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Abstract. Comprehension of C programs can be a challenging task, es-
pecially when they contain pointer-based dynamic data structures. Based
on prior experience with our tool dsOli1, we report on work in progress
concerning a new dynamic analysis for automated data structure iden-
tification that targets C source code. Our technique first applies a novel
abstraction on the evolving memory structures observed at runtime for
discovering the building blocks of complex data structures. By analyzing
the interconnections between the building blocks, we are then able to
identify trees, doubly-linked lists, skip lists, as well as relationships be-
tween these such as nesting. We give preliminary results from a prototype
implementation, which aims to provide a natural language description of
the identified data structures. This information will benefit software de-
velopers when code must be comprehended or modified.

1 Introduction

C programs are notoriously difficult to comprehend, and this is especially true
for legacy or low-level code, e.g., that found in OSs or device drivers. In such
situations it is not uncommon to see programmers employ complex usages of
pointers, types and memory allocation to achieve the desired behavior or effi-
ciency. These constructs are often used to implement the dynamic data structures
of a program, and thus data structures can form a major obstacle in program
comprehension, optimization and verification. To partially alleviate this obsta-
cle we propose a dynamic analysis for automatic identification of dynamic data
structures in C programs.

The essence of our analysis is to first discover the building blocks of complex
data structures, which are essentially singly linked lists (SLLs), and then to
analyze any relationships that exist between the lists. Lists may be either tightly
connected, where they comprise some part of a more complex data structure, e.g.,
the two lists running in reverse directions through a doubly-linked list (DLL),
or loosely connected, where they describe relationships between specific data
structures, e.g., the parent-child relationship found in nested lists.

The identification of dynamic data structures is made challenging due to ma-
nipulation operations that temporally transform a stable shape into a degenerate
shape. For example, consider how the key feature of a DLL is broken during the
insertion of a node; if one were to inspect the shape at such an intermediate state,



then it may be difficult to give the correct label, i.e., name of the data struc-
ture. Approaches such as dsOli1 [11] and DDT [7] handle this by trying to find
data structure operation boundaries, while MemPick [5] attempts to perform
identification only in the quiescent periods of a data structure. In both cases,
identification is performed when one can be reasonably sure the data structure
has a stable shape.

In our work we include degenerate shapes but override their influence by ob-
serving the context in which a shape appears. Context arises from two sources:
structural repetition, which occurs when there exist many structures performing
the same role, e.g., the multiple child lists found in parent-child nested lists,
and temporal repetition, which occurs when the same structures exist over mul-
tiple program time steps. By discovering evidence for specific occurrences of data
structures and then reinforcing this evidence through structural and temporal
repetition, our approach enables identification even when temporary degener-
ate shapes are encountered. To illustrate the utility of our approach, we track
variables that represent entry points to dynamic data structures and aim to an-
notate these with natural language descriptions of the reachable data structure,
e.g., “Entry point p points to a skip list with a parent child nesting to DLLs”.

The remainder of this paper is organized as follows. In Sec. 2 we discuss
the complexities of data structures in C heaps, which motivates many of the
design decisions we have made for dsOli2. Sec. 3 describes our approach from a
high level with an illustrative example, and in Sec. 4 we dive into the details. We
report preliminary results in Sec. 5 obtained from our prototype implementation,
and finally present conclusions and future work in Sec. 6.

Related Work. Our dynamic analysis aims to identify data structures but
provides no soundness guarantee. In contrast, modern shape analysis tools, such
as Predator [4] and Forester [6], are sound and employ symbolic execution to
learn shape predicates that allow memory safety to be checked automatically. In
particular, Forester summarizes repetitive graph structures with forest automata
to handle skip lists and trees. However, neither approach can handle the recur-
sion commonly found in tree operations, and as their focus is memory safety,
it is not clear how naturally the learnt shape predicates fit the goal of program
comprehension.

The dynamic analyses HeapDbg [8] and ARTISTE [3] represent multiple
concrete data structure nodes with a single abstract node, which is in turn
checked for interesting shape properties. Our approach shares much in common
with the techniques of HeapDbg: their summarization process employs structural
and temporal repetition, but as the process is conservative, temporal joins force
the label of an abstract node to be reduced to the most general available. While
this works for HeapDbg’s tree label, Artiste includes DLLs and, if temporal joins
were to be performed, then the precision of the DLL label would be lost.

MemPick [5] functions on object code and excels in distinguishing different
types of trees. In contrast, we require source code but handle skip lists and
produce a much richer description of the connections between data structures.
Finally, dsOli1 [11] and DDT [7] go beyond all these approaches in that they
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Fig. 1. Complexities of C heaps: (a) custom allocator, (b) cache efficient
list [2], (c) Linux kernel DLL [1], (d-f) skip lists where building block lists
are indicated by bold gray arrows. Examples of (d) and (e) appear in
tests/skip-list/jonathan-skip-list.c and tests/forester-regre/test-f0021.c

of Predator [4], respectively.

also seek to discover the operations that manipulate the data structures. DDT
accomplishes this by assuming that data structures are accessed via well-defined
interface functions, while dsOli1 employs a machine learning approach to locate
repetitive code segments indicative of operations. Compared to dsOli1, we cur-
rently don’t consider operations but do expand the variety of data structures
that are in-scope considerably.

2 Heap Usage in C Programs

The type safety of modern programming languages such as Java and C# con-
strains the actions that a programmer may take and results in programs having
relatively well structured heaps. However, in languages frequently used for OS
programming such as C, where pointer arithmetic and type casting may be freely
applied and memory management is in the hands of the programmer, the heap
can be formed in a more ad-hoc manner. In this section we describe some of
the challenging C code we have seen in practice that leads us to this conclusion,
and in the next section we outline how our approach copes with this challenge.
Firstly, we briefly introduce the notion of a points-to graph, which describes a
snapshot of program memory by representing memory chunks, i.e., stack/global
variables and dynamically allocated memory, as vertices and pointers as edges.

A typical assumption is that a memory chunk represents a single node of
a data structure; however, in practice this is broken in a number of situations.
Firstly, if a custom memory allocator is employed, but memory chunks are de-
tected at the level of the system memory allocator, then it may be the case that



multiple nodes of potentially multiple data structures appear in the same mem-
ory chunk (Fig. 1(a)). Secondly, cache-efficient data structures combine mul-
tiple nodes into a single memory chunk to enhance performance (Fig. 1(b)).
Thirdly, head nodes of multiple lists may be embedded in the same memory
chunk (Fig. 1(c)). This is common practice with the cyclic DLL type struct

list head employed by the Linux kernel [1], which is designed to be embedded
inside another struct. Given this cyclic property, a natural interpretation is to
treat the head node uniformly with the remainder of the list. This gives rise
to an alternative view, i.e., as a list where the nodes occupy memory chunks
of varying sizes. In the above case, a list of length n consists of one node in a
memory chunk of type t1 and n − 1 nodes each in a memory chunk of type t2.
Macros are provided that allow the outer struct to be reached from a list head
struct via pointer arithmetic and casting.

The key insight to model all of the above situations uniformly is to relax
the assumption that a list linkage offset should occur at a fixed offset from the
memory chunk start address. Thus, it is necessary to track lists in terms of
their linkage rather than in terms of memory chunk type. In the next section we
show how our approach handles this by determining the minimal subregions of
memory chunks needed to establish list linkage.

Now that we have discussed the complexities surrounding list formation, we
turn to how lists are connected. A connection may be made either by overlay,
where at least one node from each list occupies the same memory chunk, or
by indirection, where there exists a pointer, or a chain of pointers, from the
memory chunk holding the node of one list to a memory chunk holding a node
of another list. To illustrate this we consider possible skip list constructions.
Firstly, if the number of levels are known a priori, then it is common to employ
a memory chunk with an array of linkages, where the array element at index i
represents the linkage to the next node at level i (Fig. 1(d)). Thus, in situations
where multiple levels run through the same node, these are connected by overlay.
Secondly, all nodes in the skip list may be of the same type; in other words, each
memory chunk has a next pointer to the next node of the level it represents and
a down pointer to the level below (Fig. 1(e)). Since all nodes are of the same
type, atomic lists are formed both in the horizontal and vertical directions and
are again connected by overlays. Lastly, consider a skip list where each level
is represented by a node of different type (Fig. 1(f)). Since only the horizontal
linkage forms lists, the downward link is an indirect connection between lists.

In the next section we show how our approach uniformly handles the va-
riety of implementation techniques that may be employed by firstly gathering
evidence and then employing structural and temporal repetition to consolidate
the acquired evidence.

3 Overview of our Approach

In this section we give an overview of our approach and provide motivation
with the simple example in Fig. 2, which also shows our approach as a pipeline.



Table 1. Memory structures (with abbreviations) in-scope for our approach, plus the
number of strands required for discovery and the priority in the identification phase.
Memory structures typically have several implementations, in the case of Head/Tail
Pointers this affects the category. Sharing denotes two lists which share a downstream
cell sequence, while intersecting lists is a catch-all for any pair of connected strands.

Data # Strands Priority Connection # Strands Priority
Structure Required Required

(Cyclic) SLL 1 - Head/Tail Ptrs. (HT) 1 or 2+ 3
(Cyclic) DLL 2 1 Parent Pointers (PP) 2+ 4
Tree 2+ 2 Intersecting Lists (IL) 2 7
Skip List (SL) 2+ 5 Nesting (N) 2 8
Grid 2+ 6 Sharing 2 9

The example shows two time steps in the construction of a SLL of DLLs; note
that at time step t, there exists a degenerate DLL child. In favor of a succinct
explanation, details are delayed until Sec. 4.

We commence from the classic definition of an SLL, which is a sequence of
memory chunks all of the same type, where the entirety of each chunk constitutes
one node in the list. A subset of pointers between these chunks fulfill a linkage
condition, which states that all pointers originate at the same linkage offset from
the start of the chunk and terminate at the start address of the next chunk.

Strands. To handle the scenarios outlined in Sec. 2, we relax the notion
that the nodes of the list occupy the whole memory chunk, and instead try to
discover what we term strands, which will form the basic building blocks of the
structures we seek to identify. A strand represents a sequence of subregions of
memory chunks, each termed a cell, such that the same linkage condition can be
established between the cells. Thus, the linkage offset is now given relative to
the start address of a cell. Strands (Si) are indicated by bold arrows in Fig. 2(a).

Strand Connections. Our approach is driven by relationships between
strands, which we term strand connections. Each strand connection describes
exactly one way in which the cells of two strands are related, hence multiple
strand connections between a pair of strands are possible. Merging strand con-
nections that describe the same relationship will be of key importance in the
accumulation of evidence, and we define strand connections with offsets relative
to the cells in order to handle the scenarios of Sec. 2. We construct a strand
graph where vertices represent strands and edges represent strand connections,
see Fig. 2(b). Since only two time steps of the program are considered in the
illustrative example, it is unsurprising that both strand graphs have the same
structure. For now note that strand connections with the same edge style denote
the same relationship type; for example, the DLL strands form a bi-directional
overlay connection, while two kinds of uni-directional indirect connections are
formed between the parent SLL and each child DLL.

Memory Structures. We use the term memory structure to speak col-
lectively about data structures and connections between data structures, i.e.,
both the tight and loose connections mentioned in Sec. 1. The list of memory
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Fig. 2. Left: the pipeline of our approach, right: the illustrative example of Sec. 3.



structures in-scope for our approach are given in Table 1 and are categorized
based on the number of strands required for their discovery. For example, a DLL
requires exactly two strands to be discovered, while a skip list requires two or
more strands. We now refer to memory structures requiring one or two strands
as Category 1/2 and those requiring more than two as Category 2+. We will see
later that memory structures in the Category 2+ are discovered at a later stage
of the approach than those in Category 1/2.

Evidence Gathering. When a strand connection is found we immediately
determine the supporting evidence for that strand connection for each Category
1/2 memory structure. The evidence is weighted by the number of cells and
connections between cells that must be present for that memory structure to be
correctly identified. Essentially, our goal is to count the number of things that
have gone “right” for such a memory structure to exist and use this for evidence.
For example, the weight of evidence gathered for nested lists on overlays, where
the strands must only intersect in one memory chunk, is much weaker than that
for DLLs, where the strands must form a very specific connection. Non-zero
evidence is shown on the strand connections of Fig. 2(b). The degenerate DLL
in the first time step has an evidence count of 2 for Intersecting Lists (IL); in
this case, evidence is simply the number of overlay connections between the cells
of each strand. When the DLL regains the correct shape at time t+ 1, it has an
evidence count of 9 based on the length of both composite strands (3 + 3) and
the number of intersection points (3). Strand connections describing nesting (N)
have an evidence count of 1 as the connection is made by a single pointer.

Structural Repetition. The primary use of structural repetition is to
group elements of the strand graph that perform the same role within one pro-
gram time step. This grouping is realized via a merge algorithm that results in a
folded strand graph and, since this contains merged strand connections, it serves
to reinforce the evidence of Category 1/2 memory structures. Observe in Fig. 2(c)
that the vertices have now become sets of strands. Merging partially addresses
the problem of degenerate shapes, i.e., if strands with the correct shape can be
grouped with those having degenerate shapes, then the majority can override
the minority. The correct shape is generally in the majority since degenerate
shapes are produced by manipulations that typically only have a local effect. In
Fig. 2(c), this is seen between strands {S2, S4} and {S3, S5} at time t.

With the folded strand graph to hand, the identification of Category 2+
memory structures begins. For any suitable subgraph in the folded strand graph,
it is checked if that subgraph has the property required of the corresponding
Category 2+ memory structure. If found to be true, all strand connections that
comprise that memory structure record the associated evidence.

Temporal Repetition. To track the temporal behavior of a memory struc-
ture and enable the identification of temporal repetition, we must determine
which strands represent the same atomic component of a data structure over
multiple time steps. This is a very difficult task to do globally as lists will be
split, joined, created and deleted at runtime, and any labeling system will end up
with some amount of discontinuity. Instead, we tackle this problem by consider-



ing the labeling from the point of view of each entry point separately, since entry
points are inherently stable over their lifetimes. For each time step that an entry
point exists, we extract the subgraph of the folded strand graph reachable from
that entry point. The subgraphs are then merged into an aggregate strand graph,
and thus temporal repetition is identified whenever multiple graph elements are
merged together. Naturally, the evidence embedded in those elements is also
merged and, hence, evidence for both Category 1/2 and Category 2+ memory
structures is reinforced, further reducing the effect of degenerate shapes. Vertices
of this graph become abstract descriptions of the original strands in terms of their
linkage conditions (lc). The aggregate strand graph is shown in Fig. 2(d); note
that the evidence for the DLL shape is overwhelming.

Identifying Memory Structures. The final barrier for memory structure
identification arises from the fact that there may be several possible interpreta-
tions of the aggregate strand graph. We resolve this as follows: we first set the
label of each strand connection in the aggregate strand graph to the one with
the most evidence and set the label of all vertices to be SLL (Fig. 2(e)). We then
group graph elements according to the priorities given in Table 1 and assign a
textual label to the group. For example, DLLs have priority 1, so strand con-
nections labeled DLL and their associated strands are grouped first (Fig. 2(f)).
These elements then form an atomic vertex in subsequent groupings. Ultimately,
we end up with a graph (Fig. 2(g)) of one atomic vertex with a textual label
describing the whole data structure reachable from the entry point.

4 Details of our approach

We now formalize the concepts presented in the illustrative example of Sec. 3.

4.1 Memory Abstraction

To identify the data structures employed by the program we reconstruct a se-
quence of points-to graphs 〈Gpt0 , . . . , Gptn 〉 from an execution of the program un-
der analysis. This reconstruction is enabled by first instrumenting the program,
which results in the runtime capture of program events such as pointer writes
and dynamic memory (de)allocation. The result of the program event at time
step t is captured by Gptt , where 1 ≤ t ≤ n and Gpt0 is empty.

Definition 1. A points-to graph Gpt = (V, E) is a directed graph comprising
a vertex set V representing memory chunks and an edge set E ⊆ V ×N× V ×N
representing pointers.

An edge (vs, as, vt, at) ∈ E captures the points-to relationship between two
memory chunks established by a pointer with source address as, encapsulated
by vertex vs, and target address at, encapsulated by vertex vt. A memory chunk
is either a heap chunk (a memory region returned from dynamic memory alloca-
tion, e.g., malloc) or a stack/global chunk. Our points-to graphs only consist of
reachable memory, so if a leak occurs, then all unreachable chunks are removed.
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Fig. 3. Details of (a) a strand S = ((t, o), (Cl, Cc)), (b) an overlay strand connection

S1
wx←→ S2 and (c) an indirect strand connection S1

yz−→ S2. Memory chunks have black
outline, cells are dashed, and strands are indicated with large transparent arrows.

All memory chunks are typed with standard C types, and a heap chunk
becomes typed when it is accessed by a non void * pointer. Usages of a memory
chunk must be typed consistently, i.e., if a memory address a is accessed via
pointer types t1* and t2*, then t1 and t2 must be structurally equivalent.
Since structs may be nested, and thus multiple structs may start at an address,
the function type(a) returns the set of types starting at address a.

Definition 2. A stack/global chunk v ∈ V is an entry point if it (a) contains
any pointer variable with a target address in the heap or (b) contains a strand
cell (e.g., holds the “head” node in a list).

We begin the formalization of a strand using a pointer that establishes a
linkage condition between two cells, see Fig. 3(a) for details in the following.
Set operators with a bar, ∈̄, ⊆̄ and ∩̄, function on memory ranges, e.g., a ⊆̄ b
determines if the range of a is included in the range of b.

Definition 3. A cell c is a subregion of a memory chunk, i.e., ∃v ∈ V : c ⊆̄ v,
which begins at address c.bAddr and ends at address c.eAddr.

Definition 4. A linkage condition L = (t, o) exists between two cells cs
L−→ ct

with cell type t and linkage offset o if:

∃( , as, , at) ∈ E : as ∈̄ cs ∧ at = ct.bAddr ∧ o = as − cs.bAddr

∧ t ∈ type(cs.bAddr) ∩ type(ct.bAddr) ∧ cs ∩̄ ct = ∅.

We are interested in the maximal linkage condition, i.e., choose L such that

the length of the sequence of cells c1
L−→ c2

L−→ c3 . . . is maximized. If more than
one maximal L exists, then we choose the one with the type t of smallest size.

Definition 5. A strand S = (L,C) represents the sequence of cells C captured
by a maximal linkage condition L. The cell sequence C = (Cl, Cc) is divided into
an optional linear start Cl and an optional cyclic tail Cc, although at least one
must be non-empty. When both sequences are non-empty, the following holds:



∀i ∈ [1..|Cl| − 1] : Cl[i]
L−→ Cl[i + 1] ∧ Cl[|Cl|]

L−→ Cc[1]

∧ ∀i ∈ [1..|Cc| − 1] : Cc[i]
L−→ Cc[i + 1] ∧ Cc[|Cc|]

L−→ Cc[1].

Strands are created to capture every unique sequence of cells and are not
destroyed unless all their component cells cease to exist.

As the key to our approach is the reinforcement of evidence via grouping
elements that perform the same role, we must ensure that identical strand con-
nections may be found and grouped wherever possible. Thus, due to the issues
of Sec. 2, all strand connection parameters (w, x, y and z in the following) are
given relative to the cells, linkage pointers and target addresses, i.e., quantities
that are independent of a cell’s position in a memory chunk (see Figs. 3(b) &
(c)). It is for this reason that the strand connections of Fig. 2 are drawn with
different line styles, those with the same style have identical parameters. Lastly,
note that indirect connections can be generalized to sequences of pointers.

Definition 6. A strand connection S1
α S2 describes exactly one way in

which a subset of the cells of S1 are related to a subset of the cells of S2. A con-

nection is defined by the cells that establish the relationship: pairs(S1
α S2) =

{(c1, c2) ∈ cells(S1)×cells(S2) : c1
α c2}. The relationship between cell pairs

(and by extension between strands) may be (a) overlay c1
wx←→ c2 if vertex(c1) =

vertex(c2) with parameters w = (c2.bAddr + linkageOffset(S2)) − c1.bAddr
and x = (c1.bAddr + linkageOffset(S1)) − c2.bAddr. Alternatively, (b) indi-

rect c1
yz−→ c2 if ∃e = (vs, as, vt, at) ∈ E : vs 6= vt ∧ vs = vertex(c1) ∧ vt =

vertex(c2) and there is no linkage condition on e. In this case, the parameters
are: y = as − c1.bAddr and z = (c2.bAddr + linkageOffset(S2))− at.

To uniquely track the strands reachable from an entry point over multiple
time steps, we introduce entry point connections for each type of entry point
given in Def. 2. These are essentially specialized strand connections, where the
starting offset is given from the memory chunk’s start address and is therefore
absolute. Thus, when a chain of strand connections are followed by their relative
offsets, the chain is still uniquely identifiable due to the absolute offset of the
initial entry point connection.

Definition 7. An entry point connection vep
xy−→ S from an entry point

vep ∈ V of type Def. 2(a) to a cell c ∈ cells(S) via a non-linkage condition
edge e = (vep, as, vt, at) ∈ E is defined by two parameters: x = as−vep.bAddr and

y = (c.bAddr+linkageOffset(S))−at. An entry point connection vep
z−→ S from

an entry point vep ∈ V of type Def. 2(b) to a cell c ∈ cells(S) such that c ⊆̄ vep
is defined by one parameter: z = (c.bAddr + linkageOffset(S))− vep.bAddr.

Definition 8. A strand graph Gs = (Vs, Es) is composed of a vertex set v ∈
Vs, where v represents either a strand or an entry point, and an edge set e ∈ Es,
where e represents either a strand connection or an entry point connection.



4.2 Evidence Discovery and Reinforcement

With the strand graph for each time step to hand, we proceed to discover and
reinforce evidence for the memory structures of Table 1.

Definition 9. A memory structure M = (L,Pshape, Parea, E) has a label L,
a shape predicate Pshape to enable discovery of L, an area condition Parea that
describes on which graph elements Pshape is checked, and an evidence count E.

An area condition serves two purposes, firstly, to limit the number of locations
that a shape predicate must be checked, and secondly, to expose to the shape
predicate only the subset of graph elements necessary for discovery. Such ele-
ments include the set C′, containing the cells of all strands mentioned in the area
condition, and the set E ′, containing all edges that form the linkage of the strands
and all pointers included in strand connections mentioned in the area condition.
For Category 1/2 memory structures, Parea simply limits whether Pshape applies
to strands connected by an overlay or an indirect strand connection; however,
later we will present a shape predicate employing C′ and E ′.

During the construction of the strand graph, for each strand connection
matching Parea, the associated shape predicate Pshape is tested. If found to be
true, then the pair (L,E) is added to the strand connection identified by Parea.
We now give concrete examples of these concepts for selected Category 1/2
memory structures:

L = sharing, Parea = S1
xy←→ S2 ∧ x = y,E = |pairs(S1

xy←→ S2)|, Pshape = true

L = intersectingLists, Parea = S1
α S2, E = |pairs(S1

α S2)|
Pshape = |pairs(S1

α S2)| ≥ 1 ∧ ¬dll(S1
α S2) ∧ ¬ . . .

L = dll, Parea = S1
xy←→ S2, E = |pairs(S1

xy←→ S2)| ∗ 3

Pshape = |cells(S1)| = |cells(S2)| = |pairs(S1
xy←→ S2)|

∧ let ( , (C1
l , C

1
c )) = S1 ∧ ( , (C2

l , C
2
c )) = S2 in C1

c = C2
c = ∅

∧ ∀i ∈ [0..length(S1)− 1] ∃(c1, c2) ∈ pairs(S1
xy←→ S2) :

C1
l [i + 1] = c1 ∧ C2

l [length(S2)− i] = c2

Sharing describes two lists that share a downstream cell sequence, while
intersectingLists is a catch-all predicate that matches any pair of connected
strands. As such, most memory structures must be explicitly excluded in its
Pshape to prevent unnecessary evidence being produced. While sharing and
intersectingLists generate evidence in the number of connection points be-
tween the two strands, the dll predicate requires two strands to be connected in
a specific way and, thus, uses the length of each strand summed with the num-
ber of connection points as evidence. Lastly, note that dll is easily extended to
cyclic DLLs by requiring S1 and S2 to have cyclic cell sequences and checking
that, under some cyclic permutation of those sequences, the DLL property holds.

With the evidence for Category 1/2 memory structures added to the strand
graph, we proceed to identify structural repetition via Alg. 1. This serves two



ep ep
ep

(a) (b) (c)

Fig. 4. Tree example: (a) points-to graph, (b) strand graph and (c) folded strand graph.

purposes in our approach. Firstly, it reinforces evidence of Category 1/2 data
structures and, thus, alleviates the degenerate shape problem. Secondly, it par-
tially groups the graph elements of Category 2+ data structures, which facilitates
their discovery.

Algorithm Sketch 1. Structural repetition is found by successively locat-
ing strands of the strand graph that conceptually perform the same role, and
then merging them. Any duplicate strand connections that result from the strand
merge are also merged, thus summing any associated evidence. Two strands S1

and S2 are merged if they have the same linkage condition L and there exists a

merge point S3 with strand connections S3
α S1 ∧ S3

α S2. A strand connec-
tion between S1 and S2 is forbidden unless it describes sharing. Alternatively,
two strands S1 and S2 are merged if they appear in a disjoint partition of the
strand graph, where the only connections between strands of that partition de-
scribe sharing. After all merges are performed, the result is a folded strand graph.

Definition 10. A folded strand graph Gfs is a summarization of a strand
graph. The vertices now represent entry points or sets of strands. Edges represent
entry point connections or merged strand connections.

Area conditions for the discovery of Category 2+ data structures may de-
scribe sets of strands, and for convenience these memory structures are discov-
ered in the folded strand graph. Consider the binary tree shown in Fig. 4(a),
which has strands covering the left and right linkages; the associated strand
graph is shown in Fig. 4(b). This data structure displays high structural repe-
tition and, in the folded strand graph Fig. 4(c), the strands have been grouped
into two classes representing the left and right linkages. As can be seen in the
following, Parea for a binary tree recognizes the shape of Fig. 4(c) exactly:

L = BinaryTree, Parea = S1
xy←→ S2, E = |pairs(S1

xy←→ S2)|
Pshape = let ∃E ′1, . . . , E ′n : E ′ = ∪· ni=1E ′i ∧ ∃C′1, . . . , C′n : C′ = ∪· ni=1C′i in

∀i ∈ 1..n ∃croot ∈ C′i :
(@( , , , at) ∈ E ′i : at ∈ croot)
∧ |{( , as, , ) ∈ E ′i : as ∈ croot}| ∈ {0, 1, 2}
∧ ∀c ∈ C′i − croot : |{( , , , at) ∈ E ′i : at ∈ c}| = 1
∧ |{( , as, , at) ∈ E ′i : as ∈ c ∧ at ∈ C′i − {croot}| ∈ {0, 1, 2}



The shape predicate employs the sets C′ and E ′ that result from Parea to
ensure that irrelevant pointers are excluded from the shape test. However, due
to the folding of structural repetition, it is possible that Parea locates multiple
trees. This could occur if, e.g., many trees were nested under an SLL. To handle
this, Pshape first partitions C′ and E ′ into n trees using the disjoint union operator
∪· , where C′i and E ′i represent the elements of tree i. Then, for each i, a root croot
is found with no incoming pointer in E ′i , and the non-root cells C′i − croot are
checked for a suitable number of incoming and outgoing edges in E ′i .

If Pshape is found to be true for a Category 2+ data structure, then all
strand connections mentioned in Parea have (L,E) added. Since the label and
evidence may be distributed over multiple elements of the folded strand graph,
L is parameterized to ensure the graph elements of that memory structure can
be recovered. However, for a binary tree such a parameterization is unnecessary.

To find temporal repetition we must locate strands that perform the same
role over multiple time steps. As mentioned previously, we do not attempt a
global solution and instead solve the problem from the point of view of each
entry point, where that local solution is represented as follows:

Definition 11. An aggregate strand graph Gasep is composed of edges de-
scribing strand connections and vertices, of which one, vep, will represent the
entry point and the remainder will represent linkage conditions.

Algorithm Sketch 2. Temporal repetition observed by an entry point ep is
computed as follows. For each time step t in ep’s lifetime, we extract the subgraph
of Gfst reachable from vep, which results in a subgraph set G. To abstract over
multiple time steps, we relabel all vertices that represent strands in the graphs of
G to include only the associated linkage condition, which, unlike strands, is time
step independent. The subgraphs in G are merged together in time step sequence,
where the result of the last merge Gasep is merged with the next subgraph Gnext ∈ G
and Gasep is initially empty.

To perform the merge, vep of each graph is placed in correspondence, and
then an inexact graph match is computed. Vertices may be in correspondence
if they have identical linkage conditions, while edges may be in correspondence
if the strand connections (including parameters) are identical. Graph elements
in correspondence imply that temporal repetition has been discovered, and nat-
urally the merge also sums any associated evidence. Elements of Gnext not in
correspondence are simply transfered with their associated evidence to Gasep.

The identification algorithm is then applied to each Gasep, resulting in a natural
language string. However, due to space limitations we refer the reader to the
informal description of this process presented at the end of Sec. 3.

5 Preliminary Results

We have prototyped our approach using a combination of CIL [10] (approx. 1K
LOC OCaml & 600 LOC C) to inject instrumentation into C source code, and



Table 2. Preliminary results obtained from our prototype implementation.

Example Runtime Memory Evidence Count % Supp. # Agg.
(s) (GB) / % Opp. Merges

Binary Tree 10.3 2.70 Tree: 102, Nesting: 21 83%/17% 16
Linux DLL [1] 9.7 1.76 CDLL: 60, IL: 52, DLL: 6 51%/49% 20
Wolf DLL [12] 71.4 2.86 DLL: 1410, IL: 220 87%/13% 123
Skip list with

107.2 2.84
SL: 24793, N: 487, Tree: 48 98%/2%

101
DLL Children DLL: 345, IL: 2 99%/1%

Scala (approx. 7.5K LOC) to perform the offline analysis. All experiments were
run on an Intel i7-4800MQ with 32GB of RAM. We applied the prototype to
four examples, the first three of which are self-written: a binary tree, an example
exercising the cyclic Linux DLL [1], a skip list with child DLLs and a textbook
DLL implementation [12]. We have made the source code of our self-written
examples available at http://www.david-white.net/kps15.zip.

In Table 2 we report the runtime and memory usage of the offline analysis,
although we note that currently no optimization has been performed and we store
much redundant data. To simplify presentation of the results, we give details for
only the longest running entry point of each example. In the evidence column we
list all the non-zero evidence counts for each discovered memory structure, and in
the following column we give the ratio of evidence supporting the correct data
structure name versus that opposing. In each example, the evidence suggests
the correct memory structure, which is shown in bold. For the example with
multiple data structures, we separate out the evidence for each sub structure
into a separate row. Lastly, in column # Agg. Merges, we show the number
of merges that were performed by Algorithm 2 to produce the aggregate strand
graph, which gives a rough indication of the rate at which evidence was gathered.

All examples are synthetic in the sense that they only manipulate, often just
one, data structure. Since real world programs perform other tasks besides data
structure manipulation, their data structures typically spend a smaller propor-
tion of the runtime in degenerate states. Therefore, although the examples are
quite simple, they effectively represent the worst case for our evidence based
analysis. This is especially true for the Linux DLL example, which has approxi-
mately three time steps of intersecting lists for every one time step where the full
DLL is present, resulting in only 51% evidence supporting a DLL. Behavior more
typical of a real-world program can be seen in the skip list with nested DLLs
example. This is due to building the skip list first, which is then held in a stable
shape while child DLLs are added. This stable portion generates overwhelming
evidence for the skip list.

6 Conclusion

We have presented dsOli2, a dynamic analysis that automatically identifies the
dynamic data structures appearing in a C program during execution. By decom-



posing complex structures into strands and then analyzing the resulting strand
connections, we are able to identify many data structures typically appearing in
C heaps such as (cyclic) singly and doubly linked lists, trees, skip lists and re-
lationships between data structures such as nesting. In contrast to related work
that tries to avoid degenerate shapes [11, 7, 5], we permit these in our analysis
and employ evidence based on structural complexity that is reinforced by struc-
turally and temporally repetitive heap structures to override degenerate shapes.
Preliminary results appear to support this method of dealing with degenerate
shapes, and does not require the discovery of data structure operations or qui-
escent periods.

Ultimately, we aim to use the output of dsOli2 in a number of applications
beyond program comprehension, including informing formal verification (which
has already been studied in the context of dsOli1 and VeriFast [9]) and reverse
engineering, which would be possible after we permit object code as input.
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