
Priority and Abstraction in Process Algebra

Rance Cleaveland a Gerald Lüttgen b,∗ V. Natarajan c

aDepartment of Computer Science, University of Maryland, College Park,
MD 20742, USA

bDepartment of Computer Science, University of York, York YO10 5DD, UK
cSystems and Technology Group, IBM Corporation, Research Triangle Park,

NC 27709, USA

Abstract

More than 15 years ago, Cleaveland and Hennessy proposed an extension of the
process algebra CCS in which some actions may take priority over others. The
theory was equipped with a behavioral congruence based on strong bisimulation.

This article gives a full account of the challenges in, and the solutions employed
for, defining a semantic theory of observation congruence for this process algebra.
A full–abstraction result is presented whose proof relies on a novel approach based
on successive approximations for identifying the largest congruence contained in
an intuitive but näıve equivalence. Prioritized observation congruence is also char-
acterized equationally for the class of finite processes, while its utility for system
verification is demonstrated by an illustrative example.

Key words: process algebra, priority, bisimulation, observation congruence, full
abstraction, axiomatization

1 Introduction

Over the past 25 years, process algebras [5], such as Milner’s Calculus of Com-
municating Systems (CCS) [25], have been developed for modeling and rea-
soning about the communication behavior of concurrent systems. Process–
algebraic theories focus on behavioral equivalences as a means for verifying

∗ Corresponding author. Phone: +44 1904–434774. Fax: +44 1904–432767.
Email addresses: rance@cs.umd.edu (Rance Cleaveland),

luettgen@cs.york.ac.uk (Gerald Lüttgen), nataraj@us.ibm.com
(V. Natarajan).

Preprint submitted to Elsevier 12 May 2007

systems: one typically formulates a specification as a process describing the
desired behavior of a system and then proves that an implementation process
is correct by showing that it is equivalent to (or “behaves the same as”) the
specification. Provided the equivalence is a congruence, one may also reason
about the correctness of a system compositionally, on the basis of the correct-
ness of its components.

While traditional process algebras are devoted to modeling potential nonde-
terminism that systems may exhibit during their execution, researchers have
also suggested extensions that introduce sensitivity to other aspects of system
behavior, including priority. This latter work is intended to allow the model-
ing of different priority levels among the actions that processes may perform,
so that systems in which some actions, e.g., interrupts, take precedence over
others may be modeled faithfully. The first to study priority in process alge-
bra were Baeten, Bergstra and Klop [3]; relevant recent work may be found
in [1,2,4,8,29]. A survey of results is contained in [13].

The Cleaveland and Hennessy approach to priority. One well–studied
approach to priority in process algebra was introduced by Cleaveland and
Hennessy in [10]. It has inspired follow–up research regarding not only prior-
ity [9,12,16], but also real time [6,11,20,24] where action priority corresponds
to action urgency. Technically, Cleaveland and Hennessy’s work extends Mil-
ner’s CCS [25] by distinguishing between prioritized and unprioritized actions,
so that synchronizations on prioritized actions preempt synchronizations on
unprioritized actions, and by adding prioritization and deprioritization opera-
tors for adjusting action priorities. The resulting language, to which we refer as
CCSprio, comes equipped with a behavioral congruence based on strong bisim-
ulation [25], which has been completely axiomatized for those finite processes
that do not contain any prioritization and deprioritization operators [10]. How-
ever, this congruence does not attempt any abstraction from internal compu-
tation, which imposes severe restrictions on the use of these equivalences in
verification. This is because a user wishing to establish the equivalence of two
systems must account for their precise level of internal computation.

This article. The first contribution of this article is a congruence on CCSprio

processes that is as insensitive to internal computation as possible, in a pre-
cisely defined sense. Specifically, we start from the usual notion of observation
equivalence [25] adapted to the setting of CCSprio and observe that composi-
tionality is violated with respect not only to choice (as is standard), but also
to parallel composition. The challenge regarding parallel composition is due
to system contexts being able to offer synchronizations on prioritized actions
and thus to preempt unprioritized actions, and is also a consequence of loops

2

of prioritized internal actions being able to preempt unprioritized actions in-
definitely. We then develop a modified observational equivalence, prioritized
observation congruence, and prove that it is the largest congruence contained
inside the original equivalence. In this sense prioritized observation congru-
ence is fully abstract. The proof of this result relies on a novel technique for
identifying the largest congruence via successive approximations. This proof
technique is of independent interest, as it has since been successfully re–used
in several other process–algebraic settings involving preemption [11,12,24].

To complete our theory of prioritized observation congruence we also provide
an axiomatization of this behavioral relation for the class of finite processes
and, along the way, extend the axiomatization of strong bisimulation in [10] to
include the prioritization and deprioritization operators. Finally, we illustrate
the utility of our behavioral congruence for system verification by means of
an illustrative example, and discuss the influence of the prioritization and
deprioritization operators in our setting on our results.

This article extends both an earlier conference paper [27] and a handbook
chapter [13] by including deeper discussion on the context and implications
of the work. Detailed proofs of all the results are also given, and the novel
proof technique enabling the largest–congruence proof to be conducted is also
highlighted.

Organization. The next section revisits the process algebra CCSprio with
priority introduced by Cleaveland and Hennessy in [10], as well as their be-
havioral congruence of strong bisimulation, and presents an axiomatization
for finite processes with respect to all CCSprio operators. Sec. 3 introduces a
behavioral equivalence analogous to the observation equivalence of CCS, and
Sec. 4 characterizes the largest congruence contained in it. An equational char-
acterization of the observation congruence over finite processes is presented in
Sec. 5, while Sec. 6 gives an example that applies this congruence to system
verification. The last two sections discuss our approach in the light of related
work and contain our conclusions and directions for future work, respectively.

2 CCSprio and Prioritized Strong Bisimulation

This section reviews the language and equivalence given in [10] for modeling
systems in which actions may be equipped with different priorities. We refer to
the language as Calculus of Communicating Systems with Priorities (CCSprio)
and to the equivalence as prioritized strong bisimulation, as our setting is a
conservative extension of Milner’s CCS [25] that attaches priority values to
actions. The reference article [10] also established a complete axiomatization

3

of prioritized strong bisimulation for the sub–language of CCSprio that con-
sists of the usual CCS operators only and leaves out the prioritization and
deprioritization operators of CCSprio. As the main technical contribution of
this section we extend this axiomatization to the full CCSprio language.

2.1 CCSprio: CCS with Priorities

The language CCSprio provides constructs for building processes from atomic
actions. Actions exhibit a two–level priority structure, with certain ones being
designated as “prioritized” and others as “unprioritized”. We will see later
in Sec. 7 that this priority structure can easily be extended to a multi–level
priority structure. However, even in the simpler setting of only two priority lev-
els, all semantic and technical issues regarding the introduction of priority to
process algebra can be illustrated. As in CCS, actions represent potential syn-
chronizations that a process may be willing to engage in with its environment.
Given a choice between a prioritized and an unprioritized synchronization, a
process must choose the former. Hence, the ability of engaging in a prioritized
synchronization preempts unprioritized behavior. We refer to this semantic
concept as global preemption [13].

Formally, let Λ denote a countably infinite set of labels; intuitively, Λ contains
the (unprioritized) “ports” that processes may synchronize over. Then the
set of unprioritized actions A may be defined by A =df Λ ∪ Λ ∪ {τ}, where
Λ =df { λ | λ ∈ Λ }. Action λ ∈ Λ may be thought of as representing the
receipt of an input on port λ, while λ ∈ Λ constitutes the deposit of an output
on λ; τ 6∈ Λ represents an internal (unprioritized) computation. To define the
prioritized actions, let Λ =df { λ | λ ∈ Λ } be the set of “prioritized” ports,
with Λ =df { λ | λ ∈ Λ }. Then A =df Λ∪Λ∪{τ} is the set of prioritized actions,
with τ the internal prioritized action. We use A =df A ∪ A to denote the set
of all actions. In what follows we let α, β, . . . range over A, a, b, c, . . . over A,
and a, b, c, . . . over A. We also use λ to represent elements in A\{τ, τ}, µ as a
representative of A \ {τ}, and µ as a representative of A \ {τ}. We sometimes
let the symbol ‘1’ stand for either τ or τ . We also extend ¯ to all non–{τ, τ}
actions by defining λ =df λ, and if L ⊆ A \ {τ, τ} then L =df { λ | λ ∈ L }.

Terms in CCSprio are now defined by the following BNF, which coincides with
that of CCS except for the addition of two new operators, the prioritization
operator dµ and the deprioritization operator bµ, as well as the use of a re-
cursion operator instead of defining recursion via process identifiers.

t ::= nil | α.t | t + t | t|t | t\λ | t[f] | tdµ | tbµ | x | fix(x : t)

Here, f is a relabeling, i.e., a mapping on A that preserves τ, τ and ¯ and
satisfies f(a) ∈ A and f(a) ∈ A. We also assume that relabelings f are such

4

Table 1
Operational semantics [10]

always α.t
α→ t

s
a→ s′ =⇒ s + t

a→ s′, t + s
a→ s′, s|t a→ s′|t, t|s a→ t|s′

s
a→ s′, t 6 τ→ =⇒ s + t

a→ s′, t + s
a→ s′

s
a→ s′, t

a→ t′ =⇒ s|t τ→ s′|t′

s
a→ s′, s|t 6 τ→ =⇒ s|t a→ s′|t, t|s a→ t|s′

s
a→ s′, t

a→ t′, s|t 6 τ→ =⇒ s|t τ→ s′|t′

t
α→ t′, α 6= λ, λ =⇒ t\λ α→ t′\λ

s
µ→ s′ =⇒ sdµ

µ
→ s′dµ

s
α→ s′, µ 6= α =⇒ sdµ α→ s′dµ

s
µ
→ s′, s 6 τ→ =⇒ sbµ µ→ s′bµ

s
µ
→ s′, s

τ→ =⇒ sbµ
µ
→ s′bµ

s
α→ s′, µ 6= α =⇒ sbµ α→ s′bµ

t
α→ t′ =⇒ t[f]

f(α)→ t′[f]

t[fix(x : t)/x] α→ t′ =⇒ fix(x : t) α→ t′

that the set { λ ∈ A \ {τ, τ} | λ 6= f(λ) } is finite. Note, however, that we do
not require that f(a) = f(a). Moreover, x ranges over process variables, with
recursion fix(x : t) being the variable-binding operator. We use E to stand for
the set of all terms of the language, and we adopt the usual definitions for sort
of a term, free and bound variables, open and closed terms, guarded recursion,
and contexts. In particular, the sort of a term contains all actions in which
the term can engage according to the semantics defined below, and guards are
visible actions but not τ and τ . We call the closed, guarded terms processes ;
P represents the set of all processes which is ranged over by p, q, r, A term
is finite if it contains no sub-term of the form fix(x : t). For conciseness, we
sometimes omit nils from process terms and write, e.g., a for a.nil. Finally, we
denote syntactic equality over terms by ≡.

The operational semantics of processes is given as a transition relation →⊆
P × A × P ; we write p

α→ q in lieu of 〈p, α, q〉 ∈→, as well as p
α→ if p

α→ q
holds for some q, and p 6 α→ if not p

α→. The formal definition of → is given
inductively in Table 1 and is adopted from [10]; note that even though the rules
employ negative premises, the semantics is well–defined [10,32]. Intuitively,
p

α→ q holds if p may engage in action α and thereafter behaves like q; the
relative priorities of actions are represented by the fact that a process can
engage in an unprioritized action only if it is patient, i.e., initially incapable

5

of executing the prioritized internal action τ . One may wonder why, among
the prioritized actions, only τ has this preemptive power. The reason is that

when p
µ
→ q holds, p is signaling its potential for synchronizing on µ, whereas

p
τ→ q denotes that a prioritized synchronization is indeed enabled for p.

Accordingly, process α.p may engage in α and then behave like p. The opera-
tor + constitutes nondeterministic choice: p + q may perform the prioritized
actions of p or q and then behave like the process from which the action was
chosen. Note that unprioritized actions are possible only if both p and q are
patient. Process p|q represents the parallel composition of p and q, with concur-
rent execution modeled via interleaving and synchronization on complemen-
tary actions resulting in the internal action τ , if the actions are unprioritized,
and τ , otherwise. Note that p|q may perform unprioritized actions only if p|q
is patient, which means that both p and q are patient and that there is no
pending synchronization on a prioritized port shared by p and q. Operator \λ
denotes restriction and delimits the scope for port λ, while p[f] is a relabel-
ing where actions of p are relabeled according to the mapping f on actions.
Process pdµ prioritizes the (unprioritized) µ actions in which p may engage;
note that p may only engage in such actions if it is patient. Similarly, pbµ
deprioritizes µ actions, but only if in so doing, the resulting µ actions remain
possible, i.e., only if p is patient. Finally, fix(x : t) represents a recursively
defined process that is a distinguished solution to the equation x = t.

The operational semantics for CCSprio possesses several desired properties [10].
First, the operational rules involving only prioritized actions coincide with
those of CCS. Second, our semantics correctly encodes our intuition of global
preemption since p

τ→ implies p 6 a→, for any process p and unprioritized action a.
Third, the sort of any process is finite; this is a consequence of only allowing
finite summation as well as finite relabelings that satisfy |{ λ ∈ A \ {τ, τ} |
λ 6= f(λ) }| < ∞.

As in [10], we adopt Milner’s notion of strong bisimulation [25] and refer to it
as prioritized strong bisimulation.

Definition 1 (Prioritized strong bisimulation [10])
A relation R ⊆ P × P is a strong prioritized bisimulation relation if, for all
〈p, q〉 ∈ R and α ∈ A:

(1) p
α→ p′ implies ∃q′. q α→ q′ and 〈p′, q′〉 ∈ R.

(2) q
α→ q′ implies ∃p′. p α→ p′ and 〈p′, q′〉 ∈ R.

We write p ' q if 〈p, q〉 ∈ R for some prioritized strong bisimulation rela-
tion R, and call ' prioritized strong bisimulation.

It is easy to see that ' is itself a prioritized strong bisimulation relation and

6

Table 2
Axioms for finite processes without dµ and bµ operators [10]

A1 x + x = x

A2 x + y = y + x

A3 x + (y + z) = (x + y) + z

A4 x + nil = x

P a.x + τ .y = τ .y

INT Let p and q denote
∑

αi.pi and
∑

βj .qj , respectively. Then

p|q =
∑

αi.(pi|q) +
∑

βj .(p|qj) +
∑

αi=βj∈A τ.(pi|qj) +
∑

αi=βj∈A τ .(pi|qj)

RES1 nil \λ = nil

RES2 (α.x)\λ =

 nil if α ∈ {λ, λ }

α.(x\λ) otherwise

RES3 (x + y)\λ = (x\λ) + (y\λ)

REL1 nil [f] = nil

REL2 (α.x)[f] = f(α).(x[f])

REL3 (x + y)[f] = x[f] + y[f]

that it is indeed the largest such relation. The fact that ' is a congruence for
CCSprio was already proved in [10]; it can also be immediately inferred when
inspecting the format of our operational rules in Table 1 [32].

2.2 Axiomatizing Prioritized Strong Bisimulation

We now give an equational axiomatization of ' for the class of finite pro-
cesses. Cleaveland and Hennessy proved in [10] that the equations of Table 2
provide a sound and complete axiomatization for the CCSprio sub-language
that does not include the prioritization operator dµ and the deprioritization
operator bµ. The axioms of Table 2 are exactly the ones for strong bisimula-
tion in CCS [25], with the addition of Axiom P which encodes our semantic
concept of global preemption.

In order to cover all finite processes we extend the axiomatization of Table 2
with the axioms in Table 3, the first four of which axiomatize the prioriti-
zation operator dµ and the last four of which axiomatize the deprioritization
operator bµ. While Axioms d1 and b1 are trivial, Axioms d2 and b2 reflect
our basic intuition of prioritizing and deprioritizing an action, respectively.

7

Table 3
Axioms for dµ and bµ

d1 nildµ = nil

d2 (α.x)dµ =

 µ.(xdµ) if α = µ

α.(xdµ) otherwise

d3 (x + τ .y + a.z)dµ = (x + τ .y)dµ + a.(zdµ)

d4 (x + ν1.y + ν2.z)dµ = (x + ν1.y)dµ + (x + ν2.z)dµ ν1, ν2 ∈ A \ {τ}

b1 nilbµ = nil

b2 (α.x)bµ =

 µ.(xbµ) if α = µ

α.(xbµ) otherwise

b3 (x + τ .y + a.z)bµ = (x + τ .y)bµ + a.(zbµ)

b4 (x + ν1.y + ν2.z)bµ = (x + ν1.y)bµ + (x + ν2.z)bµ ν1, ν2 ∈ A \ {τ}

Note that Axioms d3 and d4 cannot be replaced by a single axiom of the
form “ (x + y)dµ = xdµ + ydµ ” as, e.g., (τ + µ)dµ 6' τ + µ. This is because
action µ may only be prioritized within a process if the process is patient,
according to our operational rules of Table 1. Similarly, Axioms b3 and b4
cannot be replaced by an axiom of the form “ (x+ y)bµ = xbµ+ ybµ ” as, e.g.,
(τ + µ)bµ 6' τ + µ.

Let E' denote the set of axioms provided in Tables 2 and 3. The rest of this
section is devoted to the proof that E' completely characterizes prioritized
strong bisimulation over finite processes. The following theorem states the
soundness of our axioms.

Theorem 2 (Soundness)
Let p and q be finite processes. Then, p ' q if `E' p = q.

PROOF. The soundness of the axioms presented in Table 2 is proved in [10].
The soundness of the new axioms of Table 3 is proved in a straightforward
manner by constructing prioritized strong bisimulation relations containing
the appropriate pair of processes. More precisely, if p and q are closed terms
obtained by instantiating the left–hand side and right–hand side of some axiom
given in Table 3, then the relation {〈p, q〉} ∪ { 〈r, r〉 | r ∈ P } is a prioritized
strong bisimulation relation. The proof details are straightforward. 2

Now we establish completeness, i.e., if p and q are finite processes such that
p ' q, then `E' p = q. The proof of this statement involves the notion of

8

summation form and normal form introduced in [10], which we recall first.

Definition 3 (Summation form and normal form [10])
The process

∑
i∈I αi.pi, for a finite index set I, is defined to be a summa-

tion form if each pi, for i ∈ I, is also a summation form. The empty sum,
i.e., I = ∅, is identified with nil. If p ≡ ∑

αi.pi is a summation form, then
the depth d(p) of term p is defined inductively as follows: d(nil) = 0 and
d(

∑
i∈I αi.pi) = 1 + max{ d(pi) | i ∈ I }.

A summation form
∑

i∈I αi.pi is defined to be a normal form if (i) αi ≡ τ for
some i ∈ I implies that αj /∈ A, for any j 6= i, and if (ii) each pi, for i ∈ I, is
also a normal form.

Intuitively, the depth d(p) of a summation form p denotes the length of the
longest sequence of actions it can execute. Since any summation form is a finite
process, its depth is well defined. The notion of depth is needed when showing
that every finite process p can be rewritten as a normal form, i.e., there exists
a finite process p′ such that ` p = p′. This will be done by induction on the
number k of prioritization or deprioritization constructors present in a given
finite process p. In the base case, k is 0 and p does not contain any d– or
b–constructors, and the procedure for rewriting p into a normal form using
the axioms presented in Table 2 is illustrated in [10]. For the induction case,
i.e., k > 0, p contains a subterm of the form rdµ or rbµ, where r is free of d–
or b–operators. The following lemma illustrates how such a subterm can be
rewritten as a normal form using only axioms of our proof system E'.

Lemma 4 (Rewriting d– and b–processes into normal forms)
If r is a finite process that does not contain any constructors of type d or b,
then it is possible to rewrite rdµ and rbµ as normal forms using E', for any
µ ∈ A and µ ∈ A.

PROOF. Consider the term rdµ for some finite process r not containing
any prioritization and deprioritization constructors, and some unprioritized
action µ. We know from [10] that there exists a normal form r′ ≡ ∑n

i=1 αi.ri

such that r can be rewritten as r′ using the proof system E'. Let d be the
depth of

∑n
i=1 αi.ri. We show how the term (

∑n
i=1 αi.ri)dµ can be rewritten as

a normal form using the proof system E', by inducting upon d.

• Base case: d = 0.
Hence, (

∑n
i=1 αi.ri)dµ ≡ nil dµ. By Axiom d1, term nil dµ can be rewritten

as nil, which is a normal form.
• Induction step: d > 0.

Here, we induct upon n. Since d > 0, it is necessarily the case that n > 0.
For the base case for inducting upon n, we have n = 1. But (

∑1
i=1 αi.ri)dµ ≡

(α1.r1)dµ, which can be rewritten as β1.(r1dµ) by Axiom d2, where β1 is α1

9

or α1 depending upon whether α1 = µ or not. Since r1 is a normal form and
since its depth is strictly less than that of α1.r1, the induction hypothesis
based on d is applicable to r1dµ, i.e., r1 can be rewritten as a normal form n1

using E'. Thus (α1.r1)dµ can be rewritten as the normal form β1.n1.
For the induction case for inducting upon n, we have n ≥ 2. Then the

term r′ can be rewritten as r′′+αn−1.rn−1 +αn.rn, where r′′ ≡ ∑n−2
i=1 αi.ri. If

n > 2 then r′ is already in this form; however, if n = 2, then take r′′ ≡ nil.
The proof now splits into two cases depending upon whether any of αn−1

and αn is the action τ .
(1) Suppose that at least one of αn−1 and αn is τ ; w.l.o.g. (cf. Axiom A2),

assume αn−1 ≡ τ .
Since the summation form

∑n
i=1 αi.ri is also a normal form, αn cannot

be an unprioritized action. Thus r′dµ is an instantiation of the left–hand
side of Axiom d3 and can be rewritten as (r′′ + τ .rn−1)dµ + αn.(rndµ).
Both terms r′′ + τ .rn−1 and rn are normal forms, with the former term
having strictly fewer summands than that of r′, and the latter term having
strictly less depth than r′.

Hence, the induction hypothesis based upon n is applicable to (r′ +
τ .rn−1)dµ and that upon d is applicable to rndµ, i.e., (r′ + τ .rn−1)dµ and
rndµ can be rewritten as normal forms n1 and n2, respectively. Thus,
(
∑n

i=1 αi.ri)dµ can be rewritten as the summation form n1 + αn.n2. It is
not difficult to see that this summation form is also a normal form.

(2) Suppose that both αn−1 and αn belong to A \ {τ}.
In this case, a similar procedure as the one used in Case (1) above

can be used to rewrite (
∑n

i=1 αi.ri)dµ into a normal form, this time using
Axiom d4 instead of d3.

This concludes the proof of the induction cases for both n and d.

The procedure for handling the term rbµ is similar and makes use of Axioms b1
through b4. 2

Hence, every finite process can be rewritten into normal form. In order to
prove our proof system E' complete we can now simply refer to the following
theorem of [10].

Theorem 5 (from [10])
Let p and q be finite processes in normal form. Then p ' q implies `E' p = q.

We thus obtain the desired completeness result as a corollary to Lemma 4 and
Thm. 5.

Corollary 6 (Completeness)
Let p and q be finite processes. Then p ' q implies `E' p = q.

10

The establishment of a sound and complete axiomatization of prioritized
strong bisimulation for the full CCSprio language completes the semantic the-
ory for '. It is worth noting here that the above axiomatization can be gen-
eralized to arbitrary processes, i.e., processes potentially containing recursion,
using the standard technique proposed by Milner in [26].

3 Prioritized Observation Equivalence and Congruence

Prioritized strong bisimulation ' treats the internal actions τ and τ no dif-
ferently from the other actions. Equivalent processes must therefore exhibit
the same “levels” of internal behavior, which complicates the use of ' for
system verification. For example, processes a.τ .b and a.b are not related by '.
However, to an external observer, they should be indistinguishable since τ is
an internal action. Thus, ' may be seen as too discriminating. The aim of
this section is to define a congruence over processes which abstracts away from
internal computation and thus relates processes if and only if they have the
same external behavior.

Our approach follows that of Milner in [25] for the definition of observational
congruence. We first define a straightforward modification of ' by introduc-
ing a new transition relation ⇒n that “absorbs” internal computation steps.
This näıve equivalence turns out not to be a congruence, and we spent sig-
nificant effort on repairing the compositionality flaws, thereby establishing a
congruence called prioritized observation congruence. The main challenge lies
in proving compositionality of prioritized observation congruence for parallel
composition. In the next section we further prove that this congruence is a
distinguished one: it is the largest congruence contained in the aforementioned
näıve equivalence and is in this sense as insensitive to internal computation
as possible.

To define this näıve reference relation we introduce the following definitions.

Definition 7 (Näıve weak transition relation)
Let α ∈ A. Then,

(1)
ε⇒n=df (

τ→ ∪ τ→)∗.
(2)

α⇒n=df
ε⇒n ◦

α→ ◦ ε⇒n.
(3) α̂ =df ε if α ∈ {τ, τ}, and α otherwise.

Intuitively, p
ε⇒n q if p may engage in a sequence of prioritized and unpriori-

tized internal transitions and evolve to q, while p
α⇒n q holds if p may engage

in internal computation, then α, and then more internal computation before
evolving to q. The notation α̂ represents the “visible content” of action α. We

11

now define näıve prioritized weak bisimulation as follows.

Definition 8 (Näıve prioritized weak bisimulation)
A relation R ⊆ P ×P is called a näıve prioritized weak bisimulation relation
if, for every 〈p, q〉 ∈ R and α ∈ A, the following conditions hold:

• p
α→ p′ implies ∃q′. q α̂⇒n q′ and 〈p′, q′〉 ∈ R.

• q
α→ q′ implies ∃p′. p α̂⇒n p′ and 〈p′, q′〉 ∈ R.

We write p ≈n q if 〈p, q〉 ∈ R for some näıve prioritized weak bisimulation
relation R, and call ≈n näıve prioritized weak bisimulation.

It is straightforward to establish that ≈n is the largest näıve prioritized weak
bisimulation relation and that it is an equivalence on processes. In order for
an equivalence to be a satisfactory semantic relation, it is imperative that the
relation is a congruence with respect to all the process constructors present in
the language. This is due to the fact that compositional reasoning is the main
tool for system verification in any process–algebraic framework. Unfortunately,
≈n is not a congruence. Unsurprisingly, and analogously to weak bisimulation
in CCS [25], it is not preserved by the nondeterministic choice operator +.
More disturbingly, ≈n is also not preserved by parallel composition. To see
this, consider the following examples; in each case p ≈n q but p|r 6≈n q|r.

Example 9 (Non–preservation of Milner’s tau–laws)

(1) p ≡ µ.τ.µ, q ≡ µ.µ, r ≡ fix(x : τ .x).
(2) p ≡ a + τ.a, q ≡ τ.a, r ≡ a + µ.
(3) p ≡ a.(b + τ.µ), q ≡ a.(b + τ.µ) + a.µ, r ≡ b + µ.
(4) p ≡ nil, q ≡ fix(x : τ .x), r ≡ µ.

In the first example, q|r
µ
→ µ|r

µ
→, while no

µ
⇒n–derivative of p|r can perform

action µ; note that this shows that the first tau–law of Milner [25] is in general

invalid in our setting. In the second example, q|r µ→ whereas p|r 6µ⇒n; this shows
that Milner’s second tau–law is in general unsound here. In the third example,
q|r can perform action a to reach a process in which both actions µ and µ
are enabled. However, p|r can never evolve to an equivalent process, whence
Milner’s third tau–law does not hold in our setting. Finally, in the fourth
example, p|r can engage in action µ, but q|r can never reach a process that
enables µ.

One reason that parallel composition does not preserve ≈n is that p ≈n q may
hold even though p may reach a patient process through τ–transitions while
q cannot (see Ex. 9(4)). Another reason (see Exs. 9(1–3)) is that, although q
and r may both be patient, their parallel composition q|r may not be because
of the possibility of synchronizations between them involving prioritized ac-

12

tions. Thus, it may be the case that when p ≈n q, an α–transition of p can only
be matched by a näıve weak α̂–transition that includes some τ–transitions.
When put in parallel with r, however, potential prioritized synchronizations
between some derivative of q and r might prevent the possibility of these τ–
transitions of q. Therefore, in order to arrive at a suitable congruence contained
in ≈n, we must take account of the possibility of reaching patient processes
through τ–transitions and of the preemptability of τ–transitions. With this
motivation, we introduce the following definitions.

Definition 10 Let p be a process.

(1) I(p) =df { λ ∈ A \ {τ, τ} | p λ→}
(2) p � if there exists a patient process q such that p

τ→
∗
q.

Intuitively, I(p) is the set of visible actions that p may initially perform. We
also use IA(p) =df I(p) ∩ A and IA(p) =df I(p) ∩ A to denote the visible
unprioritized and prioritized actions initially available to p. Moreover, p �
means that it is possible for process p to evolve to a patient process through a
sequence of zero or more τ–transitions. Note that this definition differs from
the notion of convergence that one often finds in the literature [15]: here, if p �
then it is still possible for p to engage in an infinite sequence of τ–transitions.

Definition 11 (Prioritized weak transition relation)

(1)
ε⇒ =df

τ→
∗
; we re–define τ̂ =df ε.

(2) Let α ∈ A \ {τ}. Then
α⇒ =df

ε⇒ ◦ α→ ◦ ε⇒.
(3) Let L ⊆ A \ {τ, τ}. Then

ε
=⇒

L
is defined inductively: p

ε
=⇒

L
q if

• p ≡ q, or
• ∃r. p

ε
=⇒

L
r

τ→ q, or

• ∃r. p
ε

=⇒
L

r
τ→ q and I(r) ⊆ L.

We write p
τ

=⇒
L

q if ∃p′, q′. p
ε

=⇒
L

p′
τ→ q′

ε
=⇒

L
q and I(p′) ⊆ L.

Intuitively, p
ε

=⇒
L

q holds if there exists a sequence p0, . . . , pn of processes such

that p ≡ p0
1→ p1

1→ · · · 1→ pn ≡ q and, if pi is patient, then the initial visible
actions available to pi must be contained in L, for any 0 ≤ i ≤ n. For example,
τ .(b + τ.c)

ε
=⇒

L
c holds for those L containing action b.

The next lemma remarks on several straightforward properties of
ε

=⇒
L

that

follow immediately from Def. 11.

Lemma 12 (Properties of prioritized weak transitions)
For any L ⊆ A \ {τ, τ} and p, q ∈ P the following are true:

13

(1)
τ

=⇒
L

◦ ε⇒ =
ε⇒ ◦ τ

=⇒
L

=
τ

=⇒
L

.

(2) If p
ε⇒ q then p

ε
=⇒

L
q.

(3) If p
τ→ q and I(p) ⊆ L, then p

τ
=⇒

L
q.

(4)
ε

=⇒
L
⊆ ε

=⇒
M

if L ⊆ M .

To understand the importance of relation
ε

=⇒
L

, suppose that p
ε

=⇒
L

q and

further that some process r is patient and incapable of synchronizing with
any prioritized action in L. We can then assert that p|r ε⇒n q|r. This fact is a
consequence of the following lemma.

Lemma 13 Assume p, q, r ∈ P and L ⊆ A \ {τ, τ} are such that (i) p
ε

=⇒
L

q,

(ii) r is patient, and (iii) IA(r)∩L = ∅. Then, p|r ε
=⇒
M

q|r for M =df L∪ I(r).

PROOF. The proof is by induction on the number of 1–transitions involved
in p

ε
=⇒

L
q. For the base case we have p ≡ q, and by using the first point

of Def. 11(3) we can infer that p|r ε
=⇒
M

q|r. For the induction case, there

exists some process p1 such that one of the following two conditions holds for
some p1: (i) p

ε
=⇒

L
p1

τ→ q, or (ii) p
ε

=⇒
L

p1
τ→ q and I(p1) ⊆ L.

Suppose the first condition holds. Then, by induction hypothesis, we have
p|r ε

=⇒
M

p1|r, and from the operational semantics of the parallel composition

operator we have p1|r
τ→ q|r. The required result that p|r ε

=⇒
M

q|r now follows

from Lemma 12(1).

Now suppose the second condition holds. Again by induction hypothesis we
have p|r ε

=⇒
M

p1|r. But in order to infer p1|r
τ→ q|r we have additionally to

show that p1|r is patient. This is true because it is given that r is patient and
that IA(r)∩ IA(p1) is empty. The latter statement follows from the facts that

I(p1) ⊆ L and IA(r) ∩ L = ∅. Thus, we have p1|r
τ→ q|r, so that p1|r

ε
=⇒
M

q|r by Lemma 12(3). The required result then follows from the transitivity
of

ε
=⇒
M

. 2

One may also wonder why the definition of p
ε

=⇒
L

q constrains the unprioritized

as well as the prioritized actions of the patient intermediate states between p
and q, i.e., why “I(r) ⊆ L” rather than “IA(r) ⊆ L” is used in the definition.
This requirement is needed to ensure that the equivalence we are about to
define is a congruence for the prioritization operator dµ. We will show in
Sec. 7.1 that it can be dropped when the prioritization constructor is left out.

14

We may now introduce our notion of prioritized observation equivalence; it
will repair the compositionality bug of the näıve prioritized weak bisimulation
with respect to parallel composition.

Definition 14 (Prioritized observation equivalence)
A relation R ⊆ P × P is called a prioritized weak bisimulation relation, or
pwb for short, if, for all 〈p, q〉 ∈ R and α ∈ A, the following conditions hold:

(1) p � if and only if q �.

(2) p
α→ p′ implies


∃q′. q α̂⇒ q′ and 〈p′, q′〉 ∈ R if α 6= τ

∃q′. q ε
=⇒
I(p)

q′ and 〈p′, q′〉 ∈ R if α = τ

(3) q
α→ q′ implies


∃p′. p α̂⇒ p′ and 〈p′, q′〉 ∈ R if α 6= τ

∃p′. p ε
=⇒
I(q)

p′ and 〈p′, q′〉 ∈ R if α = τ

We write p u q if 〈p, q〉 ∈ R for some prioritized weak bisimulation relation R,
and call u prioritized observation equivalence.

It is straightforward to establish that u is the largest pwb and that it is also an
equivalence. In addition, we have that ' is strictly contained in u. While part
of the aforementioned compositionality bug regarding parallel composition is
addressed by using the parameterized transition relation when matching τ–
transitions (cf. Cond. (2)), the other part is dealt with by including Cond. (1).
The next lemma states several important properties enjoyed by pwb’s, which
will be used in the proofs of our later results.

Lemma 15 Let R be a pwb with 〈p, q〉 ∈ R, and let L ⊆ A \ {τ, τ}. Then

(1) p
ε

=⇒
L

p′ implies ∃q′. q ε
=⇒

L
q′ and 〈p′, q′〉 ∈ R.

(2) p
ε⇒ p′ implies ∃q′. q ε⇒ q′ and 〈p′, q′〉 ∈ R.

(3) p is patient implies ∃q′. q ε⇒ q′, 〈p, q′〉 ∈ R, and q′ is patient.
(4) p is patient implies I(q) ⊆ I(p).

(5) p
ε⇒ p′ and p′ is patient implies ∃q′. q ε⇒ q′, 〈p′, q′〉 ∈ R, and q′ is patient.

PROOF. The proofs of Parts (1) and (2) follow by induction on the num-

ber of 1–transitions involved in p
ε

=⇒
L

p′ and p
ε⇒ p′, respectively, and use

Lemma 12.

To prove Part (3), observe that the patience of p implies that p �. Then, by
the first condition of Def. 14, we have q �. Thus, by definition of predicate �,
we infer the existence of some process q′ that is patient and satisfies q

ε⇒ q′.
Using Part (2) we can deduce the existence of a process p′ such that p

ε⇒ p′

15

and 〈p′, q′〉 ∈ R. Since p is patient, it is necessarily the case that p′ ≡ p, which
is the required result.

To establish Part (4), let λ ∈ I(q). This means that q
λ→ q′ for some process q′.

By using the third condition of Def. 14 we can infer the existence of a process p′

such that p
λ⇒ ◦ τ→

∗
p′ and 〈p′, q′〉 ∈ R. But p is patient. This means that

p
λ→ which implies λ ∈ I(p). Thus, we have I(q) ⊆ I(p).

Now we prove Part (5). Using Part (2) we infer the existence of some process q′′

such that q
ε⇒ q′′ and 〈p′, q′′〉 ∈ R. But p′ is patient and therefore p′ �. SinceR

is a pwb, we have q′′ �. Consequently, there exists a patient process q′ such
that q′′

ε⇒ q′. Again by using Part (2), we know of some process p′′ such that

p′
ε⇒ p′′ and 〈p′′, q′〉 ∈ R. Since p′ is patient, it is necessarily the case that

p′ ≡ p′′. 2

The following lemma states that u is preserved under all CCSprio operators
but nondeterministic choice and recursion.

Lemma 16 (Compositionality)
Let p, q, r ∈ P such that p u q, let λ ∈ Λ, α ∈ A, µ ∈ A \ {τ}, and let f be a
relabeling. Then the following properties hold:

(1) α.p u α.q (3) p\λ u q\λ (5) pdµ u qdµ

(2) p|r u q|r (4) p[f] u q[f] (6) pbµ u qbµ

PROOF. We only prove p|r u q|r whenever p u q. The proofs of the other
parts of the lemma are either similar to the corresponding ones presented
in [25] or, in the case of (5) and (6), are easy. Let R =df { 〈p|r, q|r〉 | p u
q, r ∈ P }. Since u is an equivalence, it is symmetric, and this implies that R
is also symmetric. Thus, to prove that R is a pwb it suffices to show that,
when 〈p, q〉 ∈ R, the following is true:

(1) p
α→ p′ implies that, for α 6= τ , ∃q′. q

α̂⇒ q′ and 〈p′, q′〉 ∈ R, and that, for
α = τ , ∃q′. q

ε
=⇒
I(p)

q′ and 〈p′, q′〉 ∈ R.

(2) p � implies q �.

To establish Cond. (1), suppose 〈p, q〉 ∈ R. Then, there exist processes p, q
and r such that p ≡ p|r, q ≡ q|r and p u q. If p

α→ p′ and α ∈ A \ {τ}, then,

by the usual arguments, we can show the existence of some q′ such that q
α̂⇒ q′

and 〈p′, q′〉 ∈ R.

Now suppose p
τ→ p′, whence p|r is patient. This implies that p and r are

16

patient and that IA(r) ∩ IA(p) = ∅. We must find a process q such that

q
ε

=⇒
I(p)

q′ and 〈p′, q′〉 ∈ R. The proof splits into three cases:

(1) p
τ→ p′ and p′ ≡ p′|r.
Since p u q, there must be some q′ such that q

ε
=⇒
I(p)

q′ and p′ u q′.

Lemma 15(4) implies I(q) ⊆ I(p), and since IA(r) ∩ IA(p) is empty, we

may use Lemma 13 to obtain q|r ε
=⇒
M

q′|r, where M = I(p)∪I(r) = I(p|r).
Thus we have q

ε
=⇒
I(p|r)

q′|r and also 〈p′|r, q′|r〉 ∈ R.

(2) r
τ→ r′ and p′ ≡ p|r′.
Since p u q and p is patient, it follows that there must be a q′ such

that q
ε⇒ q′ and p u q′. We now claim that q′|r is also patient. From

Lemma 15(4) we may deduce I(q′) ⊆ I(p). Because IA(r) ∩ IA(p) = ∅,
too, we have IA(r)∩IA(q′) = ∅, whence q′|r must be patient. It follows that

q′|r τ→ q′|r′ and, by Lemma 12(3), we may therefore infer q′|r τ
=⇒
I(q′|r)

q′|r′.

Since I(p) = I(q′), I(q′|r) = I(p|r), and q|r ε⇒ q′|r τ
=⇒
I(p|r)

q′|r′, we may

conclude from Lemma 12(2) that q|r τ
=⇒
I(p|r)

q′|r′, whence q|r ε
=⇒
I(p|r)

q′|r′. But

〈p|r′, q′|r′〉 ∈ R, as desired.

(3) p
b→ p′ and r

b→ r′, for some b ∈ A \ {τ}, and p′ ≡ p′|r′.
The proof of this case follows the same lines as the ones for the previous

two cases and is therefore omitted here.

We now continue with the proof of Cond. (2). p � means that there exists

some p1 such that p
ε⇒ p1 and p1 is patient. Without loss of generality, assume

that if i is the least number satisfying p
τ→

i
p1, then p

τ→
j

p′1 is not true for
any patient p′1 and j < i. The proof of q � is conducted by induction upon i:

• For the base case, i = 0, we have that p is patient. This means that both p
and r are patient and that IA(p) ∩ IA(r) = ∅. Using Lemma 15(3) we infer

the existence of a patient process q1 such that q
ε⇒ q1 and p u q1. Further,

Lemma 15(4) implies I(p) = I(q1). Now we have that IA(q1) ∩ IA(r) is
empty and that both processes q1 and r are patient. Hence, q1|r is patient

and q
ε⇒ q1|r. Equivalently, we have shown that q �, as desired.

• For the induction case, i > 0, suppose that p
τ→ p2

ε⇒ p1, where p1 is

patient. From Cond. (1) we may infer a process q2 such that q
ε⇒ q2 and

〈p2, q2〉 ∈ R. By induction hypothesis we have q2 �, from which q � follows
immediately. 2

Because u is insensitive to initial internal computation, it is not preserved by
nondeterministic choice. This problem can be fixed in the usual fashion [25]

17

by requiring that any silent action of one process is matched by at least one
silent action of the equivalent process.

Definition 17 (Prioritized observation congruence)
Define p u+ q to be valid if, for every α ∈ A, the following conditions hold:

(1) p
α→ p′ implies


∃q′. q α⇒ q′ and p′ u q′ if α 6= τ

∃q′. q τ
=⇒
I(p)

q′ and p′ u q′ if α = τ

(2) q
α→ q′ implies


∃p′. p α⇒ p′ and p′ u q′ if α 6= τ

∃p′. p τ
=⇒
I(q)

p′ and p′ u q′ if α = τ

Observe that the condition “p � if and only if q �” is implicitly satisfied here.
If p is patient because p 6τ→, then q 6τ→ due to the second condition of the above
definition. Alternatively, if p

τ→ p′ for some patient p′, then due to the first
condition of the above definition, q

τ⇒ q′ for some q′ such that p′ u q′. But
then q′ � by Def. 14, which in turn implies q �.

To show that u+ is also preserved by recursive definition, we first extend u+

to open terms in the standard way [25]. Let free(e) denote the set of all free
variables in expression e and let e{p/x} denote the expression obtained from e
by replacing every free occurrence of variable x by process p.

Definition 18 Let e, f ∈ E with free(e) ⊆ {x} and free(f) ⊆ {x}. Then,
e u+ f if ∀p ∈ P . e{p/x} u+ f{p/x}.

In order to prove that prioritized observation congruence u+ is preserved
under recursion, we need the concept of prioritized weak bisimulation up to
along the lines of Sangiorgi and Milner [31].

Definition 19 (Prioritized weak bisimulation up to)
A relation R ⊆ P×P is called a prioritized weak bisimulation up to u if, for
all 〈p, q〉 ∈ R and α ∈ A, the following conditions hold:

(1) p � if and only if q �

(2) p
α→ p′ implies


∃q′. q α̂⇒ q′ and p′R◦ u q′ if α 6= τ

∃q′. q ε
=⇒
I(p)

q′ and p′R◦ u q′ if α = τ

(3) q
α→ q′ implies


∃p′. p α̂⇒ p′ and p′ u ◦R q′ if α 6= τ

∃p′. p ε
=⇒
I(q)

p′ and p′ u ◦R q′ if α = τ

The following lemma states a very useful property of “up to” relations.

18

Lemma 20 (Soundness of the “up to” approach)
If R is a prioritized weak bisimulation up to u and 〈p, q〉 ∈ R, then p u q.

PROOF. We first prove that u ◦R◦ u is a prioritized weak bisimulation
relation. Then the required result can be obtained in the following manner.
Since u is a reflexive relation, p u p and q u q. Thus, if 〈p, q〉 ∈ R, we
can conclude 〈p, q〉 ∈u ◦R◦ u. Since relation u ◦R◦ u is proved to be a
prioritized weak bisimulation relation, we further have p u q. The rest of the
proof is devoted to establishing that relation u ◦R◦ u is indeed a prioritized
weak bisimulation relation. This involves checking all conditions presented in
Def. 14.

• Let p u ◦R◦ u q. Then there exist processes p1, q1 such that p u p1,
〈p1, q1〉 ∈ R, and q1 u q. From the first condition of Def. 14, p � if and
only if p1 � and q1 � if and only if q �. Similarly, from the first condition
of Def. 19, p1 � if and only if q1 �. Putting these facts together we get p �
if and only if q �.

• Suppose p
τ→ p′. Our aim is to prove that there is some q′ such that q

ε
=⇒
I(p)

q′

and p′ u ◦R◦ u q′. Since p u p1, we know of the existence of some p′1 such
that p1

ε
=⇒
I(p)

p′1 and p′ u p′1. Using arguments similar to those presented in

the proof of Lemma 15(1), we can infer the existence of a process q′1 such
that q1

ε
=⇒
I(p1)

q′1 and p′1R◦ u q′1. As p u p1 and because p is patient by

Lemma 15(2), we conclude I(p1) ⊆ I(p). Then, by using Lemma 12(3), we
obtain q1

ε
=⇒
I(p)

q′1. Since q1 u q according to Lemma 15(1), we further infer

the existence of a process q′ such that q
ε

=⇒
I(p)

q′ and q′1 u q′. Because of

p′ u p′1, p′1R◦ u q′1 and q′1 u q′. By the transitivity of u we can now
conclude p′ u ◦R◦ u q′, as desired.

Verifying the other conditions of Def. 14 can be done in a similar fashion. 2

We now have the conceptual tools necessary to prove the following composi-
tionality result.

Theorem 21 (Compositionality of recursion)
Let e, f ∈ E with free(e) ⊆ {x} and free(f) ⊆ {x}, and suppose e u+ f . Then,
fix(x : e) u+ fix(x : f).

The (lengthy) proof is shown in App. A. On the basis of the above theorem
and of Lemma 16, it is now easy to establish the main theorem of this section.

Theorem 22 (Congruence result)
Prioritized observation congruence u+ is a congruence with respect to all oper-

19

ators in CCSprio. Moreover, it is the largest congruence contained in prioritized
observation equivalence u.

The proof of the “largest” part of the theorem is standard and follows the lines
for observation congruence and equivalence in CCS [25]. The utility of u+ for
system verification is demonstrated by means of a small example in Sec. 6.

4 Full Abstraction

In this subsection we establish that prioritized observation congruence u+

is a compositional variant of näıve prioritized weak bisimulation that is as
insensitive to internal computation as possible. We first recall the following
well–known result adapted from universal algebra.

Fact 23 (Existence of a largest congruence)
Let = be an equivalence over some algebra, and define p =c q to hold if C[p] =
C[q] for any context C[]. Then =c is the largest congruence contained in =.

Thus we know that the largest congruence ≈c
n ⊆ ≈n contained in näıve pri-

oritized weak bisimulation exists. The theorem we wish to establish is the
following, which behaviorally characterizes this largest congruence.

Theorem 24 (Full abstraction) ≈c
n coincides with u+.

The proof of the full–abstraction result is more difficult than the “largest”
result of Thm. 22. It requires us to introduce a novel proof technique which
essentially identifies ≈c

n by a decreasing sequence of successive approximations.

4.1 Proof Technique for Identifying Largest Congruences

Our technique for identifying largest congruences may be phrased as follows.

Proof Technique 25 (For identifying largest congruences)
Input: An equivalence X on processes.
Output: The largest congruence contained in X.

Let Y =df X.
While Y is not a congruence do:

Given processes p and q, choose a specific context C(p, q)[] such that
Z =df { 〈p, q〉 | 〈C(p, q)[p], C(p, q)[q]〉 ∈ Y } is contained in Y.

Replace Y by an equivalence Z ′ with Z ⊆ Z ′ ⊆ Y .
Y is the largest congruence contained in X.

20

The validity of the technique can be established by proving that the predicate
Xc = Y c is an invariant of the while–loop. Clearly, the predicate is true before
the first iteration, as X and Y are the same. During an iteration, Y gets
replaced by an equivalence that lies in between Z and Y , and as Y c = Xc ⊆ Z
holds by assumption and by definition of Z, respectively, we have that Xc ⊆ Y
must also be true. Then the following proposition can be used to conclude that
the loop invariant is maintained.

Proposition 26 (Preserving Largest Congruences)
Let X and Y be equivalences such that Xc ⊆ Y ⊆ X. Then Xc = Y c.

PROOF. Since Y ⊆ X, it is clear that Y c ⊆ Xc. Now we show Xc ⊆ Y c. Let
〈p, q〉 ∈ Xc and, by the hypothesis, 〈p, q〉 ∈ Y . To prove 〈p, q〉 ∈ Y c, it suffices
to show that 〈C[p], C[q]〉 ∈ Y , where C[] is an arbitrary context. But Xc is a
congruence, whence 〈p, q〉 ∈ Xc implies 〈C[p], C[q]〉 ∈ Xc. Since Xc ⊆ Y , the
required result that 〈C[p], C[q]〉 ∈ Y follows immediately. 2

If Y is a congruence, then Y c = Y . Since the while–loop is exited only when Y
is a congruence, it follows that Y = Xc, as desired.

Although our proof technique is presented as an algorithm, it is not guaran-
teed to “terminate” in the traditional sense. If one chooses contexts naively, by
for example always selecting the empty context, the while–loop will not termi-
nate. The intention behind our routine is, at every iteration of the while–loop,
to obtain a relation that is congruent with respect to a larger subset of the op-
erators in the underlying algebra. To the extent that appropriate contexts and
congruences can be defined for different operators, and that process algebras
contain finitely many operators, the algorithm will nevertheless “terminate”.

4.2 Applying the Proof Technique

This section applies Proof Technique 25 to proving the full–abstraction re-
sult of Thm. 24. Here, our näıve prioritized equivalence ≈n plays the role of
input X, and we proceed by iterating through the while–loop.

4.2.1 First Iteration

To use our technique to identify ≈c
n we first introduce a specific context Kp,q[],

given a pair of processes p and q. Intuitively, this context serves as the link
between ⇒n and ⇒. In other words, we want the ⇒n–transitions of Kp,q[p]

21

and Kp,q[q] to enable us to deduce information about the ⇒–transitions of p
and q, respectively.

The structure of context Kp,q[] is somewhat complex, and its description
demands some auxiliary notation. Let SU(p) and SP (p) be the unprioritized
sort and prioritized sort of process p, respectively, and let Sp,q denote SU(p)∪
SU(q). Recall that these sets are finite for any p because of the restriction we
place on relabelings. We define a context Up,q[] analogous to context “Dp,q[]”
of [10]: Up,q[r] =df (r[Lp,q])dSp,q, where the relabeling function Lp,q is

Lp,q(α) =df


α if α ∈ A

α if α = λ and λ 6∈ Sp,q

kα otherwise

where kα ∈ A, kα = kα, kα 6= kβ if α 6= β, kα 6∈ Sp,q, and kα 6∈ SP (p) ∪ SP (q).
Since the set A of actions is infinite, such kα are guaranteed to exist. The
effect of this context Up,q[] on its “argument” is to prioritize uniquely those of
its unprioritized actions which lie in Sp,q. Now we are ready to define Kp,q[].

Definition 27 If L = {l1 · · · lk} ⊆ A, then 〈L〉 represents the process l1.nil +
· · ·+ lk.nil, with 〈∅〉 ≡ nil and 〈{α}〉 ≡ α.nil. For p, q ∈ P, let Ap,q denote the
set SP (Up,q[p]) ∪ SP (Up,q[q]). Also, let Qp,q denote the process

fix(X : c +
∑

L⊆Ap,q

τ .(〈L〉+ dL.X)) ,

where c ∈ A \ {τ} and dL ∈ A \ {τ} do not belong to Ap,q ∪Ap,q, and dL = dL′

if and only if L = L′. Then, context Kp,q[] is defined as Qp,q |Up,q[].

The next lemma, whose proof can be found in App. B, enumerates several
properties of context Kp,q[]. Specifically if r is any process whose sort is
contained in the union of the sorts of p and q, then we may use the ⇒n–
transitions of Kp,q[r] to infer ⇒–transitions in r.

Lemma 28 (Properties of our context)
Let r be a process whose sort is contained in the union of the sorts of processes p
and q. Further, let D stand for the set of the dL–actions that occur in Qp,q.

(1) IA(Up,q[r]) = I(Up,q[r]).
(2) Process Kp,q[r] is not patient.

(3) If Kp,q[r]
ε⇒n K′ and K′ c⇒n, then K′ ≡ Kp,q[r

′] for some r′ such that

r
ε⇒ r′.

(4) If µ 6∈ Sp,q, µ 6∈ D, Kp,q[r]
µ
⇒n K′, and K′ c⇒n, then K′ ≡ Kp,q[r

′] for

some r′ such that r
µ
⇒ r′.

22

(5) If µ ∈ Sp,q, µ 6∈ D, Kp,q[r]
µ
⇒n K′, and K′ c⇒n, then K′ ≡ Kp,q[r

′] for

some r′ such that r
µ⇒ r′.

(6) If Kp,q[r]
kµ

⇒n K′ and K′ c⇒n, then K′ ≡ Kp,q[r
′] for some r′ such that

r
µ
⇒ r′.

(7) If (〈L〉 + dL.Qp,q) |Up,q[r]
ε⇒n (〈L〉 + dL.Qp,q) |Up,q[r1], then Up,q[r]

ε
=⇒
M

Up,q[r1], L ∩M = ∅, and M ∩D = ∅.
(8) If Kp,q[r]

dL⇒n K′ and K′ c⇒n, then K′ ≡ Kp,q[r
′] for some r′, M such that

Up,q[r]
ε

=⇒
M

Up,q[r
′], L ∩M = ∅, and M ∩D = ∅.

Given this specific context we can now define the relation

≈1
n =df { 〈p, q〉 | Kp,q[p] ≈n Kp,q[q] } ,

which plays the role of Z in the technique. Next, we need to introduce an
equivalence uf which lies between ≈1

n and ≈n; this equivalence becomes the
new value of Y in the technique. It is defined by means of a class of relations,
called finite prioritized weak bisimulations.

Definition 29 (Finite prioritized weak bisimulation)
A relation R ⊆ P ×P is called a finite prioritized weak bisimulation, or fpwb
in short, if, for all 〈p, q〉 ∈ R and α ∈ A, the following conditions hold:

(1) p
α→ p′ implies


∃q′. q α̂⇒ q′ and 〈p′, q′〉 ∈ R if α 6= τ

∃q′. q ε
=⇒
I(p)

q′ and 〈p′, q′〉 ∈ R if α = τ

(2) q
α→ q′ implies


∃p′. p α̂⇒ p′ and 〈p′, q′〉 ∈ R if α 6= τ

∃p′. p ε
=⇒
I(q)

p′ and 〈p′, q′〉 ∈ R if α = τ

We write p uf q if 〈p, q〉 ∈ R for some finite prioritized weak bisimulation
relation R.

The only difference between a pwb and a fpwb is that pwb’s require related
processes to satisfy “p � if and only if q �.” Relation uf can be shown to be
an equivalence by the usual arguments. It is a congruence for divergence-free
processes and thus in particular finite processes, which explains the choice of
name for this behavioral relation. As can easily be verified, fpwb is a näıve
weak bisimulation; it follows that uf is contained in ≈n. The fact that ≈1

n is
contained in uf is obtained from the following lemma.

Lemma 30 The equivalence ≈1
n is a fpwb.

PROOF. Let p ≈1
n q, i.e., Kp,q[p] ≈n Kp,q[q]. Suppose that p

α→ p′. The proof

23

splits into several cases depending upon whether α ∈ A, α ∈ A\{τ}, or α = τ .

• α = τ .
Here we have p

τ→ p′. We demonstrate the existence of a process q′ such
that q

ε⇒ q′ and p′ ≈1
n q′. As p

τ→ p′, it follows that Kp,q[p]
τ→ Kp,q[p

′]. From
the definition of näıve weak bisimulations and the hypothesis that Kp,q[p] ≈n

Kp,q[q], we can infer the existence of a process K′ such that Kp,q[q]
ε⇒n K′

and Kp,q[p
′] ≈n K′. Since Kp,q[p

′] ≈n K′ and Kp,q[p
′]

c→, we obtain K′ c⇒n.
Using Lemma 28(3) we can infer the existence of the desired process q′ such

that q
ε⇒ q′ and K′ ≡ Qp,q|Up,q[q

′]. What we have is that Kp,q[p
′] ≈n Kp,q[q

′]
but our aim however is to establish Kp′,q′ [p

′] ≈n Kp′,q′ [q
′]. By examining the

structure of the context Kp,q[], and by using the observation that the sorts of
processes p′ and q′ are contained in those of processes p and q, respectively,
it is clear that Kp′,q′ [p

′] ≈n Kp′,q′ [q
′], i.e., p′ ≈1

n q′.
• α ∈ A \ {τ} such that α = µ.

Here, the proof splits into two cases depending upon whether µ ∈ Sp,q or
not. For both these cases the proof proceeds along the same lines as the one
of the case α = τ ; however, we make use of Lemma 28(4) when µ 6∈ Sp,q in
place of Lemma 28(3). On the other hand, Lemma 28(6) is utilized when
µ ∈ Sp,q. The case α ∈ A \ {τ} is handled in the same fashion with the help
of Lemma 28(5).

• α = τ .
We demonstrate the existence of a process q′ such that q

ε
=⇒
I(p)

q′ and

p′ ≈1
n q′. Since Qp,q is not patient, transition Kp,q[p]

τ→ Kp,q[p
′] is not

possible. However, the following sequence of three transitions is possible
(cf. Fig. 1, left–hand side):

Kp,q[p]
τ→ (〈L〉+ dL.Qp,q) |Up,q[p]

τ→ (〈L〉+ dL.Qp,q) |Up,q[p
′]

dL→ Kp,q[p
′] ,

where L =df Ap,q \ I(Up,q[p]); this choice of L guarantees that process
(〈L〉 + dL.Qp,q) |Up,q[p] is patient and makes the τ–transition possible. As
Kp,q[p] ≈n Kp,q[q], we can find processes K1, K2, and K′ such that

Kp,q[q]
ε⇒n K1

ε⇒n K2
dL⇒n K′ ,

with (〈L〉+dL.Qp,q) |Up,q[p] ≈n K1, (〈L〉+dL.Qp,q) |Up,q[p
′] ≈n K2, as well

as Kp,q[p
′] ≈n K′ (cf. Fig. 1, right–hand side).

Since Kp,q[p
′] ≈n K′ and Kp,q[p

′]
c→, we infer K′ c⇒n. We also have

Kp,q[q]
dL⇒n K′. Lemma 28(8), whose validity in turn relies on Lemma 28(7),

then implies K′ ≡ Kp,q[q
′] for some q′, M such that Up,q[q]

ε
=⇒
M

Up,q[q
′],

L ∩M = ∅, and M contains no dN . But L is Ap,q \ I(Up,q[p]). This means
M ⊆ I(Up,q[p]), and Up,q[q]

ε
=⇒

I(Up,q [p])
Up,q[q

′] by Lemma 12(3). Now it is

not difficult to prove that it is indeed the case that q
ε

=⇒
I(p)

q′ and that

24

Qp,q | Up,q[q]

Qp,q | Up,q[q
1]

(〈L〉+ dL.Qp,q) | Up,q[q
1]

(〈L〉+ dL.Qp,q) | Up,q[q1]

(〈L〉+ dL.Qp,q) | Up,q[q2]

(〈L〉+ dL.Qp,q) | Up,q[q
3]

Qp,q | Up,q[q
3]

Qp,q | Up,q[q
′]

Qp,q | Up,q[p]

(〈L〉+ dL.Qp,q) | Up,q[p]

(〈L〉+ dL.Qp,q) | Up,q[p
′]

Qp,q | Up,q[p
′]

?

τ

?
τ

?

dL

?
ε

?

?
τ

?
ε, I(p)

?

?
ε, I(p)

?

?
ε, I(p)

?

?
dL

?
ε

?

≈n

≈n

≈n

≈n

Fig. 1. Largest congruence proof: case α = τ .

Kp′,q′ [p
′] ≈n Kp′,q′ [q

′], i.e., p′ ≈1
n q′. 2

Summarizing we have ≈c
n⊆≈1

n⊆uf⊆≈n. Thus, by Prop. 26, ≈c
n = uc

f .

4.2.2 Second Iteration

The equivalence uf turns out not to be congruence, as in general parallel
composition is not preserved. For example, the processes in Ex. 9(4) provide
an illustration of this, since it can be shown that p uf q but p|r 6uf q|r. As uf

is not a congruence we must repeat the body of the while–loop.

Our goal is now to isolate uc
f , since we know by Prop. 26 that it coincides

with ≈c
n. So given a pair of processes p and q, we introduce the context

Cp,q[] =df [] | c.nil, where c is an unprioritized visible action that does not
belong to either the sort of p or the sort of q. We further define

≈2
n =df { 〈p, q〉 | Cp,q[p] uf Cp,q[q] } .

This equivalence now plays the role of Z in our technique. We obviously have

25

uc
f ⊆≈2

n. Moreover, it can be shown that ≈2
n is a pwb, which means that ≈2

n

⊆ u.

Lemma 31 The equivalence ≈2
n is a pwb.

PROOF. To prove that ≈2
n is a pwb, we show that ≈2

n satisfies the con-
ditions presented in Def. 14. It is obvious that our equivalence satisfies the
second and third condition; we now focus our attention on proving the first
condition. Let p ≈2

n q. This means that Cp,q[p] uf Cp,q[q], where Cp,q[] ≡ []|c.nil
and neither c nor c belong to the sorts of p and q. Let p �; we prove q �.
From the definition of the predicate �, p

ε⇒ p′ for some patient process p′.
Clearly, p′|c.nil is patient. Thus, p|c.nil

ε⇒ p′|c.nil
c→ p′|nil. In other words,

p|c.nil
c⇒. Since p|c.nil uf q|c.nil, we have q|c.nil

c⇒ as well. Consequently,

q|c.nil
ε⇒ q′|c.nil

c→ q′|nil, for some patient process q′. This necessarily implies

that q
ε⇒ q′, i.e., q �. In a symmetric fashion, we can also establish that q �

implies p �. 2

From the definition of uf, it is obvious that u ⊆ uf, and thus in our tech-
nique Y is assigned the value u. Then, from Prop. 26, it follows that uc

f = uc.
This concludes the second iteration of the while–loop in our proof technique
for identifying largest congruences.

4.2.3 Concluding our Iterations

As u is not a congruence, we could iterate the while–loop once again. How-
ever, we instead appeal to Thm. 22, which establishes uc = u+. This implies
that ≈c

n = uc
f = uc = u+ and concludes the proof of Thm. 24.

5 Axiomatizing Prioritized Observation Congruence

In this section we provide a sound and complete axiomatization of prioritized
observation congruence u+ for finite processes. We achieve this by adding
to the axioms of Tables 2 and 3 suitable tau–laws. As seen in the previous
section, finding an appropriate set of sound tau–axioms is a non–trivial task,
and their soundness may involve inclusions on initial action sets.

Let E denote the set of tau–axioms given in Table 4, on the left–hand side,
plus the axioms of E' (cf. Tables 2 and 3). Our aim is to show that E is
sound and complete with respect to u+. The soundness of our tau–axioms
except that of Axiom τ1 is clear. Axiom τ1 involves a side condition, namely

26

Table 4
tau–axioms (left) and axioms for vi (right)

τ1 α.(1.x + x) = α.x iA1 α.x vi α.y

τ2 τ .x = τ .x + x iA2 τ.x vi nil

τ3 α(x + τ .y) = α(x + τ .y) + α.y iA3 nil vi ν.x (ν ∈ A \ {τ})

τ1 z + τ.(x + τ.y) = z + τ.(x + τ.y) + τ.y (` x vi z)

` x vi z. The syntactic relation vi is the precongruence on finite processes
generated from the three axioms presented in Table 4, on the right–hand side,
using the laws of inequational reasoning. The behavioral interpretation of this
relation, in terms of inclusions on initial action sets, is made precise in the
following lemma.

Lemma 32 (Properties of vi)

(1) [Soundness] Let ` p vi q. Then I(p) ⊆ I(q), and p is patient if and only
if q is patient.

(2) [Completeness] If p, q are finite processes such that I(p) ⊆ I(q) and such
that either both or neither is patient, then there exist some p′, q′ such that
p ' p′, q ' q′, and ` p′ vi q′.

The proof of the first item can be done in a straightforward manner by induct-
ing upon the length of the proof of ` p′ vi q′. The proof of the second item is
somewhat more complex and can be found in App. C. The complexity mainly
stems from the fact that there are no axioms like Axioms A1 through A4 of
Table 2 in the axiom system presented in Table 4, right–hand side.

In the light of the above lemma, I(x) ⊆ I(z) whenever ` x vi z. Hence, the
soundness of Axiom τ1 is immediate. Completeness of our axioms is proved
along the same lines as in [25]. Any finite process can be converted into a
normal form by eliminating all static combinators using axioms in E'. Then
we need the following analogue of Lemma 16 on p. 163 of [25].

Lemma 33 (Saturation)
Let p be a normal form.

(1) p
α→ q if and only if `E p = p + α.q.

(2) p
α⇒ q, for α 6= τ , implies `E p = p + α.q.

(3) p
τ

=⇒
I(p)

q implies `E p = p + τ.q.

PROOF. The proofs of the first two statements proceed exactly along the
same lines as those of the corresponding theorem given in [25]. We thus focus

27

our attention on the proof of the third statement. Its proof breaks down into
two cases, depending upon whether p is patient or not.

Suppose that p is not patient. Then there is some process p′ such that p
τ→ p′.

By the first statement of this lemma, `E p = p+τ .p′. Axioms P and A2 imply
`E τ .p′ = τ .p′ + τ.q. Hence, `E p = p + τ .p′ + τ.q = p + τ.q, as desired.

Now suppose that p is patient. We proceed by inducting upon the number of
1–transitions involved in p

τ
=⇒
I(p)

q. For the base case we have p
τ→ q. By the

first statement of this lemma we have the required result that `E p = p + τ.q.
For the induction case, the proof splits into two cases:

(1) p
τ

=⇒
I(p)

p′
τ→ q, for some p′.

By the induction hypothesis, `E p = p+τ.p′, and by the first statement
of this lemma, `E p′ = p′ + τ .q. Putting these two results together we
obtain `E p = p + τ.(p′ + τ .q). Further, applying Axiom τ3, we get
`E p = p+ τ.(p′+ τ .q)+ τ.q. As shown in the previous proof step we may
replace the first two terms of the right–hand side of this equation by p,
whence `E p = p + τ.q.

(2) p
τ

=⇒
I(p)

p′
τ→ q and I(p′) ⊆ I(p), for some p′.

Using the induction hypothesis, `E p = p+τ.p′ and the first statement
of this lemma we derive `E p = p + τ.(p′ + τ.q) as in the previous case.
Since it is given that I(p′) ⊆ I(p) and that both p and p′ are patient,
Axiom τ1 can be applied to the right–hand side of this equation to obtain
`E p = p + τ.(p′ + τ.q) + τ.q. Again as in the previous case, the first two
terms of the right–hand side of this equation can be replaced by p, and
we arrive at the required result `E p = p + τ.q. 2

We also need an analogue of Proposition 11 on p. 156 of [25].

Proposition 34 Let p, q be finite processes. If p u q, then p u+ q, or p u+

q + τ.q, or p u+ q + τ .q, or p + τ.p u+ q, or p + τ .p u+ q.

PROOF. Let p u q and suppose it is not the case that p u+ q. The proof
splits into three cases depending upon whether both processes are patient:

(1) Both p and q are patient.
Since p is not congruent to q we must either have p

τ→ p′ and p′ u q, for
some p′, or the analogous condition with the roles of p and q interchanged.

Without loss of generality we focus on the first case, for which we
claim p u+ q + τ.q. The only non–obvious part of this statement’s proof
involves establishing the following condition: q

τ→ q′ implies ∃p1. p
τ

=⇒
I(q)

p1

28

and p1 u q′. Fix a q′ such that q
τ→ q′ and suppose the condition is

not true. Then, because of the hypothesis p u q and the fact that p is
patient, p

ε
=⇒
I(q)

p2 u q′ implies p2 ≡ p, for any p2. In other words, the above

condition states that the only
ε

=⇒
I(q)

–derivative of p that is observationally

equivalent to q′ is p. Now we have p u q, p′ u q, and q′ u p, whence
p′ u q′ by transitivity. Since p is a finite process and p

τ→ p′, it cannot be
the case that p and p′ are identical, which is a contradiction. Thus, we
have p u+ q + τ.q.

(2) Both p and q are impatient. The proof is similar to the previous case.
(3) Exactly one of p and q is impatient.

Without loss of generality we assume p is impatient and q is patient. In
this case, it is easy to see that p u+ τ .q. Since q is patient, τ .q u+ τ .q + q.
Thus, by transitivity, we have the required result that p u+ τ .q + q. 2

We are now in a position to prove the completeness of our axiom system for
finite processes.

Theorem 35 (Soundness & completeness)
Let p, q be finite processes. Then p u+ q if and only if `E p = q.

PROOF. The “if” part of the theorem is straightforward, so we focus on
the “only if” part, i.e., on completeness. Without loss of generality, assume p
and q are normal forms

∑m
i=1 αi.pi and

∑n
j=1 βj.qj.

The proof proceeds by induction on the sum d of the depths of p and q. For
the induction base d = 0 we have m = n = 0, i.e., p ≡ q ≡ nil and obviously
`E p = q. For the induction step, let d > 0. It is easy to see that it is not
possible for exactly one of m and n to be 0. Now we consider the case in which
m, n, d are all strictly positive. It is sufficient to establish `E p = p + q, since
`E q = p+q using symmetrical arguments, which together immediately imply
`E p = q.

To prove `E p = p+q we show `E q = αi.pi +q, for all 1 ≤ i ≤ m. Choose and
fix some i. The proof splits into two cases depending upon whether αi = τ .

If αi = τ , we have that p
τ→ pi implies q

τ
=⇒
I(p)

q′ and p′ u q′ for some q′.

Obviously p is patient. Since p u+ q, it has to be the case that q is patient
as well. Lemma 15(4) then implies I(p) = I(q). Thus we have q

τ
=⇒
I(q)

q′. By

Lemma 33(3), `E q = q + τ.q′, and using Prop. 34 we infer pi u+ q′, or
pi u+ q′ + 1.q′, or pi + 1.pi u+ q′. In each of these cases, the sum of the
depths of the processes involved is strictly less than the sum of the depths of
the processes p and q, whence the induction hypothesis is applicable to them.

29

Thus, one of `E pi = q′, or `E pi+1.pi = q′, or `E pi = q′+1.q′ is true. In any
case `E τ.pi = τ.q′, perhaps by using Axiom τ1. Because of `E q = q + τ.q′

we can prove `E q + τ.pi = q, as desired.

If αi 6= τ , then p
αi→ pi implies q

αi⇒ q′ and p′ u q′ for some process q′. By
Lemma 33(2), `E q = q + αi.q

′. Now, the rest of the proof proceeds exactly
along the same lines as that of the previous case.

In summary, we have proved `E q = αi.pi + q, for all 1 ≤ i ≤ m. By summing
up this equation over all i and by repeated application of Axiom A1, we obtain
`E q = p + q. 2

We conclude our axiomatization with a couple of remarks. Firstly, Axiom (τ1)
is, strictly speaking, a rule rather than an equation, which means that our
axiomatization is not equational. The question naturally arises as to whether
it is possible to give a finite axiomatization that is purely equational, possibly
supposing that the underlying action set is finite. This issue is currently open,
although we conjecture that a finite axiomatization will in fact not be possible.

Secondly, when extending our axiomatization to the class of regular processes,
i.e., finite–state processes that do not contain recursion through static opera-
tors, it is not obvious how a completeness result can be obtained. The standard
approach of Milner [26] relies on the possibility of removing tau–cycles in pro-
cesses. In the context of global preemption, however, eliminating a τ–cycle is
in general not sound, as is shown by Ex. 9(4). A similar problem has been
attacked in [19] for stochastic process calculi with priority and/or maximal
progress and in [8] for a different, more classical process–algebraic setting. It
remains to be seen whether these techniques can be successfully applied to
CCSprio.

6 Example

In this section we apply our behavioral relation of prioritized observation con-
gruence u+ to reason about the relationship between a specification and an
implementation of a 4–count timer, which outputs timeout immediately after
four consecutive inputs of tick. A formal specification of the system may be
given in CCS as follows:

Spec ⇐ tick.tick.tick.tick.timeout.Spec ,

where we use the notation x ⇐ p instead of fix(x : p).

30

BABA

I

tick b timeout

timeout

b

ia

tick

SysSys 1

Fig. 2. Architecture of the 4–count timer implementations.

First, näıve implementation. Suppose now that we are asked to imple-
ment Spec using 2–count timers, which are specified as follows:

Cell ⇐ tick.tick.timeout.Cell .

A natural way to implement this specification is to compose two such Cells
serially, connecting the timeout port of one cell to the tick port of the other
cell, as depicted in Fig. 2 on the left–hand side. The resulting process Sys is

Sys ⇐ (A|B)\{b} A ⇐ Cell [b/timeout] B ⇐ Cell [b/tick] ,

where we use the standard convention and write finite relabelings in a subs-
titution–style notation [25].

To prove that Sys is correct, we can try to establish that Sys u+ Spec. Unfor-
tunately, this fails to be the case; in fact, the two systems are not even trace
equivalent. To see this, note that Sys has a trace that begins with “tick tick
tick tick tick.” But in any trace of Spec, every four consecutive occurrences
of tick are immediately succeeded by an occurrence of timeout. Hence, Sys
does not implement Spec. The cause of the problem is that the availability
of a timeout action in process B does not preclude A from executing a tick
action. The problem would persist even if we would use CCSprio and prioritize
timeout, since visible prioritized actions do not preempt unprioritized actions.

A still not quite correct solution. In order to develop a solution, we
introduce another process, process I, that acts as a “server” for the timer. All
interactions between the environment and the timer are “funneled” through
this process. The resulting system, Sys1, is depicted on the right–hand side of
Fig. 2 and is formally defined as follows:

Sys1 ⇐ (A1|B1|I)\{a, b, i} A1 ⇐ A[a/tick]

I ⇐ tick.a.I + i.timeout.I B1 ⇐ (Bd{timeout})[i/timeout] .

31

However, it is still not the case that Sys1 u+ Spec. The reason for this inequiv-
alence is somewhat subtle. To see why it is not possible to construct a pwb
containing the pair 〈Spec, Sys1〉, suppose Spec evolves to

Spec1 ⇐ tick.tick.tick.timeout.Spec

by performing action tick. Now, there is only one process to which Sys1 can

evolve by means of
tick⇒ , namely Q ≡ (A1 |B1 | a.I)\{a, b, i}. So any attempt to

construct a pwb relating Spec and Sys1 must necessarily relate Spec1 and Q

as well. The only initial action available to Q is τ ; Q is incapable of a
tick⇒–

transition. Thus, Spec1 and Q, and hence Spec and Sys1, cannot be related by
any pwb. In fact, the context C =df ([]d{tick, timeout}) | (τ + c) distinguishes
them: process C[Spec] can engage in two consecutive tick actions which C[Sys1]
cannot match. The problem is the matching of the second tick action; this is
because context C does not permit the low priority interaction between the
process A and I through port a while action c is enabled.

A correct implementation. This last observation suggests that, in order
to come up with a correct implementation, we should also prioritize the com-
munications on a and b. This leads to system Sys2 :

Sys2 ⇐ (A2 |B2 | I1)\{a, b, i} I1 ⇐ Id{a}

A2 ⇐ A1d{a, b} B2 ⇐ B1d{b} .

It turns out that Sys2 is indeed an implementation of Spec, as Sys2 u+ Spec.
To demonstrate this, one needs to build a pwb relating the two systems and
then to remark that as neither system is capable of initial internal actions,
equivalence with respect to u implies equivalence with respect to u+.

To ease the presentation of such a pwb we define processes A3, B3 and I3
that can easily be proved to be prioritized strong bisimilar to A2, B2 and I1
respectively; the advantage is that they do not contain any static operators:

Sys3 ⇐ (A3 |B3 | I3)\{a, b, i} I3 ⇐ tick.a.I3 + i.timeout.I3

A3 ⇐ a.a.b.A3 B3 ⇐ b.b.i.B3 .

Table 5, where M =df {a, b, i}, now presents the desired pwb that contains
the pair 〈Sys3, Spec〉. The proof that this relation is indeed a pwb is left to
the reader.

Reflecting on this example, it must be pointed out that our 4–count timer is
inherently an example of global rather than local priority [13]. This is because
action tick is local to I and b is shared by A and B but not I.

32

Table 5
A prioritized weak bisimulation containing 〈Sys3,Spec〉

〈Sys3, Spec〉,

〈(A3 |B3 | a.I3)\M, tick.tick.tick.timeout.Spec〉,

〈(a.b.A3 |B3 | I3)\M, tick.tick.tick.timeout.Spec〉,

〈(a.b.A3 |B3 | a.I3)\M, tick.tick.timeout.Spec〉,

〈(b.A3 |B3 | I3)\M, tick.tick.timeout.Spec〉,

〈(A3 | b.I3.B3 | I3)\M, tick.tick.timeout.Spec〉,

〈(A3 | b.i.B3 | a.I3)\M, tick.timeout.Spec〉,

〈(a.b.A3 | b.i.B3 | I3)\M, tick.timeout.Spec〉,

〈(a.b.A3 | b.i.B3 | a.I3)\M, timeout.Spec〉,

〈(b.A3 | b.i.B3 | I3)\M, timeout.Spec〉,

〈(A3 | i.B3 | I3)\M, timeout.Spec〉,

〈(A3 |B3 | timeout.I3)\M, timeout.Spec〉

7 Discussion and Related Work

This section first discusses the robustness of our approach to abstracting from
internal computation in CCSprio. It then considers related work on priority in
process algebras, a survey of which can be found in [13]. Our account of related
work focuses largely on CCS–based languages with priority, and we restrict
ourselves further to those languages for which observational congruences have
been investigated.

7.1 Robustness of our Approach

Obviously, the semantic theory of prioritized observation equivalence and con-
gruence, and in particular our full–abstraction result, depends on the exact
operators of the underlying language with priority. It is interesting to see what
happens if the prioritization and deprioritization operators would be left out
in our CCSprio language. The reason for including these operators in [10] was
motivated by showing ' to be the largest congruence contained in a natural
strong bisimulation induced by the CCSprio semantics in which all prioritized
actions, and not only action τ , preempt all unprioritized actions. It is worth
noting that this result is only valid in the presence of the deprioritization op-
erator. For example, the processes a + τ.(a + τ) and a + τ.τ are not related

33

by ', but they cannot be distinguished by any context that does not involve
the deprioritization operator.

When considering CCSprio without prioritization and deprioritization opera-
tors, it turns out that the largest congruence contained in the näıve prioritized
weak bisimulation is not u+ but a coarser congruence. For presenting this con-
gruence we need to expand the definition of our weak transition relation by
writing p

a
=⇒

L
p′ for p

ε
=⇒

L
◦ a−→

L
◦ ε⇒ p′, given L ⊆ A \ {τ}. Note that the

absence of a prioritization operator means that it is sufficient to consider pri-
oritized initial action sets L only, since unprioritized actions may never gain
preemptive power. The definition of prioritized observation equivalence may
now be relaxed as follows.

Definition 36 (“Relaxed” prioritized observation equivalence)
A relation R ⊆ P × P is a relaxed prioritized weak bisimulation relation if,
for every 〈p, q〉 ∈ R, a ∈ A, and a ∈ A, the following holds:

(1) τ /∈ IA(p) implies ∃q′. q ε
=⇒
IA(p)

q′, IA(q′) ⊆ IA(p), τ /∈ IA(q′), 〈p, q′〉 ∈ R.

(2) p
a→ p′ implies ∃q′. q â⇒ q′, and 〈p′, q′〉 ∈ R.

(3) p
a→ p′ implies ∃q′. q â

=⇒
IA(p)

q′ and 〈p′, q′〉 ∈ R.

(4) τ /∈ IA(q) implies ∃p′. p ε
=⇒
IA(q)

p′, IA(p′) ⊆ IA(q), τ /∈ IA(p′), 〈p′, q〉 ∈ R.

(5) q
a→ q′ implies ∃p′. p â⇒ p′, and 〈p′, q′〉 ∈ R.

(6) q
a→ q′ implies ∃p′. p â

=⇒
IA(q)

p′ and 〈p′, q′〉 ∈ R.

We write p u∗ q if 〈p, q〉 ∈ R for some relaxed prioritized weak bisimulation
relation R.

It is easy to check that each condition in the above definition relaxes the corre-
sponding condition in Def. 14. In contrast to our earlier definition, the revised
prioritized weak transition relation now allows an unprioritized a–transition
to be preceded by any sequence of τ– and τ -transitions, satisfying a condition
on prioritized initial action sets, and only to be trailed by τ–transitions. The
corresponding notion of “relaxed” prioritized observation congruence is then
given as follows.

Definition 37 (“Relaxed” prioritized observation congruence)
Define p u+

∗ q if, for all a ∈ A and a ∈ A, the following conditions and their
symmetric counterparts hold.

(1) ∀a ∈ A. p
a→ implies q

a→.

(2) p
a→ p′ implies ∃q′. q a⇒ q′ and p′ u∗ q′.

(3) p
a→ p′ implies ∃q′. q a

=⇒
IA(p)

q′ and p′ u∗ q′.

34

Then u+
∗ is the largest congruence contained in ≈n; the proof of this result

can be found in [23]. Since u+
∗ abstracts from more internal computations

than u+, it is sometimes more practicable for system verification. For ex-
ample, if action a within process Sys3 of our example in Sec. 6 were not
prioritized, then Sys3 6u+ Spec. The reason is that the processes Sys3′ ⇐
(A3 |B3 | a.I3)\{a, b, i} and Spec′ ⇐ tick.tick.tick.timeout.Spec′ must neces-
sarily be prioritized weak bisimilar. However, Sys3′ cannot match the tick–
transition of Spec′ since the former process can neither initially engage in a
tick–transition nor in a τ–transition, but only in an unprioritized τ–transition
which leads to a tick–transition. In contrast, Sys3 u+

∗ Spec [23].

Another alteration of our language would be to equip CCSprio with a multi–
level priority structure rather than with a two–level priority structure. Doing
so is rather straightforward, given that the multi–level priority structure is
defined by some complete order exhibiting a maximal element. The reason is
that the main semantic concept, i.e., global preemption, does not change: any
action is preempted by a synchronization on a higher prioritized port. Details
of such a generalization of CCSprio can be found in [23].

7.2 Observational Congruence in Other Languages with Priority

In [7], Bol and Groote defined a weak observational congruence for a process
algebra in which actions are statically assigned priorities; the priorities do
not take effect, however, until a special “prioritization” process constructor is
applied, which has the effect of “turning on” the priorities. Bol and Groote
accomplish this by adding rules that endow processes with arbitrary look–
ahead along internal transitions; this reduces weak observation congruence to
a strong congruence. However, they make no attempt to establish the max-
imality of their congruence, and their framework would yield an undesirable
semantics in our setting. For example, by following their approach it would
become possible for the process (a + τ.b) | a to engage in a b–transition, even
though intuitively this should not be possible, since the prioritized internal ac-
tion resulting from the synchronization of a and a should preempt the τ–action
that guards action b.

Related research on extending Milner’s CCS by priority has focused on adopt-
ing a local preemption scheme, rather than a global preemption scheme [9,12].
Whereas Camilleri, Winskel and Jensen introduced to CCS a prioritized choice
operator and a prioritized parallelism operator in the style of occam’s prialt
and pripar constructs [9,21], the present authors started from the CCSprio

language of Sec. 2.1, with the prioritization and deprioritization operators re-
moved [12]. Both approaches have been shown to be roughly equivalent and
have essentially identified the same observation congruence [12,21]. While the

35

former approach presents a complete axiomatization of this observation con-
gruence for finite processes, the latter adds a full–abstraction result whose
proof re–used the proof technique of Sec. 4.

Phillips recently presented another approach to extending CCS by prior-
ity [29], which is inspired by Camilleri and Winskel’s account but does not
require one to treat input and output actions asymmetrically. Priority is in-
troduced to nondeterministic choice:

∑
i Si:ai.pi allows action ai to be executed

only when the environment refuses synchronizations on all actions in the prior-
ity guard Si. The adopted semantics is somewhat surprising and non–standard
in that a process can offer a synchronization on a particular port while this
synchronization is preempted at the same time. The chosen adaptation of ob-
servation congruence interestingly differs from the one in CCS in that a weak
a–transition may only engage in internal computation before executing ac-
tion a and not also afterwards. However, it turns out to be a congruence and
enables an elegant axiomatization, too.

Last, but not least, Prasad extended his Calculus of Broadcasting Systems to
include a notion of static priority and global preemption [30]. He also inves-
tigated a semantic theory based on Milner’s observation equivalence [25]. Re-
markably, this theory does not suffer from the technical subtleties experienced
in CCSprio since his calculus uses a much simpler model for communication
which is based on the principle of broadcasting. In this setting, priority values
are only attached to output actions which cannot be restricted or hidden as
in traditional process algebras. Finally, it should be mentioned that Prasad’s
calculus contains an operator, called translate, which enables the prioritization
and the deprioritization of actions.

8 Conclusions and Future Work

In this article we have investigated the problem of defining a behavioral equiva-
lence for Cleaveland and Hennessy’s process algebra CCSprio with priority that
relates processes on the basis of their observable behavior. Taking the CCSprio

framework of [10] as the foundation, we first extended a strong bisimulation
congruence by näıvely abstracting from all internal computation and thus ob-
tained a näıve observation equivalence. Unfortunately, this relation does not
satisfy Milner’s tau–laws [25] and is indeed not a congruence because of its
insensitivity to the potential preemptability of transitions. We defined pri-
oritized observation congruence to retain such sensitivity and showed it to
be the largest such relation contained in the näıve observation equivalence.
Establishing the largest–congruence result needed more ingenuity than typi-
cally required to prove a similar theorem in other process algebras, owing to
the fact that the base relation, i.e., the näıve observation equivalence, was

36

not preserved under parallel composition. Indeed, to complete the task we
had to introduce a new proof technique that relies on successive approxima-
tions towards the desired largest congruence. This proof technique has recently
been re–used to solve similar full–abstraction problems in other CCS–based
process algebras with preemption [11,12,24] and as such deserves to be doc-
umented in the literature. We also presented an algebraic characterization of
our prioritized observation congruence for finite processes and gave an example
illustrating the utility of this congruence for system verification.

Regarding future work, the adaptation of other observation equivalences for
processes with priorities should be investigated. In particular, adapting branch-
ing bisimulation equivalence [17] promises to yield a somewhat simpler congru-
ence than the observation congruence of this article. Another line of research
is to develop and implement efficient algorithms to compute prioritized weak
bisimulations, as outlined in App. D.

Acknowledgements

We would like thank Ivan Christoff and Steve Sims for several useful discus-
sions, as well as the anonymous referees for their constructive comments and
suggestions.

References

[1] L. Aceto, T. Chen, W. Fokkink, A. Ingólfsdóttir, On the axiomatizability of
priority, in: Automata, Languages and Programming (ICALP 2006), vol. 4052
of LNCS, Springer-Verlag, 2006.

[2] L. Aceto, W. Fokkink, A. Ingólfsdóttir, S. Nain, Bisimilarity is not finitely
based over BPA with interrupt, in: Algebra and Coalgebra in Computer Science
(CALCO 2005), vol. 3629 of LNCS, Springer-Verlag, 2005.

[3] J. Baeten, J. Bergstra, J. Klop, Syntax and defining equations for an interrupt
mechanism in process algebra, Fundamenta Informaticae IX (1986) 127–168.

[4] J. Bergstra, C. Middelburg, Preferential choice and coordination conditions, J.
Logic and Algebraic Programming 70 (2) (2007) 172–200.

[5] J. Bergstra, A. Ponse, S. Smolka (eds.), Handbook of Process Algebra, Elsevier
Science, 2001.

[6] G. Bhat, R. Cleaveland, G. Lüttgen, A practical approach to implementing
real-time semantics, Annals of Software Engineering 7 (1999) 127–155.

37

[7] R. Bol, J. Groote, The meaning of negative premises in transition system
specification, in: Automata, Languages and Programming (ICALP ’91), vol.
510 of LNCS, Springer-Verlag, 1991.

[8] M. Bravetti, R. Gorrieri, A complete axiomatization for observational
congruence of prioritized finite-state behaviors, in: Automata, Languages and
Programming (ICALP 2000), vol. 1853 of LNCS, Springer-Verlag, 2000.

[9] J. Camilleri, G. Winskel, CCS with priority choice, Information and
Computation 116 (1) (1995) 26–37.

[10] R. Cleaveland, M. Hennessy, Priorities in process algebras, Information and
Computation 87 (1/2) (1990) 58–77.

[11] R. Cleaveland, G. Lüttgen, M. Mendler, An algebraic theory of multiple clocks,
in: Concurrency Theory (CONCUR ’97), vol. 1243 of LNCS, Springer-Verlag,
1997.

[12] R. Cleaveland, G. Lüttgen, V. Natarajan, A process algebra with distributed
priorities, Theoretical Computer Science 195 (2) (1998) 227–258.

[13] R. Cleaveland, G. Lüttgen, V. Natarajan, Priority in process algebra, in:
Bergstra et al. [5], pp. 711–765.

[14] R. Cleaveland, V. Natarajan, S. Sims, G. Lüttgen, Modeling and verifying
distributed systems using priorities: A case study, Software–Concepts and Tools
17 (2) (1996) 50–62.

[15] R. De Nicola, M. Hennessy, Testing equivalences for processes, Theoretical
Computer Science 34 (1983) 83–133.

[16] R. Gerber, I. Lee, A resourced-based prioritized bisimulation for real-time
systems, Information and Computation 113 (1) (1994) 102–142.

[17] R. Glabbeek, W. Weijland, Branching time and abstraction in bisimulation
semantics, in: Information Processing ’89, Elsevier Science, 1989.

[18] M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency,
J. ACM 32 (1) (1985) 137–161.

[19] H. Hermanns, M. Lohrey, Priority and maximal progress are completely
axiomatisable, in: Concurrency Theory (CONCUR ’98), vol. 1466 of LNCS,
Springer-Verlag, 1998.

[20] A. Jeffrey, Translating timed process algebra into prioritized process algebra,
in: Real-Time and Fault-Tolerant Systems (FTRTFT ’92), vol. 571 of LNCS,
Springer-Verlag, 1992.

[21] C.-T. Jensen, Prioritized and independent actions in distributed computer
systems, Ph.D. thesis, Aarhus University, Denmark (1994).

[22] P. Kanellakis, S. Smolka, CCS expressions, finite state processes, and three
problems of equivalence, Information and Computation 86 (1) (1990) 43–68.

38

[23] G. Lüttgen, Pre-emptive modeling of concurrent and distributed systems, Ph.D.
thesis, University of Passau, Germany, Shaker Verlag (1998).

[24] G. Lüttgen, W. Vogler, Bisimulation on speed: Worst–case efficiency,
Information and Computation 191 (2) (2004) 105–144.

[25] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[26] R. Milner, A complete axiomatisation for observational congruence of finite-
state behaviours, Information and Computation 81 (2) (1989) 227–247.

[27] V. Natarajan, L. Christoff, I. Christoff, R. Cleaveland, Priorities and abstraction
in process algebra, in: Foundations of Software Technology and Theoretical
Computer Science (FSTTCS ’94), vol. 880 of LNCS, Springer-Verlag, 1994.

[28] R. Paige, R. Tarjan, Three partition refinement algorithms, SIAM J. Computing
16 (6) (1987) 973–989.

[29] I. Phillips, CCS with priority guards, in: Concurrency Theory (CONCUR 2001),
vol. 2154 of LNCS, Springer-Verlag, 2001, a revised version of this paper
has been accepted for publication in the Journal of Logic and Algebraic
Programming.

[30] K. Prasad, Broadcasting with priority, in: Europ. Symp. Programming
(ESOP ’94), vol. 788 of LNCS, Springer-Verlag, 1994.

[31] D. Sangiorgi, R. Milner, The problem of ‘weak bisimulation up to’, in:
Concurrency Theory (CONCUR ’92), vol. 630 of LNCS, Springer-Verlag, 1992.

[32] C. Verhoef, A congruence theorem for structured operational semantics with
predicates and negative premises, Nordic J. Computing 2 (2) (1995) 274–302.

A Proof: Compositionality of Prioritized Observation Congruence
for Recursion

In this appendix we prove Thm. 21. Let e, f ∈ E with free(e) ⊆ {x} and
free(f) ⊆ {x}, and suppose e u+ f . We need to establish that fix(x : e) u+

fix(x : f). To do so, let p =df fix(x : e) and q =df fix(x : f). Further, let R be
the relation

{ 〈g{p/x}, g{q/x}〉 | g ∈ E , free(g) ⊆ {x} } .

Henceforth, we write g(p) for g{p/x} and g(q) for g{q/x}.

First we show that, for any 〈g(p), g(q)〉 ∈ R, the following conditions hold:

(1) g(p) � implies g(q) �

(2) g(p)
α→ p implies


∃q. g(q)

α⇒ q and pR◦ u q if α 6= τ

∃q. g(q)
τ

=⇒
I(g(p))

q and pR◦ u q if α = τ

39

(3) g(q)
α→ q implies


∃p. g(p)

α⇒ p and p u ◦R q if α 6= τ

∃p. g(p)
τ

=⇒
I(g(q))

p and p u ◦R q if α = τ

Second we show that R is a prioritized weak bisimulation up to u; this follows
immediately from the proof of the conditions stated above. By taking g ≡ x, we
have 〈p, q〉 ∈ R and hence p u q with the help of Lemma 20. An examination
of the above conditions shows that in fact p u+ q is true, which is the required
result. The rest of the proof is devoted to establishing the above mentioned
conditions.

Conds. (2) and (3), for α 6= τ , can be proved exactly in the same way as the
corresponding results for CCS [25]. Now we establish the “only if” part of
Cond. (1); in fact, we prove the following stronger lemma.

Lemma 38 g(p)
ε⇒ p and p is patient implies the existence of some q such

that g(q)
ε⇒ q, q is patient, and I(p) = I(q).

PROOF. This result is proved by inducting upon the depth of inference of
the transition g(p)

ε⇒ p. The proof splits into nine cases depending upon the
structure of g:

• g ≡ x, i.e., g{p/x} ≡ p.

Thus p
ε⇒ p must have been inferred from e{p/x} ε⇒ p, and the latter

transition has a shorter depth of inference. Hence, one may apply the in-
duction hypothesis to conclude the existence of a patient process q′ such
that e{q/x} ε⇒ q′ and I(p) = I(q′). Since it is known that e u+ f , we have
e(q) u+ f(q) by Def. 18.

Using Lemma 15(5), there is a process q satisfying f(q)
ε⇒ q, q is patient,

and q u q′. Then, Lemma 15(4) implies I(q′) = I(q). Since q ≡ fix(x : f), it
follows from the operational semantics of the “fix–point” constructor that
q

ε⇒ q and I(p) = I(q).
• g ≡ α.g1.

If α 6= τ , then both g(p) and g(q) are patient and I(g(p)) = I(g(q));

the required result is immediate. Let us assume α = τ . Then g(p)
ε⇒ p

must have been inferred from g1(p)
ε⇒ p, whence the latter transition has

a shorter depth of inference. So one may apply the induction hypothesis
to infer the existence of a patient process q such that g1{q/x}

ε⇒ q and

I(p) = I(q). Then, it is obvious that g(q)
ε⇒ q, as we are assuming g ≡ τ .g1.

• g ≡ g1 + g2.
The transition g(p)

ε⇒ p could have been inferred from g1(p)
ε⇒ p or

g2(p)
ε⇒ p. W.l.o.g., we assume it was inferred from transition g1(p)

ε⇒
p which has a shorter depth of inference. So one may apply the induc-

40

tion hypothesis to conclude the existence of a patient process q such that
g1{q/x}

ε⇒ q and I(p) = I(q). Then, g(q)
ε⇒ q since we are in the case of

g ≡ g1 + g2.
• g ≡ g1|g2.

g(p)
ε⇒ p implies that p is of the form p1|p2. Since p is patient, so are p1

and p2. Further, the initial action set IA(p1) ∩ IA(p2) is empty. The proof

now splits into two cases depending on how the transition g(p)
ε⇒ p could

have been inferred:
(1) It could have been inferred from the transitions g1(p)

ε⇒ p1 and g2(p)
ε⇒ p2.

So one may apply the induction hypothesis to conclude the existence of
patient processes q1 and q2 such that g1{q/x}

ε⇒ q1 and I(p1) = I(q1),

and g2{q/x}
ε⇒ q2 and I(p2) = I(q2), respectively. Since I(p1)∩ I(p2)∩A

is empty, it is also the case that I(q1) ∩ I(q2) ∩A is empty. Thus, q1|q2 is
patient and I(q1|q2) = I(p).

(2) There exists some s ∈ (A \ {τ})+ such that g1(p)
s⇒ p1 and g2(p)

s⇒ p2.
Applying Cond. (2) repeatedly we infer the existence of processes q1 and q2

such that g1(q)
s⇒ q1, g2(q)

s⇒ q2, p1R◦ u q1, and p2R◦ u q2.
Clearly there exists a process r1 such that p1R r1 u q1. Since the tran-

sition p1

ε⇒ p1 has a shorter depth of inference and since p1 is patient, the
induction hypothesis can be applied to conclude the existence of a patient
process r′1 such that r1

ε⇒ r′1 and I(p1) = I(r′1). By using Lemma 15(4)

we again infer the existence of a patient process q′1 such that q1

ε⇒ q′1 and
I(q′1) = I(r′1). Putting these facts together we have shown that g1(q)

s⇒ q′1
and that q′1 is patient with I(q′1) = I(p1). Arguing in a similar fashion we

can prove the existence of a process q′2 such that g2(q)
s⇒ q′2 and q′2 is

patient with I(q′2) = I(p2). Thus, q′1|q′2 is patient with g1(q)|g2(q)
ε⇒ q′1|q′2

and I(q′1|q′2) = I(p).
• g ≡ g1[S], or g1dµ, or g1bµ, or g1\λ.

In all these cases, the transition g(p)
ε⇒ p must have been inferred from

transition g1(p)
ε⇒ p, so that the induction hypothesis is applicable. Hence,

there exists a patient process q such that g1(q)
ε⇒ q and I(q) = I(p).

• g ≡ fix(y : h).

g(p)
ε⇒ p means that (fix(y : h)){p/x} ε⇒ p. This transition must have

been inferred from (h{fix(y : h)/y}){p/x} ε⇒ p, which has a shorter proof.
So we can apply induction hypothesis to obtain the existence of a patient
process q with I(q) = I(p) and (h{fix(y : h)/y}){q/x} ε⇒ q. Using the
operational semantics of the “fix–point” constructor we can now conclude
(fix(y : h)){q/x} ε⇒ q. 2

It is easy to see that the above lemma proves the “only if” part of Cond. (1);
the “if” part is proved in a symmetric manner. To prove Cond. (2) for α = τ ,
the following lemma is useful.

41

Lemma 39 If g(p) is patient, then g(q) is patient and I(g(q)) = I(g(p)).

PROOF. If g(q) is not patient, then, using Cond. (3) with α = τ , we infer

g(p)
τ⇒, which is a contradiction to the assumption that g(p) is patient. Since

both g(p) and g(q) are patient, using arguments similar to those presented in
the proof of Lemma 15(4), we conclude I(g(q)) = I(g(p)). 2

Now we turn our attention to the proof of Cond. (2) for α = τ .

Lemma 40 g(p)
τ→ p implies the existence of some q such that g(q)

τ
=⇒

I(g(p))
q

and pR◦ u q.

PROOF. This result is proved by inducting upon the depth of inference of
the transition g(p)

τ→ p. The proof splits into nine cases depending upon the
structure of g.

• g ≡ x, i.e., g{p/x} ≡ p.
Thus, p

τ→ p must have been inferred from e{p/x} τ→ p and, therefore,
the latter transition has a shorter depth of inference. So one may apply
the induction hypothesis to obtain the existence of a process q′ such that
e{q/x} τ

=⇒
I(e(p))

q′ and pR◦ u q′. Lemma 39 allows us to conclude that e(q)

is patient and that I(e(q)) = I(e(p)), as we are given e(p)
τ→. Since we

know e u+ f , we have e(q) u+ f(q) by Def. 18. Now it is possible to show
— using induction upon the number of 1–transitions involved in transition
e{q/x} τ

=⇒
I(e(p))

q′ and observing that I(e(q)) = I(e(p)) — that f(q)
τ

=⇒
I(e(p))

q

and q′ u q, for some process q . From the operational semantics of the “fix–
point” constructor we conclude q

τ
=⇒

I(e(p))
q and q′ u q. But we already have

pR◦ u q′. By transitivity we get pR◦ u q, as desired.
• g ≡ α.g1.

If α 6= τ , the required result is vacuously true. Let us assume α =
τ , whence g(p)

τ→ p implies p ≡ g1(p). Then, it is clear that g(q) ≡
τ.g1(q)

τ
=⇒

I(g(q))
g1(q) and g1(p)R◦ u g1(q). By Lemma 39 we conclude

I(g(p)) = I(g(q)). The required result is then immediate.
• g ≡ g1|g2.

If g(p)
τ→ p, then p is of the form p1|p2. Further, both g1(p) and g2(p) are

patient, with IA(g1(p)) ∩ IA(g2(p)) being empty. The proof now splits into

three cases depending on the transition from which g(p)
τ→ p was inferred:

(1) g1(p)
τ→ p1 and g2(p) ≡ p2.

Applying the induction hypothesis to the transition g1(p)
τ→ p1 we

know of the existence of some q1 such that g1(q)
τ

=⇒
I(g1(p))

q1 and p1R◦ u

42

q1. As g2(p) is patient, we can use Lemma 39 to conclude that g2(q) is
patient, too, and that I(g2(q)) = I(g2(p)). By Lemma 13 we then deduce
g1(q)|g2(q)

τ
=⇒

I(g(p))
q1|g2(q). Now we like to prove p1|g2(p)R◦ u q1|g2(q).

We have already proved p1R◦ u q1. Then there exists some process r
such that p1R r u q1. From the definition of R we conclude p1 ≡ h(p) and
h(q) ≡ r, for some h ∈ E . Since u is preserved under parallel composition,
h(q) u q1 implies h(q)|g2(q) u q1|g2(q). Again, using the definition of R,
we obtain 〈h(p)|g2(p), h(q)|g2(q)〉 ∈ R. Since p1 ≡ h(p) we have proved
p1|g2(p)R◦ u q1|g2(q).

(2) g2(p)
τ→ p2 and g1(p) ≡ p1.

The proof of this case is symmetrical to that of the previous one.

(3) g1(p)
µ→ p1 and g2(p)

µ→ p2.
The proof of this case also uses arguments similar to those presented

for the first case.
• The proofs of the cases in which g takes on other forms do not require any

new proof technique and are thus omitted here. 2

Cond. (3) is proved using arguments similar to those presented in the previous
lemma. This concludes the proof of Thm. 21.

B Full Abstraction Result: Auxiliary Statements for its Proof

This section proves the statements of Lemma 28.

(1) Obvious.

(2) Kp,q[r] ≡ Qp,q|Up,q[r] and Qp,q
τ→. Hence, process Kp,q[r] is not patient.

(3) The proof proceeds by induction upon the number of 1-transitions in-
volved in Kp,q[r]

ε⇒n K′. The base case is trivial, by taking r′ ≡ r. For

the induction step, we have Kp,q[r]
ε⇒n K′′ 1→ K′. Since K′ c⇒n, it is

also the case that K′′ c⇒n. Then the induction hypothesis is applicable
to transition Kp,q[r]

ε⇒n K′′, whence K′′ ≡ Kp,q[r
′′] for some r′′ such that

r
ε⇒ r′′. As Kp,q[r

′′] is not patient according to Lemma 28(2), transition

K′′ 1→ K′ has to be of the form Kp,q[r
′′]

τ→ K′. Note that any τ–derivative
of Kp,q[r

′′] has to be of the form Kp,q[r
′], for some process r′, or of the

form (〈L〉+ dL.Qp,q) |Up,q[r
′′].

If K′ ≡ Kp,q[r
′], then it is obvious that r′′

τ→ r′, and we are done. Now
suppose that K′ ≡ (〈L〉 + dL.Qp,q) |Up,q[r

′′]. In this case, K′ cannot en-

gage in a
c⇒n–transition. To see this, assume (〈L〉+ dL.Qp,q) |Up,q[r

′′]
c⇒n

to be true. The only way this is possible is through the execution of a

synchronization over dL, which requires Up,q[r
′′]

dL⇒n. But the latter is not

43

true because dL 6∈ Ap,q. Thus we have shown that K′ cannot engage in a
c⇒n–transition. This concludes the proof of the induction step.

(4) The proof is done by induction upon the number of transitions involved

in Kp,q[r]
µ
⇒n K′. For the base case we have Kp,q[r]

µ
→ K′. Since K′ c⇒n,

it cannot be the case that µ ≡ c. Consequently, K′ has to be of the

form Qp,q|Up,q[r
′], for some r′ such that Up,q[r]

µ
→ Up,q[r

′]. But Up,q[] ≡
([][Lp,q])dSp,q. Since µ 6∈ Sp,q, the transition (r[Lp,q])dSp,q

µ
→ (r′[Lp,q])dSp,q

implies that r[Lp,q]
µ
→ r′[Lp,q]; the µ–transition could not have arisen from

the prioritization of a µ–transition. Since the relabeling function Lp,q acts
as an identity function on actions such as µ, for which µ 6∈ Sp,q, transition

r[Lp,q]
µ
→ r′[Lp,q] implies that r

µ
→ r′. This is the required result for the

base case. For the induction step, the proof splits into two cases.

(a) Kp,q[r]
τ→ K′′ µ

⇒n K′.

If K′′ ≡ Kp,q[r
′′] for some r′′, then it is easy to see that r

τ⇒ r′′.
On the other hand, if K′′ ≡ (〈L〉 + dL.Qp,q) |Up,q[r], we can prove
— using arguments similar to those used in the proof of the previous
statement — that K′ cannot engage in a

c⇒n–transition, which is a
contradiction. Consequently, K′′ has to be of the form Kp,q[r

′′], for

some r′′ with r
τ⇒ r′′.

Now we have Kp,q[r
′′]

µ
⇒n K′. We apply the induction hypothesis

to this transition to infer the existence of a process r′ such that

K′ ≡ Kp,q[r
′] and r′′

µ
⇒ r′. Hence, r

ε⇒ r′′, in addition to r′′
µ
⇒ r′.

Thus, the required result that r
µ
⇒ r′ and K′ ≡ Kp,q[r

′] is immediate.

(b) Kp,q[r]
µ
⇒n K′′ 1→ K′.

Since K′ c⇒n and K′′ 1→ K′, we have K′ c⇒n. Now the proof proceeds
similar to the previous case, by applying the induction hypothesis to

the first transition Kp,q[r]
µ
⇒n K′′ and Lemma 28(3) to the second

transition K′′ 1→ K′.
This concludes the proof of the induction step and also of Lemma 28(4).

(5) The proof is done by induction upon the number of transitions involved

in Kp,q[r]
µ
⇒n K′. For the base case we have Kp,q[r]

µ
→ K′. Since K′ c⇒n,

it cannot be the case that µ ≡ c. Consequently, K′ has to be of the

form Qp,q|Up,q[r
′], for some r′ such that Up,q[r]

µ
→ Up,q[r

′]. But Up,q[] ≡
([][Lp,q])dSp,q, which gives rise to two possibilities: r[Lp,q]

µ
→ r′[Lp,q] or

r[Lp,q]
µ→ r′[Lp,q]. Suppose the former holds. This implies r

α→ r′, where
Lp,q(α) = µ. By examining the definition of the relabeling function Lp,q,
it is easy to see that α is µ. But we are given µ ∈ Sp,q. Then process r[Lp,q]
cannot engage in a µ–transition, which is a contradiction. So the latter

possibility has to be true, for which it is easy to see that r
µ→ r′; this is

the required result for the base case. The proof of the induction step is
similar to that of Lemma 28(4).

44

(6) The proof is similar to that of Lemma 28(4).
(7) The result is again proved by induction upon the number of 1–transitions

involved in (〈L〉+ dL.Qp,q) |Up,q[r]
ε⇒n (〈L〉+ dL.Qp,q) |Up,q[r1]. The base

case is trivially true. For the induction step there are two cases to con-
sider:
(a) (〈L〉+ dL.Qp,q) |Up,q[r]

ε⇒n r∗
τ→ (〈L〉+ dL.Qp,q) |Up,q[r1].

We claim that r∗ must be of the form (〈L〉+ dL.Qp,q) |Up,q[r∗], for
some process r∗. Equivalently, we claim that process r∗ cannot be
of the form Qp,q|Up,q[r1]. To see why this claim is true observe that,
in order for the transition (〈L〉 + dL.Qp,q) |Up,q[r]

ε⇒n Qp,q|Up,q[r1]
to be possible, it is necessary for a synchronization over dL to take

place. However, since Up,q[r] is not capable of a
dL⇒n–transition, such

a synchronization is not possible, whence our claim is true.
Now we have (〈L〉+dL.Qp,q) |Up,q[r]

ε⇒n (〈L〉+dL.Qp,q) |Up,q[r∗]
τ→

(〈L〉+dL.Qp,q) |Up,q[r1]. We apply the induction hypothesis to transi-
tion (〈L〉+dL.Qp,q) |Up,q[r]

ε⇒n (〈L〉+dL.Qp,q) |Up,q[r∗] in order to in-
fer Up,q[r]

ε
=⇒
M

Up,q[r∗], for some M such that L∩M = ∅. Considering

the transition (〈L〉+ dL.Qp,q) |Up,q[r∗]
τ→ (〈L〉+ dL.Qp,q) |Up,q[r1], it

is obvious that Up,q[r∗]
τ→ Up,q[r1]. Thus, we have shown the required

result that Up,q[r]
ε

=⇒
M

Up,q[r1] for some M such that L ∩M = ∅.
(b) (〈L〉+ dL.Qp,q) |Up,q[r]

ε⇒n r∗
τ→ (〈L〉+ dL.Qp,q) |Up,q[r1].

Again, it is not difficult to see that process r∗ has to be of the form
(〈L〉 + dL.Qp,q) |Up,q[r∗], for some process r∗. As before, we apply
the induction hypothesis to transition (〈L〉 + dL.Qp,q) |Up,q[r]

ε⇒n

(〈L〉 + dL.Qp,q) |Up,q[r∗] to infer Up,q[r]
ε

=⇒
M1

Up,q[r∗], for some M1

such that L ∩ M1 = ∅. From transition (〈L〉 + dL.Qp,q) |Up,q[r∗]
τ→

(〈L〉+ dL.Qp,q) |Up,q[r1], it is obvious that Up,q[r∗]
τ→ Up,q[r1].

As (〈L〉+ dL.Qp,q) |Up,q[r∗] is patient, we have IA(〈L〉+ dL.Qp,q)∩
IA(Up,q[r1]) = ∅.But I(〈L〉+dL.Qp,q) = L∪{dL} = IA(〈L〉+ dL.Qp,q).
Take M = M1 ∪ I(Up,q[r1]). This choice of M satisfies the conditions
L ∩ M = ∅ and Up,q[r∗]

τ
=⇒
M

Up,q[r1], (cf. Lemma 28(1)). The re-

quired result Up,q[r]
ε

=⇒
M

Up,q[r1] then follows easily with the help of

Lemma 12(3) and the transitivity of
ε

=⇒
M

.

(8) The proof is done by induction upon the number of transitions involved

in Kp,q[r]
dL⇒n K′. The base case is vacuously true because Kp,q[r] cannot

engage in a dL–transition. For the induction step, the proof splits into
two cases:

(a) Kp,q[r]
τ→ K′′ dL⇒n K′.

The proof splits into further two cases depending upon the struc-
ture of K′′.
(i) K′′ ≡ Kp,q[r

′′] for some r′′.

45

It is obvious that r
τ→ r′′, and therefore Up,q[r]

τ→ Up,q[r
′′].

Now we may apply the induction hypothesis to Kp,q[r
′′]

dL⇒n K′

to conclude K′ ≡ Kp,q[r
′], for some r′, M such that Up,q[r

′′]
ε

=⇒
M

Up,q[r
′] and L ∩ M = ∅. The required result Up,q[r]

ε
=⇒
M

Up,q[r
′]

follows immediately.
(ii) K′′ ≡ (〈L〉+ dL.Qp,q) |Up,q[r].

As (〈L〉 + dL.Qp,q) |Up,q[r]
dL⇒n K′, it is easy to see that there

exist processes K1 and K2 such that (〈L〉+ dL.Qp,q) |Up,q[r]
ε⇒n

K1
dL→ K2

ε⇒n K′. Considering transition K1
dL→ K2, we conclude

thatK1 has to be of the form (〈L〉+dL.Qp,q) |Up,q[r1] and thatK2

has to be of the form Qp,q|Up,q[r1], for some process r1. Now we
have the following sequence of transitions:

Qp,q|Up,q[r]
τ→ (〈L〉+ dL.Qp,q) |Up,q[r]

ε⇒n (〈L〉+ dL.Qp,q) |Up,q[r1]
dL→ Qp,q|Up,q[r1]

ε⇒n K′ .

Applying Lemma 28(7) to transition dL.Qp,q|Up,q[r]
ε⇒n (〈L〉 +

dL.Qp,q) |Up,q[r1], we obtain Up,q[r]
ε

=⇒
M

Up,q[r
′] for some M such

that L ∩ M = ∅. Further, by applying Lemma 28(3) to transi-
tion Qp,q|Up,q[r1]

ε⇒n K′, we get K′ ≡ Kp,q[r
′] for some r′ such

that r1
ε⇒ r′. Then it is obvious that Up,q[r1]

ε⇒ Up,q[r
′] and

Up,q[r1]
ε

=⇒
M

Up,q[r
′], by using Lemma 12(1). The required result

Up,q[r]
ε

=⇒
M

Up,q[r
′] follows immediately.

(b) Kp,q[r]
dL⇒n K′′ τ→ K′.

Since K′ c⇒n and K′′ τ→ K′, it is immediate that K′′ c⇒n as well.

Now we apply the induction hypothesis to transition Kp,q[r]
dL⇒n K′′

to conclude that K′′ ≡ Kp,q[r
′′], for some r′′, M such that Up,q[r]

ε
=⇒
M

Up,q[r
′′] and L∩M = ∅. Hence, Kp,q[r

′′]
τ→ K′. We apply Lemma 28(3)

to this transition to get K′ ≡ Kp,q[r
′] for some r′ such that r1

ε⇒ r′.
The rest of the proof proceeds as in Case (8a.ii).

This concludes the proofs of the induction step and of Lemma 28(8). 2

C Proof: Axiomatizing Prioritized Observation Equivalence

In this section we prove the second statement of Lemma 32. Let p and q be
finite processes such that I(p) ⊆ I(q) and such that either both are patient or

46

neither is patient. W.l.o.g. we assume that p and q are normal forms
∑m

i=1 αi.pi

and
∑n

j=1 βj.qj, respectively. The proof is presented by induction upon the
cardinality of I(p).

As the base case, suppose I(p) is empty. Then p can be either nil, or
∑m

i=1 τ.pi

with m > 0, or
∑m

i=1 τ .pi with m > 0.

(1) p ≡ nil. The proof for this case splits into two cases depending upon
whether n = 0:

Suppose n = 0, i.e., q ≡ nil, and take p′ ≡ q′ ≡ nil. It is obvious that
p ' p′ and q ' q′. By the reflexivity law of inequational reasoning we
have ` p′ vi q′.

Suppose n > 0, and take p′ ≡ ∑n
i=1 nil and q′ ≡ q. Again, it is obvious

that p ' p′. Since p is patient, by given conditions, q is patient, too, and
hence none of the βj.qj is of the form τ .qj. Consequently, using Axiom iA3,
` nil vi βj.qj, for 1 ≤ j ≤ n. Summing over all j and using the substitu-
tivity law of inequational reasoning we obtain ` ∑n

i=1 nil vi
∑n

j=1 βj.qj.
(2) p ≡ ∑m

i=1 τ.pi with m > 0.
Take p′ ≡ ∑m

i=1 τ.pi +
∑n

i=1 nil and q′ ≡ (
∑m

i=1 nil) +
∑n

j=1 βj.qj. It is
obvious that p ' p′ and q ' q′. If p′ ≡ ∑m+n

k=1 p′k and q′ ≡ ∑m+n
k=1 q′k, then

we can prove ` p′k vi q′k using Axiom iA2, for 1 ≤ k ≤ m. Since p is
patient, by given conditions, q is also patient and none of the βj.qj is of
the form τ .qj. Thus, when m + 1 ≤ k ≤ m + n, we can prove ` pk vi qk

using Axiom iA3. Summing over all k and using the substitutivity law of
inequational reasoning, we obtain ` p′ vi q′.

(3) p ≡ ∑m
i=1 τ .pi with m > 0.

Since p is not patient, neither is q. Hence, n > 0 and at least one of
the βj’s is τ . Let l =df |{ j | βj = τ }| be the number of summands of q
that are prefixed by τ . Since q is impatient, l > 0. Let further 1 ≤ k ≤ n
be such that βk ≡ τ . We define processes p1 and q1 that are strongly
bisimilar to p and q, respectively, such that they have the same number
of overall summands and also the same number of summands that are
prefixed by τ . This is accomplished by adding some nil terms and by
“cloning” some specific summands prefixed by τ as follows:
• If l = m, then take p1 =df p{+ ∑n−l

i=1 nil } and q1 =df q.
• If l > m, then take p1 =df p + (

∑l−m
i=1 τ .p1){+(

∑n−l
i=1 nil)} and q1 =df q.

• If l < m, then take p1 =df p{+(
∑n−l

i=1 nil)} and q1 =df q + (
∑m−l

i=1 τ .qk).
Here we use the notation “p{+q}” to denote the term p, if q is nil, and
p + q, otherwise. Let p′ and q′ be the processes obtained from p1 and q1,
respectively, by reordering the summands so that all the summands pre-
fixed by τ precede those that do not. It is easy to see that p ' p′ and
q ' q′. Now, using arguments similar to those presented in the previous
cases, we can prove ` p′ vi q′.

This concludes the proof of the base case with I(p) empty.

47

For the induction step we know |I(p)| > 0 and thus can choose λ ∈ I(p). Since
I(p) ⊆ I(q), we further have λ ∈ I(q). Let Lp =df { i | αi ≡ λ } and Lq =df

{ j | βj ≡ λ }, and define lp =df |Lp| and lq =df |Lq|. Further, let p1 and q1 be
the processes obtained by reordering the summands of the processes p and q,
respectively, such that the summands prefixed by λ precede those that do not.
Formally, let p1 =df p1

1 + p1
2, where p1

1 =df
∑

i∈Lp
αi.pi and p1

2 =df
∑

i6∈Lp
αi.pi,

and q1 ≡ q1
1 + q1

2, where q1
1 =df

∑
j∈Lq

βj.qj and q1
2 =df

∑
j 6∈Lq

βj.qj. We may
apply the induction hypothesis to p1

2 and q1
2 to obtain processes p′2 and q′2 such

that p1
2 ' p′2, q1

2 ' q′2 and ` p′2 vi q′2. Next, we define processes p′1 and q′1
such that they have an equal number of summands and are prioritized strong
bisimilar to p1

1 and q1
1, respectively:

• If lp = lq, then take p′1 =df p1
1 and q′1 =df q1

1.

• If lp > lq, then take p′1 =df p1
1 and q′1 =df q1

1 + (
∑lp−lq

j=1 βk.qk), where k ∈ Lq.

• If lp < lq, then take q′1 =df q1
1 and p′1 =df p1

1 + (
∑lq−lp

i=1 αk.pk), where k ∈ Lp.

It is easy to show that ` p′1 vi q′1. Thus, if we take p′ =df p′1 + p′2 and
q′ =df q′1 + q′2, then p ' p′, q ' q′, and ` p′ vi q′. 2

D Computing Prioritized Observation Equivalence

In this appendix we provide an alternative characterization of prioritized
weak bisimulation, which has a couple of benefits. Firstly, the characteri-
zation shows how traditional partition–refinement algorithms for computing
bisimulation [22,28] can be used to compute our prioritized observation equiv-
alence u. We have implemented this approach in the NC Concurrency Work-
bench [14]. Secondly, the characterization immediately yields a logical charac-
terization of u in terms of Hennessy–Milner logic [18,25], and thus bridges
the gap to temporal logics. We start off with a definition for weak ε–transitions
that is not parameterized by initial action sets.

Definition 41 We write p
ε⇒ p′ for processes p, p′, if p

ε⇒ q and q
ε

=⇒
I(q)

p′ for

some patient process q.

This definition permits the following characterization of prioritized weak bis-
imulation relations.

Proposition 42 A relation R ⊆ P × P is a prioritized weak bisimulation
relation if and only if, for all 〈p, q〉 ∈ R and α ∈ A, the following holds:

(1) p � implies q �.

(2) p
α→ p′ implies ∃q′. q α̂⇒ q′ and 〈p′, q′〉 ∈ R.

48

(3) q
α→ q′ implies ∃p′. p α̂⇒ p′ and 〈p′, q′〉 ∈ R.

PROOF. For the “if” part of the proposition, let R ⊆ P × P be a relation
that satisfies the three stated conditions. To show that R is a prioritized weak
bisimulation relation, it suffices to prove that p

τ→ p′ implies the existence
of some q′ such that q

ε
=⇒
I(p)

q′ and 〈p′, q′〉 ∈ R. Let p
τ→ p′. By the second

condition and by Def. 41 we know of a patient q1 such that q
ε⇒ q1

ε
=⇒
I(q1)

p′ and

〈p′, q′〉 ∈ R. Using arguments similar to those used in the proof of Lemma 15,

it is easy to see that 〈p, q1〉 ∈ R and I(p) = I(q1). Consequently, q
ε⇒ q1

ε
=⇒
I(p)

q′,

i.e., q
ε

=⇒
I(p)

q′, and 〈p′, q′〉 ∈ R, as desired. The proof of the “only if” part is

quite similar and thus omitted here. 2

Given this proposition, the proof of the following characterization theorem is
straightforward and analogue to similar proofs conducted in [25].

Theorem 43 (Characterization of u)
A relation R ⊆ P × P is a prioritized weak bisimulation relation if and only
if, for all 〈p, q〉 ∈ R and α ∈ (A ∪ {ε, ε}) \ {τ, τ}, the following holds:

(1) p � implies q �.
(2) p

α⇒ p′ implies ∃q′. q α⇒ q′ and 〈p′, q′〉 ∈ R.
(3) q

α⇒ q′ implies ∃p′. p α⇒ p′ and 〈p′, q′〉 ∈ R.

Observe that the characterization theorem uses the same transition relation on
the left–hand sides and right–hand sides of the second and third conditions. It
thus lends itself immediately to applying the partition–refinement algorithms
of [22,28] and the logic–characterization approach of [18,25].

49

