. O

This shows that our strong faster-than preorder refines the well-established
notion of strong bisimulation. Moreover, if no bounded delays occur in some
processes, then these processes run in zero—time and our strong faster—than
preorder coincides with strong bisimulation. In other words, the strong faster—
than preorder is thus restricted to considering the “functional” behavior of

3 Alternatively, this second part may be concluded by inspecting the axiomatization
of the strong faster-than precongruence, which can be found in the next section.
Note that all axioms, except Axiom (P5) that deals with o-prefixes, are valid in
both directions, “J” and “C”.
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such processes only, irrespective of their relative speeds. That the bounded de-
lays in TACS processes do not influence any “functional” behavior is demon-
strated in the third part of Thm. 21.

Although the above embedding of CCS yields the technical conservation re-
sult stated in Thm. 21(2), this might intuitively not be very pleasing: one
might expect that the parallel execution of actions is faster than their arbi-
trary sequential execution, but the result shows that processes a.0(b.0 and
a.b.0+0.a.0 are equally fast with respect to 2 . Intuitively, for things happen-
ing with no time between them, it is difficult to see whether they happened
one after the other or together. Of course, the zero-time between a and b is
just a mathematical abstraction, but a useful one; it stands for a very short,
negligible time. As an alternative, one could follow the approach of [23] and
assume that actions might take some time, and for a uniform embedding
of CCS one can give each action a bounded delay of one. Technically, this
means to embed ordinary CCS—terms into TACS by inserting a o—prefix be-
fore each action. Thm. 21(2) shows that this translation does not change any
“functional” behavior. With this embedding, however, the classical expansion
law “a.0|b.0 = a.b.0 + b.a.0” is not preserved due to timing: 0.a.0 | 0.b.0 is
strictly faster than 0.a.0.0.0 + 0.b.0.a.0; consider the matching of the initial
clock transition.

4.2 Aziomatization

In this section we provide a sound and complete axiomatization of our strong
faster—than precongruence 3 for the class of finite sequential processes. Ac-
cording to standard terminology, a process is called finite sequential if it does
neither contain any recursion operator nor any parallel operator. Although
this class seems to be rather restrictive at first sight, it is simple and rich
enough to demonstrate, by studying axioms, how exactly our semantic theory
for 3 in TACS differs from the one for strong bisimulation in CCS [5]. We
refer the reader to the end of this section for a discussion on the implications
when considering to axiomatize larger classes of processes. As a notational
convention we write P for the set of all finite sequential processes, ranged

seq
over by s, t, and u.

Now we turn to the axioms for strong faster—than precongruence which are
displayed in Table 4, where any axiom of the form ¢ = u should be read as
two axioms ¢t J v and u J ¢t. We write ¢ O w if ¢t O u can be derived
from the axioms. The correctness of our axioms with respect to 4 can be
established as usual [5]. Axioms (A1)-(A4), (D1)—(D4), and (C1)—(C5) are
exactly the ones for strong bisimulation in CCS. Hence, the semantic theory
of our calculus is distinguished from the one for strong bisimulation by the
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Table 4
Axioms for finite sequential processes

(A1) t+u = u+t (D1) o[f] =0

(A2) t+ (utv) = (t+u)+v (D2 (ad)f] = fle)-¢f])

(A3) t+t =t D3)  (o:t)f] = o(¢f])

(Ad)  t+0 =1t (D4) (t+u)f] = #f]+ulf]

(Pl) ot+71u =t+71u (C1) O\L =0

(P2) at+o0.au = at+au (C2) (at)\L =0 a€LUL
(P3) t+ot =t (C3) (at)\L = a.(t\L) a«a¢LUL
(P4) o.(t+u) = ot+ou (C4) (ot)\L = o.(t\ L)

(P5) t J ot (C5) (t+u)\L = (¢\L)+ (u\L)

additional Axioms (P1)-(P5). Intuitively, Axiom (P1) reflects our notion of
maximal progress or urgency, namely that a process, which can engage in
an internal urgent action, cannot delay. Axiom (P2) states that, if an action
occurs “urgent” and “non—urgent” in a term, then it is indeed urgent, i.e., the
non-urgent occurrence of the action may be transformed into an urgent one.
Axiom (P3) is similar in spirit, but cannot be derived from Axiom (P2) and
the other axioms. To see this, consider the instance 0 + 0.0 = 0, or due to
Axioms (A4) and (P5) simply 0.0 J 0, and observe in Table 4 that there is no
applicable axiom that allows one to ever remove the ¢ in ¢.0. Indeed, it would
have been sufficient to include 0.0 J 0 instead of Axiom (P3), from which
F P+ o0.P 1 P follows for finite sequential processes P by induction on the
size of P. The motivation for including Axiom (P3) in its present form is due to
its soundness for arbitrary TACS processes, not only for finite sequential ones;
this is also true of the other axioms. The soundness proof of Axiom (P3) “3J”
involves establishing that {(P+ Q,P)|Q —— P} U {(P,P)|P € P} is a
strong faster—than relation (cf. Lemma 1(2) and the persistency axiom in [33]).
Axiom (P4) is a standard axiom in timed process algebras and testifies to the
fact that time is a deterministic concept that does not resolve choices. Finally,
Axiom (P5) encodes our elementary intuition of o—prefixes and speed within
TACS, namely that any process ¢ is faster than process 0.t which might delay
the execution of ¢ by one clock tick. Its correctness follows from the facts that
t > o.t by Def. 6(2) and that > is a strong faster—than precongruence by
Prop. 9(2), Lemma 8(2), and Def. 18.

To prove the completeness of our axiomatization for finite sequential processes,
we introduce a notion of normal form, based on the following definition. A

24



finite sequential process t is in summation form if it is of the shape

t = oty [+o0d,]
iel

where (i) I denotes a finite index set, (ii) all the #; are in summation form,
(iii) the subterm in brackets is optional and, if it exists, ¢, is in summation
form, and (iv) «; € A, for all i € I. Moreover, Y is the indexed version of +;
we adopt the convention that the sum over the empty index set is identified
with process 0. As expected, we obtain the following result.

Proposition 22 For any t € P there ezists some u € P in summation
form such that Ft = u.

In the remainder, the following definition of the set of initial actions, in
which some process ¢ in summation form can engage in, will prove useful:
Z(t) =qt U(t) [U Z(t,) ] It is easy to establish that Z(¢) is compatible with
our operational semantics, i.e., the equality Z(¢) = {a € A|t — } holds.

Definition 23 (Normal form)

The process Y ijcr ity [+ o.ty | in summation form is in normal form if
all terms t;, for i € I, are in normal form and, in case the optional term in
brackets is present, the following is satisfied: (i) t, # 0; (i) Vi € I. o # T
(113) Vi € I. a; ¢ Z(t,); and (iv) term t, is in normal form.

Before we state the key proposition that every finite sequential process can be
transformed into a process in normal form, we note that Conds. (ii) and (iii)
exactly correspond to our abovementioned intuitions regarding Axioms (P1)
and (P2), respectively.

Proposition 24 For anyt € Pﬁig'q, there exists some u € P’srié'q

such that -t = u and U(t) C U(u).

i normal form

Note that the set of urgent actions might increase when transforming a pro-
cess into normal form due to the application of Axiom (P1), whereas the set
of initial actions does not change. This former inclusion is exploited in the
completeness proof of our axiomatization. However, before proceeding to our
completeness theorem we state a technical lemma.

Lemma 25 Let t = Yy ity [+ oty | and u = Yjc; B5.u; [+ oug | be
processes in normal form such that t 3 u. Moreover, let B C {§;|j € J}.

(1) {B;|jeJ} C{as]iel}.
(2) E{iEI|aiEB} .l 3 E{j&”ﬂjEB} ,Bj.Uj.
(3) 2ojier |aig B} Qi-li [+o0t,]3 Z{jeJ|ﬂj¢B} Bj.u; [+ o.ug |.

We are now able to state and prove the main result of this section.
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Theorem 26 (Correctness & completeness)
For finite sequential processes t and v we have: -t 3 u if and only if t 2 u.

PROOF. The correctness “=" of our axiom system follows by induction
on the length of the inference ¢ J u, as usual; we leave it as an exercise to
the reader to show that 2 may be safely replaced by 2 in each axiom. Thus,
we are left with proving completeness “<=7". By Prop. 24 we may assume
that the processes ¢ and v are in normal form with ¢t = >,c; a;.t; [+ 0.t, | and
u =Y ey Bjuj [+ 0.u, |. We proceed by induction on the sum of the process
sizes of t and u as follows. For the induction base we have ¢t = u = 0; hence,
F 0 J 0 trivially holds and we are left with the induction step.

We first consider the case that neither ¢ nor u possesses an optional o—
summand. According to the definition of J, there exists for each i € I some
j' € J such that ay = B and ¢y Jujy. By induction hypothesis we may
conclude = ¢y 3 wuy, whence = ay .ty + ey B5u; I Byruj + Xiey Bju; =
Y jes Bj.u; by Axiom (A3) and possibly Axioms (A1) and (A2). By repeating
this reasoning for each ¢ € I, we obtain & 3,y ai.t; + > ey Bj-u; =t +u 3
u = Y ey Bj-uj. Analogously, we can infer - ¢ 3 ¢ + u. Hence, - ¢ J u by
transitivity.

Otherwise, we apply Lemma 25(2) to t, u, and B = {f;|j € J}, which
yields Y ricr|aeny Qicli 2 Y.{jes|8;eB} Bj.u;. As at least one of ¢, and u, is
missing when compared to ¢ and u, we may apply the induction hypothesis to
conclude Z{ieﬂaiEB} Oéz'.tz' Q E{jEJ|,8jEB} ﬂj.uj.

Furthermore, by Lemma 25(3), Yqicr|a¢ny ®i-ti [+ 0ts | 2 0 [+ 0up | If
B # (), one can apply the induction hypothesis to conclude that this relation
is also derivable in our axiom system, and we are done. Otherwise, both ¢
and u possess a o—transition, which yields > ,c;;.t; [+ t, | 2 u, by the
definition of 3, with u, = 0 if the summand o.u,, is absent. According to the
induction hypothesis (observe that at least one ¢ is missing when compared
to t and u) we obtain - Y ,c;a;.t; [+ t, | 3 u,. Hence, we may conclude
F Y serait; [+ 0ts ] 3 0.(Cicraits) [+ 0t ] 3 o Xieraiti [+, ]) 3
oy 3 0 [+ o.u, | by Axioms (P5), (P4), and (A4), by the above, and by
the fact - 0+ 0.0 = 0 (cf. Axiom (P3) for P=0). O

It is very much desirable to extend our axiomatization to cover parallel com-
position, too, but this is non—trivial and still an open problem. As already
mentioned, 0.a.0 | 0.0.0 is strictly faster than ¢.a.0.6.0 + 0.b.0.a.0; but since o
is synchronized, a more sensible expansion law would try to equate 0.a.0 | 6.5.0
with 0.(a.0 | b.0). Unfortunately, this law does not hold since the latter process
can engage in an a-transition to 0 | 5.0 and is therefore strictly faster than the
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former. Thus, our situation is the same as in Moller and Tofts’ paper [15] which
also considers a bisimulation-type faster-than relation for asynchronous pro-
cesses, but which deals with best—case rather than worst—case timing behavior.
It turns out that the axioms for the sequential sub—calculus given in [15] are
all valid in our setting as well; however, we have the additional Axioms (P1)
and (P2) which both are valid since o is just a potential delay that can occur
in certain contexts. Also Moller and Tofts do not treat parallel composition
completely, just some expansion-like inequalities are listed. Once we know
how parallel composition can be dealt with, extending our axiomatization to
regular sequential processes, i.e., the class of finite-state sequential processes
that do not contain restriction and relabeling operators inside recursion, can
be done by adapting Milner’s technique for uniquely characterizing recursive
processes by systems of equations in normal form [34].

4.8 Abstracting from Internal Computation

The strong faster-than precongruence introduced in Sec. 4.1 is too discrimi-
nating for verifying systems in practice. It requires that two systems have to
match each other’s action transitions exactly, even those labeled with the in-
ternal action 7. Consequently, one would like to abstract from 7’s and develop
a faster—than precongruence from the point of view of an external observer.
As our algebra is a derivative of CCS, our approach closely follows the lines
of [5].

We start off with the definition of a naive weak faster—than preorder which
requires us to introduce the following auxiliary notations. For any action o we
define & =g ¢, if @ = 7, and & =q; v, otherwise. Further, we let == =43 ——"
and write P == (Q if there exist R and S such that P == R = S == Q.

Definition 27 (Naive weak faster—than preorder)
A relation R C P X P s a naive weak faster—than relation if the following
conditions hold for all (P,Q) € R and o € A.

(1) P =% P' implies 3Q".Q =% Q' and (P',Q') € R.
(2) Q — Q' implies AP'. P == P' and (P, Q') € R.
(3) P -5 Plimplies 3Q",Q",Q".Q = Q" Q" == Q' and (P',Q') e R.

We write P 2 Q if (P,Q) € R for some naive weak faster-than relation R.
Since no urgent action sets are considered, it is easy to see that g is not a
precongruence. To get closer to our goal to define an observational faster-than

precongruence we re—define the third clause of the above definition; please note
the analogy to the third clause of Def. 18.
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Definition 28 (Weak faster—than preorder)
A relation R C P x P is a weak faster-than relation if, for all (P,Q) € R
and o € A:

(1) P 5 P' implies 3Q'.Q == Q' and (P',Q') € R.

(2) Q %5 Q' implies 3P'. P =% P’ and (P',Q') € R.

(3) P = P implies 3Q',Q", Q".Q =5 Q" 5 Q" =% Q' U(Q") CU(P),
and (P', Q') € R.

We write P £ Q if (P,Q) € R for some weak faster—than relation R.

While the matching rules for action transitions are the same as in CCS, the
one for clock transitions might need some justification due to the inclusion
condition on urgent action sets. This condition refers to the processes Q"
and P and not to the processes () and P. The idea is that the clock transition
emanating from state Q" in the weakly matching transition of ) must not
be preempted by an urgent communication on an urgent action if it is not
preempted in P by such a communication. Intuitively, when matching P,
process () might be able to ‘put off’ the clock transition finitely often; however,
when it does match it, namely in state Q)”, it must do so under no greater
‘urgent-communications constraint’ than P does. From the above definition
we may conclude that £ is the largest weak faster-than relation and that £
is a preorder. In addition, the following proposition holds.

Proposition 29 The relation £ is a largest precongruence, for all operators
except summation, that is contained in g . (Hence, & subsumes the largest
precongruence contained in g .)

~

The reason for the non—compositionality of the summation operator is similar
to that with respect to observational equivalence in CCS [5]. Fortunately, the
summation fix used for other bisimulation—based timed process algebras, such
as CSA [31], proves effective for TACS, too.

Definition 30 (Weak faster—than precongruence)
A relation R C P x P s a weak faster-than precongruence relation if the
following conditions hold for all (P,Q) € R and « € A.

(1) P - P' implies 3Q'.Q == Q' and P' 2 Q.
(2) Q@ = Q" implies AP'. P = P' and P' 2 Q'".
(3) P -5 P' implies U(Q) CU(P) and 3Q".Q = Q' and (P',Q') € R.

We write P2 Q if (P,Q) € R for some weak faster-than precongruence rela-
tion R.

We first show that < is indeed a precongruence and also present a simple
full-abstraction result.
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Theorem 31 The relation 2 is the largest precongruence contained in = .

It is also worth pointing out that the strong faster-than precongruence 3 is
included in the weak faster-than precongruence <, which immediately follows
by inspecting the respective definitions. With Thm. 31 we are now able to
state the main theorem of this section.

Theorem 32 (Full-abstraction)

The relation 2 is the largest precongruence contained in g, .
The validity of this theorem is a consequence of a general result established
in universal algebra since (1) g is a preorder contained in g_  (cf. Prop. 29)
that comprises the largest precongruence contained in g, and since (2) 2 is
the largest precongruence contained in g (cf. Thm. 31).

We leave an axiomatization of our weak faster-than precongruence for future
work. It should just be mentioned here that all classical 7—laws are valid for
TACS, too, with the exception of the first 7—law for time steps: 0.7.P # ¢.P,
where = stands for the kernel of <, since 7.P # P.

5 Example

In this section we apply our semantic theory to two examples. The first ex-
ample is adapted from the one in Moller and Tofts’ paper [15] and compares
the speeds of different forms of mail delivery. The second example deals with
two implementations of a two—place storage. Both examples exercise differ-
ent features of our theory. While the former applies our axioms for strong
faster-than precongruence, the latter relies on the classical bisimulation—style
proof-principle for our weak faster-than precongruence.

5.1 Mail Delivery

Consider a fortunate nephew who has three uncles living overseas, all of whom
send the nephew a selection of local newspapers at least every 14 days. There
are two kinds of delivery possible: the quite expensive air mail AM which
takes at most 2 days to deliver and the cheap surface mail SM which might
take as long as 10 days. However, for some post—internal reason, occasionally
surface-mail items are transported via air mail, too. Moreover, it is important
to know that the three uncles come from different stratums: the rich uncle RU
can always afford the air-mail postage, while the middle—class uncle MU only
sometimes can and the poor uncle PU never can. In our algebra TACS, this
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situation can be modeled as follows.

RU =4 pz.(AM | o'4.2) “rich uncle”
MU =4 pz.((AM + SM) | o.7) “middle-class uncle”
PU =g px.(SM | ot.z) “poor uncle”
AM =g mail.o?.deliver.0 “air mail”
SM =g4¢ mail.o'?.deliver.0 + mail.c?.deliver.0 “surface mail”

Intuitively, since we are concerned with worst—case timing behavior, one would
expect the process RU to be faster than MU, but MU and PU to be equally
fast. Indeed, this turns out to be the case in our setting, as we will show by
referring to the axioms of our strong faster-than precongruence.

It is convenient to first establish an auxiliary result, namely that AM J SM.
According to Axiom (P5), F o%.deliver.0 3 o'°.deliver.0 holds. This implies
F mail.o?.deliver.0 + mail.o?.deliver.0 J mail.c'°.deliver.0 +mail.c?. deliver.0
by the rules of axiomatic reasoning. Finally, we apply Axiom (A3) in order
to obtain F mail.o?.deliver.0 O mail.c'C.deliver.0 + mail.o?.deliver.0. Thus,
F AM 3 SM by the definitions of AM and SM. Moreover, using this and Ax-
iom (A3), we have - AM = AM+AM J AM+SM 1O SM+SM = SM, whence
AM 2 AM + SM 2 SM due to the correctness of the axioms (cf. Thm. 26). Be-
cause of the compositionality of J with respect to parallel composition and
recursion, one may immediately derive RU J MU 2 PU. Since 4 C <, we
thus have RU & MU 2 PU.

It remains to show that PU g MU and that MU Z RU. For establishing the
former, consider = SM = mail.o'°.deliver.0 + AM = mail.c'°.deliver.0 + AM +
AM = SM + AM according to the definitions of AM and SM, as well as
Axioms (A2) and (A3). This implies SM J SM + AM by Thm. 26 and fur-
ther PU 2 MU due to the congruence property of . Again, the property
< C < implies PU< MU as well. For establishing the latter, consider the
computation MU 2% 510 deliver.0 | o4 MU 2% o8 deliver.0 o2 MU %
o’ .deliver.0| o'*. MU of MU, which RU can potentially only match as follows:
RU 2% 52 eliver.0 | 0**.RU A deliver.0 | 0'>.RU -~ deliver.0 | c''.RU.
However, U(deliver.0|o'2.RU) = {deliver} Z O = U(c®.deliver.0|c?.MU),
which shows MU Z RU. Analogous reasoning establishes MU £ RU.

Summarizing, we have (i) RUZ MU 2 PU, (ii) PU & MU, and (iii) MUZ RU.

Hence, process RU is faster than process MU, whereas processes MU and PU
are equally fast, as intuitively expected.
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Fig. 1. Semantics of the array variant (left) and the buffer variant (right).

5.2  Implementation of a 2-place Storage

This second example deals with two implementations of a 2-place storage in
terms of an array and a buffer, respectively. Both can be defined using some
definition of a 1-place buffer, e.g., B, =g px.0.in.out.z, which can alternately
engage in communications with the environment on channels in and out [5].
Observe that we assume a communication on channel out to be urgent, while
process B, may autonomously delay a communication on channel in by one
clock tick (cf. the single clock—prefix in front of action in). Finally, subscript e
of process B, should indicate that the 1-place buffer is initially empty. On
the basis of B, one may now define a 2—place array 2ARR and a 2—place
buffer 2BUF as follows:

2ARR =q4¢ B.|Be and 2BUF =q¢ (Belc/out]| Be[c/in)) \ {c} -

While 2ARR is simply the (independent) parallel composition of two 1-place
buffers, 2BUF is constructed by sequencing two 1-place buffers, i.e., by taking
the output of the first 1-place buffer to be the input of the second one (cf.
the auxiliary internal channel ¢). Intuitively, we expect the array to behave
functionally identical to the buffer, i.e., both should alternate between in and
out actions. However, 2ARR should be faster than 2BUF since it can always
output some of its contents immediately. In contrast, 2BUF needs to pass any
item from the first to the second buffer cell, before it can output the item.
For the sake of completeness we briefly remark that our buffer formalization
does not necessarily preserve the order of items buffered, which is in line with
Milner’s classical buffer examples for CCS [5].
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Table 5
Pairs in the considered weak faster—than relation

((Be|Be), (Be|Be) \ {c})  ((BtBe), (Be|Be) \ {c})  ((BelBr), (Br[Be) \ {c})
((B|Be), (Be|Br) \ {c})  ((Bt|Bs), (Be|Bo) \ {c})  ((Bs[Br), (Be[Br) \ {c})
((Bi[Bs), (Bo[Br) \ {c})  ((BelBs), (Be|Be) \ {c})  ((Bs[Be), (Be|Be) \ {c})
((Bo[Br), (Be|Br) \ {c})  ((Bi[Bo), (Be[Br)\{c})  ((Be|Br), (Be|Bp) \ {c})
((Bt[Bs), (Be[Be) \ {c})  ((Bo|Br), (Be|Be) \ {c})  ((Bs[Be), (Bo[Be) \ {c})
((BslBs)s (BoBo) \ {c})  ((BolBr), (BelBs) \ {c})  ((Bo|Bi), (Bo|Br)\ {c})
((Be|Bo), (Bo|Be) \ {c})

The semantics of the 2—place array 2ARR and our 2—place buffer 2BUF are de-
picted in Fig. 1 on the left and right, respectively. For notational convenience,
we let B, stand for the process in.out.B, and By for out.B,. Moreover, we
leave out the restriction operator \{c} in the terms depicted for the buffer
variant. The highlighted 7—transition indicates an urgent internal step of the
buffer. Hence, process (B¢|B,) \ {¢} cannot engage in a clock transition. The
other 7—transition depicted in Fig. 1 is non—urgent. As desired, our semantic
theory for TACS relates 2ARR and 2BUF. Formally, this may be witnessed by
the weak faster-than relation given in Table 5. It is easy to check, by employ-
ing Def. 28, that this relation is indeed a weak faster-than preorder, whence
2ARR £ 2BUF. Moreover, since both 2ARR and 2BUF do not possess any ini-
tial internal transitions, they can also easily be proved to be weak faster—than
precongruent, according to Def. 30. Thus, 2ARR < 2BUF, i.e., the 2-place
array is faster than the 2-place buffer in all contexts, although functionally
equivalent, which matches our abovementioned intuition.

6 Discussion and Related Work

This section highlights the unique features of our approach when compared
to related work. There exists a large number of papers on timed process al-
gebras; we refer the reader to [35] for a survey. Usually, these algebras focus
on modeling synchronous systems, where components are under the regime
of a global clock, and do not present faster—than relations. The latter is not
surprising because, as argued in [15], it seems unlikely that for synchronous
systems a faster—than preorder satisfying a few reasonable properties and being
a precongruence for parallel composition exists. Traditionally, timed process
algebras aiming at reasoning about synchronous systems have two common
features: a delay operator specifying the exact time a process has to wait be-
fore it can proceed, and a timeout operator stating which enabled actions are
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withdrawn and which ones are additionally offered at a particular instant of
time. In contrast, our work deals with asynchronous systems where actions
are not enabled or disabled as time passes.* Indeed we added discrete time to
CCS simply to evaluate the performance of asynchronous processes and not
to increase the functional expressiveness of CCS. We did this by introducing
a clock prefix operator specifying a single time bound which we interpreted
as upper bound for delays. Some other timed process algebras annotate ac-
tions or processes with upper as well as with lower time bounds in the form
of timing intervals [6,36]; however, no faster-than relations have been defined
in these settings.

Research comparing the worst—case timing behavior of asynchronous systems
initially centered around De Nicola and Hennessy’s testing theory [22]; it was
first conducted within the setting of Petri nets [19,37,21,16] and later for a
Theoretical-CSP—style [11] process algebra, called PAFAS [23,24]. The justifi-
cation for adopting a testing approach is reflected in a fundamental result stat-
ing that the considered faster-than testing preorder based on continuous—time
semantics coincides with the analogous testing preorder based on discrete—time
semantics [23]. This result depends very much on the testing setting and is
different from the sort of discretization obtained for timed automata [17]. In
PAFAS, every action has the same integrated upper time bound, namely 1.
This gives a more realistic embedding of ordinary process terms, while a CCS—
term in TACS runs in zero-time. In contrast, TACS allows one to specify
arbitrary upper time bounds easily by nesting o-prefixes. Also, the equational
laws established for the faster-than testing preorder of PAFAS are quite com-
plicated [24], while the simple axioms presented here provide a clear, compre-
hensive insight into our semantics.

Some researchers consider testing [22] to be a more intuitive approach to se-
mantics than bisimulation [5]. However, we feel that both are related within
our setting. Essentially, the faster-than testing preorder presented for PAFAS
in [23] is characterized as inclusion of traces annotated by refusal sets which
underly the TACS approach, too. In our faster—than precongruences we re-
quire that, when a time step is matched, the urgent action set of the faster
process contains the urgent action set of the slower one. One may also say that
non—urgent actions can be refused at this moment. If we call a set of non-
urgent, actions a refusal set, we could replace any clock transition by multiple
transitions, one for each refusal set. Then, each refusal-set—transition of the
faster process is matched by an equally labeled transition of the slower one.

4 Of course, while time passes, internal actions —modeling, e.g., local time outs—
might be forced to happen, and this can enable and disable actions. For example,
process a.P + 0.7.Q) waits at most one time unit before engaging in the 7—action
and starting the timeout process @, i.e., @) is invoked before the second time unit
and thus may preempt a.P.
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Regarding other research concerning faster-than relations, our approach is
most closely related to work by Moller and Tofts [15] who developed a bi-
simulation—based faster-than preorder within the discrete-time process alge-
bra £TCCS. In their approach, asynchronous processes are modeled without
any progress assumption. Instead, processes may idle arbitrarily long and,
in addition, fixed delays may be specified. Hence, their setting is focused on
best—case behavior, as the worst—case would be that for an arbitrary long
time nothing happens. Moller and Tofts present an axiomatization of their
faster—than preorder for finite sequential processes and discuss the problem of
axiomatizing parallel composition, for which only valid laws for special cases
are provided (cf. Sec. 4.2). It has to be mentioned here that the axioms and
the behavioral preorder of Moller and Tofts are not in complete agreement.
In fact, writing “o” for what is actually written “(1)” in [15], .0.b.0 + @.b.0
is equally fast as a.0.0, which does not seem to be derivable from the axioms;
this problem is also acknowledged by Moller [38]. Also, the intuition behind
relating these processes is not so clear, since a.a.0.0.0 + a.a.b.0 is not neces-
sarily faster than or equally fast as a.a.b.0. The problem seems to lie in the
way in which a transition P — P’ of a faster process is matched: For intu-
itive reasons, the slower process must be allowed to perform time steps before
engaging in a. Now the slower process is ahead in time, whence P’ should be
allowed some additional time steps. What might be wrong is that P’ must
perform these additional time steps immediately. We think that a version of
our indexed faster—than relation, which relaxes the latter requirement, would
be more satisfactory. It would also be interesting to study the resulting pre-
order and compare it in detail to our faster-than precongruence; this should
give a better understanding of what worst—case and best—case timing behavior
mean for asynchronous systems in (bi)simulation-based settings.

A different idea for relating processes with respect to speed was investigated
by Corradini et al. [39] within the so—called ill-timed—but—-well-caused ap-
proach [40,41]. The key of this approach is that components attach local time
stamps to actions; however, actions occur as in an untimed algebra. Hence, in
a sequence of actions exhibited by different processes running in parallel, local
time stamps might decrease. This way, the timed algebra technically stays
very close to untimed ones, but the “ill-timed” runs make the faster—than
preorder of Corradini et al. difficult to relate to our approach.

Other research compares the efficiency of untimed CCS-like terms by counting
internal actions either within a testing framework [42,43] or a bisimulation—
based setting [44,45]. In all these approaches, except in [42] which does not
consider parallel composition, runs of parallel processes are seen to be the
interleaved runs of their component processes. Consequently, e.g., process
(1.0.0 | 7.@.b.0) \ {a} is as efficient as process 7.7.7.b.0, whereas in our set-
ting (0.a.0|0.@.b.0) \ {a} is strictly faster than 0.0.7.5.0.
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Finally, it should be mentioned that our approach considers a setting based
on discrete time, similar to most related work with the exception of part of
Vogler’s publications. However, the ideas for the preorders developed here,
together with their behavioral theory, can be adapted to continuous time.
This is not too difficult but nevertheless requires a substantial amount of
work since our language, its semantics, as well as many definitions, lemmas,
and theorems need to be suitably adapted or modified. The main insight of this
paper, namely the coincidence of the naive, delayed, and indexed faster—than
preorders, is thus expected to carry over to the continuous—time setting.

7 Conclusions and Future Work

To consider the worst—case efficiency of asynchronous processes, i.e., those
processes whose functional behavior is not influenced by timing issues, we
defined the process algebra TACS. This algebra conservatively extends CCS
by a clock prefix which represents a delay of at most one time unit, and it
takes time to be discrete. For TACS processes we then introduced a simple
(bi)simulation—based faster—than preorder and showed this to coincide with
several other variants of the preorder, both of which might be intuitively more
convincing but which are certainly more complicated. We also developed a se-
mantic theory for our faster—than preorder, including a coarsest precongruence
result and an axiomatization for finite sequential processes, and investigated
a corresponding “weak” preorder.

Future work should proceed along two orthogonal directions involving both
theoretical and practical aspects. From a theory point of view we intend to
extend our axiomatization to larger classes of processes and to our weak faster—
than precongruence. Recent papers provide an outline how the latter can be
done for recursive processes in the presence of preemption [46,47]; as a first
step, one could also restrict attention to processes where parallel composi-
tion only occurs as top—level operator. Moreover, it remains an open question
whether the faster—than precongruence, when defined for continuous time, co-
incides with the one presented here for discrete time, as is the case in the
testing scenario presented in [21]. Currently, we are adapting some of our
ideas to comparing the best—case efficiency of asynchronous processes, thereby
shedding some light onto what worst—case and best—case efficiency means in
(bi)simulation—based settings. For putting the novel theory into practice we
plan to implement TACS and a decision procedure for our faster-than pre-
congruence in the Concurrency Workbench NC [48], a formal verification tool.
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A Proofs and Proof Sketches

For completeness, the appendix contains those proofs or proof sketches which
were omitted in the main body of the paper in order to enhance the flow of
reading.

Proof of Lemma 7. The first two statements can be proved by induction on
the inference length of P’ > P. The only interesting case concerns Case (7) of
Def. 6, where, for both parts, we can assume y # x, since z is neither free in
P'[ux.P/x] nor in pz.P. Now assume P'[uz.P/x] > pz.P due to P' > P.
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(1) If there exists an unguarded occurrence of y in ux.P, then there is also
one in P and, by induction, in P’. The latter occurrence is also present
after substituting pux.P for . Otherwise, y is guarded in px.P, in P, and,
by induction, in P'. Hence, every free occurrence of y in P'[uz.P/z] either
stems from P’ and is guarded in P’, or it is in a subterm of ux.P, where
it is guarded.

(2) By Barendregt’s Assumption, we may assume that there is no free oc-
currence of z in @ and, by induction, P'[Q/y] >~ P[Q/y]. As a con-
sequence, we obtain (P'[uz.P/])[Q/y] = (P'[Q/y))ur-(PlQ/y])/7] »
pz-(PlQ/y]) = (pz.P)[Q/y].

The other cases are straightforward and, thus, are omitted here.

The proof of the third statement is by induction on the size of @', including
a case analysis on the structure of @'. The only interesting case is Q' = py.S
for some y € V and S € P, where we can assume P % Q as well as y # z, and
that y is not free in R. Now, @ = py.(S[pz.R/z]) and P = S'[puy.S[ux.R/x]/y]
with S' = S[pz.R/z]. By induction hypothesis we can write S’ as S"[ux.R/x]
for some S” satisfying S” > S. We can further write P as S"[uy.S/y][ux.R/x]

since y is not free in R. Finally, we may conclude this case by setting P’ =
S"[py.S/y]. O

Proof sketch of Lemma 13. The proof of this lemma relies on two further
lemmas. The first one of these compares the relations >;, for all 7 € N, to the
relation >; it also compares the relations >; with each other.

Lemma 33

(1) >;C>iy1, foralli e N. ~
(2) = C = ; in particular, P — P' implies P' =y P, for any P, P' € P. ~
(3) P' = P (whence, P >+ P') implies P =~; P', for alli > 0 and P, P' € P.

This lemma states some useful facts about our syntactic relations. In particu-
lar, Part (3) compares > ! with =;, for i > 0. For validating Part (1) consider
P >; Q and show P >;.; @ by induction on the inference of P >; (). The
proof of Part (2) is analogous; for case P > o.P recall that P > P and, hence,
P >y 0.P. Also the proof of Part (3) is analogous; for case P > o0.P use
P >,_1 P which implies 0.P »; P. For the latter, the premise ¢ > 0 is needed.
Finally, observe that Clause 6(7) is matched by Clause 12(7b). O

The second lemma is the analogue of the first two statements of Lemma 7.
Lemma 34 Let P,P',Q € P such that P' =; P, and let y € V.

(1) y is guarded in P if and only if y is guarded in P'.

(2) P'Q/y] =i PlQ/yl.

39



The proof of each statement is similar to the one of the corresponding state-
ment of Lemma 7. In case P, =; 0?.P, (cf. Rule 12(2a)), one needs to use
Lemma 7(2) to obtain P[Q/y] > --- > P,[Q/y]. O

We are now able to sketch the proof of Lemma 13. While the proof of Part (1)
is obvious, the ones for Parts (2) and (3) are similar to the “functional” part
of Prop. 9(2). In Case (2a) we use that ¢/.P, = P! if and only if P, —» P!
if and only if P, ==+ P| with P| = --- = P! where the latter is inferred by
Prop. 9(2). In Case (2b) we exploit the property >; C ;1 of Lemma 33(1).
The proof for Case (7) is analogous to the one of Prop. 9(2) when using
Lemma 34 instead of Lemma 7.

The proof of Part (4) is by induction on the inference length of @@ »¢ P. For
Clause (2a) use Lemma 8(2) if j = 0. Observe that Clause (2b) does not apply.
For Clause (7), employ Lemmas 8(1) and 34(1). O

Proof of Lemma 14. We first state the following technical property on which
our proof relies.

Lemma 35 IfP,,P,,... ,P, € ”Eforann € Nsuchthat Py = Py > -+ > P,
and if P, = P' for some P' € P, then P, =; P', for all i > 0.

The proof is by induction on the structure of P,. We may assume that all P;
are different and, by Lemma 33(3), that n > 1. First observe that P, cannot
be of the form z or 7.P. If P, is 0 or of the form a.P, we have P’ = P,
and are done by Clause 12(2a) with j = 0. If P, is 0.P, then P, > --- >
P,_1 = P = P', and we are done by Clauses 12(2a) or (1). The other cases
are quite straightforward, except for P, = pz.Q). Here, P,y = Q!,_,[pz.Q/z]
with @), _; > Q; by Lemma 7(1), = is guarded in )}, _; since it is guarded in Q).
By repeated application of Lemmas 7(1) and (3), we conclude that each P;,
for 1 <i < n—1,is of the form Q}[ux.Q/z| and such that Q| > --- > Q) _;.
Furthermore, we have P’ = Q' [ux.Q/z] with Q@ — Q.. Now we apply the
induction hypothesis to the @;’s to obtain @) >; @, which implies P, =

nl

Q) [px.Q/z] =; Q. [pr.Q/x] = P' by Lemma 34(2). O

Using the above lemma, we can now formally establish Lemma 14. Both parts
are proved by induction on the inference length of P >; (). We only consider
the more interesting cases here.

e Part 1:
(1) For i > 0, the time step P —— P’ implies P' »=; @ = P, for all j, by
Lemmas 33(1) and (2).
(2a) For i > 0, the time step P, — P, implies Py = P, = -+ = Py;
hence, Py =;_1 0’.P,. For i = 0 and j > 0, the same argument shows
Py, =; 097'.P,, where 0/.P, -5 ¢9='.P,. For i = j = 0, by repeated
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application of Prop. 9, P, — P| implies P, —— P! for some P! with
Pl >.-->P.
(2b) Observe that 0.P' —~+ P' and P’ =; P according to the assumption of
Def. 12(2b) and that ¢ + 1 > 0.
The remaining cases are straightforward for ¢ > 0. In case of Clause (7) we
only have to consider transitions of the form P'[uz.P/x] —— P"[ux.P/z]
(by Lemma 2) or pyz.P' - P"[ux.P'/x|, where P" =,_; P by induction
hypothesis. Then we are done by employing Lemma 34(2) for Clause (7b).
Finally, let us consider the case ¢ = 0. This is largely analogous using
Lemma 34(2) when dealing with Clauses (7a) and (7b). For Clause (3),
we apply Lemma 13(4) to deduce that the right-hand side can engage in a
time step.
e Part 2:
(1) P —= P' implies P =;;1; P' by Lemma 33(3).
(2a) One must use Lemma 35 in case j = 0.
(7) In case of Rule (7a), one employs Lemma 34(2). O

Proof of Theorem 20. The challenging part of this proof is to establish that
| C 2, Recall that

Nauz/ — Y

fg’auz’ —df {(P: Q> ‘ (P|K/$) \ L ’%alt,O (Q|K/$) \ L
for some finite £ D sort(P) Usort(Q) },

where

K¢ =4t px. (.0 + 7.(0.7.0 + fo.z) + Y 7.(7.0 + f7.0 + @.z)),
acl

and h, f,, and fz, for a € L, are distinguished actions, i.e., they and their
complements are not in £. The idea behind the construction of this context
is to turn every visible urgent transition of a process plugged into the context
into an urgent 7-transition while not losing its visibility, e.g., the execution of
an g-transition is witnessed by the “flag” fz.

In order to prove the desired statement, it suffices to show that 2, is a naive
faster—than relation. This can be done similar to the proof of Thm. 19; the most
interesting case is when P —Z+ P’ for some process P' and some P R @
Hence, (P|K )\ L 2 ., (Q|K.) \ L for some finite £ D sort(P) U sort(Q).

~alt,0

We have to establish the existence of some process @' such that Q@ —— @' and
P32 Q.
~ aud

According to the definition of J , , the step (P|K;) \ £ — (P[(0.7.0 +
fo-K))\L of the faster process must be matched by the slower one . Due to the
distinguished action f, and since 7 € U(K,), there are only two possibilities

how this can be done:
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e Case 1: (Q|K;)\ L = (Q|(0.7.0 + f,.K;)) \ £ as well as (P|(0.7.0 +
fa-KL')) \ Ergalt,l (Q'(G'T'O + fa-Kﬁ)) \ L.

The faster process (P|(0.7.0 + f,.K.)) \ £ may now engage in a clock
transition to (P'|(7.0+ f,.K)) \ £ which the slower process can only match
by a single clock transition to (Q'|(7.0+ f,.K.)) \ £, where Q — @', since
this latter process has the urgent internal action 7 enabled and can thus
not engage in any more time steps.

e Case 2: (Q|K.)\ L — = (Q'|(1.0+ f,.Kr)) \ L, for some Q' € P such
that Q — Q' and (Pl(o7.0+ fo. K£))\L 2y, (Q'[(1.04 f5.K,))\ L. Note
that the derived term cannot engage in any further clock transitions due to
the urgent internal action.

At this stage, (P|(0.7.0 + f,.K)) \ £ can engage in a clock transition to
(P'|(1.0+ f,.K))\ £. This cannot be matched by (Q'|(7.0+ f,.K.))\ £ via
a clock transition, whence (P|(0.7.0 + f,.K)) \ £ must have consumed its
credit gained in the previous step and (P'[(7.0+ fo. K2))\ L 3, (Q'[(7.0+

fU-K[.)) \ L.

As the final step in both cases we consider that (P'|(7.0 + f,.K.)) \ £ can
perform its f,—transition to (P'|K.) \ £. Since 7 € U((Q'|(7.0 + f,.K)) \ £)

and 7 € U(K[), this can only be matched by (Q'|(7.0 + f,.K¢)) \ £ LN
(Q'|K) \ £ with (P'[K)\ L 2, (Q'|Kc) \ L.

In both cases we obtain the existence of some process Q' with Q —= @' and
(P'|K )\ L 2 ., (Q|Kc)\ L. Because of sort(P') C sort(P) and sort(Q') C

~alt,0

sort(Q)) and thus £ D sort(P') U sort(Q'), we obtain P' 3 _ . @', as desired. O

Proof of Proposition 22. The proof proceeds by induction on the size of
process t, i.e., the number of operators contained in ¢. For the induction base,
observe that process 0 is trivially in summation form. For the induction step,
using Axioms (C1)—-(C5) and Axioms (D1)—(D4), one can eliminate restrictions
and relabelings as usual [5]. Consequently, ¢ is transformed into a process which
is just a sum of prefixed terms. In case of several o—prefixed terms, these
can be merged into one by (repeatedly) applying Axiom (P4) and possibly
Axioms (A1) and (A2). Then, the processes trailing the prefixes can be brought
into summation form according to the induction hypothesis. The proof details
are quite straightforward and, thus, are omitted here. O

Proof of Proposition 24. According to Prop. 22 we may assume ¢ to
be in summation form. Now, the proof is by induction on the size of pro-
cess t = Yierait; [+ o, |. In the following, we only comment on the
more interesting proof steps and do not explicitly mention applications of
Axioms (A1) and (A2). Note that the statement of the proposition is trivially
true for the induction base ¢t = 0. Moreover, if the optional summand o.¢,

42



does not exist, then one just needs to apply the induction hypothesis to nor-
malize all ¢;, for 7 € I, and the proof is done. Hence, we may assume that
the summand o.¢, is present. If Cond. (ii) is violated, i.e., if o = 7 for some
i € I, then - t = t' =4 Yjcra;.ti + t, by Axiom (P1). Observe that ¢
is in summation form, has smaller size than ¢, and satisfies U(t) C U(t').
One can now finish off this case by applying the induction hypothesis. Thus,
we may assume that Cond. (ii) holds and turn our attention to establishing
Cond. (iii). We first (repeatedly) use Axioms (A3) and (P2) and then Ax-
iom (P4) to infer b Y, qit; + 0.ty = Yicr ity + 0.(Xierity) + oty =
Yier @iti + 0.(Xier ai-ti + t;). We can now apply the induction hypothesis
to process Y ;c;y.t; + t, and obtain a term t"” in normal form satisfying
F Y ieraiti+t, =t" and U(X;cp ai-ti +1,) C U(L"). From this inclusion, it is
easy to see that term ¢” can be written as > pcx Yo-tg+> e 5.1 [+ 0.t ], for
some index sets K and J, such that {a;|i € I} ={y |k € K} and {y |k €
K}n{B;|j € J} = 0. This implies (x) o; ¢ Z(X;es 0;-t] [+ 0.t]). By ap-
plying the above transformation backwards, i.e., by employing Axioms (P2)
and (P4), we infer & ¢t = ;e ity + Xper Yoty + 0.(Zjes Bt [+ oty ])
The latter term satisfies Cond. (iii) due to property (%) and still satisfies
Cond. (ii), too. By induction we can normalize the processes t;, for i € I, while
Yjes B;t; [+ 0.ty ] and the tj are in normal form since ¢" is. Finally, in case
Yjes B;t] [+ oty ] = 0, we can eliminate the subterm o.(3;c; 8;.1] [+ 0.} ])
since - 0 = 0+0.0 = 0.0 by Axioms (P3) and (A4). This establishes Cond. (i),
and we are done. O

Proof of Lemma 25.

e Part (1): If ; = 7 for some ¢ € I, then the summand 0., is not present and
the claim follows from Def. 18(2). Otherwise, ¢ can engage in a o—transition,
whence the claim coincides with U (u) C U(t) which follows from Def. 18(3).

We are proving the other two statements separately and proceed along the
case distinction suggested by the definition of J.

e Part (2): If the right-hand side term can engage in an action transition, say

Y(jer | gy B-uj b, uj, then u b, uj and ¢ ﬂh by the definition of 3.
Since B C {a;|i € I} by (1), we have 8;; = ay, for some i’ € I, such that
ty~ by Cond. (iii) of normal forms. Hence, Y(iel |aieB) il 2y ¢y and
ty Jujy. The case where the left-hand side engages in an action transition
is analogous. Moreover, it is easy to see that both sides have the same sets
of urgent actions and, if 7 is not among these actions, then both terms can
idle on o.

e Part (3): The proof of this part is by induction on the size of process u.
Since the induction base, i.e., u = 0, is trivial, we only focus here on the
induction step.
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If the left-hand side > e ai¢m @i-ti [+ 0.1, | can engage in an ay—
transition to ¢y, for some o ¢ B, then so can t. Since ay ¢ B, the matching
ay—transition of u, according to the definition of 3, also exists for the right—
hand side Yyje s8¢y Bj-uj [+ 0.ug |. A By—transition of the right-hand
side, for j' € {j € J|B; ¢ B}, can be treated analogously.

If the left-hand side can engage in an a—transition to some term ¢, due to
oty — t' for some a € A, then t — ¢! and « ¢ B by (1) and Cond. (iii)
of normal forms. Hence, the right—hand side can match this transition in the
same way as u does according to the definition of J. A F-transition of the

right-hand side, due to o.u, 2, u, for some action [ and some term u.,
can be dealt with in an analogous fashion.

We now consider E{ig|ai¢3} it [+ot, ] = Yiel |asgB} Qicti [+ 1o |
If 7 € B, then none of the optional summands exists, and > icr|q;¢By Qi-ti
and Y (jer|8;¢B) B;.u; can idle just as ¢ and u can. If 7 ¢ B, then ¢ —~»
Yier i-t; [+ t, ] and, by the definition of J and our operational rules:
(a) u — 2jes Biug [+uo], ie., E{jEJngéB} Bj-uj [+ 0.u, ] L>Z{jeﬂﬂjgzjae}
Bjuj[+usl; (b) U(u) C U(t), whence U(X(jes p;¢my Bj-uj [+ 0ous]) =
U)\ B C UM\ B =U(Sper asgm ai-ti [+ 0 ); (0) Tiey i [+ 10 ] 2
> jes Bj-uj [+ ugy ]. Since the processes in (c) are in normal form, the induc-
tion hypothesis yields E{ieﬂaﬁéB} O!ztz [+ tg ]E‘, E{jEJ|ﬂj¢B} ﬁj.U,j [+ Ug ],
as desired. Note that the urgent actions of ¢, and u, cannot be in B. O

Proof of Proposition 29. In the following we prove the precongruence prop-
erty, i.e., we show that £ is compositional with respect to action prefixing,
clock prefixing, parallel composition, restriction, relabeling, and recursion.
Most cases are standard and can be checked along the lines of [5]. The case of
clock prefixing is also easy and quite similar to the “strong” case. Therefore,
we restrict ourselves to the case of parallel composition. For this proof, the fol-
lowing property turns out to be useful. Let P, P', Q € P such that P == P'.
Then,

PIQ==P|Q and Q|P =% Q|P (A.1)

This property can be proved by induction on the “length” of the weak transi-
tion P == P'. For the compositionality proof regarding parallel composition,
it is by Def. 28 sufficient to establish that

R =at {(P|R,QIR) | PR Q, R € P}
is a weak faster—than relation. Let (P|R, Q|R) be an arbitrary pair in R.

e Action transitions: The cases where P|R — S and Q|R — S, for some
S € P and o € A are standard.

e Clock transitions: Let P|R — S for some S € P. By the only applicable
Rule (tCom) we know that (i) P -~ P’ for some P’ € P, (ii) R —— R’ for
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some R' € P, (iii) U(P)NU(R) = 0 as well as 7 ¢ U(P) and 7 ¢ U(R),
and (iv) S = P'|R'. Since P £ Q, there exist terms @', Q",Q" € P such
that Q == Q" - Q" == Q', U(Q") CU(P), and P' 2 Q'. First, observe
that U(Q") NU(R) C U(P)NU(R) = (0 and that 7 ¢ U(Q"). Applying
Property (A.1) and Rule (tCom) again, we conclude QR = Q"|R =
Q"R == Q'|R'. Moreover, U(Q"|R) = U(Q") UU(R) C U(P)UU(R) =
U(P|R),since T ¢ U(Q"), T ¢ U(P),and 7 ¢ U(R). Finally, (P'|R',Q'|R') €
R holds due to the definition of R.

To conclude this part of the proof, we want to remark that, in order to show £
to be compositional with respect to recursion, we need to define a notion of
weak faster—than preorder up to &, which can be done along the lines of [49]:

A relation R C P x P is a weak faster-than relation up to £ if, for all
(P,Q) € R and a € A:

(1) P =5 P’ implies 3Q". Q =% Q' and PRZQ.

(2) Q % Q' implies IP". P =% P’ and P' IR Q.

(3) P - P'implies 3Q",Q",Q".Q = Q" - Q" = @/,
UQ") CU(P),and PPRZIQ".

With this definition, the proof is similar to the corresponding proof in the
second edition of Milner’s book [5].

We are left with establishing that g is a largest precongruence, for all operators

except summation, that is contained in g _ . From universal algebra we know
J

that the largest precongruence éfw —for all operators except summation—

contained in g exists. Since g is such a precongruence, the inclusion g C

d . . d . .
~n, D0lds. Thus, it remains to show £ C z. Consider the relation

Sogue =df UP, Q) | C[P] &, Cc|Q] for some finite £ D sort(P) U sort(Q)},

where the terms C,[z]| are defined as in the proof of Thm. 19. Since z is
simply put in parallel with process H. in C¢lz], we have that P 3’ Q
implies C[P] 2° C[Q] and Cc[P] 2 Cr[Q]; we conclude that 2° C

nv nv nv
1 . X 3 5 . . .
Aaue The other necessary inclusion, g, =~ € &, is established by proving

that £ 1 a weak faster-than relation. Let P,QQ € P such that Pg @,
ie., Cc[P] 2,,CclQ] for some finite £ O sort(P) U sort(Q), and consider the
following two situations.

e Situation 1: Let P —» P' for some P’ € P and some o € A. Ac-
cording to our operational semantics we may derive Cc[P] = P|H; —
P'|H; = C[P']. This transition can only be matched by a correspond-

ing weak transition of Q, say Q@ == @', for some @' € P, since only
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process H, has thfe distinguished action e enabled. Therefore, we have
C:lQ] = QH: = Q'|H; = C[Q'] and C,[P'] 2. C;[Q']. Because

sort(P') C sort(P) and sort(Q') C sort(Q), we have £ D ggrt(P’) U sort(Q")
and thus P' 2 _ Q' The case where Q 5 ', for some @' € P and some
a € A, is analogous.

Situation 2: Let P -2 P' for some P' € P. As illustrated in the figure
below, C¢[P] can perform a 7—transition to P|Hy,, where Hy, =4¢ D +dy.H,
and L =4 {¢|c € (sort(P)Usort(Q)) \U(P)}; note that L C L. Then, P|H,,

can engage in a o—transition to P'|H;, according to Rule (tCom). Finally,
we consider the step P'|H, X P'|H,.

P | H, By @ | H,

P|(Dp+dy.H) 2

P'|(Dy+dy.H) 3

dL dL

Pl He S @ He

Take a look at the first step. Since C¢[P] 2 C[Q], we have C.[Q] == W”,
for some W" € P. We know that H, has to perform a 7—transition to Hr,
but cannot take part in a communication, since e and d, are distinguished
actions. However, () may be able to perform some 7—transitions to some

process Q" € P, i.e., Q = Q" and P|Hy, oy @ HL-

Now we consider the more interesting second step. Since P|Hy & Q"|Hp,
we know of the existence of some W"” € P such that Q"|H, == W" and
P'|Hp &, W". According to our operational semantics, Q" and Hy, have to
perform a naive temporal weak o—transition. Since H; cannot take part in
a communication (see above), it can only engage in an idling o—transition
H; - Hp, and we conclude W" = Q"|Hy, for some process Q" € P such
that Q" = Q" ie., Q" = Q! = Q¥ = Q" for some QV, QY € P.
Then, Q"|H;, = QV'|H;, - QY'|H;, = Q"|H, must hold. According to

Rule (tCom) the condition U (Q'") NU(HL) = 0 has to be satisfied in order
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that the time step may occur. By the choice of L, this condition implies
UQY") CU(P), as desired.
Finally, let P'|H,, LN P'|H; = C[P']. Since P'|H, &, Q"|Hy, we have

Q"|Hp L, W' for some W' € P. We know that H; performs its dj—
transition to H since e is a distinguished action. However, Q" may engage
in some 7T-transitions to some Q' € P, ie., Q" = @', and C.[P] =
P'\H; &, Q'|He = CL[Q].

We have established the existence of processes @', QY', Q5 € P such that
Q=5 QU % QY == @ and UQY) C U(P). Also C[P] 2, Cel@]
holds, as well as sort(P’) C sort(P) and sort(Q') C sort(Q), i.e., P' g Q'

Thus, g . is indeed a weak faster—than relation, and we are done. 0O

au

Proof of Theorem 31. The compositionality of < is easy to show for the
cases of action and clock prefixing, restriction, and relabeling. In the following
we deal with the remaining, more interesting cases. Let P,Q, R, S € P be such

that PJ @ and RZ S. Then (1) P|IR 2 Q|R and (2) P+ R 2 Q + R, which

can be established as follows.

(1) According to Def. 30, it is sufficient to prove that the relation
R =a {(P|R,Q|R) | P2Q; R € P}

is a weak faster—than precongruence relation. Let (P|R,Q|R) € R be

arbitrary.

e Action transitions: The cases where P|[R -+ S or Q|R — S, for
some S € P and « € A, are standard.

e Clock transitions: Let P|R — S, for some S € P. This case can easily
be treated along the lines of the corresponding case in the proof of the
precongruence property of J.

(2) By Def. 30 it is sufficient to establish that the relation

R=a {(P+R,Q+R)|PRQ;ReP}

is a weak faster-than precongruence relation. Let (P+ R,Q + R) € R

be arbitrary.

e Action transitions: Let P+ R - V, for some o € A and V € P.
Since the operational rules for summation with respect to actions are
identical to the ones in CCS, and the definition of weak faster—than
precongruence coincides with the one of observational congruence in
CCS in this particular case, the proof follows along the lines of the
corresponding proof in CCS.

e Clock transitions: Let P+R -2+ V, forsome V € P,i.e., P 2+ P’ and
R - R' for some P',R' € P, and V = P'+ R’ by Rule (tSum). Since
P 2 Q we know of the existence of some Q' € P such that Q@ — @',
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U(Q) CU(P),and P' 2 Q'. Therefore, we may conclude Q+R — Q'+
R' by Rule (tSum), as well as (P’ + R',Q' + R') € R by the definition
of R. Moreover, we have U(Q + R) = U(Q) UU(R) CU(P) UU(R) =
U(P + R) by the definition of urgent action sets, which finishes this
part of the proof.

To show that < is compositional with respect to recursion, we have to adapt
a notion of “up to” again.

A relation R C P x P is a weak faster—than precongruence relation up to <
if the following conditions hold for every (P, Q) € R and « € A.

(1) P = P’ implies 3Q".Q = @' and P' £ Q’, and
(2) @ = Q' implies IP'. P = P’ and P' 2 Q’, and
(3) P -2 P'implies 3Q".Q = @', U(Q) CU(P), and PP RZ Q'

The proof follows pretty much the standard lines (cf. [5]) and, therefore, is
omitted here. We are left with establishing the “largest” claim. From uni-
versal algebra we know that the largest precongruence Z° in 2 exists and
also that 2° = {(P, Q) |VC[z]. C[P] 2 C|Q]}. Since 2 is a precongruence that
is contained in g, the inclusion & C %c holds. Thus, it remains to show
=* C 2. Consider the relation 2, =ar {(P, Q)| P+¢.0 £ Q+c.0, where ¢ ¢
sort(P)Usort(Q)}. By definition of 2 we have 3°C 2 . We establish the
other necessary inclusion £ C 2 by proving that 2 isa weak faster—than
precongruence relation. Let P 2 Q,i.e., P+¢0 g Q +c.0, and distinguish
the following cases.

e Action transitions: Let P -+ P' ie, a # c and P +¢c.0 % P' by
Rule (Suml). Since P 2, @ we conclude the existence of some V € P

satisfying Q@ +¢.0 = V and P’ £ V. Because c is a distinguished action we
have V # @ and, thus, V = Q' and QQ = @', for some Q' € P.

e Clock transitions: Let P -+ P'. By Rules (tAct) and (tSum), P+ ¢c.0 ——
P'+c.0 holds. Since P 2 @ we know of the existence of some V, V', V" € P
such that Q +c.0 = V' - V"=V, U(V') CU(P),and P'+c0 LV,
Because c is a distinguished action not in the sorts of P and (), we conclude
Vi=Q+¢0, V'"=Q +c0forsome Q) € P,V=V"Q - @, and
U(Q) € U(P). Moreover, P' 2 Q' by the definition of £ and the fact
that sort(P') C sort(P) and sort(Q') C sort(Q).

This shows that 2 is a weak faster-than precongruence relation. Hence,

Dpwe © =, as desired. O
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