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1 Introduction

Basic research in concurrency theory over the past 25 years has resulted in
a wealth of process algebras [1-3] and temporal logics [4] for specifying and
reasoning about concurrent processes. However, little research has been con-
ducted on mixing process-algebraic and logic styles of specification in a single
formalism. This is surprising since many popular software-engineering lan-
guages, including UML, permit such mixed specifications.

In [5,6] we proposed an approach to defining and reasoning about conjunc-
tion on labelled transition systems. Our setting consisted of T-pure labelled
transition systems — i.e., LTSs where each state encodes either an exter-
nal or internal (disjunctive) choice between its outgoing transitions — and
augmented by an inconsistency predicate (Logic LTS, cf. Sec. 2). While our
conjunction operator is in essence a synchronous product on visible actions
and an interleaving product on internal actions, the challenge was in deal-
ing with inconsistencies. Inconsistencies may either arise when conjunctively
composing two processes with different initial action sets (i.e., ready sets), or
when a process has no other choice for some action than entering an incon-
sistent state. Our framework was equipped with ready-tree semantics, which
is a variant of van Glabbeek’s path-based possible-worlds semantics [7] that
was inspired by Veglioni and De Nicola [8]. The resulting ready-tree preorder
turned out to be coarser than ready simulation and finer than failure inclu-
sion (for divergence-free systems) and ready-trace inclusion, which implies
that ready-tree semantics is sensitive to deadlock. We proved in [6] that the
ready-tree preorder is fully abstract under conjunction with respect to a naive
inconsistency preorder,® which allows an inconsistent specification only to be
implemented by an inconsistent implementation.

This article first shows that the ready-tree preorder is inadequate in the pres-
ence of concurrency, as it fails to be compositional for standard parallel com-
position, such as the parallel operator of CSP [9] and LOTOS [10],while it is a
precongruence for parallel composition in the special case that all actions are
synchronised [6]. A different compositionality problem for the parallel compo-
sition of SCCS was already noted in [7]. We then establish our main result
(cf. Sec. 3), namely that ready simulation [11], which adds to ordinary simu-
lation the requirement that related processes must have identical ready sets,
is fully abstract with respect to conjunction and parallel composition, for la-
belled transition systems with inconsistencies. The proof of this result uses
our earlier full-abstraction result involving ready trees. Along the way, we
adapt ready simulation to dealing with internal actions and inconsistencies.

3 T.e., the ready-tree preorder is the coarsest precongruence for conjunction which
refines the inconsistency preorder.



We also conduct several sanity checks on our framework; in particular, we
verify that our conjunction operator indeed formalises conjunction regarding
ready simulation.

In addition to including all proofs and more explanatory text when compared
to the conference version on which this article is based, we firstly apply our
framework to a small example and secondly extend it by further logical and
process-algebraic operators. The example involves specifying and reasoning
about a simple mode logic for an aircraft control system, and highlights the
practical utility of Logic LTS and ready simulation for system design. The
additional operators we introduce are disjunction, external choice and hiding,
for which ready simulation is shown to be compositional, too. The inclusion of
disjunction also allows us to establish several standard logic properties desired
of ready simulation, including the distributivity laws between conjunction and
disjunction. Hiding proves to be challenging to define, since the usual, straight-
forward definition of hiding violates T-purity.

Our full-abstraction result provides an interesting insight into van Glabbeek’s
linear time-branching time spectrum [7], namely that conjunction on pro-
cesses is a tool, via full abstraction, for relating the trace-based lower part of
the spectrum to the simulation-based upper part. In addition, our results and
our example testify to the robustness of our technical framework and to the
adequacy of ready simulation as the semantic basis for mixed process-algebraic
and logic languages. Indeed, ready simulation eliminates the necessity for re-
strictions on the nesting of process-algebraic and logic constructs, such as the
one employed by Olderog when embedding trace formulas into CSP [12].

The remainder of this article is organised as follows. The next section in-
troduces our setting of Logic LTS, as well as our conjunction and parallel
composition operators. Sec. 3 establishes the aforementioned full abstraction
result and thus is the key section of this article. Our theory is applied to an
example in Sec. 4, and extended by disjunction, external choice and hiding op-
erators in Sec. 5. Finally, Secs. 6 and 7 discuss some related work and present
our conclusions, respectively.

2 Logic LTS, conjunction & parallel composition

This section recalls the definitions of Logic Labelled Transition Systems, or
Logic LTS for short, and the conjunction operator on Logic LTS which were
introduced in [6]. It also lifts the parallel composition operator in the style of
CSP [9] and LOTOS [10] to Logic LTS.



Key to our setting is the consideration of inconsistencies that may arise under
conjunctive composition. The intuitive idea behind inconsistency is twofold:

(1) Processes p and ¢ are consistent if and only if they have a common
implementation. This principle was also adopted by Steen et al [13] for
consistency in the context of partial process specifications.

(2) A stable process r, where r cannot perform the internal, unobservable
action 7, cannot be an implementation of a stable process p if one offers
an action that the other cannot perform, i.e., if » and p have different
ready sets [14]. This property is satisfied, e.g., in failure semantics [9].

The reason for the second item is that the absence of deadlock is an important
feature of a concurrent system, which we want to preserve when replacing p
inside a parallel composition by its implementation r; this is also the justifi-
cation behind failure semantics. If p offers action a while r does not, and the
system environment only offers a, then replacing p by r leads to an immediate
deadlock. Vice versa, if r offers an action a while p does not, then replacing p
by r can allow new behaviour of the environment and new deadlocks.
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Fig. 1. Basic intuition behind conjunctive composition.

Hence, it is immediately clear that the conjunction of stable processes p and ¢
with different ready sets is inconsistent, and we will mark p A ¢ as such. As an
example consider the processes p, ¢ and r of Fig. 1(a). Process p and ¢ specify
that exactly action a and b, respectively, is offered initially, i.e., their ready
sets are {a} and {b}, respectively. Similarly, process r specifies that a and b
are offered initially and thus has ready set {a,b}. Therefore, p A ¢ as well as
p Ar are inconsistent (or false) and tagged accordingly. Formally, our variant
of LTS will be augmented by an inconsistency predicate, or false-predicate, F',
so that p A ¢, p Ar € F in our example.

Inconsistency is more tricky, however, as it can propagate backwards along
transitions. For example, in the conjunction p’ A ¢’ shown in Fig. 1(b), both
conjuncts require action a to be performed, whence p’ A ¢’ should have an
a-transition. But this transition does lead to an inconsistent state and, in the
absence of any alternative a-transition leading to a consistent state, p’ A ¢
must itself be considered as inconsistent. Therefore, inconsistency propagates
backwards for the processes in Fig. 1(b) and (c), whereas it does not for the
processes in Figs. 1(d) and 1(e), as they can engage in an a- and 7-transition,



respectively, leading to a consistent state. As an aside, the process in Fig. 1(e)
may be interpreted as a disjunction between the inconsistent process marked F'
which has empty behaviour, and the consistent process offering a b-transition.

2.1 Logic Labelled Transition Systems

Let A be an alphabet with representatives a and b, and let A, denote AU{7}
with representatives o and 3. An LTS is a triple (P,—, F'),* where P is
the set of processes (states), — C P x A, x P is the transition relation,
and F' C P is the inconsistency predicate. We write (i) p — p’ instead of
(p,a,p’) € —, (ii) p = instead of Ip’ € P.p - p/ and (iii) p — instead
of I € Pa € A,.p - p'. When p %= p/, we say that process p can
perform an a-step to p/, and we call p’ an a-derivative. Z(p) stands for the
ready set {a € A, |p —} of process p. A process p that cannot engage in
a T-transition, i.e., p /—, is called stable. The sort Ap of the LTS (and its
processes) is the set of actions occurring in —.

We also require an LTS to satisfy the following 7-purity condition: p —— =—>
Fa € A.p -, for all p € P. Hence, each process represents either an external
or internal (disjunctive) choice between its outgoing transitions. This restric-
tion reflects the fact that ready sets can only be observed at stable states, so
that visible transitions leaving instable states are outside our observation. We
discuss the need for 7-purity later; see Fig. 3 and the paragraphs thereafter.

The LTSs of interest to us need to satisfy two further properties. Before we
can present them, we first need to define our notion of when a process can
stabilise. To do so, we introduce several variants of weak transition relations
which will prove useful in the sequel. We write p == p/ if p —— p/ and p == p/
if I’ p".p = p’ % p" == p/.5. If all processes along a computation
p == p or p == p/, including p and p’, are consistent, then we write p ==p
p and p == p/, respectively. If in addition, p’ is stable, we write p=={p’
and p==] p/, respectively. These notions were first introduced in [5], and the
subscript F'is intended to remind the reader that the transition relation takes

(in-)consistency into account.
We may now define that a process p can stabilise if Ip’. p=={p'.
Definition 1 (Logic LTS [6]) An LTS (P, —, F) is a Logic LTS if:

(LTS1) pe Fif3a € Z(p)Vp' € P.p > p = p € F;
(LTS2) p cannot stabilise = p € F.

4 The additional, less relevant true predicate of [6] is omitted here for clarity.
5 A double arrow without action label still stands for mathematical implication



The first condition formalises the backward propagation of inconsistencies
as discussed above. The second condition relates to divergence, i.e., infinite
sequences of 7-transitions, where divergence is viewed as catastrophic if a
process cannot stabilise, as is discussed in [6, Fig. 3.

As notational conventions, we will denote a transition p —— p’ with p,p’ ¢ F
by p —~p p’. Moreover, whenever we mention a process p without stating a
respective Logic LTS explicitly, we assume implicitly that such a Logic LTS
(P,—, F) is given. Finally, we let ff stand for the only process of the LTS
{1, 0,{f1}); [f represents the boolean constant false. Intuitively, any given
process is either inconsistent, in which case it is equivalent to ff, or it is equiva-
lent to a process from which no inconsistent process can be reached; the latter
can simply be achieved by omitting inconsistent processes in LTSs and all
transitions leading to them.

2.2 Conjunction & parallel composition

Our conjunction operator is a synchronous product for visible transitions and
an asynchronous product for 7-transitions, analogous to || 4 defined below.
However, we need to take care of inconsistencies. This is because, otherwise,
p/Aq, with p and ¢ defined as in Fig. 1(a), would erroneously be the “deadlock”
process, i.e., ‘the’ consistent process without any transitions.

Definition 2 (Conjunction operator [6]) The conjunction of Logic LTSs
<P, —p, Fp) and <Q, Q> FQ> is the LOgiC LTS <P A Q, ——PAQ> Fp/\Q>.'

e PANQ=y{pNqlp€P qeQ}
o —ppg 15 determined by the following operational rules:

p—prp = DPAg—proP Ng
¢g—qq¢ = pAqg—propN{
p——prp,q-"0d = DPANqg—proP N{

o I'ppg is the least set containing each p A q that satisfies at least one of the
following conditions:
(C1) pe Fp orqe Fy;
(C2) p Aq—=prq and I(p) # Z(q);
(C3) 3a € Z(pANQVD' NG pANG—prgP N¢ = P NG € Fppg;
(C4) p A q cannot stabilise.

We are left with explaining Conds. (C1)—(C4). Firstly, a conjunction is in-
consistent if a conjunct is inconsistent. Conds. (C2) and (C3) reflect our in-
tuition of inconsistency and backward propagation. Cond. (C4) is added to



enforce (LTS2); note that this condition is not automatically enforced since
it is not true that p A ¢ cannot stabilise if both p and ¢ cannot stabilise. To
see this, consider the processes p and ¢ of Fig. 2 and the resulting Logic LTS
for p A g; it is only because of the inclusion of Cond. (C4) that state p A ¢ of
this Logic LTS is tagged as inconsistent.
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Fig. 2. Discussing the need for Cond. (C4).

It is easy to check that conjunction is well-defined, i.e., that the conjunctive
composition of two Logic LTSs is indeed a Logic LTS; see [6] for details. In the
sequel, we leave out indices of relations and predicates whenever the context
is clear.

s sAq

Fig. 3. Discussing the need for 7-purity.

Given this definition of conjunction we can briefly discuss our adoption of 7-
purity. To see what happens if we allow impure processes, consider process s
of Fig. 3, which violates 7-purity, and processes ¢ and r of Fig. 1(a). The
question is how we should possibly modify Cond. (C2) of Def. 2 so as to
define immediate inconsistency when dealing with s. Since our justification
for Cond. (C2) at the beginning of this section only applies to stable processes
and since we only want to tag a process as inconsistent if necessary, the most
generous possibility would be to leave Cond. (C2) unchanged, i.e., never to
tag processes like s A g or s A r as immediately inconsistent.

With this approach, sAq and sAr are the processes shown in Fig. 3: s Aq is con-
sistent — in accordance with failure semantics where ¢ is an implementation
of s — but s Ar is inconsistent by backward propagation. The latter effect oc-
curs with any stable process r offering a, whence this approach treats s almost
as if there was no a-transition. Although this might be technically feasible, we
think the effect is counter-intuitive; indeed, r is also an implementation of s
according to failure semantics.

We therefore insist on 7-purity here and will show that this leads to a setting
that satisfies all desirable properties: full abstraction, the fact that our con-



junction operator indeed captures conjunction, and logic properties expected
of conjunction. Later, in Sec. 5.3 where we discuss hiding, impure processes
like s could naturally occur; we will come back to the above discussion then.
Finally, it should already be noted here that we regard s as the disjunction
of ¢ and r (cf. Sec. 5.1). Hence, we can express s in our setting as the process
on the right-hand side of Fig. 3, and similarly for any other impure process.
Thus, we regard the restriction to pure processes as semantically irrelevant.
Moreover, T-purity is equivalent to giving 7-transitions precedence over vis-
ible transitions, as we will discuss on the next page after defining parallel
composition.

We now turn to introducing the proof tool of witness which will turn out to
be convenient when reasoning about inconsistency within conjunction:

Definition 3 (A-Witness) An A-witness is a set W C P AQ such that, for
allp N q € W, the following conditions hold:

(AW1) p.q ¢ F;

(AW2) p > or ¢ — or I(p) = I(q);

(AW3) Na € Z(pAq) I Nd eW.pAqg——p Nq;

(AW4) pAq can stabilise in W, i.e., pAq ——= p1Aq — +++ — P A @u—7—
with all p; N q; € W.

The following straightforward property of A-witnesses gives us a useful tool
for proving that a conjunction of processes is consistent:

Proposition 4 p A g ¢ Fpng if and only if IN-witnessW.pAqge W.

PROOF. Direction “=" follows from the fact that Fpsq, i.e., the comple-
ment of Fppg, is an A-witness. For direction “<=" we note that W satisfies
the conditions of Fprg, whence Fpyg CW. O

For example, the concept of A-witness may be employed to prove the second
statement of the following lemma:

Lemma 5 (1) IfpAq—p ANqd & F andp,q¢ F, thenpAq¢ F.
(2) Let p=={p/, q=={q and p' Nq' ¢ F. Then, pAq=={p' N ¢

PROOF. As Part (1) is not difficult, we focus on proving Part (2). Obviously,
we can combine the given computations to get pAq == p' A¢’ with p' A¢’ stable.
It remains to be shown that no process along this combined computation is
inconsistent. To do so, we define W as the set of processes along the combined
computation, except the last one, and prove that W”UF is an A-witness (with



F = Fppg). Since F is an A-witness, it is sufficient to check (AW1)—-(AW4) for
the elements of W”. Cond. (AW1) holds due to p=={p’ and ¢=={¢'. To see
the validity of (AW2) and (AW3), observe that all processes in W” are instable
and can perform a 7-transition to reach a process in W”U{p' A¢'} C W"UF.
Finally, the computation p A ¢ == p’ A ¢’ shows that the processes in W” can

stabilise in W” U F, whence (AW4) holds. O

Finally, we adapt the parallel operator || 4 of CSP [2] to our setting, where A C
A denotes the synchronisation alphabet. Naturally, the parallel composition of
two processes is inconsistent if either process is inconsistent.

Definition 6 (Parallel operator) The parallel composition of Logic LTS
(P,—p, Fp) and (Q,—q, Fg) for the synchronisation set A C A, is the
Logic LTS (P |la @, —pjaq: Friaq)

o Plla@Q=y{pllaalpe P qe @}
o —p|.@ 18 determined by the following operational rules:

p——pp,a¢A (a=7orq/>0) = pllag—"poD |lag
¢g——0qd,a¢A (a=71orp/F>p) = pllag——ropllad
p——pp,q¢—0q¢d,a€A = plag—"prol |lad

° pHAqGFp”AQ ifpe Fp OTC]GFQ.

Also parallel composition is well-defined, i.e., the parallel composition of two
Logic LTSs satisfies the conditions of Def. 1. To preserve 7-purity, the first
two of the above operational rules include the premise (o = 7 or ¢ /—¢)
and (o = 7 or p-/—p), respectively, which gives T-transitions precedence over
visible transitions.

As an aside, rather than demanding 7-purity in the definition of LTS, one
could equivalently permit 7-impurity but enforce priority of 7 by defining
I(p) as {a € A, |p— and (o = 7 or p/=)}, modifying = accordingly,
and possibly changing the use of —*~. Although this version would allow one to
drop the two premises mentioned above, we prefer to require 7-purity explicitly
since we consider this to be more transparent and technically easier.

2.3 Ready-tree semantics

This section defines our reference preorder, the inconsistency preorder, and also
recalls further definitions from an earlier paper [6], including ready trees. Our



previous work [6] focused only on studying conjunction on Logic LTSs. It char-
acterised the largest precongruence contained in the inconsistency preorder,
which states that a consistent implementation p never refines an inconsistent
specification ¢.® On this, our new full-abstraction result in Sec. 3 is based.

Definition 7 (Inconsistency preorder [6]) The inconsistency preorder Cp
on processes is defined by pCrqif p¢ F — q ¢ F.

This definition directly encodes the standard verification question whether
an implementation refines its specification. When reading ‘refines’ logically as
‘implies’, it is clear that an inconsistent (i.e., ‘false’) specification can only be
met by an inconsistent implementation.

Obviously, the inconsistency preorder is not compositional with respect to con-
junction. Our characterisation of the fully-abstract preorder contained in Cp
and presented in [6] is founded on a variant of the path-based possible-worlds
semantics of [7,8], to which we refer as ready-tree semantics. This seman-
tics employs the notion of observation tree. An observation tree is a Logic
LTS (V, —, () whose processes and transitions form a deterministic tree and
whose processes (vertices) are stable; we refer to the tree’s root as vg. We may
now formalise our desired observations of a process p, called ready trees:

Definition 8 (Ready tree [6]) An observation tree vy is a ready tree of p,
if there is a labelling h : V' — P satisfying the following conditions:

(RT1) Yv € V. h(v) stable and h(v) ¢ Fp;

(RT2) p=={ h(vy);

(RT3) VveV,ac A v—"v = h(v)=={h();
(RT4) Yv € V.Z(v) = Z(h(v)).

Intuitively, nodes v in a ready tree represent stable states h(v) of p (cf. the first
part of Cond. (RT1)) and transitions represent stable, consistent computations
(cf. Cond. (RT3)). Since such computations do not contain inconsistent states,
no represented state is allowed to be in F' (cf. the second part of Cond. (RT1)).
Since p might not be stable, the root vy of a ready tree represents a stable
process reachable from p via some internal computation (cf. Cond. (RT2)).
Moreover, v must mimic the ready set of h(v) (cf. Cond. (RT4)). In the fol-
lowing, we write RT(p) for the set of all ready trees of p; note that ff has no
ready tree.

Definition 9 (Ready-tree preorder [6]) The ready-tree preorder Crr on
processes is defined as ready-tree inclusion, i.e., p Crr q if RT(p) C RT(q).

6 The reader familiar with [6] should note that we now write the implementation
to the left and the specification to the right of the preorder symbol, in order to be
consistent with the notational conventions of simulation-based preorders.

10



Theorem 10 (Full-abstraction wrt. conjunction [6]) Cgr is the largest
precongruence in T, when considering conjunction as the only operator.

p H{b} r — pH b}r
a
a c d /W —< - __isnot aready tree of
a cA\d RS
b b b b ¢/ \d 5 "
X

¢/ \d a

q H{b} r — qu}I’
RS T A
b b b a ¢ d //’/ Xl jX

X b/\b bj\b ~= -~ “jsaready tree of

Fig. 4. Ready-tree semantics is not compositional for parallel composition.

Unfortunately, Cgr is not a precongruence for parallel composition || 4, which
makes the preorder unsuitable for reasoning about concurrency. To see this,
consider the Logic LTSs p, ¢ and r of Fig. 4. Here, p and ¢ have the same
ready trees, but ¢ is a ready tree of ¢ ||y 7 but not of p ||y 7. This non-
compositionality result was initially a bit of a surprise to us, given that we
had proved in [6] that the ready-tree preorder is compositional for the fully-
synchronous product, which is a special case of |4 when taking A = A.

3 Full abstraction via ready simulation

We now establish our full-abstraction result of ready simulation wrt. the in-
consistency preorder, when considering both conjunction and parallel compo-
sition. In addition, we prove that our conjunction operator A possesses the
desired compositionality and logic properties.

3.1 Ready simulation and compositionality

We start off with a definition of ready simulation [11] for Logic LTS:

Definition 11 (Ready simulation on Logic LTS) Let (P,—p, Fp) and
(Q,—q, Fg) be two Logic LTS. A relation R C P x Q is a stable ready

simulation relation, if the following conditions hold, for any (p,q) € R and
aec A:

(RS1) p,q stable;

11



(RS2) p¢ Fp — q ¢ Fy;
(RS3) p=={p’ = 3¢'.q=={¢ and (P, ¢') € R;
(RS4) p¢ Fp = I(p) = I(q).

We say that p is stable ready simulated by q, in symbols PE LT if there
exists a stable ready simulation relation R with (p,q) € R. Further, p is
ready simulated by g, written p Crg q, if Vo'.p==p = 3¢. ¢=={¢
and p’,ERS ¢ (root condition). We write ~gs and =gg for the kernel of IS
and Cgg, respectively.

It is easy to see that IS and Cgrg are preorders, and that p Cgrg ¢ trivially
holds if p € F'. Note that Krs is itself a stable ready simulation relation and
the largest such relation. In addition, ready simulation Cgg is contained in the
ready-tree preorder Cgr, as essentially stated in [7], and conjunction and par-
allel composition are associative and commutative with respect to =rg. Note
that there are several ways how to define ready simulation [11,7] for settings
with internal actions [15]. Our variant is an adaptation of van Glabbeek’s
stability respecting ready simulation may preorder to Logic LTS.

Van Glabbeek has pointed out to us the following shorter definition of Cgg,
which essentially integrates the treatment of unstable processes into the defi-
nition of ready simulation relation:

Definition 12 (Alternative definition of ready simulation)

Let (P, —p, Fp) and (Q, —q, Fg) be two Logic LTS. A relation R C P x Q)
1s an alternative ready simulation relation, if the following three conditions
hold, for any (p,q) € R and a € A:

(RSi) p=={p = 3¢.q=={q¢ and (',¢') € R;
(RSiii) p==|p' and p,q stable = I¢.q=={¢ and (p',¢') € R;
(RSiv) p ¢ Fp and p,q stable = Z(p) = Z(q).

We write p Cu q, if there exists an alternative ready simulation relation R
with (p,q) € R.

It can easily be checked that C,; is the largest alternative ready simulation
relation. The following proposition establishes that it is indeed an alternative
definition of Crg:

Proposition 13 (Coincidence) Crg=LC,; .

PROOF. For proving inclusion “C”, let p Cgg ¢. It is sufficient to establish
that {{p,q)} U K4 is an alternative ready simulation relation. First consider

the pair (p, q):

12



(RSi) Straightforward.

(RSiii) Let p=={p’ and p, ¢ be stable, i.c., p ¢ Fp. Hence, p=={p and, thus,
q=={q as well as p IS’ by the root condition of Crg. Now, Cond. (RSiii)
immediately follows from Cond. (RS3).

(RSiv) Let p ¢ Fp and p, ¢ be stable. We obtain P Kpg ¢ as above and are
now done with Cond. (RS4).

If p S, T then Conds. (RSiii) and (RSiv) are obviously satisfied due to the
assumed Conds. (RS3) and (RS4). Moreover, Cond. (RSi) degrades to (RS2),
since p and 7 are stable.

For establishing the reverse inclusion “2”, we prove that C,;;, when restricted
to stable processes, is a stable ready simulation relation. Let p T, ¢ for
stable p,q. Conds. (RS1), (RS3) and (RS4) are straightforward. To prove
Cond. (RS2), assume p ¢ Fp and p stable, i.e., p=={p. By Cond. (RSi) we get
q=={q, i.e., ¢ & Fg. It remains for us to establish the root condition of Cgsg,
for which we let p C,; ¢ and p=={p’ for some stable p’. Then, by Cond. (RSi),

there exists some stable ¢’ with ¢=={ ¢ and p' C.y; ¢/, i.e., p/ S qg. O

The main concern when studying ready simulation is with stable processes,
which is more explicit in our definition rather than van Glabbeek’s one. For
this conceptional reason we will use Crg as defined in Def. 11. In addition,
we note that the proofs of our statements appear to be equally concise when
employing either definition of ready simulation; this is because the nature of
ready simulation requires a separate treatment of instable processes in any
case. We can now state and prove the desired compositionality result:

Theorem 14 (Compositionality)

(1) Let p & . q, 1 be stable and A C A. Then, (a) p[[ar5,5q [[a1 as well
as (b) pAT S, g AT

(2) Let p Cgrs q, r be an arbitrary process and A C A. Then, (a) p ||a T Egrs
qllar and (b) pArCrsqgAr.

Proving this theorem requires us to reason about the consistency of conjunc-
tively composed processes. To do so, it is convenient to employ the proof tool of
A-witness. The following A-witness turns out to be adequate for our purpose:

_ / / / / / / / € /
Lemma 15 The set W =g {qAr |3p', ¢, r". pP'Ar" ¢ F,p' L .4, g=1q" and
r=={r"} is a A-witness.

PROOF. (Lemma 15) It will be advantageous to read W as the union of two
sets Wi and W5, where W; collects the cases with p = p', ¢ = ¢ and r = r":
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Wi =4t {g A r|3p. P Kpg ¢ 7 stable and p A7 ¢ F'};

_ /WA ! / / el / €2 / .
WQ—df{Q/\T‘Elp,T.p Ar QEF,ZJERSQ,qé{q,T:HT, with

{el,e2} ={e7}}.
We need to check Conds. (AW1)—-(AW4) of A-witness.

(AW1) If g Ar € Wy, then p Ar ¢ F implies p ¢ F and r ¢ F. Moreover,
q¢ F by P Kpeq and (RS2).

If g A7 € Wa, then ¢, r ¢ F since ¢== and r ==

(AW2) Let g Ar € Wi, ¢/~ and r—/-. Since p ¢ F (see above) and IS
we have Z(p) = Z(q) by (RS4). In addition, p Ar ¢ F, r stable and p stable
by Def. 11, and thus Z(p) = Z(r) by (C2). Hence, Z(q) = Z(r).

If g A € Wa, then ¢ — or r —— and we are done.

(AW3) If g Ar € W) and g A r —, then we consider the following cases:

e o = 7: This is case is impossible since ¢ stable by p Krs @ and r stable by
assumption.

e o = a: Hence ¢ —% and, with p ¢ I and (RS4), we get p —. Since r —
we have p A r ——. Because of p Ar ¢ F we obtain p Ar ——p pAT for
some pAT ¢ F by (LTS1), and the latter process can stabilise by (LTS2),
ie, I, r" . pAr ——p pAT=={p' Ar". This implies p==] p/, ¢=={ ¢’ and
P’ S ¢ for some ¢’ by (RS3). We detail transition ¢ =={ ¢’ by naming the
first intermediate state g, i.e., ¢ ——p §=={¢’. Similarly, r —p 7 =={1".
If §=={¢ or T=={r', then g Ar - GAT € Wy. Otherwise, = ¢, 7 =1’
and g A - ¢ A’ € W, due to p'; note p' A1’ ¢ F by the definition
of ==J.

If ¢ Ar € Wy, then we only have to consider ¢ A r —, since ¢ — or

r —/. We only treat the first of these cases, i.e., ¢ —, since the second is

analogous. In this first case, ¢ ——¢ §=={¢ and ¢ Ar —= g A r for some

suitable g. If =={ ¢’ or r=={1’, then g A r € Ws; otherwise, g = ¢, r = 1’/

and r stable, and ¢’ A r’ € W, due to p'.

(AW4) Let ¢ Ar € W; due to p. By the definition of Wy, ¢ is stable (by
P Spg q) and r is stable, i.e., ¢ A r is stable, too.

Let g Ar € Wy. From the assumptions, we derive a computation g A7 ==
g AN’ with ¢/ Ar' stable, i.e., ¢/, ' stable. Consider a process ¢ AT on this
computation so that g A7 == GAT == ¢ Ar'. If § == ¢ or T == 1/, then
g AT € Wy; otherwise g = ¢, T=1"and ¢ A1’ € W7 due to p/. O

Using this lemma, we can now prove Thm. 14:

14



PROOF. (Thm. 14) The proof of Parts (1a) and Part (2a) is straightforward.
In particular, Part (1a) proceeds in the usual fashion, i.e., by verifying that

Ry =at{(pllar,q|lar)|rstable and p S g}

is a stable ready simulation relation.

The proof of Part (1b) is quite challenging since we need to take care of
inconsistencies that may arise when composing processes conjunctively. In
analogy to the above we prove that

Ry =at {(pAr,q A7) |1 stable and p S q}

is a stable ready simulation relation. Let (p Ar,q A1) € R, i.e., r stable and
PRpg €

(RS1) This property is straightforward since the conjunction of two processes
is stable exactly when both processes are stable.

(RS2) This property follows immediately from the fact that pAr ¢ F implies
that ¢ A r is contained in the A-witness W of Lemma 15.

(RS3) Assume p A r=={p’ A r'. Hence, p=={p’ and r —p 7" =={7', and
by (RS3) also ¢ = ¢"=={¢ with p’ S q¢'. We combine the latter two
computations to obtain the computation gAr —— ¢’ A" == ¢’ Ar'; further
note that ¢’ A r’ is stable.

Consider g AT with ¢" Ar" = GAT == ¢ Ar'. Then, recall p’ Ar' ¢ F
(due to p Ar=2p' Ar') and p’,ERSq’. Thus, gAT € W.

Thus, no process along ¢” Ar” == ¢’ Ar’ is in F' by Prop. 4. Since pAr ¢ F
due to p Ar=={p Ar’ and r stable, we have g A7 € W, ie., gAT & F by
Prop. 4. We conclude g AT — =5 ¢ Ar" == ¢’ Ar’ and ¢’ A1’ stable, whence

g Ar=={q¢ Ar'. Since 1’ is stable, we also have (p' Ar', ¢ Ar') € Rn.

(RS4) Assume p Ar ¢ F. Hence, we have p ¢ F' and Z(p) = Z(r). Further,
Z(p) = Z(q) by (RS4) for p T ¢, and thus Z(q) = Z(r). Hence, Z(p A1) =
Z(r)=Z(q A1), as desired.

To prove Part (2b), let p A r=={p’ Ar’. Hence, p=={p’ and r =={r’. Due to
p Cgrs ¢, the former implies the existence of some ¢’ such that ¢=={¢' and

/,ERS ¢’ . Therefore, p' A1’ S ¢ A1’ by Part (1b). Further we apply Lemma 15
and Prop. 4 to obtain ¢’ A1’ ¢ F, as ¢ A’ € W; due to p’. Thus, Lemma 5(2)
proves g Ar=={¢ Ar’. O
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3.2 Logic properties of ready simulation

Before presenting our full-abstraction result, we first highlight some logic prop-
erties of ready simulation.

Theorem 16 (A is And) (1) r g Y if and only if r £ nol and r

~J Q)
RS
(2)r Crep Aqif and only if r Crsp and r Cgrsq.

As for the compositionality proof of ready simulation wrt. conjunction, the
proof of this theorem uses the concept of A-witness for reasoning about incon-
sistencies:

Lemma 17 The set W =4 {pAq |3, 0, ¢ . 7"&F, p=|p', =, v’ IS

, : :
and r' 5, q'} is a A-witness.

PROOF. It will be advantageous to read W’ as the union of two sets W]
and Wy:

Wl/:df{p/\qur.rERSp, S| and r ¢ F'}

Wi=a{pAq13r, 0 . r" ¢ F, péﬂp’and ¢=2{q
with {el,e2} = {e, 7}, 7" L pand 7' L '}

We check the four conditions of A-witness for W':

(AW1) If pAg € W] due tor ¢ F, then p,q ¢ F by (RS2). If p A q € W3,
then we are done by the definition of =% and == .

(AW2) If pAg e W] due tor ¢ F, then Z(p) = Z(r) = Z(q). If p A q € W3,
we are done since p — or ¢ — by {el,e2} = {e, 7}.

(AW3) If pAq € W/, then a # 7, and pAq — implies r — by (AW2) above.
Since r ¢ F, we have r == v’ for some 1’ ¢ F. Hence, 3p/, ¢'.p "¢ p == 1/,
g >r 7 == ¢, T’ERSp’ and 7“/': q’ Thus, pAq ——=PpAG Ifp#p or
G#q,then pAge W, If p= pandq—q thenp/\qéWlduetor

If pAqg € Wy, then a = 7 since p — or ¢ —. Consider, w.l.o.g.,
pAq — DAq for some p. If p # p' or q # ¢, we have pAq € W,. Otherwise,
pAqg=p Nqg € W] due to .

(AW4) If p A g € W], then p A q is stable since both p and ¢ are stable
according to (RS1). If p A ¢ € Wi, then p A ¢ can also stabilise in W,
cf. (AW3). O

The proof of Thm. 16 is now quite straightforward:
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PROOF. (Thm. 16) We start with Part (1), direction “==", and show that

R =at {{r,p) | 3.7 Spqp A a}
is a stable ready simulation relation. Let (r,p) € R.

(RS1) Since r and pAq are stable due to r Spg PA¢; we have that p is stable,
too.

(RS2) p € Fimplies pAg € F', which in turn implies r € F" due tor S pAg.

(RS3) =27 implies, since r £ SpgP N ¢, the existence of p’ and ¢ such that
pAqg=={p' A ¢ and 1’ SpeP' N d'- Hence, p=={p’ and (r',p') € R.

(RS4) By r 5. p/g, we have that r ¢ F' implies Z(r) = Z(p A q). Moreover,
since p A g ¢ F (cf. (RS2)) and p A ¢ stable, we get Z(p) = Z(q) by (C2).
Hence, Z(r) = Z(p A q) = Z(p).

Hence, r ISHY 2 Analogously, we can establish r IS

NOW let r IZRS pAq. Then, r =={ 7" implies p A q :€>| P /\q’ for some p’, ¢’ with
NRSp A¢q'. Thus, p:>{p and, by the above, 7’ Krs p This proves r Cgrg p.

Again, we can prove r Cgrg ¢ analogously, which finishes the proof of Part (2),
direction “=".

To show direction “<=" of Part (1), it is sufficient to prove that

R =a {{r,pANq)|rEpgpand r Koo q}
is a stable ready simulation relation. Let (r,p A ¢) € R.

(RS1) This is trivial since p, g, r are stable due to r IS and r T ISH2

(RS2) If r ¢ F, then p A g € W’ of Lemma 17, i.e., p A q ¢ F by Prop. 4.

(RS3) If r =={ 7/, then p=={p' and ¢=={ ¢, as well as 7’ IS p' and 1’ IS q
by (RS3) for rSpep and r 5o q. Moreover, P ANqg € W’ since ' ¢ F and
thus p’ A ¢’ ¢ F by Prop. 4. Now we combine the latter two computations
and consider intermediate states p A g such that pA g == pAGT = p' A ¢,
ie., p == péﬁp’ and ¢ == qéﬂ q with {el, €2} = {e, 7}; this implies
PAG € W, C W'. Hence, pAG ¢ F by Prop. 4. Moreover, because of
pAqé¢ F by (RS2), we have p A q=={p' A ¢.

(RS4) If r ¢ F, then Z(p) = Z(r) = Z(q) lets us conclude Z(r) = Z(p A q).
Finally, let r ERS p and r ERS q. For r=={7', take p’ and ¢ with p:6>|p’,

q==lq, r NRSp and ' £ ¢, and observe r’ ¢ F'. By the above, r' 5 p'A¢'

and pAq = p' A¢. Referring to Lemma 5(2), and noting p’ Aq’ ¢ F by (RS2),
we obtain p A ¢=={p’ A ¢/, which proves direction “<=" of Part (2). O
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Conjunction also satisfies further standard logic properties:

Proposition 18 (Logic properties of ready simulation)

(1) (a) p A ff=rs ff, and (b) p A ff =gs ff if p stable;
(2) (a) pNqErsp, and (b)) pAqS, p if p,q stable;
(3) pAD=rsp;

(4) pNq=rsp if and only if p Egg q.

PROOF.

(1) The validity of part (b), for stable p, is a consequence of the fact that
{{(ffip AN ff) | p stable } and {(p A ff. ff) | p stable } are stable ready simula-
tion relations. Part (a) holds trivially since neither p A ff==| nor ff=={.

(2) To prove Part (b) for stable p, ¢, it is sufficient to verify that the relation
R =at {{p N q,p) | p,q stable } is a stable ready simulation relation:
(RS1) Trivial.

(RS2) pe FimpliespAg € F.

(RS3) pAq=={p A ¢ implies p=={p’ and (p' A¢,p') € R.

(RS4) pAq ¢ F and p A ¢ stable implies Z(p A q) = Z(p).
For proving Part (a) for arbitrary p, ¢, let pAq=={p'Aq’. Then, p=={p’

and, by the above, p' A ¢ S p.

(3) The inclusion “Cgrg” is a consequence of Part (2). The inclusion “Jgrs”
follows by Thm. 16(2).

(4) Part “CRrg” of the “if” direction is the statement of Part (2). Part “Jgg”
of the “if” direction is a consequence of the compositionality and idempo-
tence of A (Thm. 14(2) and Part (3), respectively). The “only if” direction

follows directly from Part (2) and commutativity. O

3.3  Full-abstraction result

To prove our main result, we encode the full behaviour of a stable process p
into a single ready tree. The idea is to unfold p to a tree and to eliminate any
nondeterminism by placing fresh actions into the tree. As an illustration of
this, consider a part of a process p — or rather its unfolding — as shown on
the left-hand side of Fig. 5.

A ready tree for state 1 would represent the a-transition, the b-transition
and one of the two c-transitions; in terms of Def. 19 below, there are two
relevant selection sets. In order to reflect both possibilities of c-transitions in
a deterministic way, the characteristic ready tree of p chooses between them
with fresh actions z and y, as shown in the centre of Fig. 5. Of course, due
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Fig. 5. Basic intuition behind conjunctive composition.

to the presence of x and y, this tree is not a ready tree of p, but it is a
ready tree of a suitable parallel composition. For this composition, we need
a context K which we take to be the characteristic ready tree augmented by
some additional transitions. These depend on the sort of the process ¢ we want
to compare with p: if ¢ has sort {a,b, ¢, d}, the respective part of K looks as
shown on the right-hand side of Fig. 5, where 0 denotes the deadlock process
that has no initial actions.

We now define the characteristic ready tree and context formally:

Definition 19 (Characteristic ready tree & context) Let p be a process
with Logic LTS (P,—, F) having sort Ap, let q be a process with sort Ag,

and let p=={ py.

(1) The characteristic ready tree Py of p with respect to py and q is a Logic
LTS 7 whose states are paths © € P x (Ap x P)* of p originating in py,
as well as such paths concatenated with selection sets D which are subsets
of Ap x P. Formally, the state set Py and transition relation — p, are
inductively defined as follows, where last(m) denotes the last process on
path 7 and the xp ¢ Ap U Ag are fresh actions with respect to p and q:
® po € Iy,

o 7 2y 7D and D € Py, if 1 € Py, Y{a,p) € D. last(m) =={p in P
and Va € Z(last(m)) F1{a,p) € D;

o 71D —sp, map and wap € Py, if D € Py and (a,p) € D.

We will write (po) instead of py whenever we wish to highlight that not

the process poy is meant, but the path consisting only of py.

(2) The characteristic context K of p with respect to py and q is defined as
the Logic LTS Py augmented with the fresh process 0 and transitions
e 1D i 0, if 7D € Py, a € Ag and Bp.{a,p) € D.

Also K does not have any inconsistent states.

Next, we prove that Fy, as defined in Def. 19, is indeed a ready tree. Note that
in the parallel composition, the additional transitions of the context — i.e.,
the d-transitions in Fig. 5 — are eliminated; they will be needed in the proof
of full abstraction (cf. Thm. 21).

7 As an aside, note that only the sort of process ¢ is needed here, not ¢ itself.
Further recall that a ready tree does not have any inconsistent states.

19



Proposition 20 Let Py be the characteristic ready tree of process p wrt. some
po and q, and let K be the respective characteristic context of p. Then, Py is
a ready tree of p ||a (o), where A =g Ap U Ag and (po) is the root of K.

PROOQOF. F,is an observation tree by construction, since it is a deterministic
tree and since all its vertices are stable processes. We define a mapping hg
from the vertices in Py to processes in P ||4 K by ho(m) =q¢ last(m) ||4 7 and
ho(mD) =4t last(m) |4 7D, and verify Conds. (RT1)—(RT4) of Def. 8:

(RT1) This is trivial since last(7), 7 and 7D are all stable and not in F.
(RT2) We have p ||4 (po) == po ||a (po) by construction.

(RT3) If 7 25, 7D, then 71 “2, wD by construction of K. Since xp is
a “fresh” action, ho(m) = last(7) |4 7 ~2p last(w) |4 7D = ho(7D). If
7D —>p, wap, then last(r) == p and 71D —>f wap by the construction
of K. As a € A, we have ho(mD) = last(n) |4 7D == p || 4 map = ho(wap).

(RT4) Observe that the ready set of 7D in K is the ready set Zp(last(m)) of
the last process of path 7 in P plus all actions in A, whereas the same state
in Py has only ready set Zp(last(m)). By the operational rules for parallel
composition we obtain:

o Ip,k(last(m) |4 m) = (Zp(last(m)) N Ik (m) N A) U (Zp(last(m)) \ A) U
(Zr(m)\A) =0U DU Zg(r) =Ip, (7).

o Ipjk(last(m) ||a 7D) = (Ip(last(m)) N Zx(rD) N A) U (Zp(last(m)) \
A)U (Zx(mD)\ A) = (Zp(last(m)) N (Zp(last(m)) U Ag) N A) UDUD =
ZIp(last(m)) = Zp,(7wD); note that the last equality is due to the construc-
tion of Py from P. O

Together, characteristic ready trees and Prop. 20 are the key for proving our
main result:

Theorem 21 (Full abstraction) The largest precongruence within C g, with
respect to parallel composition and conjunction, equals Cgg.

PROOF. Because of Thm. 14 and Thm. 10 [6], as well as the fact that ready
simulation is contained in the ready-tree preorder Cgr and thus in Cg [6],
it is sufficient to prove that Cgrg subsumes the largest precongruence QﬁT
contained in Cgr. Consider processes p and ¢ with Logic LTSs P and @) and
sorts Ap and Ag. We let Apg stand for Ap U Ag, and abbreviate || 4,, by ||.

Now assume p Cir ¢, and consider some py such that p==py. Because of
p Cip g and Prop. 20, we have Py € RT(q || {po)) due to some mapping h; in
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particular, ¢ ¢ F. Here, Py is the characteristic ready tree of p with respect
to po and ¢. To prove our claim, it is sufficient to establish that

Ro =at {(p',¢) | Im.last(m) = p’ and h(w) = ¢ || 7}
is a stable ready simulation relation. Thus, let (p', ¢') € Ro due to 7.

(RS1) h(m) is stable, whence ¢ is. Moreover, last(7) is stable by construction.
(RS2) h(m) ¢ F implies ¢’ ¢ F.

(RS3) Let p' =%{p” and 7 22 7D with (a,p”) € D for some p”; the latter
transition always exists by construction. Then, 7D - wap”. Moreover,
h(rD) = ¢ || «D, whence ¢ || 7D == h(map") = ¢" || map” for some ¢"
by (RT3), as well as ¢/ =={ ¢” and (p”, ¢") € Ro due to wap”.

(RS4) We have p’ ¢ F by construction. Choose some D with 7 =2 7D which
always exists by construction, whence h(wD) = ¢'||7D. Now, Z(p') = Z(w D)
in Py by construction of Fy. The latter equals Z(¢'||wD) by (RT4), which
in turn equals the set Z(¢') since Ag C Z(nD) C Apg, for Z(nD) in the
characteristic context. Hence, Z(p') = Z(¢').

Observe that the additional transitions of the context ensure that Ay C
Z(wD). To see what goes wrong without these transitions, consider Fig. 5
with p, corresponding to 7D, and 1 to p’. Without the d-transitions we could
have Z(¢' || D) = {a, b, c}, but nevertheless Z(¢') = {a, b, c,d} # Z(p').

Thus, Ry is a stable ready simulation relation. Finally observe h(py) = qo ||

(po) for some qo such that gq||(po) == qo|{(po) (by (RT2)); therefore, ¢ == qo
and (pg, qo) € Ro due to (py).

Summarising, we have shown that, for each py with p=={py, there exists
some o satisfying ¢ =={ qo and py Spg Q- Hence, p Crs g, O

We wish to point out that there are several ways how to guarantee the existence
of the fresh actions required in the construction of characteristic ready trees.
One way is to assume an uncountable alphabet A and to restrict ourselves to
those processes that are finitely branching with respect to U{ == |a € A}
and have a countable sort. Then, context K and the characteristic ready trees
are also finitely branching and have countable sorts.

Alternatively, we may assume an infinite alphabet A and restrict ourselves to
processes that have finite sort and are bounded branching, for some bound
¢ € N. This is sufficient since a careful inspection of the full-abstraction proof
reveals that actually only c fresh actions are needed for constructing context K
and the required characteristic ready trees. Moreover, K and the characteristic
ready trees have then only c-bounded branching as well as finite sorts.
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Note that the need for fresh actions is standard in full-abstraction proofs (see,
e.g., Milner [3, p. 153]) and is discussed extensively in the process-algebra
literature.

4 Example

To testify to the utility of our framework for mixed operational and logic
styles of reasoning and specification we conduct a small but realistic example.
The example deals with the specification and refinement of a simple mode
logic, such as used in flight control systems in avionics and in other embedded
control applications. Note that the avionics term “mode” refers to a state, or
a set of states, as used in formal methods and concurrency theory.

The brief for the mode logic is as follows: The mode logic shall consist of
two modes, which can be thought of as on-/off-switches and whose interaction
shall be governed by some scheduler. This is a standard architecture for mode
logics. However, our particular mode logic is required to satisfy the constraint
that not both modes can be on at any given time.

This informal requirements description directly lends itself to a heterogeneous
specification of the mode logic in a mixed operational and logic style, using
both parallel composition and conjunction. Before formally presenting this
specification, we introduce some conventions to simplify notation in this sec-
tion. We use P || @ to denote the parallel composition of P and () with the
joint alphabet of P and () being the synchronisation alphabet. Here, the al-
phabet of a Logic LTS is simply the set of actions occurring as labels of the
transitions of the LT'S. The main purpose of this convention, other than reliev-
ing us from explicitly annotating each parallel operator by a synchronisation
alphabet, is that || is commutative and associative provided the alphabet of
P || @ is the union of the alphabets of P and @; this condition will be satisfied
for the parallel compositions in this section.

SW

Fig. 6. Abstract scheduler AS and constraint Cey.

We can now phrase the specification of our mode logic as
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Spec =qr (SWy || SWa || AS) A Con

whose component Logic LTSs are sketched in Fig. 6, with SWy being defined
as SW; but replacing all indices 1 with 2. The LTS SW;, and analogously SWs,
specifies a simple switch with two states: the initial, upper off-state and the
lower on-state. One can toggle between these states using the switching ac-
tion swy, with the on; self-loop of the on-state indicating that the switch
is on. Component AS is the most abstract scheduler for the two switches:
it allows at least one switching action at any state. Here, the transition la-
belled “swi,swy” stands for two transitions, one labelled with sw; and the
other with swy. Intuitively, AS can be understood as the temporal logic formula
“always(swy V swy V (swiOswy))”, where operator O denotes external choice
(cf. Def. 26 below). Note that our scheduler cannot control the actions on;
and ony, which are just probes as suggested above.

Finally, Logic LTS C,, formalises our desired constraint that only one mode
can be in its on-state at any given time. This LTS has a 7-branch for each ac-
tion set A C {ony, ony, swy, swp} such that not both on; € A and on, € A; for
illustration purposes, Fig. 6 shows several such sets A, denoted A, A" and A”.
Each 7-branch returns to its initial state via a bundle of transitions, one for
each action a € A. In Fig. 6, this bundle of transitions is simply depicted as
a single transition labelled A. One may think of this LTS as being automati-
cally generated from the temporal logic formula “always—(on; Aong).” Hence,
our specification is in principle a conjunction of a parallel composition and a
temporal logic formula, where the parallel composition contains a temporal
logic formula as component, and is thus truly heterogeneous.

Our aim is to refine the above specification Spec to a purely operational
system Impl such that the parallel composition is refined and constraint C,,
is satisfied, i.e., Impl Crg SW; || SWy || AS and Impl Crg Cop which implies
Impl CRrg Spec by Thm. 16.

SW, || SW, || CC

Fig. 7. Central controller CC and composition with switches SW; and SWs.

The first step is to refine the abstract scheduler AS by a concrete central
controller CC that guarantees the constraint C,,. This controller is depicted on
the left in Fig. 7. Obviously, CC Crg AS and hence

SW, || SWa || CC Crs SW, || SWa || AS

23



by compositionality of ready simulation for parallel composition (cf. Thm. 14).
Furthermore, it is easy to check that

Swl || Sw2 H CC ERS Cona

when considering the Logic LTS of this parallel composition depicted on the
right in Fig. 7. By Thm. 16, we conclude that

Swl || SW2 || CcC ERS Spec .

cc, SsW, sw, Jlcc,
e . e \oéo
resume SNZ
SW, SW; SWy SWy SWy SWy
suspend SwW.
. .« e e
on resume on SNZ

Fig. 8. Basic switch controller CCy, suspendable switch SSW; and SW; || CC;.

To obtain an implementation with distributed control, we now observe that CC
can be implemented by the parallel composition of two basic switch con-
trollers CC; and CCq, where CC; is shown on the left in Fig. 8 and where CCy is
defined analogous to CC; but with indices 1 and 2 interchanged. Observe that
CC =gs CCy || CCo. We define

Impl =qr (SWy || CCy) || (SW2 || CCy)

and can now infer the desired refinement result by referring to commutativ-
ity and associativity, as well as to the already established equivalence and
refinement steps:

Impl —RS (Swl || SWQ) || (CCl || CCQ) —RS (Swl || SWQ) || CC ERS Spec.

As an aside, our implementation Impl can also be understood as being built
from two suspendable switches SSW; and SSWy which might be available off-
the-shelf, as shown in the centre of Fig. 8 where SSW, is defined as SSW; but
with indices 1 and 2 interchanged. SSW; can be suspended in any state, and
has the behaviour of SW; || CC; when the suspend and resume signals are both
connected (i.e., renamed) to sws.
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5 Further operators: disjunction, external choice and hiding

The aim of this section is to show that Logic LTS and ready simulation build a
robust framework for mixing process-algebraic and logic styles of specification
and reasoning. To this end, we extend our framework by the logic operator
disjunction and the process-algebraic operators external choice and hiding.
We omit the extension by the process-algebraic action prefiz operator, which
is trivial.

While extending our framework is relatively straightforward for disjunction
and external choice, defining hiding and proving this operator compositional
for ready simulation turns out to be a challenge. This is because hiding a visible
action of a Logic LTS, i.e., relabelling that action by the internal action 7,
may make the LTS 7-impure, not only on top-level but also deep inside the
LTS. Hence, some kind of semantics-preserving transformation (as already
indicated in Fig. 3) that re-instates 7-purity is required when applying hiding.

5.1  Disjunction

We start off with defining disjunction on Logic LTS. As suggested in Sec. 2,
disjunction intuitively corresponds to internal choice.

Definition 22 (Disjunction operator) The disjunction of two Logic LTSs
(P,—p, Fp) and (Q, —q, Fg) satisfying (w.l.o.g.) PN Q = 0, is the Logic
LTS <P V Q, ——PVQ; Fp\/Q> deﬁned by

e PVQ=4{pVqlpe P, qeQtUPUQ
o —pyo 15 determined by the following operational rules:

always = pVqg——pyQD

always = pVq—pygq
p——pp = p-——pul
¢——qd = q——prud

o Fpyo=FpUFoU{pVyq|pe€ Fpandqe Fy}

It is easy to see that disjunction is well-defined, i.e., that the disjunction of
Logic LTS is again a Logic LTS. The disjunction operator is also compositional
for ready simulation:

Theorem 23 (Compositionality for disjunction) Let p Crs g and r be
an arbitrary process. Then, pN r Ersq V7.
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The compositionality proof is straightforward and therefore omitted. As stated
in the following proposition, ready simulation also satisfies the desired logic
properties for disjunction. Most importantly, the disjunction operator ex-
presses indeed disjunction on Logic LTS and is thus not defined arbitrarily.

Proposition 24 (Logic properties of disjunction)

(1) pV qCrsr if and only if p Crsr and g Crer (“V is or”);
(2) pErspV q;

(3) PV p =rsp;

(4) PV q=rs q if and only if p Cgs g

Again, we omit the straightforward proofs of these properties, which simply
refer to our definitions of disjunction and ready simulation. Instead, we state
and prove two other properties relating disjunction and conjunction:

Proposition 25 (Distributivity laws)

(1) pA(gVr)=rs(pAq)V(pAT)
(2) pV(gAT)=rs (V@) AN(pVT)

PROOF.

(1, Ers) Let pA(qVr) =={p'As; w.lo.g., p=={p' and ¢ == s. Since p'As & F,
Lemma 5(2) implies (p A q) V (p A7) — p A qg=={p’ A s. Due to the 7-
step, (p Aq) V(pAr) & F since pAq ¢ F. We may therefore conclude
(pAq)V (pAr)=={p As and, trivially, p' A s Eps P N8

(1, Ors) Let (pAq)V(pAT)==s; wlo.g, pAq==]s. Then, pA(qVr) ——
pAqg==s, as well as pA(qVr) ¢ F by Lemma 5(1). We may thus conclude
pA(qVr)==|s and, trivially, s IS

(2, Crs) f pV (¢ Ar)=={p due to p=={p/, then (pV ) A (pV 1) —
pA(pVr) - pAp=={p Ap'. Now, we obtain p’ Spe P AP by Thm. 16(1),
aswell as (pVg)A(pVr)é¢ FandpA(pVr)é¢ F by Lemma 5(1) due to
pé¢F.

If pV(gAr) == ¢ Ar' due to gAr =={ ¢’ Ar’, then (pVq)A(pVr) —— qA(pV
r) —— qAr == ¢ Ar'. Since gAr ¢ F, we have q,r ¢ F and pV¢q,pVr & F,
and we are done with Lemma 5(1) since then (pV ¢) A (pVr) =] ¢ Ar’ and,
trivially, ¢’ A 1’/ IS A

(2, Jrs) Let (pV @) A (pVr)={p Ap" for some p,p" due to p=={p’ and
p==1p". Hence, pV (g A1) —— p=={p, as well as pV (¢ Ar) ¢ F. Finally,

observe p' A p" 5 p" by Prop. 18(2).

The cases (pV q) A (pVr)=={¢ Ap, for some ¢=={¢' and p=={p/, and
(pVq) A (pVr)=={p Ar’, for some p=={p’ and r =={1/, are analogous.
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Finally, let (pV q) A (pV 1) =={¢ Ar' for some ¢, such that ¢ =={ ¢’ and
r=={7". Due to ¢ A1’ ¢ F we can apply Lemma 5(2) to obtain pV (qAr) —
gAr=={¢ Ar'. Since gAr ¢ F, we have pV (¢Ar) ¢ F, as required. Hence,

pV (g Ar)==]q¢ Ar" and, trivially, ¢ A7’ IS g Nnr. O

5.2  FEaxternal choice

We now turn to integrating the process-algebraic external choice operator into
our framework. The only subtlety arises when composing an instable process
with a stable one, as the usual definition of external choice would offer the
initial actions of both processes, thus violating 7-purity. As for parallel com-
position, we resolve this issue by giving 7-transitions precedence over visible
transitions:

Definition 26 (External choice operator) The external choice on Logic
LTSs (P,—p, Fp) and (Q,—q, Fg) satisfying (w.l.o.g.) PN Q =0, is the
Logic LTS (POQ, — pog, Fpog) defined by:

o POQ =4{p0q|lpe P, qeQUPUQ
o — ppg 15 determined by the following operational rules:

p—prp = pBg—>poqpOq

¢—"—od = pOq¢—pogprOqd
p——rp, 4/>q = pOg—=pogp
q-S0d, pFpr = pOg—pogd

p—pp = p——pogl

1 -50d = q¢Spogd

° FPDQ:FPUFQU{qu‘pGFP OTQEFQ}

Note that external choice only resolves choices for external, i.e., visible actions,
and not for the internal action 7. Moreover, pOq is already inconsistent if one
of p or ¢ is inconsistent, whereas the inconsistency of pVq requires both p and ¢
to be inconsistent. This is due to the fact that external choice is not a logic
concept but an operational one. Our external choice operator is well-defined
and, most importantly, it is compositional for ready simulation:

Theorem 27 (Compositionality for external choice)

(1) Let p K ,,q and 1 be stable. Then, pOr 5 qOr.
(2) Let p Crs q and v be an arbitrary process. Then, pOr Crg qOr.
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PROOF. In order to establish Part (1), it is sufficient to prove that

Ro =ar {(pOr, ¢Or) [r stable and p S g} U 5o

is a stable ready simulation relation. Let (pOr, ¢Or) € Rg due to p S and
r stable. We have to verify Conds. (RS1)—-(RS4) of Def. 11:

(RS1) Trivial, since p, ¢, r are all stable.

(RS2) pOr ¢ F = pr¢ I = q,r ¢ F (by pS,q and Def. 11(RS1))
— qD’/‘ ¢ F.

(RS3) Let pOr == p’ due to p== p’. According to our definition of the tran-
sition relation for external choice, the latter computation has the same states
as the former one except for p. Hence, by P gy and Def. 11(RS3), we ob-
tain some ¢’ such that ¢ =={ ¢ and p’ Spg €' whence ¢Or =1 ¢ (cf. (RS2))
and (p',¢) € Ra.

The case of pOr =={ 1’ due to r =={ 1’ is straightforward.

(RS4) pOr ¢ FF = p¢ F = I(p) = I(q) (by p K4 ¢ and Def. 11(RS4))
— Z(pOr) =Z(p) UZ(r) =Z(q) UZ(r) = Z(qOr).

To prove Part (2), consider pOr =={ p’0r’ due to an interleaving of p == p’ and
r =={7’". Because of p Crg ¢ we have some ¢’ such that ¢=={¢' and p' £__¢/,

~RS
implying ¢Or == ¢'Or’ and, by Part (1), p'O7’ Cpe @B O

5.3 Hiding

Adding the standard process-algebraic operator /h of hiding into our setting,
where h is a visible action, turns out to be much more challenging than, say,
integrating the external choice operator. This is because hiding an action, i.e.,
relabelling a visible action by the internal action 7, typically destroys T-purity
not only at the top-level of a Logic LTS but also at deeper levels. Hence, in
order for the hiding operator to be well-defined, it must not only hide the
desired action but also re-establish 7-purity. As this is non-trivial, we start off
by some simple examples that motivate our subsequent formal definition of
hiding.

As the first example, re-consider the LTS shown on the very left in Fig. 3, but

think of the 7-labelled transition as the result of hiding the visible action h.
Recall our previous discussion on why understanding this transition system is
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difficult.® However, this 7-impure transition system can be expressed ‘equiv-
alently’ as the 7-pure LTS on the very right in Fig. 3, as explained in Sec. 2.
Operationally, this transformation from the LTS on the left to the LTS on the
right can be understood as collecting all moves that are possible when “looking
through” the hidden action h or pre-empting action a by performing h.

hiding h

Fig. 9. Second example regarding hiding.

The second example depicted in Fig. 9 requires us to iterate this idea when
hiding action h in the LTS on the left, to obtain the LTS on the right. Note
that, in the LTS on the right, the target states of the b-transitions are actually
the same state, as are the target states of the c-transitions. We have drawn
the LTS as a tree for the sole purpose to improve the LTS’s layout, which is
also the case for the rightmost LTS in Fig. 10.

hiding h

Fig. 10. Third example regarding hiding.

In the final example regarding hiding, depicted in Fig. 10, we first observe the
indicated equality, which translates the internal choice on action A to an h-
step followed by disjunction. This rewriting makes it clear that actions b and ¢
are exclusive alternatives, and each of these may be combined with action a
when hiding h as shown.

For the process algebraist, we briefly indicate the ‘equational” rationale behind
these examples. The transformation in the first example is based on the follow-
ing law of failure semantics [9]: (pOh.q)/h = (pOq)/hVq/h. This law has been
applied three times in our second example above, together with some other
obvious laws. However, note that the law of failure semantics does not hold

8 In particular, giving action 7 precedence in this LTS as suggested after Def. 6,
essentially removes the a-transition, which we consider to be counter-intuitive.
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for ready simulation in case p can engage in an initial h-transition; otherwise,
we would have:
(h.aOh.b)/h = (h.aOb)/h Vb = (aOb)VaVb

(h.aDhb)/h = (h.(aVb)/h avb

But (a0b) V a V b #gs a V b. However, this issue is not a problem since
several h-transitions can be merged into one with the help of internal choice
(disjunction), as shown in the third example above.

In order to formalise our intuition of hiding and to collect all moves “looking
through” h as described above, we have to introduce new processes that are
tuples of processes. Formally, given a Logic LTS (P, —p, Fp), we augment P
to the set P = PUP by adding all vectors of stable, consistent processes, i.e.,

ﬁ:df{ﬁ:(pl,pg,...,pn)mz1, V1 <i<n.p; € Pstable and p; ¢ Fp}.

We use the conventions that p is a generlc process in P pE Pisa process
from P, and p € Pisa process from P with components py, pa, ..., Pn. More-
over, we consider every process p € P as consistent and augment the transition
relation by transitions according to the following rule:

(T)  pi—>0p — P—=np,

so that a vector of processes inherits all transitions of its component processes.
It is easy to see that the resulting Logic LTS is indeed a Logic LTS. Firstly,
T-purity and (LTS2) are not violated since all p’ € P are stable. Secondly, let
7 —%, i.e., there exists some 4 such that p; —=. By (LTS1) for p; € P we have
the existence of some p ¢ Fp such that p; — p. Hence, also j —— p ¢ F,
which establishes (LTS1) for our extension.

Similarly to extending Logic LTS, we can extend the stable ready simula-
tion Krs € P x () component-wise, to obtain a new relation Crg © P x Q.

~Y

Formally, we add to 5 all pairs (ﬁ, q) € P x @ of tuples of equal length

such that Vi. p; © S - As expected is a stable ready simulation relation:

» Rs
(RS1) Straightforward by Rule (T).
(RS2) If ﬁERS ¢, then both p, ¢ ¢ F.

(RS3) If ﬁféRs g, then p=={p’, ie., p ——p p==|p for some p, implies
pi —r p==|p’ by Rule (T), i.e., p; =={p’. Since p; ,ERS q¢i, we have K = q
for some ¢’ with p’ C S ¢'. By Rule (T), also §==] ¢, as well as p' & S q by

~

the definition of S
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(RS4) If pN q, then p; 5. ¢ and p; ¢ F for all i; hence, Z(p;) = Z(¢;)
by (RS4) for Pi Kpg € Thus Z(p) =U;Z(p:) = U; I(ql) = (d)

Hence, our extensions of Logic LTS and stable ready simulation to tuples of
stable, consistent processes are well-defined.

We are now in a position to formally define our hiding operator:

Definition 28 (Hiding operator) The hiding of visible action h € A within
a Logic LTS (P, —p, Fp) is the Logic LTS (P/h,— p,, Fpn) defined by:

o P/h=q{p/h|p€ P}
o —py, 18 determined by the following operational rules:

(H1) p—pp = p/h—=pmp/h
(H2) p-Sp v, ptop = p/h -/l
(H3) p —=p, (=5 p)' D1 = pp2- - = ppnAop =

P/h L)P/h (pl,p2, . ,Pn)/h
(Hj) pi ——pp, a#h, (p1,p2,...,pn) € P/h =

(p1,p2, cee ,Pn)/h L)P/h p’/h

o Fpyy, is the least set satisfying the following conditions:
(1) p/h € Fpy if p € Fp;

(2) p/h € Fpp if Bp'.p=={p( P Ap;
(3) p/h € Fpy if Jo € IP/h(p/h) /h- p/h—=pmp'/h = P'/h € Fpp;
(4) p/h € Fpsy if p/h cannot stabilise outside Fpyy,.

Intuitively, the first two of the above conditions for inconsistency of hiding
explain where inconsistencies may come from: they may either be inherited
from P, or may result from a new inescapable divergence that arises when
hiding h. The latter two conditions are needed to ensure Conds. (LTS1)
and (LTS2) of Logic LTS. It can easily be checked that hiding is well-defined,
i.e., that hiding a visible action in a Logic LTS results again in a Logic LTS.

To be able to reason about the inconsistencies that may arise when hiding ac-
tions, we employ again a notion of witness, as in our approach to conjunction:

Definition 29 (Hiding-witness) A hiding-witness is a set W C P/h such
that the following conditions hold:

(HW1) Vp/h € W. p ¢ Fp and 3p'.p== p( #p,
(HW2) Vp/h € W. (a) Yo € LZp(p/h) Ip /h € W p/h s pm 0 /h;
(b) p/h can stabilise in W.
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The statement and proof of the following proposition is analogous to the one
of Prop. 4 for A-witnesses:

Proposition 30 p/h ¢ Fpyy, if and only if hiding-witnessW. p/h € W.

We are now in a position to define a particular hiding-witness that will be
needed for proving ready simulation compositional with respect to hiding.

Lemma 31 Let (P,—p, Fp) and (Q,—q, Fg) be Logic LTS and h € A.
Then, the set W" =g W{'UWY is a hiding-witness for (Q/h, —q n, F), where

W' =4{d/h € Q/n3pe P.p5 G and p/h ¢ F};
Wy =g{i/h € Q/h|3¢".¢=={q" and §"/h € W'}

Note that ¢ in W2 must necessarily be of the form ¢ and cannot be the vector .

PROOF. To establish Cond. (HW1) of Def. 29, let us first consider ¢/h € W/’
due to p. Note that p/h ¢ F implies p §é Fp and ¢ ¢ Fg by P Kpe @ and (RS2).

Then, since p/h ¢ F implies Jp’. p( 7L> we find, by p £ Rpg ¢ and (RS3),

some ¢’ such that q(:>|) and p' G ¢ Since p' ¢ Fp, we obtain ¢’ N
by (RS4).

Now, let us consider the case q/h € W due to ¢=={¢" with ¢"/h € W/.
Obviously, ¢ ¢ Fg. Furthermore, ¢” has the form ¢”, and we have just shown

that 3¢’ ¢" (=5 )*q' /. Hence, =51 ¢" (=5 )¢’ /.

To verify Cond. (HW2a), consider some @ € Z(G/h) and distinguish the fol-
lowing cases:

a # 71 Then ¢/h € W/ due to some p. Note that it cannot be the case that
G/h € WJ'; assume otherwise, § — and thus also ¢/h — by (H1), contra-
dicting §/h — with o # 7.

Again, we distinguish two cases, for both of which we establish p/h —.
The first case is §/h — due to (H2). Then, § - and cj#. By j)JéRScj

and p ¢ Fp, we have p —— and ]57L by (RS4). Hence, p/h —.
The second case is ¢/h — due to (H4). Take some i Wlth g — Smce
pi¢ Fpbype P and since p; C S bypNRS g, we have p; = andp/h =,
Now we may conclude the proof for both cases uniformly. By (LTS1)
and (LTS2), p/h==4. Let p"/h ¢ F be the first state on this computatlon
with p” stable, whence p==p". By pNRS 4, we also have some ¢’ and ¢
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s -~ o / € ~1 /) - 2~ 3 /) ~1 "
with ¢ —f ¢ ={¢" and p Kpgd’- Since p /h & F, we have ¢"/h € W/'.
Thus, §/h — ¢'/h € W".

a=71: If G/h € W/ due to p, then ¢, being stable, must be ¢ with ¢ " and
p = p. Since p/h ¢ F, we have p ¢ Fp and, by (RS4), p L; furthermore,
p( =) p' L~ for some p/. Thus, p/h —— by (H3) and p/h —— §/h ¢ F

for some suitable p/h by (LTS1), with p( :h>’ )*p1 :h>|p2 e :h>|pn7L and
P = (p1,p2,---,Pn). From the assumption p Sy ¢ we conclude by (RS3) that

q(:h>| )*q1:h>{q2 e :h>{ , Di g @ for all 1 <4 < n, and qn# by (RS4).
Thus, by (H3), ¢/h — q/h and F£ 7, i.e., @/h € W] C W,

If g/h € W, then the state ¢’ succeeding ¢ on the respective computation
G==1 " satisfies § — ¢ and ¢’/h € W), or ¢'/h = q"/h € W/

To establish Cond. (HW2b) we can assume that we are in the case @ = 7
above. Thus, either §/h — ¢/h € W" and ¢/h is stable; or ¢/h = ¢"/h

A

with all states in W and ¢” stable. If ¢” /h is not stable, it can stabilise in W”
with some ¢”/h — ¢/h as in the ‘either’ case. O

We can now prove the desired compositionality result for ready simulation
with respect to hiding:

Theorem 32 (Compositionality for hiding)

(1) LetpE . q and h € A with p7L> and q#. Then, p/hERSq/h.
(2) Let p Crsq and h € A. Then, p/h Cgrs q/h.

PROOF. For proving Part (1), it is sufficient to establish that R =4 R1UR>
with

Ry =ac{(p/h.a/h) |pSpqq. pF— and g/}
R2 :df{<ﬁ/h7 (T/h) ‘ﬁ: (p17p27 s 7pn) € ﬁv q_’: (QI7Q27 s 7qn> € @7 and
PE. )
is a stable ready simulation relation. We check the four conditions of Def. 11:
(RS1) This condition is straightforward for all pairs in R; and Ro.

(RS2) Let (p/h,q/h) € R. Then, p/h ¢ F and p £ q implies §/h € Wy C
W". Hence, ¢/h ¢ F by Lemma 31.

(RS3) Let (p/h,q/h) € Ry. We distinguish two cases, p/h=={p//h and
p/h=={p/h:
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If p/h == p'/h, then this computation does not contain a state j/h since
such states are stable, i.e., p/h =={p'/h is not possible. Hence, the first step

of p/h == p /h arises from (H2) and the others from (H1), i.e. p/h:a>| p/h
due to p ——p p1 ——p pPo--- %F p, = p'. We have that p’ is stable

since p’ —— would imply p'/h — by (Hl) Furthermore, p 7L> otherwise,

p'/h ¢ F would 1mp1y Iy =l (=])* p" -/, whence P( )* " L by
the stability of p’ and thus p’/h by (H3).

Since pNqu and p==4p’, we have ¢=={¢ for some ¢ with p’ NRSq.
Assume g == ¢ arises from ¢ —>p ¢1 ——F @2+ —F ¢m = ¢. By (RS4),
we get q7L> from p# and q’# from p’#.

Further, ¢ A~ implies ¢/h —* q1/h —— qo/h -+ —— qm/h = ¢ /h. Since
p/h,p'/h ¢ F by assumption, we have q/h,q'/h € W] C W”. In addition,
qi/h € Wy CW"” forall 1 <i < m — 1. This gives q/h == ¢'/h.

Since ¢ is stable and ¢’ 7L>, Rules (H1) and (H3) are not applicable
to ¢'/h, i.e., ¢/h=={¢'/h. This finishes the first case.

We now consider p/h == p/h. This computation has the form p/h ==p
p’/h —sp p/h for some p'. Since p'/h —p §/h implies p’ —~ and thus
p’ stable, we can repeat some of the argument of the first case to obtain
some ¢’ with p/ Nqua q==1q due to ¢ —=r @1 —=F G2+ —=F Gm = ¢,
q/h - q/h — q/h-- — qm/h=¢/h and q/h & F.

Now, pf/h = i/ due to p/(=f)'p = py -+ =5{p), 7. This im-
plies, by (RS3), that ¢'( :h>| )¢, :h>| q - :>| q,,, for some ¢} with p & Sns q,
for 1 <i < n, and ¢, 2~ due to (RS4). Since p’ —~, we have ¢’ = due

o (RS4), ie., ¢'/h —= (1. 5, - .- 4,)/h = G/h~/— with (p/h, G/h) € R,.
It remains for us to argue that ¢;/h ¢ F', for all 1 <i <m, and ¢/h ¢ F.
The latter follows from ¢/h € W] C W” due to PRy 7 and p/h ¢ F.

Further, ¢'/h ¢ F'is a consequence of ¢/h € W' C W" due to p/ ,éRS ¢ and
p'/h ¢ F. Finally, ¢;/h € Wy CW" for all 1 <i <m.

Next, we establish (RS3) for some pair (p/h, §/h) € Ro and distinguish
again two cases: p/h=={p'/h and p/h=={p"/h.

In the former case, p/h —— p/h=={p'/h due to p; ——¢ p = p| ——F
Py ——p pp = p with p’ /> and p/ 7L> Since p; K., ¢; by assumption
and since p; =={p/, we have qj =] ¢’ for some ¢ with p Nqu’ Assume

qj=={¢ due to ¢ —F ¢ ——F ¢b- —F ¢, = ¢. Hence, we obtain,
by (H4) and (H1), ¢/h ¢ ¢} /h==] q’/h. To see this, observe that ¢’ /-

and ¢ 7L by p’ 7L> and (RS4), i.e., ¢'/h is stable. Furthermore, ¢'/h €
Wi C W" due to p/, and thus ¢;/h € Wy C W", for all 1 < i < m;
similarly, g/h € W' C W" due to gL Ers ¢ by assumption.

Additionally, p’ 7L> ¢ 4= and p/ Cpe @ imply (p'/h,q /h)y € Ry. This
completes the reasoning for the former case.
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In the latter case, p/h ==p p//h —>¢ p'/h, again due to p; ——p

T T h * h h .
pi —F Py-o- —F P = P and p/(:}ﬁ)p’lzﬁp’z---zﬁpé A= with
p’ = (p},Dh,...,p)) and p' /= (due to p’ —). Since p, Spg ¢ and pi =1,

we have some ¢ with ¢; == ¢’ and p’ S ¢'. Exploiting the latter we get

q’(:hﬁ)*qi :h>|q§ :h>{ql’7£>, with p; L ¢; forall 1 <¢ <, and ¢’ L
Now, ¢'/h € W' C W" due to p/, as well as ¢/h € W' C W" due to p. The
other processes on the computation ¢§/h == ¢'/h are in Wy C W”. Finally,
q/h 5 (¢, ¢, ..., q)/h since (¢}, d,...,q) € W] C W" due to p’. We
now conclude ¢/h == (¢}, d5, ..., q))/h and (p"/h, (¢}, @, --.,q))/h) € Ra.

(RS4) Let (p/h,q/h) € Ri. Because of (RS4) and p/h ¢ F, whence p ¢ Fp,
we have Z(p) = Z(q). Hence, Z(p/h) = Z(p) = Z(q) = Z(q/h) by the
operational rules for hiding. Next, let (p/h,q/h) € Rs. Then, Z(p/h) =
(Urcicn Z(pi)) \ {1} = (Ur<i<n Z(@:)) \ {h} = Z(g/h). To verify the second
equality, observe that p; ¢ Fp (by the definition of p/h), p; Spg ¢ and (RS4).

For establishing Part (2) of Thm. 32, consider first a computation p/h =={p'/h;
this is due to p == p’ with (H1) as above. By the assumption p Cgrs ¢, we know

of the existence of some ¢’ with ¢=={ ¢’ and p/ IS ¢'. Additionally, p’ 7L must
hold; otherwise, by p'/h ¢ F, (H3) would be applicable, contradicting that
p'/h is stable. Since p’ ¢ Fp and by (RS4) we get ¢/ 7L>, which implies that
q'/h is stable. Furthermore, ¢'/h € W' C W” and, for all other processes G
along the computation ¢ =={ ¢, we have g/h € W3 C W". Hence, ¢/h=={q'/h
and (p'/h,¢'/h) € Ry defined for Part (1), whence p'/h S q'/h.

Second, we consider a computation p/h=={p/h, i.e., p/h == p'/h ——§

p/h for some suitable p’. Hence, p:E>{p/(:h>{ ) D1 :h>|p2 . :h>|pn 7L> and
P . Again, we have q=={q for some ¢ with p’ Lpg ¢ and, by (RS4),

¢ . By (RS3), (== )'q1 =={ @2 - - - == g, with p; Cpe@iforall1<i<n
and, by (RS4), ¢, 7L> Similarly as above, we conclude g/h = ¢'/h; note
that g/h € Wi C W" since p5_ ¢ and p/h ¢ F. Thus, ¢/h=={¢/h and
(0/h, @/h) € Ra, whence also p/h 5 . q/h. D

In summary, our framework of Logic LTS and ready simulation allows the
semantically clean integration of standard logic operators, such as conjunc-
tion and disjunction, as well as standard process-algebraic operators, such as
parallel composition, external choice and hiding. This testifies to the elegance
and expressiveness of our setting for specifying and compositionally reasoning
about mixed operational and logic systems.
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6 Related work

This section briefly discusses related work; a full discussion can be found in [6].

Ready semantics. Our ready-tree semantics is in essence the path-based
possible-worlds semantics of van Glabbeek [7] which goes back to Veglioni
and De Nicola [8], and our ready simulation was first suggested by Bloom et
al. [11]. However, in contrast to the standard notions of these semantics, our
setting deals with internal actions (as does [15]) as well as inconsistencies.

p q

Fig. 11. Counter-example showing that the relation defined in Def. 33 is properly
included in CRgs.

As an aside, we remark that another natural variant of adapting ready sim-
ulation to Logic LTS leads to a different, finer preorder. This variant uses a
strong transition relation instead of a weak one in the premise of Cond. (RS3)
in Def. 11 and does not require related processes to be stable:

Definition 33 (Finer ready simulation on Logic LTS)

Let (P, —p, Fp) and (Q, —q, Fg) be two Logic LTS. A relation R C P x Q)
1s a finer ready simulation relation, if the following conditions hold, for any
(p,q) € R and a € A:

(RS2) p¢Fpr = q¢ Fg;

(RS3a’) p ——rpp = ¢.q==rq and (p',¢) € R;

(RS3b°) p ——pp = 3¢.q==rq and (p',¢') € R;

(RS4’) p¢ Fp andp stable = 3¢'.q=={¢, Z(p) = Z(¢') and (p,¢') € R.

We say that p is finer ready simulated by q, if there exists a finer ready
simulation relation R with (p,q) € R.

This preorder coincides with Ulidowski’s lower refusal simulation [16,17] which
generalises Bloom et al.’s ready simulation by treating 7 actions as unobserv-
able, when adapted to Logic LTS in the obvious way [18]. However, although
the preorders coincide, Def. 33 leads to more, smaller simulation relations.
While it is easy to see that the above variant of ready simulation is contained
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in our ready simulation Crg of Def. 11, Fig. 11 demonstrates that this inclusion
is proper. Here, p Cgs ¢, but p is not finer ready simulated by g¢.

Mixing styles of specification. Traditional research has often avoided ex-
plicitly mixing operational and logic styles of specification by translating one
style into the other. For example, operational content may be translated into
logic formulas, as is implicitly done in [19,20], where logic implication serves
as refinement relation [21]. Dually, logic content may be translated into oper-
ational content. This is the case in automata-theoretic work, such as in Kur-
shan’s work on w-automata [22], which includes synchronous and asynchronous
composition operators and uses maximal trace inclusion as refinement relation.
However, both logic implication and trace inclusion are insensitive to deadlock
and are thus inadequate in the presence of concurrency.

A seminal step towards a mixed setting was taken by Olderog in [12], where
process-algebraic constructs are combined with trace formulas, and where fail-
ure semantics underlies refinement. In this approach, trace formulas can serve
as processes, but not vice versa. Thus, and in contrast to our present work,
[12] does not support the unrestricted mixing of operational and logic specifica-
tion styles, which can be very useful as, e.g., demonstrated with our example in
Sec. 4. The recent [23] mixes conjunction and synchronous product using some
version of ready semantics in the context of implicit specification. This ap-
proach uses a similar concept of backward propagation in the definition of con-
junction, but based on traces. Backward propagation of error/incompatibility
information for trace-based semantics also appears in [24,25] in settings with
input and output actions.

Finally, it should be noted that the term consistency as used here is different
from the one in [13], where two specifications are called consistent if they have
at least one common implementation. In our setting, this is trivially the case
since p A ¢ implements both p and ¢, for any p, q. Roughly speaking, then, p
and ¢ would be consistent in the sense of [13], if p A ¢ ¢ F' in our setting.

7 Conclusions & future work

This article proved that ready simulation [11] is fully abstract with respect
to conjunction and parallel composition on Logic LTS. In this sense, ready
simulation is indeed a “logical” semantics. Establishing the full-abstraction
result was non-trivial due to the challenges that arise when dealing with in-
consistencies under conjunctive composition. This is evidenced by the com-
plex compositionality proof with respect to conjunction, as well as the two-step
“largest” precongruence proof that relied on our previous full-abstraction work
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on ready-tree semantics [6]. Our results show that conjunction is a tool for re-
lating trace-based semantics to simulation-based semantics, via the concept of
full abstraction. This sheds additional light onto van Glabbeek’s linear time—
branching time spectrum [7,15].

The insights gained from our results imply that ready simulation commends
itself as a suitable behavioural relation for reasoning about specifications given
in a mixed operational and logic style. Indeed, we showed that our framework
can be extended by further logic operators, such as disjunction, and process-
algebraic operators, such as external choice and hiding. Ready simulation is
compositional for these operators, too, and satisfies all standard logic laws for
conjunction and disjunction.

Future work shall proceed along two directions. Firstly, work is under way
to integrate standard temporal logic operators, such as “always” and “until”
operators, into our setting. This requires investigating which style of temporal
logic is best suited, and extending Logic LTS with some sort of Biichi condition
to be able to express liveness and fairness. Secondly, our setting should be re-
phrased in a term-based, process-algebraic style, so as to be able to explore
axiomatisations of ready simulation in the presence of logic operators.
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