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Abstract

Model checking is a popular and successful technique for verifying complex digital systems.
Carrying this technique — and its underlying state-space generation algorithms — beyond its
current limitations presents itself with a number of alternatives. Our focus is on parallelisation
which is made attractive by the current trend in hardware architectures towards multi-core,
multi-processor systems. The main obstacle in this endeavour is that, in particular, symbolic

state-space generation algorithms are notoriously hard to parallelise.
In this article, we describe the process of taking a sequential symbolic state-space gen-

eration algorithm, namely a generic, symbolic BFS algorithm, through a sequence of opti-
misations that leads up to the Saturation algorithm, and follow the impact these sequential
algorithms have on their parallel counterparts. In particular, we develop a parallel version
of Saturation, discuss the challenges faced in its design, and conduct extensive experimental
studies of its implementation. We employ rigorous analysis tools and techniques for measuring
and evaluating parallel overheads and the quality of the parallelisation.

The outcome of these studies is that the performance of a parallel symbolic state-space
generation algorithm is almost impossible to predict and highly dependent on the model
to which it is applied. In most situations, perceivable speed-ups are hard to achieve, but
real-world applications where our technique produces significant improvements do exist. Nev-
ertheless, it appears that time is better invested in optimising sequential symbolic model
checking algorithms rather than parallelising them.

Keywords. Symbolic state-space generation, Saturation, parallelisation, benchmarking.

1 Introduction

As highlighted by this year’s choice of Turing Award recipients, automated verification — and in
particular model checking [19, 46] — has been recognised as one of the most important contri-
butions to Computer Science in recent years. Testimony to its success is the increasing number
of hardware and software companies that now use model checking in their design cycle. Model
checking’s most notable challenge, the state-space explosion problem, has most successfully been
tackled by the introduction of symbolic techniques, based on Binary Decision Diagrams (BDD) [7]
and their variants, whose compact representation of massively complex systems has made model
checking practical [41].

The challenge ahead is looking for the next major breakthrough to take model checking beyond
its current limitations. The alternatives are seemingly diverging. Customised optimisations of
sequential algorithms, such as chaining, partial order reduction, event locality and advanced data
structures have already been successful in the past [20]. The incorporation of more powerful
deductive techniques, borrowed from the world of constraint satisfaction and SMT solvers, is
appealing but is meant primarily to extend the scope of model checking from strictly discrete-
state systems to hybrid and infinite domains. Our focus, however, is on parallelisation. With the
current trend in computer architecture that makes multi-processor, multi-core platforms readily
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available, it is natural to attempt an efficient implementation of model checking techniques on
these platforms, with the manifested goal of achieving speed-ups.

Various efforts have been made to implement model checking algorithms on parallel computer
platforms, most notably on Networks of Workstations (NOWs) and on PC clusters (see, e.g.,
[29, 30, 32, 42, 50]), where the primary goal is to utilise extra memory resources to represent state
spaces. However, exploiting extra processors for the purpose of improving time-efficiency is not
well researched for decision-diagram-based algorithms.

For our purposes, we have focused on what we believe represents the most advanced sequen-
tial technique: Saturation [16], a symbolic state-space generation algorithm with unique features.
It mainly targets event-based asynchronous system models that are governed by interleaving se-
mantics, such as models expressed by Petri nets, and exploits the local effect of firing events on
state vectors by locally manipulating Multi-valued Decision Diagrams (MDDs) [37]. Saturation
has proved to be orders of magnitude more time- and memory-efficient than other symbolic al-
gorithms [14], such as those implemented in the NuSMV model checker [18]. This is because
its search strategy is not based on variants of the traditional Breadth First Search (BFS) algo-
rithms [41], including Chained BFS [48], but employs a novel, local search. Hence, the question
arises as to whether event locality can also be utilised for parallelising Saturation in order to
achieve further speed-ups. Previous approaches to parallelising Saturation have focused on data
parallelism [9, 10], but not on parallelising the algorithm itself.

This article develops a parallel version of Saturation that processes events concurrently, with
the goal of improving the algorithm’s time-efficiency on multi-core PCs. On the one hand, we
discuss the design decisions underlying Parallel Saturation, and present the various trade-offs
which have been necessary in order to minimise the inevitable parallel overheads. On the other
hand, we carefully evaluate Parallel Saturation against both its sequential version, as well as
against Chained BFS and a straightforward parallelisation of a generic symbolic BFS algorithm.
After initial setbacks in addressing various inefficiencies of Parallel Saturation, we have undertaken
an effort to scrupulously analyse the sources of parallel overhead. The byproduct of this analysis,
and an added contribution, is an overhead measurement and benchmarking approach.

Our approach provides an opportunity to determine whether a heavily optimised symbolic algo-
rithm, such as Saturation, can be efficiently parallelised on shared-memory architectures. While
Parallel Saturation shows good speed-ups on some real-world system models, such as NASA’s
Runway Safety Monitor [47], it frequently performs disappointingly against the original, sequen-
tial algorithm. This is because of the limited parallelisation opportunities inherent in many system
models and the fact that these opportunities are impossible to quantify statically. The main con-
clusion of the research described in this article is that optimising sequential state-space generation
algorithms, such as optimising BFS to yield Saturation by exploiting event locality and interleav-
ing semantics, appears to be more worthwhile and beneficial than parallelising them, at least for
decision-diagram-based algorithms. We believe that the insights gained by us provide valuable
advice for colleagues working in the field of parallelising automated verification techniques.

The remainder of this article is organised as follows. Sec. 2 provides an introduction to the
challenges of parallelising state-space generation algorithms and also includes some background on
dealing with parallel overheads. Sec. 3 recalls the sequential symbolic algorithms of interest to us,
from generic BFS, to Chained BFS, to Saturation, and comments on their parallelisation. Sec. 4
focuses on the most challenging part, namely parallelising Saturation. Our evaluation methodology
and results are then documented in Sec. 5 and discussed in Sec. 6. Finally, we present related
work and our conclusions in Secs. 7 and 8, respectively.

2 The Challenges of Parallelisation

Typically, the starting point for a parallel algorithm is to take a sequential algorithm and parallelise
it, using some form of decomposition of work for distribution across processors. There are two
decomposition approaches to parallelisation: functional decomposition parallelises the functions
of an algorithm, and data decomposition parallelises the data structures of an algorithm. We
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began our work on Parallel Saturation by attempting to decompose the functions of the Saturation
algorithm and execute them in parallel. However, our first attempt resulted in a significant impact
on the time-efficiency of the resulting parallel algorithm. We found that understanding from where
the inefficiencies were arising was a painstakingly difficult task, since there are a number of causes
of inefficiency and the nondeterminism of a parallel algorithm makes them hard to determine.

Reachability(in initstate : state)
declare nextstate : state;

1. Add(set, initstate);
2. do
3. nextstate ⇐ Remove(set);
4. Enumerate(nextstate);
5. while set 6= empty

Enumerate(in enumstate : state)
declare succstate : state;
declare L : set of states;

1. L ⇐ Successors(enumstate);
2. while L 6= ∅ do
3. succstate ⇐ pickfromset(L);
4. if IsNew(statestore, succstate) then
5. AddState(statestore, succstate);
6. Add(set, succstate);

set : a set that a state can be added to or removed
from using Add and Remove
statestore : a store of states that a state can be
checked against using IsNew and added to using
AddState
Successors : generates a list of successor states
from a set of transitions
threads : number of threads, for simplicity we as-
sume that access to this is atomic
Lock, UnLock : lock and unlock the data struc-
tures for atomic access

ParallelReachability(in initstate : state)
declare nextstate : state;

1. Add(set, initstate);
2. threads ⇐ 1;
3. do
4. if set 6= empty
5. Lock(set);
6. nextstate ⇐ Remove(set);
7. UnLock(set);
8. threads ⇐ threads + 1;
9. parallel ParallelEnumerate(nextstate);

10. while threads 6= 1 and set 6= empty

ParallelEnumerate(in enumstate : state)
declare succstate : state;
declare L : set of states;

1. L ⇐ Successors(enumstate);
2. while L 6= ∅ do
3. succstate ⇐ pickfromset(L);
4. Lock(statestore);
5. if IsNew(statestore, succstate) then
6. AddState(statestore, succstate);
7. Lock(set);
8. Add(set, succstate);
9. UnLock(set);

10. UnLock(statestore);
11. threads ⇐ threads - 1;

Figure 1: Sequential and parallel reachability algorithm.

2.1 From Sequential to Parallel

A simple work-set algorithm for exploring a system model’s reachable state space, with respect to
a given initial state initstate and transition relation (next-state function) Successors, is shown on
the left of Fig. 1. It is a generic work-set algorithm and does not specify a particular search strategy
(such as breadth-first or depth-first). The Reachability function begins with an initial state and
calls Enumerate to enumerate its successor states. Enumerate generates a set of successor states
for any state passed to it, and for each successor state, if the state has not already been explored,
it adds the successor state to the store of states (often implemented as a hash table) and adds it
to a set of unexplored states (implemented as a stack for DFS, or a queue for BFS). Reachability
takes a new unexplored state off the set and repeatedly calls Enumerate on that state until there
are no more unexplored states, at which point the entire state space is explored.

The obvious starting point for a parallelisation is the Enumerate function, allowing states to
be enumerated concurrently. This seems like an easy and effective parallelisation, which leaves
it to the operating system to schedule the generated threads on available processors. We show
the corresponding parallel algorithm on the right of Fig. 1. ParallelReachability performs the
same task as the sequential Reachability function; however, it also keeps track of the number of
threads using the counter threads in order to detect termination. Termination occurs when there
are no threads enumerating states and no states to explore in the work set. Note that the Remove
operation on line 5 is always performed on a non-empty set: initstate is intially in the set and the
while loop is executed with set 6= empty as an invariant. The function must also ensure that, when
it takes a state from the set, access to the set is atomic; this is to prevent data races from other
threads inserting states into the set at the same time. To achieve this, ParallelReachability locks

3



the work set when accessing it and unlocks it when the state has been taken from the set. When
there is a state to explore, ParallelReachability creates a new thread to run the ParallelEnumerate
function, indicated by the keyword parallel, and increments the threads counter to reflect that
there is a new thread running. The ParallelEnumerate function operates in the same way as the
Enumerate function, only when accessing the store of states and the work set, it locks and unlocks
them for atomicity. ParallelEnumerate decrements the threads counter when it finishes, which
allows the ParallelReachability function to monitor the number of threads.
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Figure 2: Parallel state-space enumeration and processor allocation of functions.

2.2 What are the Overheads?

If we were to run the above parallel reachability algorithm to explore a state space, we would notice
a significantly negative effect on run-time when compared to the sequential algorithm. By just
looking at the run-times, it would not be obvious why this occurs, and analysing the underlying
reasons for the negative effect can be a daunting task. We can explain where the negative impact
comes from using Fig. 2, which shows an example of how a state space could be constructed in par-
allel when employing our algorithm on a four-processor, shared-memory architecture. Obviously,
the details of the construction depend on how exactly threads are scheduled by the operating
system.

Fig. 2(a) shows the parallel state-space construction for the model defined by the transition
table (next-state function) and initial state 0; the displayed tree should be read as a search tree
through the model’s state space and not as the state space itself. While this example deals
with explicit state-space generation, the tree’s nodes could equally well be read as units of work
conducted within a symbolic approach. The work of the ParallelEnumerate function is visualised
using a broken box, which includes the enumeration of duplicate nodes. Fig. 2(b) depicts how
the resulting ParallelEnumerate functions could be scheduled on the individual processors. This
highlights the dependencies between the functions, i.e., which function has to be executed before
another function can be scheduled, and the frequency of locks on the data structures. Processor
1 is utilised by the ParallelReachability function which is constantly checking the work set and
scheduling new ParallelEnumerate functions when a new state has been discovered.
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¿From the processor utilisation of Fig. 2(b) we can infer a number of things: the computations
are irregular in size, the computations can be small, parallel functions depend on others before
they can be executed, locking occurs frequently, and the processors are not utilised fully. The
irregularity of the computations defines state-space exploration as a particular type of parallel
problem called irregular problem in the parallel algorithms community, which are known to be
difficult to parallelise [26, 40, 45, 52]. Secondly, as is highlighted by the dependencies between the
functions, state-space exploration is a producer/consumer problem; in particular, work must take
place before other work that is dependent upon it is even created.

As a result of these characteristics, a number of parallel overheads arise, which impact on the
run-time of the algorithm and cannot be determined from run-time measurements alone. Firstly,
irregularity causes load imbalance, where work is not distributed evenly amongst processors, which
means that they are not fully utilised for work. This problem is further compounded by the
producer/consumer nature of the algorithm which imposes the restriction that work cannot be
scheduled on processors until other work is completed. Secondly, small computations result in
scheduling overhead, where the cost for scheduling work, e.g., the cost of creating a thread (approx.
90,000ns on a modern PC running Linux) or allocating a task to an existing thread in a thread
pool (approx. 8000ns) can be higher than the work performed by a small computation (approx.
1,200ns) [23]. Thirdly, frequent locking results in high synchronisation overhead, i.e., the time
taken to lock and unlock a data structure, which translates to communication overhead on a PC
cluster where processes must frequently synchronise with each other.

2.3 Implementing a Parallel State-space Algorithm

One of the great difficulties of parallelising state-space exploration algorithms is understanding
how to efficiently implement a devised algorithm. The types of languages and libraries chosen
for parallelisation can have a significant effect on the performance of the algorithm, since their
characteristics can influence overheads. For example, the use of Java leads to high synchronisation
overheads for memory allocation and garbage collection, when compared to C [33].

A particular consideration for languages is the availability of parallel tool support for profiling,
scheduling work, and detecting parallelisation bugs such as data races. The best tool support is
available for C and C++, which would suggest that these two languages are the primary candidates
for selection. However, our own experience using C++ highlighted a problem with C++ objects,
where instantiated objects on shared-memory architectures will execute their functions local to the
thread that created them. This is especially relevant when shared data structures are encapsulated
in objects, since access to them is then essentially sequentialised. For this reason we recommend
C as the language of choice when parallelising for shared-memory architectures.

Another question that arises is whether to use native thread libraries or a library with a
higher level of abstraction in order to make programming easier. For example, on shared-memory
architectures, OpenMP [www.openmp.org] can be used to schedule work, isolating the programmer
from having to understand thread programming, as well as allowing portability between operating
systems. The drawback to this approach is that often fine control over parallelism is lost. For
example, we discovered that OpenMP is unable to effectively parallelise our mutually recursive
functions in Saturation, since there is no control statement to handle recursion. We therefore
found the Pthreads library [8] more suitable than OpenMP for parallelising our algorithm.

Selecting an appropriate architecture is also an important decision. Availability is a key issue
when choosing hardware. Multi-processor, multi-core PCs are becoming widely popular for per-
forming experimental analysis on parallel algorithms. The drawbacks of this type of machine are
that they only offer a relatively small number of processors/cores and that secondary cores are ap-
proximately 30-40% less efficient than processors when employing a multi-threading model. Larger
shared-memory machines can offer more processors for performance evaluation but are less readily
available. PC clusters are easily available but incur communication overheads across the network.
In addition, operating system choice is often tied to the machine under usage. Different operating
systems schedule their threads in different ways, which can affect scheduling overhead [31]. An-
other operating system decision is related to tool support, where parallel tools that can aid the
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development of the algorithm may only be able to run on particular operating systems.

2.4 Addressing Parallel Overheads

When considering how to parallelise a state-space exploration algorithm, techniques for addressing
parallel overheads must be well chosen to minimise their impact. The most common technique
for addressing load imbalance caused by irregularity is dynamic load balancing, specifically work-
stealing [1, 5] techniques. These have been used in parallel state-space exploration algorithms
to facilitate orders of magnitude improvements in time-efficiency [29, 33]. Work-stealing is based
on the principle that, when one processor runs out of work to do, it steals work from another
processor. For instance, if processors are given a number of states to enumerate, a processor
completing its work can attempt to steal states from other processors. While this can be effective
in spreading work to multiple processors efficiently, the technique can introduce its own overhead
from extra code and synchronisation. Thus, to improve the run-time of the parallel algorithm,
sufficient parallel work must exist for the technique to spread fully across the available processors.

Scheduling overheads can typically be reduced directly using some form of thread pool, or
lightweight threads rather than native operating system threads. Indirectly, scheduling overheads
can be reduced by attempting to increase the amount of work performed by each thread, so that
computations are scheduled less frequently. The success of this technique is highly dependent
upon there being enough work that can be independently grouped together.

Synchronisation overheads can be alleviated by facilitating task independence and minimising
the amount of access required to the underlying data structures. These approaches are key to the
order of magnitude speed-ups attained from parallel state-space exploration algorithms in [29, 33].
For example, it may be better to allow for occasional duplication of states, so that synchronisation
to check for duplicate states becomes less frequent. Synchronisation can also be further improved
by optimising the data structures according to the architecture of the employed machine [33].

3 Symbolic State-space Generation

We begin our investigation into parallelising symbolic state-space generators for event-based asyn-
chronous systems by recalling popular sequential algorithms, from the generic Breadth First Search
(BFS) [41], to the somewhat optimised Chained BFS [48], to the highly optimised Saturation [16]
algorithm. For the former two, simpler algorithms, we also discuss their parallelisation, which
is based on the idea of concurrent event processing. Doing so provides us with a stepping stone
towards understanding how best to parallelise the more complex Saturation algorithm, which is
the topic of the next section. We defer a detailed evaluation of the algorithms, all of which are
implemented in the verification tool SMART [12], to Sec. 5.

3.1 Setting and Notation

The object of our symbolic state-space generators are event-based discrete-state systems. In our
setup, a discrete-state model is a triple (Ŝ, s0,N ), where Ŝ is the set of potential states of the

model, s0 ∈ Ŝ is the initial state, and N : Ŝ → 2
bS is the next-state function specifying the states

reachable from each state in one step. Sometimes we will consider a set of initial states rather
than a single initial state. Assuming that the model contains K submodels, a (global) state i is a

K-tuple (iK ,...,i1), where ik is the local state of submodel k, for K≥k≥1, and Ŝ = SK × · · · ×S1

is the cross-product of K local state spaces. This allows us to use symbolic techniques based on
decision diagrams to store sets of states [7, 41]. We decompose N into a disjunction of next-state
functions, so that N (i) =

⋃
e∈E Ne(i), where E is a finite set of events and Ne is the next-state

function for event e. We seek to build the reachable state space S ⊆ Ŝ, the smallest set containing
s0 and closed wrt. N : S = {s0} ∪ N (s0) ∪ N (N (s0)) ∪ · · · = N ∗(s0), where “∗” denotes reflexive
and transitive closure and N (X ) =

⋃
i∈X N (i).
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In the sequel, we assume that each local state space Sk is finite and known a priori. In practise,
Sk can actually be generated on-the-fly by interleaving symbolic global state-space generation
with explicit local state-space generation [17]. Without loss of generality, we assume that Sk =

{0, 1, . . . , nk−1}, where nk = |Sk|. We then encode any set X ⊆ Ŝ as a (quasi-reduced, ordered)

Multi-valued Decision Diagram (MDD) [37] over Ŝ. Formally, an MDD is a directed acyclic edge-
labelled multi-graph where:

• Each node p belongs to a level k ∈ {K, ..., 1, 0}, denoted p.lvl .

• There is a single root node r at level K.

• Level 0 can only contain the two terminal nodes 0 and 1.

• A node p at level k > 0 has nk outgoing edges, labelled from 0 to nk−1. The edge labelled
i points to a node q at level k−1; we write p[i] = q.

• Given nodes p and q at level k, if p[i] = q[i] for all i ∈ Sk, then p = q, i.e., there are no
duplicate nodes.

The set encoded by an MDD node p at level k > 0 is B(p) =
⋃

i∈Sk
{i}×B(p[i]), letting X×B(0) = ∅

and X ×B(1) = X for any set X . MDDs are implemented using K unique tables (i.e., dynamically-
sized hash tables).

For storing N , we adopt a representation inspired by work on Markov chains. This requires the
model to be Kronecker consistent [16], a restriction that can often be automatically satisfied by
concurrency models such as Petri nets. Each Ne is conjunctively decomposed into K local next-
state functions Nk,e, for K ≥ k ≥ 1, satisfying Ne(iK , . . . , i1) = NK,e(iK) × · · · ×N1,e(i1), in any

global state (iK , . . . , i1) ∈ Ŝ. Using K ·|E| matrices Nk,e ∈ {0, 1}nk×nk such that Nk,e[ik, jk] = 1 iff
jk ∈ Nk,e(ik), we encode Ne as a boolean Kronecker product: j ∈ Ne(i) iff

⊗
K≥k≥1 Nk,e[ik, jk] =

1, where ⊗ indicates the Kronecker product of matrices. The Nk,e matrices are extremely sparse;
when encoding a Petri net, for example, each row contains at most one non-zero entry.

3.2 Breadth First Search

We first discuss a well-known, generic BFS algorithm whose pseudo code is shown in Fig. 3. We
introduce some new notation in the code, idx indicates a unique identifier for an MDD node, EK

is the set of events for level K and lcl indicates a local state. The algorithm operates on the root
node at level K to bring it into a fixed point shape, by repeatedly firing events until they make
no more updates to the node. The firings are performed by calling BFSFire, to generate new
MDDs representing the set of states resulting from the event firings. Once all of the firings have
completed, the root node is updated by performing a union between the root node and all new
nodes that have been created as a result of the firings.

The BFSFire function is similar to the RecFire function in Saturation (shown below), except
that new nodes are not brought into a fixed-point shape by saturating them. Therefore, the
function generates a set of states resulting from a firing, but does not continue to explore further
states by performing more firings on the new state set. A firing cache, FC [k] for each level k,
stores the results of firings, similar to the standard cache for union operations on MDDs. The
uniqueness on MDD nodes is checked by employing a unique table, UT [k], for each level k.

The algorithm can be easily parallelised using loop parallelisation, by performing each BFSFire
in parallel. At line 4 of BFS, we can create a new thread each time we call BFSFire, and synchronise
on the completion of all of the threads before proceeding to line 5 of BFS. The only other change
we need to make is to lock the data structures for atomic access, by employing a mutex lock for
each cache and for the unique table, for each level of the MDD.
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BFS(in root:idx)

declare e:event;
declare f :array [1..EK ] of idx;
declare pCng:bool;

1. repeat
2. pCng ⇐ false;
3. foreach e ∈ EK do
4. f [e] ⇐ BFSFire(e, K, root);
5. foreach e ∈ EK do
6. if f [e] 6= 0 then
7. u ⇐ Union(K, f [e], root);
8. if u 6= root then
9. root ⇐ u; pCng ⇐ true;

10. until pCng = false;
11. return root;

BFSChained(in root:idx)

declare e:event;
declare f :idx;
declare pCng:bool;

1. repeat
2. pCng ⇐ false;
3. foreach e ∈ EK do
4. f ⇐ BFSFire(e, K, root);
5. if f 6= 0 then
6. u ⇐ Union(K, f, root);
7. if u 6= root then
8. root ⇐ u; pCng ⇐ true;
9. until pCng = false;

10. return root;

Locals(in e:evnt, k:lvl, p:idx):set of lcl

Return all of the local states in p locally
enabling e. If there are no states in p

locally enabling e then return ∅.

Pick(inout L:set of lcl):lcl

Remove and return an element from L.

BFSFire(in e:event,l:lvl,q:idx):idx

declare L:set of lcl;
declare f ,u,s:idx;
declare i,j:lcl;

1. if k < K then
2. if Find(FC[l], {q, e}, s) then
3. return s;
4. s ⇐ NewNode(l);
5. L ⇐ Locals(e, l, q);
6. while L 6= ∅ do
7. i ⇐ Pick(L);
8. f ⇐ BFSFire(e, l−1, q[i]);
9. if f 6= 0 then

10. foreach j ∈ N l

e(i) do
11. u ⇐ Union(l−1, f, s[j]);
12. if u 6= s[j] then
13. s[j] ⇐ u;
14. Check(l, s);
15. if k < K then
16. Insert(FC[l], {q, e}, s);
17. return s;

Union(in k:lvl, p:idx, q:idx):idx

Build an MDD rooted at s, a node at
level k, in UT [k], encoding the Union of
p q. Return s.

Find(in tab, key, out v):bool,

If (key, x, y) is in hash table tab, set v

to x and sat to y and return true. Else,
return false.

Insert(inout tab, in key, v)

If key is not (0,0) insert (key, v, sat) in
hash table tab, if it does not contain an
entry (key, ·, true).

Figure 3: Pseudo code for the BFS and Chained BFS algorithms.

3.3 Chained Breadth First Search

At first glance, Parallel BFS appears to be a superior algorithm than the BFS algorithm, since
parallel BFSFire functions should execute in less time than sequential calls to BFSFire. The
parallelism is thus heavily reliant on the capability of the BFSFire function to be easily scheduled
in parallel. In contrast, in a Chained BFS [48], firings are not performed in an independent
manner, but instead utilise the result of a previous firing.

The Chained BFS algorithm, also depicted in Fig. 3, is therefore much more difficult to par-
allelise, since there is no clear loop to exploit for parallelism. Each time an event is fired using
BFSFire, the union of the resultant MDD and the root node is performed before firing the next
event. The aim of this strategy is to create a larger root MDD before the next event is fired,
so as to reduce the number of overall firings that need to be performed, by manipulating larger
state sets at an earlier stage of the MDD construction. Therefore, the question arises as to how
this simple sequential optimisation compares to Parallel BFS, particularly as the sequential op-
timisation eliminates the loop required for simple parallelisation. We investigate this within the
evaluation section (Sec. 5).
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3.4 Saturation

The Saturation algorithm [16] is radically different from the traditional symbolic reachability
algorithms, such as BFS, in that it does not perform a standard fixed-point computation. The
encoding of the next-state function is not monolithic, hence a more flexible strategy can be used,
consisting of many “lightweight” nested fixed-point iterations, rather than a single “heavyweight”
global fixed-point iteration.

The saturation search has at its core the idea of exploiting event locality. The choice of
representing the next-state function N as a Kronecker product allows us to recognise event locality,
as captured by the notion of independence of events on subsystems. We say that event e is
independent of level k if Nk,e = I, the identity matrix. Let Top(e) denote the highest level1

for which Nk,e 6= I. An MDD node p at level k is saturated if it is a fixed point wrt. all Ne

such that Top(e) ≤ k, i.e., SK × · · · × Sk+1 × B(p) = N≤k(SK × · · · × Sk+1 × B(p)), where
N≤k =

⋃
e:Top(e)≤k Ne. To saturate MDD node p once all its descendants are saturated, we update

it in place so that it encodes also any state in Nk,e × · · · × N1,e(B(p)), for all events e such that
Top(e) = k. This can create new MDD nodes at levels below k, which are saturated immediately,
prior to completing the saturation of p. If we start with the MDD encoding the initial state s0

and saturate its nodes bottom up, the root r will encode S = N ∗(s0) at the end, as shown in [16].
The algorithm contains two main mutually recursive functions: Saturate calls FireEvents to

recursively perform the event firings while saturating nodes, while FireEvents indirectly calls
Saturate to saturate nodes that are created as a result of event firings. The greedy strategy of
saturating every node immediately upon its creation (by pre-empting the undergoing event firing
operation) results in a non-trivial series of recursive, preemptive firings. The intuition behind
using this strategy is that only saturated nodes can be part of the state-space representation,
while non-saturated nodes are guaranteed not to. Also, once a node is saturated, it does not
need to be considered for further exploration. The bottom-up order of saturating nodes ensures
that all descendants are already saturated when a node is considered for saturation. All these
effects combine into a dramatic reduction of the peak MDD size. Figure 4 attmepts to illustrate
a “typical” order of saturating nodes in a fictitious model with 5 MDD levels, assuming (for
simplicity) that only one additional new node is generate by each event firing on the level below.

1

2

3

4

time

M
D

D
 le

ve
l

5

Figure 4: A “typical” order of saturating nodes, by MDD level

The pseudo code for the sequential Saturation algorithm is displayed in Fig. 6, when leaving
out the shaded lines, and is explained in detail in [16].

Experimental results reported in [11, 16, 17, ?] show that Saturation consistently outperforms
breadth-first symbolic state-space generation by orders of magnitude in both memory and time,
making it arguably the most efficient state-space generation algorithm for globally-asynchronous,
locally-synchronous discrete event systems. However, the optimal and irregular nature of the
algorithm makes it difficult to parallelise [22, 23].

1Such level always exists for an event, except for the degenerate case when the event does not affect any level.
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4 Parallel Saturation

The goal of parallelising Saturation is to exploit event locality to create independent parallel tasks
for firing events. There are several challenges to overcome and important design decisions to make.

4.1 Design Decisions and Justifications

While one can exploit event locality to create independent tasks for firing events, the firings of
single events often cannot be sensibly parallelised for efficiency reasons. This is because of the
high costs of creating threads and allocating tasks to an existing thread (cf. Sec. 3), and the order-
of-magnitude lower cost of an in-place update. These in-place updates occur relatively frequently,
and also when an event firing fully utilises previous work that has been cached. We must therefore
group event firings together and only consider those events that do not result in a cache hit, or
where the bottom level of the event is lower than the node being fired upon; otherwise, the event
firings will cost less than their scheduling.

To address the irregularity underlying any decision-diagram-based algorithm, we use a thread
pool that runs as many threads in parallel as processors or processing cores are available on
the shared-memory architecture under consideration. These threads pick work that needs to be
performed from a task queue. The choice of thread pool is justified by the order of magnitude
saving in scheduling cost compared to creating operating-system threads for each task, and in
particular the control over which the tasks can be selected from the shared queue. A more
complex work-stealing system, for example, would require multiple queues from which tasks can
be stolen. While the use of multiple private queues per thread may reduce synchronisation cost
on the queues, it is unknown what sort of memory impact the resulting loss of control over the
order of the construction of the state space will have. This is particularly true for a symbolic
environment where memory is a concern, and is justified by the effects observed from Chained
BFS. Control over the task ordering is required if we wish to keep close to the same state-space
construction order as the sequential algorithm. It is therefore better to approach the problem
by using a mechanism over which finer control of the state-space construction can be exercised,
rather than developing a more complex scheduling approach that may impact on the chaining
mechanism.

Fitting the Saturation algorithm into this load balancing structure, however, is difficult due
to Saturation’s mutually recursive nature. In particular, to prevent threads from suspending we
have to eliminate sequential waits on the result of a parallel event firing. We can achieve this by
introducing upward arcs into the MDD structure, which directly replace recursive function calls
waiting for work to complete. Instead, the function calls continue when parallel work is pending,
leaving the upward arcs to represent future updates on an MDD node. The cost of breaking
recursion this way is that each node must keep track of the number of tasks operating on it, in
order to determine when it is saturated. We must also cache work requests to avoid duplicate
work in parallel.

3
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0 1

0

2

2
1 2

0 1
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2

2
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1
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1 20
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Figure 5: Using an upward arc to replace a function call.

We illustrate the introduction of upwards arcs into the MDD structure in Fig. 5, where the
levels of the MDDs are displayed to the left of the diagram, node indexes are written to the top
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right of a node, and saturated nodes are highlighted by a thick box. We show some snapshots of
the MDD construction at a point in time where node 3.1 has been created by a recursive firing call
invoked by saturating node 2.2. Fig. 5(a) depicts an upward arc created as a result of this recursive
firing, which is indicated by a dashed line pointing from the unsaturated node 3.1 to node 2.2.
The upward arc is labelled with state 1, meaning that state 1 of node 2.2 will point to node 3.1
if node 3.1 becomes saturated. In Fig. 5(b), node 3.1 becomes saturated, and thus the downward
arc is set from state 1 of node 2.2 to point to node 3.1. This implies that the recursive firing
function that created node 3.1 does not have to wait for node 3.1 to become saturated in order to
update node 2.2. Instead, the recursive firing can return, leaving another thread to saturate node
3.1, and update node 2.2 when node 3.1 becomes saturated, by using the upward arc to determine
how node 2.2 should be updated.

4.2 The Thread Pool Algorithm

The result of mapping our design decisions into code is shown in Fig. 6, with supporting functions
being described in Fig. 7. The code extends the sequential Saturation algorithm, using a recursive
event ordering. Parallel code is highlighted in dark-shaded code which facilitates tasks and removes
mutual recursion, while light-shaded code shows locks for ensuring correct synchronisation. We
use the notation introduced in Sec. 3.4, and extend it to include information and locks on MDD
nodes p, which are denoted by p.information and p.lock, respectively.

Node Information. Each MDD node keeps track of the number of tasks that are currently working
on it or that will perform work on it in the future (via upward arcs). The functions AddOp
and RemoveOp allow current/pending task operations to be added and removed from a node
respectively. The Saturation status of the node is indicated by p.saturating and determines if a
node with no remaining tasks is saturated, or is node waiting to be saturated. Nodes created from
event firings store a firing cache (FC) key to add to the firing cache.

Initialisation. Function Gen creates an initial MDD representing the initial state, or a set of initial
states, of the underlying system model. It also allocates the threads in the thread pool. Each
thread calls ThreadLoop to synchronise on the task queue. Tasks are added to the queue for the
bottom nodes of the initial MDD.

Saturate. This function first indicates that the node has begun saturating by setting saturating to
true. Since the Saturation task is being performed by a thread, it registers the thread on the node
via AddOp. It begins the process of exhaustively firing events on the node by calling FireEvents for
each non-zero state. The task is complete once it has fired the events, and it then calls RemoveOp.
The Saturate function allows the thread to check the status of the node in order to see whether it
is saturated. It can continue work on any nodes dependent upon the node reaching a fixed point.

FireEvents. This function checks whether an event is enabled in the state being fired upon and
calls RecFire to fire an enabled event. Successful firings result in the node being updated with the
work carried out by the firing. Any updated node invokes a recursive call to FireEvents on the
updated state.

RecFire. Uncompleted nodes discovered in the cache have upward arcs set from them to the calling
node via SetUpArc. For new work, a node is created setting FC key in the process. The thread
registers with the new node and adds it to FC as a work request. Upward arcs are set to the
calling node. RecFire is recursively called to continue event firing when the thread de-registers
from the node. Nodes at the bottom of the MDD generated by the event firing are either added
to the task queue or removed if the event is disabled.

NodeSaturated. This function is called when a node is saturated, and the node is checked into the
unique table. NodeSaturated updates nodes dependent upon the saturated node via upward arcs,
and allows the thread to continue working on them. The termination condition occurs when this
function is called for the top-level node (i.e., root node).
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Saturate(in k:lvl, p:idx)

Update p, a node at level k, not in UT [k], in–
place, to encode N∗

≤k
(B(p)).

declare ops:bool; i:lcl;

1. p.saturating ⇐ true;

2. AddOp(k, p);

3. foreach i ∈ Sk do

4. if p[i] 6= 0 then FireEvents(k, p, i);

5. RemoveOp(k, p, ops);

6. if !ops then NodeSaturated(k, p);

FireEvents(in k:lvl, p:idx ,i:lcl)

Fire e on p[i] when Nk

e
(i) 6= 0

declare e:evt; j:lcl; f ,u:idx; lock:bool;

1. foreach e ∈ Ek do

2. if Nk

e
(i) 6= 0

3. f ⇐ RecFire(e, k−1, p[i], p, i);

4. lock ⇐ true; if f 6= 0 then

5. foreach j ∈ Nk

e
(i) do

6. if lock then

7. Lock(p.dw); lock ⇐ false;

8. u ⇐ Union(k−1, f, p[j]);

9. if u 6=p[j] then

10. p[j] ⇐ u; lock ⇐ true;

11. Unlock(p.dw);

12. FireEvents(k, p, j);

13. if !lock then Unlock(p.dw);

NodeSaturated(in k:lvl, p:idx)

Add p, a node at level k, to UT [k]. Remove uparcs
from p.

declare ops,lock:bool; q:idx; i:lcl; l:lvl;

1. q ⇐ p;

2. Check(k, p);

3. if k=K then Terminate(); return;

4. l ⇐ k + 1; Lock(FC[k]);

5. Insert(FC[k], FCkey(k, q), p, true);

6. Unlock(FC[k]); lock ⇐ true;

7. while GetUpArc(k, p, r, i) do

8. if lock then

9. Lock(r.dw); lock ⇐ false;

10. u ⇐ Union(k, p, r[i]);

11. if u 6=r[i] then

12. r[i] ⇐ u;

13. if r.saturating then

14. Unlock(r.dw); lock ⇐ true;

15. FireEvents(l, r, i);

16. RemoveOp(l, r, ops);

17. if !ops then

18. if r.saturating then

19. NodeSaturated(l, r);

20. else

21. QSaturate(l, r);

22. if q 6= p then delete q;

RecFire(in e:evt,l:lvl,q:idx,p:idx,i:lcl):idx

Build an MDD rooted at s, a node at level l, in
UT [l], encoding N∗

≤l
(Ne(B(q))).

declare L:set of lcl;

declare g,h,j:lcl;

declare f ,u,s:idx;

declare sat,ops:bool;

1. if l < Last(e) then return q;

2. Lock(FC[l]);

3. if Find(FC[l], {q, e}, s, sat) then

4. if !sat then foreach j ∈ N l

e
(i) do

5. SetUpArc(l, s, p, j);

6. s ⇐ 0;

7. Unlock(FC[l]); return s;

8. s ⇐ NewNode(l, e, q);

9. foreach j ∈ N l

e
(i) do

10. SetUpArc(l, s, p, j);

11. AddOp(l, s);

12. Insert(FC[l]{q, e}, s, false);

13. Unlock(FC[l]);

14. L ⇐ Locals(e, l, q);

15. while L 6= ∅ do

16. g ⇐ Pick(L);

17. f ⇐ RecFire(e, l−1, q[g], q, g);

18. if f 6= 0 then

19. Lock(s.dw);

20. foreach h ∈ N l

e
(g) do

21. u ⇐ Union(l−1, f, s[h]);

22. if u 6=s[h] then s[h] ⇐ u;

23. Unlock(s.dw);

24. RemoveOp(l, s, ops); if !ops then

25. if DWarcs(l, s) then

26. QSaturate(l, s);

27. else Remove(l, s); s ⇐ 0;

28. s ⇐ 0; return s;

Remove(in k:lvl, p:idx)

Remove p, a node at level k, and its uparcs.

declare ops:bool;

declare l:lvl;

declare i:lcl;q:idx;

1. Lock(FC[k]);

2. Insert(FC[k], FCkey(k, p), 0, true);

3. Unlock(FC[k]);

4. l ⇐ k+1;

5. while GetUpArc(k, p, q, i) do

6. RemoveOp(l, q, ops);

7. if !ops then

8. if q.saturating then

9. NodeSaturated(l, q);

10. else if DWarcs(l, q) then

11. QSaturate(l, q);

12. else Remove(l, q);

13. delete p;

Figure 6: Pseudo code for the Parallel Saturation algorithm.
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Gen(in s:array[1..K] of lcl, nthr:int ):idx

Create nthr threads. Build an MDD rooted at
root, at level K, encoding the state space and
return root, in UT [K].

DWarcs(in k:lvl, p:idx):bool

If p[i] 6= 0 for any local state at level k return true
otherwise return false;

SetUpArc(in k:lvl, p:idx, q:idx, i:lcl)

Lock(p.ua). Add an arc (q,i) to the end of
the list of upward arcs for p; AddOp(k + 1, q);
Unlock(p.ua);

GetUpArc(k:lvl,p:idx,out q:idx,i:lcl):bool

If the list of upward arcs is not empty retrieve and
remove (q,i) from head of list and return true.
Otherwise return false.

AddOp(in k:lvl, p:idx)

Lock(p.ops). Increment p.ops. Unlock(p.ops).

RemoveOp(in k:lvl, p:idx, out op:bool)

Lock(p.ops). Decrement p.ops. If p.ops =
0 set op to false otherwise set op to true.
Unlock(p.ops).

FCkey(in k:lvl, p:idx):key

Return the key for p, a node at level k.

NewNode(in k:lvl,e:evt,q:idx):idx

Create p at level k, with arcs set to 0, set the key
(e,q) for p, return p.

Check(in k:lvl, inout p:idx)

Lock(UT [k]) If p, not in UT [k], duplicates q, in
UT [k], delete p and set p to q. Else, insert p in

UT [k]. Unlock(UT [k]) If p[0] = · · · = p[nk−
1] = 0 or 1, delete p and set p to 0 or 1.

QSaturate(in k:lvl, p:idx)

Lock the task queue. Add item (k, p) to the task
queue. Unlock the task queue. Request any sleep-
ing threads wake up.

Terminate()

Lock the task queue. Add item (0,0) to the task
queue. Unlock the task queue. Request any sleep-
ing threads wake up.

ThreadLoop()

If there are no items in the task queue sleep un-
til woken up. Otherwise lock the task queue, re-
move the head item (k, p) from the task queue
and unlock the task queue. If (k, p) is (0, 0) call
Terminate() and terminate the thread, otherwise
call Saturate(k, p).

Figure 7: Supporting functions for the Parallel Saturation algorithm.

Table 1: Next-state function for the Parallel Saturation example

e1 e2 e3 e4

3 * * 0 → 1 0 → 2
2 * 0 → 2 0 → 2 , 2 → 1 *
1 0 → 2 * 0 → 1 *

4.3 Example

As Parallel Saturation is a nontrivial algorithm, we illustrate it by means of a small example,
utilising a thread pool of two threads and operating on a discrete-state model that is defined by
the next-state function of Table 1. In Figs. 8 and 9, upward arcs are illustrated with a dashed line
and labelled with the local state they point to. Unsaturated nodes are white, saturating nodes
are light grey, and saturated nodes are dark grey. We indicate the index of a node at the top
right of the node. The tasks op operating on the node are shown to the bottom right of the node
in brackets. The firing cache key fc is annotated in curly brackets next to op. The status of the
queue and threads is displayed at the top right of the diagram, and the levels of the MDD are
listed to the left of the diagram.

We now narrate through the execution of Parallel Saturation on this model, focusing on the
selected snapshots of Figs. 8 and 9. The initial state set is {(0, 0, 0), (0, 1, 1)}.

a) Gen generates the initial MDD. All nodes are marked as not saturating. None of the nodes
have an FC key {fc} since the nodes are not created from a RecFire operation. The operations
(op) field is incremented for each upward arc set on a node. Saturate tasks are added to the task
queue for the bottom nodes of the MDD, i.e., nodes 2.1 and 3.1. The sleeping threads are about
to be woken by the new tasks.

b) The threads have woken and removed the tasks from the queue. They both call Saturate which
marks each target node as saturating and increments op to indicate that these nodes are currently
being operated upon by the Saturate task.
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Figure 8: Parallel Saturation example.

c) Saturate(1,2) makes a local update on node 2.1 by firing event e1. Saturate(1,3) has completed
since no events are enabled on node 3.1 and has decremented op to zero. Since op is zero,
NodeSaturated is called which marks node 3.1 as saturated and checks it into the unique table.

d) Saturate(1,2) has completed firing events and decremented op to zero, marking node 2.1 as
saturated. NodeSaturated(1,3) removes the upward arc to node 2.2 and replaces it with a downward
arc, decrementing op for node 2.2 in the process. Since op is non-zero, NodeSaturated terminates,
leaving thread 2 to sleep.

e) NodeSaturated(1,2) removes the upward arc to node 2.2, replaces it with a downward arc, and
decrements op for node 2.2. Since op is now zero and the node is not saturating, a new Saturate
task is added to the task queue for node 2.2. NodeSaturated completes, thus allowing the thread
to return to sleep.

f ) Thread 1 is woken up by the new task and removes the task from the queue. It calls Satu-
rate(2,2) which increments op and marks node 2.2 as saturating.

g) Saturate(2,2) makes an in-place update on node 2.2 by firing e2 to set local state 2 of node 2.2
to point to node 2.1.

h) Saturate(2,2) completes firing on node 2.2, decrements op, and calls NodeSaturated which
replaces the upward arc to node 2.3 with a downward arc and decrements op on node 2.3. Since
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node 2.3 is not saturating and has no op, a task to Saturate node 2.3 is added to the queue.
NodeSaturated terminates allowing thread 1 to return to sleep.

i) Thread 1 is woken by the addition of the task to the queue. It calls Saturate(3,2) which marks
node 2.3 as saturating and increments op. RecFire is called for event e3 which creates node 3.2
that contains an FC key {3, 2}, indicating that e3 is being fired on node 2.2.

j ) RecFire increments op on node 3.2 and sets an upward arc to node 2.3, incrementing op in the
process. It recursively calls RecFire which creates node 4.1

k) RecFire increments op on node 4.1 and sets an upward arc to node 3.2, incrementing op in the
process.

l) RecFire sets a downward arc from node 4.1 to terminal node 1 and terminates, decrementing op
in the process. On termination, since op is zero and the node is not saturating, a task to Saturate
node 4.1 is added to the task queue.

m) Thread 2 picks up the new task and calls Saturate(1,4) which marks the node as saturating
and increments op. Meanwhile, thread 1 has continued with RecFire and, while firing e3, has
discovered node 4.1 as an unsaturated node in the firing cache, which sets an upward arc to node
3.2 and increments op.

n) Node 4.1 has completed saturating, decrements op to 0, and marks the node as Saturated.
Meanwhile, RecFire has completed on node 3.2, decrementing op, and Saturate continues on node
2.3 by firing e4 to make a local update.

o) Saturate has completed on node 2.3, decrementing op, and returning thread 1 to sleep. Since
op is greater than 0, the node is not yet saturated. NodeSaturated has been called on node 4.1
which has discovered, while checking it into the unique table, that the node is the same as node
3.1, and has removed the upward arcs, setting the downward arcs to this node. Since op is 0, a
Saturate task is added to the queue for node 3.2, and the thread goes to sleep.

p) Thread 1 takes the task for node 3.2, setting the thread to saturating and incrementing op.

q) Saturate completes on node 3.2, decrementing op to zero and calling NodeSaturated which
replaces the upward arc to node 2.3 with a downward arc and decrements op. Since op is 0 and the
node is saturating, node 2.3 is now Saturated. Moreover, because this is the root node, Terminate
is called which instructs the task queue to terminate the threads. The final MDD representing the
state space {(0, 0, 0), (0, 0, 2), (0, 1, 1), (0, 2, 0), (0, 2, 2), (1, 1, 1), (1, 2, 1), (2, 0, 0), (2, 0, 2) (2, 1, 1),
(2, 2, 0), (2, 2, 2)} that is reachable from the initial state set {(0, 0, 0), (0, 1, 1)} is shown.

4.4 Correctness of the Algorithm

The algorithm in Fig. 6 can be expressed in terms of its sequential counterpart. Removing the
highlighted parallel code gives us the sequential algorithm which is known to be correct [16]. Thus
correctness of the parallel algorithm can be shown by demonstrating that the parallel code allows
our algorithm to arrive at the same result and that locks prevent any data races. We can illustrate
the calling structure of both Sequential and Parallel Saturation using the example in Fig. 10(a).
The call graphs in Figs. 10(b) and 10(c) are the calling order of functions for the sequential and
parallel code, respectively, where Figs. 10(d) and 10(e) further simplify the order. Function calls
in the sequential version are directly replaced by the task queue and upward arcs in the parallel
version. Since locks ensure that updating a node is atomic, firing events exhaustively will result
in the same MDD shape for a saturated node as in the sequential version.

5 Evaluation

During our study of parallelising Saturation, we have spent much time investigating how to eval-
uate performance according to the impact of parallel overheads that arise from irregularity. We
found this to be a challenging task, due to the range of parallel overheads and the lack of tech-
niques for accurately measuring them. Most approaches to evaluation that are reported in the
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Figure 9: Parallel Saturation example (continued).
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Figure 10: The calling order of functions for Sequential and Parallel Saturation.

literature, benchmark the run-time of an algorithm on a small number of models and include rather
incomplete estimations of parallel overheads. In this section, we begin by showing how we have
strengthened our evaluation by accurate and thorough direct measurement of parallel overheads
and by carefully selecting models that illustrate the overall performance of our parallel state-space
exploration algorithms. With these new techniques and benchmark in hand, we evaluate Parallel
BFS and Parallel Saturation against their sequential counterparts.

5.1 Benchmarking Parallel State-space Algorithms

Any benchmark must be able to stress test a parallel algorithm against the various parallel over-
heads. Hence, the quality of a benchmark depends on the ability to measure parallel overheads
accurately, which is a key issue that has yet to be addressed in the literature. The overheads of
the algorithm are usually measured by some form of estimation, such as the distribution of states
across processors to indicate load (im)balance. When we tried to estimate the amount of parallel
work arising from our next-state function, we found that the influences on the parallelisation are
much more complex than the factors we initially considered [23]. Thus, estimates of overheads
may not be an accurate measurement of their true impact on a parallel algorithm, which brings
their contribution towards an objective evaluation into question.

5.1.1 Measuring Parallel Overheads

We first address the problem of measuring parallel overheads for each type of overhead in turn:

• Load balancing is difficult to measure: if we would count the number of states, or nodes,
enumerated on a processor and discover that this number is fairly evenly distributed among
different processors, we could argue that the load is well-balanced amongst processors. How-
ever, what has not been taken into account here is the way in which work has been scheduled:
due to the dependencies between states, the processors may not have enumerated these states
at the same time, and the processors could have been frequently idle.

• Scheduling overheads cause similar problems for measuring. We could count the number
of times work has been scheduled and multiply it by a measurement of the time taken
to schedule work, e.g., the cost of the creation of a thread. However, this would be an
inaccurate measure since, particularly in cases when the operating system decides how work
is scheduled, the cost of re-scheduling work to another processor would be omitted from the
measurement.
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• Synchronisation overheads could be timed by instrumenting the code with a timer for each
mutex lock, i.e., starting the timer before attaining the lock and stopping it once the lock has
been attained. We found, however, that this method is inaccurate since the timer increases
the amount of time the lock is opened for and introduces its own cost to the algorithm.
Others have found similar problems with estimating synchronisation overheads [33].

The only solution to accurately measuring these overheads is via direct measurement. But how
does one measure the activity on each of the processors? Even finding a timer that is fine-granular
enough to measure the time spent acquiring a mutex lock poses a problem. We tried using the
gprof profiler [28], but it was developed to profile sequential algorithms and could not show the
individual activities of threads. What we required was a parallel profiling tool that can accurately
analyse each of the parallel overheads at run-time, while taking into account the cost of its own
instrumentation.

1009080706050403020100
% of Runtime
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Under Utilised Execution Fully Parallel Execution

Synchronisation

Figure 11: Parallel algorithm profile obtained from the Intel thread profiler.

Most suitable to our requirements for profiling on shared-memory architectures is Intel’s Thread
Profiler [www.intel.com/software/products/threading/], due to its ability to analyse applica-
tions using Pthreads [8] and provide a breakdown of parallel overheads. In order to evaluate our
parallel algorithms, we applied the profiler at run-time. We chose our experimental architecture
according to the constraints on the types of processors and operating systems that the profiler
supports, i.e., Intel processors, certain flavours of Linux, C and C++, and particular compilers.
Fig. 11 illustrates measurements that can be made using the profiler, showing the percentage of
the algorithm’s run-time taken up by scheduling, synchronisation, serial execution, execution on
less than the available processors, and fully parallel execution. This is an accurate and thorough
breakdown of an algorithm’s parallel overheads.

5.1.2 The Influences of a Model on Parallel Overheads

While parallel overheads can be identified as a general influence on an algorithm, a subtlety of
state-space exploration algorithms — and one which is not discussed in related literature — is
the affect of the model on the severity of the overheads. We found this out the difficult way in
Parallel Saturation, since some models showed good performance and others showed a lack of
parallelisability [23]. At first glance, these results suggest that the parallelisation is inefficient,
which is a highly frustrating point to consider when a lot of work has gone into the parallel
algorithm. Our experience from investigating the effects of the underlying model can hopefully
be used to alleviate future frustration related to this point, by illustrating that the parallelisation
efficiency is highly dependent upon the model as well as the techniques that have been used to
address overheads.

Fig. 12 shows the way in which the work units of our parallel reachability algorithm in Fig. 1 are
broken down during reachability analysis, when different model characteristics are considered. We
highlight the work in the same way as in Fig. 2, where the units of work are defined functionally
and the dependencies between them are decided by the way in which the functions enumerate
nodes of the search tree. We use pathological examples to illustrate particular overheads that may
arise during the construction of the state space for three stereotypical types of model. Fig. 12(a)
underlies a model where the work cannot be spread across processors, since the work units are
essentially sequentialised due to the dependencies between them. Fig. 12(b) underlies a model that
imposes high scheduling overheads, due to the small size of the work units. Fig. 12(c) underlies an
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Figure 12: Search trees constructed during reachability analyses for three pathological models.

ideal model that can potentially be well parallelised, since the work can be spread across processors
in parallel and since the units of work are large enough to minimise scheduling overhead.

The illustration highlights that the characteristics of the model under consideration is a key
influence on the performance of a parallel algorithm. In practice, the models that we used to
evaluate our algorithms exhibit a combination of these factors, with performance varying from
super-linear speed-ups to slow-downs of over 60%. Other parallelisationss of state-space explo-
ration algorithms also show widely varying performance of the algorithm according to the model’s
characteristics [29]. Thus, when applying techniques to deal with parallel overheads, it is impor-
tant to consider that the technique may not be successful under a set of circumstances imposed
by some model under consideration, such as insufficient parallel work.

5.1.3 Evaluating a Parallel Algorithm

Given the overhead measurement and model dependency issues that we have highlighted, a good
quality evaluation of a parallel state-space exploration algorithm should include an accurate direct
measurement of the overheads, and analyse the effect of the employed models on the parallel algo-
rithm. Most importantly, the set of models used for evaluating a parallel state-space exploration
algorithm should cover the space defined by the three stereotypes of Fig. 12. This allows a way
in which each particular type of overhead can be thoroughly evaluated and (in)efficiencies in the
algorithm can be pinpointed.
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Figure 13: Profiles of our three stereotypical models.

Fig. 13 shows the profiles of our three stereotype models: (a) has low parallelism, (b) has high
scheduling, and (c) is an ideal model that can be parallelised well with little overheads. Using
models matching profile (a), one can ascertain whether the load balancing function of the parallel
algorithm under investigation can be improved, by attempting to increase the amount of fully-
parallel processor utilisation. Using models matching profile (b), one can attempt to improve
the scheduling technique, by reducing the scheduling overhead. Using models matching profile
(c), one can try to elaborate on various parallel overhead techniques, where any increase in fully-
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parallel processor utilisation and decrease in scheduling and synchronisation overhead is desirable.
These profiles highlight inefficiencies that can be used for the optimisation of parallel overhead
techniques and allow for a quantitative comparison of the performance of different techniques.
They also facilitate the understanding of how the effectiveness of the techniques can be challenged
by the models under consideration.

Parallel state-space exploration algorithms are often benchmarked using a few models that
illustrate the speed-up obtained by the algorithm. When considering the effect that the under-
lying model has on a parallel algorithm, a good evaluation must include models which cause the
algorithm to incur overheads, and challenge its effectiveness at gaining speed-ups. Without such
challenging models, the overall effectiveness of the parallel algorithm is difficult to determine.
Coupling challenging models with a profile of the overheads allows an algorithm’s performance to
be truly put into context.

5.2 Our Benchmark

The benchmark we selected for our algorithms contains ten models that have been previously
used to evaluate Saturation [11, 16, 17]. These are given as Petri nets, which is the specification
language adopted by the verification tool SMART [12] in which are algorithms are implemented.

5.2.1 The Benchmark Models

All ten models are parameterised, i.e., a parameter can be set for each model, typically N , which
alters the size of its state space. Each model is naturally partitioned into K components, according
to its subsystems.

Slot. The slotted ring network protocol [44] is a well-known model of a local area network. The
unidirectional ring contains a number of stations where several slots are available to transmit
messages. A station sends a message by writing data into a free slot. For our model, N is the
number of stations in the ring, and K = N .

Robin. The round robin mutual exclusion protocol [27] is used to control access for a ring of N
processors that access a shared resource. Access is granted by moving a token around the ring,
i.e., the processor that owns the token is granted access to the resource before passing the token
to its neighbour. Each processor is mapped to a level of the MDD, i.e., K = N .

Kanban. The Kanban manufacturing system [51] contains 16 stations that process parts. If
there is a ticket available, a part can enter a station and be processed. If the part is processed
correctly, it can move on to the next station. If it is processed incorrectly, it is sent back to the
station to be fixed. The parameter N sets the initial number of parts within a station, and K is
the number of stations.

FMS. The flexible manufacturing system [43] consists of three types of machines that process
three types of parts. Two machines produce different parts that can be assembled by the third
machine into a single part. The third machine can also process another type of part. The parameter
N indicates the initial number of each type of parts, and K = 19.

Queens. The classic queens problem models a game that finds a way to position N queens on
an N ×N chessboard without the queens attacking each other. A solution to the problem requires
that no two queens share the same row, column or diagonal on the chessboard. For this model,
K = N .
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Leader. The randomised leader election protocol [36] solves the problem of designating a proces-
sor as leader within a unidirectional ring. The processors of the ring are required to send messages
around the ring for the determination to occur. The parameter N of our model defines the number
of processors in the ring, and K = 11N .

BQ. The bounded open queuing network (BQ) [24] determines a bound on the capacity of an
open queuing network. A queuing network contains a number of interconnected queues, in which
jobs flow from one to another. The network can either be closed or open. In an open network,
jobs can arrive from an external source and leave the network. For our model of the bounded open
queuing network, the parameter N represents the bound, and K = 8.

Philosophers. The dining philosophers protocol [15] refers to the classic mutual exclusion prob-
lem. Parameter N indicates the number of philosophers, and K = N/2.

RSM. The runway safety monitor [47] was developed by NASA and Lockheed Martin, as a
protocol to detect runway safety incidents. The RSM protocol defines targets T (either airborne
or on the ground), which have speeds S, and represents the takeoff and landing zone for aircraft
as a 3D grid X ×Y ×Z, where X is the width of the runway, Y is the length and Z is its vertical.
For our RSM model we fix T = 1 and S = 2. The parameters of the model are N = X ·Y ·Z, and
K = 4T .

Aloha. The Aloha network protocol [13] defines a simple mechanism for transmitting data across
a network. The protocol is defined as follows: if there is any data to be sent, then send the data;
if the message encoding the data collides with another transmission, then try to resend the data.
For our model of the Aloha network protocol, the parameter N represents the number of nodes in
the network, and K = N + 3.
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Figure 14: Profiles of the Parallel Saturation algorithm for large models.
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5.2.2 Benchmark Justification

Our experiments are put into context by the profiles in Fig. 14. These profiles were generated
using the Intel thread profiler and our Parallel Saturation algorithm in Sec. 4, for the largest
parameter of each model to which we applied the algorithm. Fig. 14 shows that our benchmark
includes a good mix of models that fit into the stereotypical categories of Fig. 13, as well as models
that fall between these categories by exhibiting characteristics of a combination of overhead types.
The profiles retain their shapes when different sizes of parameters are applied to the models in
the benchmark; there are only small differences in the overheads: typically parallelism slightly
increases for larger models.

The profiles show the overheads specific to the models and how they challenge the parallelism of
the algorithm. For example, the Robin profile roughly fits the low-parallelism profile of the model
of Fig. 13(a): cores are under-utilised which demonstrates a lack of parallelism. The BQ profile
roughly fits the high-scheduling model profile of Fig. 13(b): scheduling overhead is relatively high
compared to the other models. The FMS profile roughly fits the ideal model profile of Fig. 13(c):
scheduling is low and the cores are fully utilised for a high percentage of the run-time. Some of
the models show characteristics of different stereotypes, such as Leader which has high scheduling
and low parallelism, and Philosophers which has high scheduling but also exhibits relatively high
parallelism. These profiles are invaluable when drawing conclusions as to the performance of our
parallel algorithms, and in particular Parallel Saturation. Without them, one would not be able to
understand the circumstances under which Parallel Saturation is able to improve over Sequential
Saturation.

5.3 Run-time and Memory Results

We have implemented our parallel algorithms using C and the POSIX Pthreads library [8]. The
machine used for our experiments is a dual-processor, dual-core PC with 2GB of memory and
Intel Xeon CPU 3.06GHz processors with 512KB cache sizes, running Redhat Linux AS 4, Redhat
kernel 2.6.9-22.ELsmp, with glibc 2.3.4–2.13. Each experiment has been performed three times,
and the average run-time and memory performance numbers for each run are presented here.
Run-time and memory variance has been consistently low, in the range of ±5%.

5.3.1 BFS Chained vs. BFS vs. BFS Parallel

We first evaluate three BFS-based algorithms: generic BFS, Chained BFS and Parallel BFS, as
discussed in Sec. 3. Each algorithm is applied to our benchmark models, and the resulting run-time
and memory performances are shown in Table 2. The run-time and memory for the Chained BFS
are given, as well as the relative run-time (in seconds) and memory (in bytes) increases for the
BFS and Parallel BFS algorithms against Chained BFS. A relative performance factor of greater
than 1 indicates a run-time speed-up or memory increase, while a factor of less than 1 indicates
a run-time slow-down or memory decrease. A model that exhausted the available memory is
indicated by “N/A.”

Compared to Chained BFS, the generic BFS algorithm (BFS) is slower and uses more memory
for all models. The use of extra resources is significant in several models, such as Slot which is
over 50 times slower in terms of run-time and uses over 9 times more memory. It would therefore
be impossible for Parallel BFS to catch up with the run-time of Chained BFS on our experimental
machine for a model such as Slot, since it would require over 50 processors to facilitate a run-time
improvement. The chaining optimisation is therefore highly effective in improving the run-time
and memory of BFS.

In contrast, Parallel BFS only improves the run-time of BFS for three of the models. These
improvements are relatively small compared to Chained BFS, with the largest improvement coming
from the FMS model of approximately 20%. Even if Parallel BFS is able to improve the run-time
of BFS, it is still at least twice slower than Chained BFS. Parallel BFS also requires extra memory
for the construction of extra MDD nodes in parallel, since more MDD nodes will be constructed
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Table 2: Run-time and memory results for the BFS-based algorithms

BFSChained BFS BFS Parallel
N Time(s) Mem(b) Time(s) RMem Time(s) RMem

Slot.
10 0.61 3576400 0.09 8.67 0.05 16.65
20 18.52 78085280 0.02 9.18 0.01 18.98
30 293.78 536934720 N/A N/A N/A N/A

Robin.
20 0.23 1241644 0.02 16.53 0.01 18.99
30 0.64 3175464 0.01 21.56 0.01 28.97
40 1.44 6304884 0.01 24.89 0.01 29.3

Kanban.
10 0.69 5084224 0.14 4.94 0.14 5.95
15 2.31 17128944 0.11 5.22 0.1 7.05
20 6.06 42982264 0.07 5.64 0.07 7.96

FMS.
7 3.64 58359236 0.26 3.67 0.3 4.4
8 8.61 135106208 0.27 3.83 0.32 4.56
9 17.35 288403644 0.04 3.88 0.05 4.81

Queens.
8 0.08 190512 0.89 1.27 1 1.57
9 0.46 632160 0.96 1.3 0.96 1.64

10 5.99 2741740 0.85 1.41 0.84 1.66
Leader.

4 0.55 3046768 0.22 2.78 0.26 2.84
5 4.61 18491440 0.15 2.95 0.17 3.02
6 52.55 91660264 0.1 3.07 0.11 3.21

BQ.
20 0.18 1246424 0.42 1.86 0.39 2.57
30 0.56 3801504 0.42 1.87 0.4 2.59
40 1.26 8572584 0.42 1.87 0.37 2.64

Philosophers.
5 1.26 8572584 0.42 1.88 0.42 2.01

10 1.65 9988660 0.34 1.89 0.28 2.03
15 2.45 31666424 0.3 1.92 0.3 2.07

RSM.
222 2.34 15306720 0.34 2.21 0.31 2.4
322 2.39 17594712 0.33 2.23 0.3 2.4
422 5.14 34436960 0.36 2.25 0.34 2.41
Aloha.
20 0.34 2105960 0.87 1.71 0.92 1.98
30 1.25 7027840 0.61 1.71 0.61 2
40 3.18 16571720 0.45 1.73 0.45 1.99
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at the same time than sequentially. The memory requirements are generallly between 20% and
100% more than for BFS.

One may wonder why the loop-based BFS parallelism does not improve over the sequential
version. While the idea may look feasible in theory, the parallelisation incurs a number of overheads
in practice. The creation of a thread introduces a scheduling overhead, while the locking on the
data structures introduces a synchronisation overhead. A load imbalance is also inevitable in this
type of loop-level parallelism, since BFSFire will differ in the amount of time it takes for the events
it fires. Thus, the parallelism of each event loop is only as good as the time it takes to execute the
longest timed BFSFire function. The combination of these overheads means that the extra costs
to the algorithm often outweigh any benefit from introducing parallelism. Hence, it is not worth
considering Parallel BFS any further, as it is performing worse than Chained BFS which in turn,
as previous studies have established [14], is outperformed by Saturation.

Our experiments with BFS-style algorithms demonstrate that a simple sequential optimisation,
such as chaining, can be much more effective than a simple parallelisation. Indeed, one would have
to begin reducing overheads for the parallel algorithm and scale to a much larger number of pro-
cessors, to compete with Chained BFS. Even then, the algorithm would require a greater amount
of memory to construct the state space in parallel. The experiments also show the importance
of using an already optimised algorithm as a starting point for parallelisation. This is because
without including the sequential optimisation, the parallel algorithm may suffer a large enough
run-time loss to negate the benefits of any parallelism. It must also be considered that breaking
a sequential optimisation when parallelising an algorithm can potentially outweigh any gains.

5.3.2 Sequential Saturation vs. Parallel Saturation

We now turn our attention to evaluating Parallel Saturation. The run-time and memory re-
sults displayed in Table 3 represent the relative run-time or memory of Parallel Saturation when
compared to the original, sequential Saturation algorithm. The table illustrates how Parallel Sat-
uration performs across one to four cores of our machine. Again, a relative performance factor
of greater than 1 indicates a run-time speed-up or memory increase, while a factor of less than 1
indicates a run-time slow-down or memory decrease. The state space size is indicated by |S|.

Our run-time results show that Parallel Saturation exhibits a speed-up for two of the bench-
mark’s models, which for FMS is over 100% faster than the sequential algorithm. For the models
where parallelism can be exploited, we see a slight improvement in run-time for larger parame-
terised models. Generally, however, Parallel Saturation is unable to improve over the sequential
algorithm: it uses two to three times more memory than the sequential algorithm, apart from the
Slot model which is significantly affected by the ordering of events. The factors impacting on the
run-time and memory are due to a number of specific reasons:

Overheads. The run-time and memory results are affected by the overheads incurred by the parallel
algorithm. High overheads often prevent Parallel Saturation from competing with Sequential
Saturation. We saw two types of overhead: the parallel overhead incurred by the introduction
of locks and threads, and the code overhead incurred by removing mutual recursion from the
algorithm. The GNU profiler [28] showed us that the highest run-time overhead comes from
the use of upward arcs, and upward arcs also contribute to the memory increase. The parallel
overheads for these models can be seen in Fig. 14. When coupled with our run-time results, the
profiles provide clear evidence that models with low parallelism or high scheduling overhead are
more difficult to parallelise than those with high parallelism.

Extra work. The order in which events are fired affects the amount of work the algorithm has
to perform. Due to the dependencies between events, parallel events could be fired on smaller
state sets than in the sequential version, which creates more work and larger intermediate MDDs.
This extra work can outweigh any benefit of parallelism and also introduce higher overheads. The
Slotted model for example, incurs a significant amount of extra work due to event orderings, and
subsequently suffers a large run-time and memory penalty.

Parallelism. The number of events that can be explored in parallel affects the level of parallelism of
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Table 3: Run-time and memory results for the thread pool algorithm

N Time(s) Mem(b) Relative Time (Cores) Relative Memory (Cores)
1 2 3 4 1 2 3 4

Slot. |S| 90 : 5.9 × 1094 120 : 5.1 × 10126 150 : 4.5 × 10158

90 6.82 5923040 0.23 0.20 0.22 0.25 9.22 12.40 12.14 11.85
120 15.77 13405440 0.26 0.24 0.25 0.28 9.43 12.63 12.26 12.02
150 30.85 25441840 0.30 0.28 0.30 0.31 9.70 12.80 12.43 12.12

Robin. |S| 180 : 6.2 × 1056 210 : 7.8 × 1065 240 : 9.5 × 1074

180 7.95 1165764 0.77 0.96 0.94 0.94 1.87 1.87 1.88 1.88
210 15.45 1574304 0.79 0.99 0.97 0.96 1.91 1.91 1.91 1.91
240 41.75 2044044 0.80 1.01 1.01 1.00 1.94 1.94 1.94 1.94

Kanban. |S| 25 : 7.6 × 1012 30 : 5.0 × 1013 35 : 2.5 × 1014

25 2.80 7334600 0.54 0.64 0.65 0.65 1.89 1.89 1.90 1.91
30 5.06 13784976 0.56 0.67 0.67 0.69 1.98 1.99 1.99 1.99
35 10.22 23957940 0.57 0.70 0.71 0.72 2.07 2.07 2.08 2.08

FMS. |S| 11 : 1.1 × 109 13 : 5.8 × 109 14 : 1.3 × 1010

11 12.17 3148980 0.79 1.46 1.85 2.12 1.78 1.73 1.70 1.71
13 55.49 8173844 0.78 1.49 1.90 2.17 1.80 1.81 1.84 1.88
14 119.98 12591300 0.80 1.51 1.98 2.18 2.02 2.00 2.00 1.97

Queens. |S| 11 : 166926 12 : 856189 13 : 4674890

11 1.79 4248776 0.44 0.48 0.50 0.52 2.01 1.91 1.91 1.91
12 19.42 19920672 0.50 0.54 0.55 0.57 2.13 2.01 2.01 2.01
13 439.16 99807456 0.55 0.59 0.61 0.62 2.41 2.24 2.24 2.24

Leader. |S| 6 : 1.9 × 106 7 : 2.4 × 107 8 : 3.0 × 108

6 3.78 2422704 0.54 0.50 0.50 0.48 2.74 2.75 2.77 2.80
7 24.11 7063232 0.52 0.52 0.52 0.46 3.01 3.13 3.18 3.20
8 128.11 16107968 0.51 0.53 0.53 0.49 3.39 3.44 3.49 3.60

BQ. |S| 30 : 2.4 × 108 50 : 4.6 × 109 70 : 3.3 × 1010

30 2.08 2241036 0.40 0.38 0.38 0.37 1.99 2.05 2.05 2.06
50 24.48 15112996 0.43 0.40 0.39 0.39 2.05 2.13 2.15 2.15
70 146.79 54895356 0.48 0.43 0.42 0.42 2.19 2.49 2.50 2.50

Philosophers. |S| 20 : 3.5 × 1012 40 : 1.2 × 1025 80 : 1.4 × 1050

20 14.91 569608 0.80 0.99 1.08 1.12 1.66 1.74 1.79 1.83
40 33.56 1097560 0.81 1.01 1.10 1.14 1.71 1.81 1.89 1.96
80 76.93 2321768 0.84 1.04 1.12 1.19 1.90 2.09 2.21 2.28

RSM. |S| 332 : 1.3 × 1010 532 : 3.8 × 1010 832 : 1.0 × 1011

332 5.43 6267568 0.59 0.54 0.52 0.50 1.70 1.80 2.03 2.21
532 37.63 23307704 0.64 0.57 0.56 0.56 1.75 1.87 2.14 2.36
832 315.38 74024440 0.74 0.62 0.65 0.67 1.88 2.05 2.45 2.59

Aloha. |S| 40 : 2.3 × 1013 70 : 4.3 × 1022 100 : 6.5 × 1031

40 2.68 15879556 0.74 0.78 0.79 0.79 1.52 1.52 1.53 1.53
70 22.18 82907316 0.80 0.84 0.86 0.86 1.65 1.66 1.66 1.66

100 66.20 13917096 0.82 0.84 0.87 0.88 1.74 1.75 1.75 1.77

25



the algorithm. The lower the parallelism, the lower the number of parallel tasks to perform. Low
parallelism means cores are under-subscribed during construction; the subscription of the cores in
our experiments for Parallel Saturation can be seen in Fig. 14. Robin is a prime example of where
the model suffers from low parallelism, and is unable to improve over the sequential algorithm.

¿From our results and overhead profiles, we can clearly see that the worst performing models in
terms of run-time are BQ, Kanban and Leader, which suffer from high scheduling overhead. Low-
parallelism models such as Robin and Aloha show less degradation in performance, but are unable
to improve their run-times through parallelism. For the four high-parallelism models, two models
were able to improve Parallel Saturation over Sequential Saturation. Thus, to unlock the potential
of the other two high-parallelism models, further optimisations to our algorithm are required. We
explore several starting points for such optimisations next.

6 Optimising Parallel Saturation

This section briefly discusses various potential optimisations of Parallel Saturation, whose details
can be found in [21]. Before doing so, however, we first observe a couple of subtleties regarding
current multi-core hardware architectures.

6.1 Four-core vs. Four-processor Architectures

Notably, when a run-time speed-up is encountered on our dual-processor, dual-core architecture,
the increase is greater on the second core and tails off on the third and fourth core. Others have also
experienced this phenomenon when using dual-core machines with multi-threaded algorithms [2].
This would suggest that the operating system scheduling on these cores is inefficient, since dual-
cores are conceptually as efficient as secondary processors.

We can demonstrate that our dual-processor, dual-core architecture influences the run-time of
Parallel Saturation by comparing our results against those obtained on a four-processor machine.
We applied the algorithm to our benchmark on a four-processor Opteron 875 machine with 32GB of
memory, running Scientific Linux 4. Run-time improvements using the four-processor architecture
were obtained for eight out of the ten models of our benchmark, with the other two models
showing similar performance to the dual-core architecture. However, these improvements were
only significant for our two high-parallelism models that demonstrated a speed-up. For these
models a run-time improvement of approximately 10% was observed on the fourth core. A more
even distribution of run-time improvement for each core was facilitated by the four processor
machine, and the increase did not tail off on the third and fourth core.

6.2 Optimising the Task Queue Ordering

In Parallel Saturation, we pick tasks from the shared queue of the thread pool using a FIFO order.
This order can be optimised since it affects the order in which nodes are saturated and hence
the construction order of the state space. This can have a significant effect on an algorithm’s
performance, as we have already showed for Parallel BFS.

To investigate this phenomenon, we propose to replace the FIFO queue with a LIFO queue
and a priority queue, where tasks are ordered so that nodes at the bottom of the MDD are picked
first, in line with the bottom-up strategy of Saturation. FIFO and LIFO queues have a constant
insertion and deletion complexity; these complexities differ for variants of priority queues. To
avoid an insertion and deletion overhead from using a priority queue, we employ a so-called heap-
based priority queue which, for the number n of tasks in the queue, has a complexity for insertion
and deletion that is logarithmic in n.

We implemented and applied the LIFO and priority queue variants to our benchmark on our
dual-processor, dual-core machine. For six of the ten models, the ordering in which tasks are picked
from the queue makes negligible difference to the run-time and memory efficiency. However, for
models that are sensitive to the order in which MDD nodes are saturated, the queue orderings can
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have a significant impact on both run-time and memory. The LIFO version has the most impact,
improving the run-time on four models by up to approximately 80% and decreasing the memory
usage on two models by up to approximately 20%. The priority queue improves the run-time of
three models and the memory consumption of two models, but the improvements are less than
those of the LIFO version, typically around 10% less run-time improvement and 15% less memory
decrease.

For the RSM model, both the LIFO and priority queue significantly improve the run-time and
decrease memory consumption, the latter of which remains static when adding extra cores. The
high parallelism of RSM is unlocked, facilitating a run-time speed-up over Sequential Saturation
of over 100%. The other models that were sensitive to the queue ordering were Slot, Leader
and Aloha; however, despite the optimisation, they did not show a speed-up over the sequential
algorithm.

For models that are sensitive to the ordering of events, the results justify the use of a thread pool
with a single queue for load balancing and scheduling, as opposed to using multiple queues with
either a thread pool or work-stealing mechanism. While multiple queues can potentially decrease
scheduling overhead for high-scheduling models, they also reduce the opportunity to order the way
in which tasks are picked, which — as observed for the RSM — can have a significant effect on
the run-time of Parallel Saturation.

6.3 Optimising the Ordering of Events

As pointed out before, the order in which events are fired in parallel can significantly affect Parallel
Saturation’s run-time and memory requirements. Fig. 15 shows the effect of events e1, e2, and e3,
with Top(e1) = Top(e2) = Top(e3) = k, on the local states at level k; these events may of course
affect lower levels as well. When saturating a node p at level k, we must repeatedly fire e1, e2

and e3 in p, until no more new states are found, i.e., until p encodes a fixed point. However,
Saturation does not dictate the order in which these events should be fired. For example, firing
0

e1−→1 followed by 1
e3−→0 might be sub-optimal, since we might have to fire 1

e3−→0 again once
0

e2−→1 has been fired, if this causes p[1] to point to a different MDD node encoding more states.

Similarly, if we fire 1
e1−→2 before firing 0

e2−→1, all events in SCC#2 may have to be fired again.

210 3 4 5
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Figure 15: The effect of events with Top = k on the states {0, 1, 2, 3, 4, 5} of Sk.

To address this problem, we use the chaining heuristic of [11], which extracts the strongly
connected components (SCCs) from a dynamic transition graph that is built from the static graph
of Fig. 15 and the dynamic pattern of non-zero children of node p. We use these SCCs to enhance
the order of parallel event firings. However, while this heuristic tends to improve run-time and
memory in a sequential implementation, it reduces the potential parallelism. It also introduces
time and memory overheads due to storing SCC graphs, traversing them and managing parallel
access. We refer the reader to [21] for implementation details.

The chaining heuristic significantly improves the run-time of Parallel Saturation, when applied
to RSM, from a 50% slowdown to an over 100% speed-up. For Slot, the memory consumption
halves, with the algorithm utilising a similar amount of memory as the number of cores increase.
Both improvements are due to the sensitivity of the ordering of events within these two models,
which can be exploited by using the chaining heuristic. However, the heuristic can also have a
negative effect on run-time, as is the case for Robin and Kanban.
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6.4 Optimising the Locking Strategy

For Parallel Saturation, we use an individual lock for the operation caches and the unique table,
on a per level basis. We can therefore use a finer locking mechanism by employing several locks
per level, as well as per data structure. The unique table and caches employ a hash function to
calculate the position of insertion. Thus, we can exploit the hash function for each of these data
structures to implement more efficient locking, by assigning a lock to a range of hash values. We
call this regional locking. The range can be calculated using the modulo of the number of locks we
wish to have, on the signature function. If a hash table needs to be resized, then the locks must
be obtained before the resizing takes place.

We implemented regional locking for the unique table and the firing cache, with differing
numbers of locks, 4, 8 and 16, for each data structure per level. These were chosen to test how
increasing numbers of locks influence the locking overhead. For seven of our models, the increased
number of locks makes little difference to the run-time; however, for three of the models, the
locking facilitates a run-time improvement between 5% and 30%. For the leader election model we
observed an improvement of up to 30% for both the unique table and firing cache, which facilitates
improved parallelism on the third and fourth core. However, increasing the number of locks from 4
to 16 does not further improve the algorithm’s performance.

The run-time results demonstrate that locking can be optimised, but only for a few models. The
regional locking was unable to facilitate speed-ups over Sequential Saturation for these models.
Where improvements were made using four locks, further improvements could not be made by
increasing the number of locks to 8 or 16. However, on an architecture with a larger number of
processors, increasing the number of locks may facilitate scalability. Our profiles of the parallel
overheads in Fig. 14 also testify to low locking overheads on the data structures for a four-core
architecture.

7 Related Work

This section discusses related work on parallelising state-space generation and model checking
algorithms. The vast majority of existing approaches have focused on Networks of Workstations
(NOW) and PC clusters rather than shared-memory architectures, for the purpose of increasing
the available memory that is needed for storing a system model’s state space. One major design
decision when parallelising such algorithms is whether to partition a state space statically or
dynamically. The other major design decision involves whether to represent a state space explicitly
or symbolically (i.e., using decision diagrams).

7.1 Static vs. Dynamic Partitioning

Static partitioning methods are frequently applied to slice the data structure employed for storing
state spaces, in order to distribute it as evenly as possible across the nodes of a network or cluster.
This is often simpler for explicit approaches [3, 6, 25, 38, 39], since the states only have to be
distributed individually. In symbolic state-space construction [10, 29, 30, 32, 42, 50], slicing the
data structure is a more complex task. However, key is achieving an even distribution of states in
order to avoid a load imbalance.

Dynamic partitioning methods have also been considered. They either re-distribute the data
structure during state-space construction [30], or focus on a dynamic parallelisation of the under-
lying state-space generation algorithm [33]. These techniques are more sophisticated than static
approaches, since they must keep an even balance of work or state distribution during construction,
rather than taking a “partition once” approach. Novel approaches such as attempting to remove
the requirement for communication [6, 30], or tailoring the algorithm to a particular computer
architecture [33] have also been employed to improve parallelisability.
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7.2 Parallel Explicit Approaches

Stern and Dill [49] carried out early work on parallel state-space construction, by parallelising the
explicit-state verifier Murϕ on a NOW using a static slicing approach. During the construction
task, random load balancing is employed to distribute states across a NOW. A hash function
decides to which node a state is sent for processing. The parallelisation was effective, showing linear
speed-ups. However, when this technique was used for other state-space exploration algorithms,
mixed results were reported [3, 39]. These demonstrate that the technique’s efficiency depends on
the cost of calculating the next-state function when compared to the cost of state distribution:
if the next-state function is quite costly to calculate, then the distribution costs are negligible.
Lerda and Sisto’s implementation of this technique in SPIN subsequently reported slow-downs due
to the efficiency of SPIN’s next-state calculation [39]. Behrmann et al.’s algorithm demonstrated
a super-linear speed-up using the technique; however, since the algorithm was heavily modified
to incorporate a different search strategy, it is difficult to determine whether the speed-up arises
from the search strategy or the parallelisation [3].

One of the main costs for parallel state-space construction on a NOW is the cost of communica-
tion across workstations, due to the frequent checking of duplicate states between nodes. A novel
idea for addressing this overhead was introduced by Bollig et al. [6] who developed an algorithm
that eliminates cycles within the algorithm. This effectively allows the state space to develop
with the distributed algorithm running its component parts independently. The removal of cycles
resulted in effective linear speed-ups due to the elimination of related synchronisation costs.

The only work on dynamic parallel state-space construction in explicit-state approaches was
carried out by Inggs and Barringer [33, 34, 35] on a shared-memory architecture. The approach
employs work-stealing [1, 5] techniques in order to load balance. Many of the parallelisation
overheads, such as the synchronisation overhead, are addressed by tailoring the parallelisation
specifically to the selected architecture. In particular, employing a private queue per thread for
unexplored state storage reduces synchronisation overhead and scheduling cost, which is greater
than the extra cost of exploring duplicate states that occurs as a result of using private queues.
Other parallelisation overheads such as false sharing, which unnecessarily updates processor caches
as a result of data being shared between processor caches, are eliminated by carefully designing
the data structures. The optimisation allows the parallel algorithm to effectively reduce parallel
overheads, resulting in good linear speed-ups for several models.

7.3 Parallel Symbolic Approaches

We can classify the symbolic parallelisation approaches into either approaches focused on data
parallelism [10, 30, 32, 42, 50], on a combination of data and algorithm parallelism [29], or on
utilising idle processors [9]. In contrast, the approach underlying this article is solely based on
algorithm parallelisation.

Regarding data parallelism, the efforts range from simple approaches that essentially implement
BDDs as two-tiered hash tables [42, 50] to sophisticated approaches relying on work-stealing [30].
These target the increased memory available on a NOW by slicing the data structure and dis-
tributing it across processors of the NOW. The structure of decision diagrams has previously been
sliced horizontally [10] and vertically [32, 42, 50]. Horizontal slicing scales well but prevents the
state-space generation task from being sped up, since each slice has to complete its work before
the next slice can begin its work. Finding a good vertical slicing is a non-trivial issue that is often
leading to poor scalability. In order to facilitate scalability, load balancing techniques need to be
employed. The most advanced work in this area uses work-stealing techniques to distribute work
dynamically [30].

Regarding combined data and algorithm parallelism, researchers have parallelised symbolic
state-space generators to gain speed-ups from developing vertical slices on different processors of a
NOW [29]. If the algorithm developing the slices has to synchronise frequently on the application
of the next-state function, each round of computation is only as fast as the slowest time it takes
for a slice to develop on a processor. To achieve speed-ups, the research tackles how best to
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decrease the inherent synchronous nature. The resulting parallel algorithm allows slices to develop
asynchronously, while the next-state function is repeatedly applied to create more work. The
work is load balanced using the work-stealing techniques developed in [30]. For very large circuits,
this technique has proved to lead to a very efficient parallelisation that shows up to an order of
magnitude improvement in time efficiency.

Recent work has also considered ways to utilise idle processors during state-space construc-
tion [9]. The idle processors are used to perform and cache work that may be performed in future,
while a main processor develops the state space. If work that the main processor requires has
already been performed by another processor, the main processor retrieves it from the cache. This
reduces the peak size of the data structure during state-space construction, and improves time
efficiency if the amount of utilised work performed by the idle processors is sufficient to overcome
the overhead of allocating work to the processors and synchronising on the cache.

8 Conclusions and Future Directions

This article investigated whether symbolic state-space generation algorithms, and in particular the
MDD-based Saturation algorithm for computing reachable state spaces of asynchronous system
models, can be parallelised on shared-memory architectures, such as multi-processor, multi-core
PCs. This turned out to be a challenging question due to the irregularity of this computing
task. While we partially anticipated that run-time improvements similar to those attributable
to sequential optimisations were not realistic expectations, the difficulties encountered in our
endeavour to parallelise Saturation went far beyond that.

We demonstrated that a successful recipe for parallelising complex and irregular algorithms
needs to account for all the intricate subtleties of the original algorithm and data structures, and
needs to employ sophisticated techniques for benchmarking and measurement. We thus proposed
a general evaluation technique for parallel state-space generation algorithms via systematic bench-
marking. The classification methodolgy is based on a rigorous measuring of parallel overheads,
such as load balancing, scheduling, and synchronisation. We assert that in the absense of a parallel
overhead profile of the models under consideration it would be difficult to understand and improve
parallel algorithms.

Regarding the question whether it is actually worth investing in parallelising rather than opti-
mising a symbolic, sequential state-space exploration algorithm, one must lean towards optimisa-
tion, given the amount of effort necessary for parallelisation and the often small return in run-time
efficiency. However, as illustrated by the Runway Safety Monitor application, there exist practical
models where parallelisation is clearly beneficial.

This insight thus preempts a clear-cut verdict. We believe that the best alternative is investing
on all fronts: fine-tuned, model-specific parallelisation, together with sequential optimisation and
use of highly optimised, off-the-shelf packages for load balancing, such as Cilk [4]. For this approach
to succeed, the model checking community needs to collaborate closely with parallel computing
experts, and get advice on efficient implementation techniques and architecture-specific issues [22].
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