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1 Introduction

Process algebras [5, 18, 19, 22] provide widely studied frameworks for modeling and verifying con-
current systems [12, 15]. Such theories typically consist of a simple language with a well-de�ned
operational semantics given in terms of labeled transition systems; a behavioral equivalence is
then used to relate implementations and speci�cations, which are both given as terms in the lan-
guage. In order to facilitate compositional reasoning, in which systems are veri�ed on the basis
of the behavior of their components, researchers have devoted great attention on the de�nition of
behavioral congruences which allow the substitution of \equals for equals" inside larger systems.
Traditional process algebras focus on modeling the potential nondeterminism that concurrent
processes may exhibit; approaches have also been suggested for introducing sensitivity to other
aspects of system behavior, including priority [3, 9, 10, 13, 16, 20, 26] and concurrency [1, 8, 24].
The latter work presents theories in which concurrency is treated as a primitive notion that is not
reducible to nondeterminism, while the former enables the modeling of systems in which some
system transitions (e.g. interrupts) may take precedence over others.

In this paper, we develop an algebraic theory of action priority for distributed systems. As in
existing work, our aim is to model systems in which some transitions have precedence over others.
Our point of departure is that the priority scheme should be localized within individual sites in
the system; actions should only be able to preempt actions being performed at the \same loca-
tion." This constraint reects an essential intuition about distributed systems, which is that the
execution of a process on one processor should not a�ect the behavior of a process on another
processor unless the designer explicitly builds in an interaction (e.g. synchronization) between
them. Technically, we begin with a theory of priority that includes a notion of global prece-
dence [13, 26] and show how its semantics may be altered using ideas from true concurrency [1, 8]
to localize capabilities for preemption. We then de�ne a strong congruence for this language,
axiomatize it for �nite processes, and derive an observational congruence. Those congruences
are the coarsest ones contained in the strong bisimulation and observational equivalence adapted
from [23], respectively. We also provide logical characterizations of our behavioral relations.

Organization of the Paper. In the next section, we present a generic example illustrating the
need for local preemption in modeling systems. The following three sections present our language
and derive the technical results discussed above, while Section 6 presents an example showing
the application of our theory. Section 7 discusses related work, and the last section presents our
conclusions and directions for future work. An appendix contains proofs of the more challenging
results.

2 Motivating Example

The example depicted in Figure 1 motivates the necessity of considering a local notion of pre-
emption when dealing with priorities in distributed systems. It consists of two sites, Site1 and
Site2, e.g. two computers, that are connected via the network Network. Each site runs an ap-
plication, Application1 and Application2, respectively, which may send or receive information
from the application at the other site via its (interrupt-)handler, Handler1 or Handler2. A han-
dler delivers the message to the network or receives a message for its site from the network and
noti�es the application by sending an interrupt. Now, we have the following intuitive require-
ments which the semantics of our language CCSprio should satisfy, in order to reect the behavior
of the system correctly. First, the interrupt of a handler should preempt the normal work of
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the application at its site, i.e. the application should immediately react on an interrupt request.
Second, both sites should be able to perform internal computations only involving one speci�c
site autonomously. Especially, Handler1 should not be able to preempt the work of Handler2,
and vice versa. Whereas the �rst requirement is satis�ed in traditional approaches to priorities in
process algebra, the second requirement is violated, since e.g. the following situation may occur
with respect to the traditional semantics [13, 26]. If the priority of Application2 is higher than
the priority of Application1, then Application1 is blocked until Application2 is terminated
or until it has to wait for a message from the other site. In general, priorities of actions which
are local to one site should be incomparable with priorities arising from another site. However, a
global agreement of the meaning of priority values has to exist between communicating processes.

Site 2Site 1

Handler 1 Handler 2

Application 2Application 1

Network

Figure 1: Standard distributed system

The notion of global preemption in traditional approaches to priorities eliminates many execution
paths of the real system in the model. Therefore, safety properties veri�ed in the model may
be violated in the real system. This is often an intolerable side-e�ect which we eliminate in this
paper by introducing a notion of localized preemption.

3 Syntax and Semantics of CCSprio

In this section, we de�ne the syntax and semantics of our language CCSprio which is based on
CCS [22].

3.1 Syntax of CCSprio

The syntax of CCSprio di�ers from CCS by the structure of the action set which exhibit a priority
scheme. For the sake of simplicity, we restrict ourselves to a two-level priority scheme. However,
all results presented in this paper can be generalized to multi-level priority schemes in a straight-
forward fashion. Intuitively, actions represent potential synchronizations that a process may be
willing to engage in with its environment. Given a choice between a synchronization on a high
priority action and one on a low priority action, a process should choose the former.

Formally, let � be a countable set of action labels, not including the so called internal or silent
action � . For every input action a 2 � , there exists a complementary action a , the corresponding
output action. Further, let �=dffa ja 2 �g , and let us denote the set of all actions � [� [ f�g ,
where � =2 � , by A . Intuitively, an action indicates that a process is willing to perform a
synchronization on the port associated with the action name, i.e. action a means that the process
wants to receive a message from port a whereas a means that the process wants to send a message
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via port a . The action � either indicates an internal action of a process or the synchronization
of two processes on some port in order to communicate with each other. Finally, we let a; b; : : :
range over � and �; �; : : : over A .

In order to de�ne prioritized actions , let � be a countable set of prioritized action labels. Then
A=df � [ � [ f�g is the set of prioritized actions where � is the prioritized internal or silent

action. We use A=df A [A to denote the set of all actions.

In the remainder of the paper, let a; b; : : : range over � , the symbols �; �; : : : over A , and ; � over

A . Additionally, we extend by  =  , and if L � A n f�; �g then L=dff j 2 Lg . A function
f on A is called a relabeling if it satis�es f(a) = f(a) f(a) = f(a) , f(�) = � , and f(�) = � .
Moreover, f preserves priorities, i.e. f(�) � � and f(�) � � , and the set f j f() 6= g is �nite.

Further, we use the standard de�nitions for sort of a process, free and bound variables , open and
closed terms , guarded recursion, and contexts . We refer to closed and guarded terms as processes
and denote syntactic equality by � . Let P;Q;R; : : : range over the set P of processes. The
syntax of our language is de�ned by the following BNF where f is a relabeling, L � A n f�; �g ,
and C is a process constant.

P ::= 0 j :P j P + P j P jP j

P [f ] j P n L j C
def
= P

3.2 Comparability Relation

In this section, we present some notions and intuition which are necessary to understand the
operational semantics of CCSprio that is given in the next section. In order to de�ne a semantics
dealing with a notion of localized preemption we have to take locations of actions into account.
Therefore, we are formally introducing locations. A location of an action in a process is a string
which addresses the subterm of the process from which the action is performed. Our address
scheme follows the convention that addresses are written down from the most speci�c to the most
general information, from left to right (cf. [24]).

Let Aloc=dffL;R; l; rg be the location alphabet , and let Loc denote the set of all words over Aloc

concatenated with the special symbol � to the left, i.e. Loc is the set of all locations . As usual, �
denotes the concatenation operator as e.g. in ��L�l� 2 Loc . Further, we abbreviate fm�� jm 2Mg
by M � � for M � Loc and � 2 Aloc . Our semantics of CCSprio is de�ned in a way that an action
is associated with the location � if that action can be performed right here, whereas l (r) requires
to explore the left (right) side of the summation operator, and L (R) directs us to the left (right)
side of the parallel operator, respectively. For example, the process (a:0 j b:0) + c:0 can perform
action a from location � � L � l , action b from location � � R � l , and action c from location � � r .
The location � is the `root' of all locations. For simplicity, we often write m instead of � �m for
m 2 Loc .

As mentioned in the introduction, we want to adopt the view that processes on di�erent sides
of the parallel operator are (logically) executed on di�erent processors, i.e. at di�erent locations.
Thus, priorities on di�erent sides of the parallel operator are distributed and, therefore, should
be incomparable. However, processes on di�erent sides of the summation operator, which models
nondeterministic choice, are scheduled on a single processor, i.e. they should be comparable.
We formalize this intuition in the following comparability relation on locations which is adopted
from [17].
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De�nition 3.1 The comparability relation ./ on locations is the smallest reexive and symmetric

subset of Loc� Loc such that for all v; w 2 Loc .

1. (v � l; w � r) 2 ./ , and

2. (v; w) 2./ implies (v � �; w � �) 2 ./ for � 2 Aloc .

We write v ./ w instead of (v; w) 2 ./ .

Note that the comparability relation is not transitive, e.g. we have L � l ./ r and r ./ R � l but
L � l 6./ R � l since L 6./ R . Considering our example (a:0 j b:0) + c:0 above, the locations of the
actions a and c and the locations of the actions b and c are comparable since they are just on
di�erent sides of the summation operator. In contrast, the locations of the actions a and b are
incomparable since they are on di�erent sides of the parallel operator.

In the following, let m;n; o; : : : range over Loc . Moreover, [m] denotes the set fo 2 Loc j o ./ mg ,
and [hm;ni] , where hm;ni 2 Loc�Loc , is de�ned by [m][ [n] . For the sake of brevity, we write
Loc for the set Loc [ (Loc� Loc) . Considering also pairs of locations is necessary because com-
munications in a CCS-based framework take place between two processes o�ering complementary
actions. The result of a communication is an internal action which, therefore, is assigned the
two locations of the complementary actions. Finally, we de�ne hm;ni � � =dfhm � �; n � �i where
m;n 2 Loc and � 2 Aloc .

3.3 Semantics of CCSprio

The (operational) semantics of a CCSprio process P 2 P is given by a labeled transition system
hP;A;�!; P i where P is the set of states, A the alphabet, �! the transition relation, and P

the start state. The transition relation �!� P � (Loc � A) � P is de�ned in Table 2 using
Plotkin-style [29] operational rules. We write P

m;
�! P 0 instead of hP;m; ; P 0i 2�! , and P

m;�
�! P 0

if P � P 0 . We say that P may engage in action  o�ered from location m and thereafter behaves

like process P 0. Moreover, if  2 A then we abbreviate P
m;
�! P 0 by P


�!P 0 since it turns out

that the location m is not important when reasoning about prioritized transitions, i.e. transitions
labeled by a prioritized action.

The presentation of the operational rules requires prioritized initial action sets which are de�ned
as the least relations satisfying the rules in Table 1. Intuitively, Im(P ) denotes the set of all
prioritized initial actions of P from location m . Note that those sets are either empty or contain
exactly one initial transition. Im(P ) = ; means that either m is not a location of P or P wants to
perform an unprioritized action at location m . Additionally, let us denote the set of all prioritized
initial actions of process P from locations M � Loc by IM(P ) , and the set of all prioritized initial
actions of process P by I(P ) . We also de�ne analogous initial action sets ignoring internal actions
and denote them by IIm(P ) , IIM (P ) , and II(P ) , respectively.

Note that the set of actions is de�ned independently from the transition relation �! . Therefore,
�! is well-de�ned although its de�nition contains negative premises (side conditions) [7]. The
side conditions of the operational semantic rules guarantee that a process does not perform an
unprioritized action if it can engage in a prioritized synchronization or internal computation,
i.e. a � -transition, from a comparable location. Therefore, � -actions have preemptive power
over unprioritized actions. The reason that prioritized visible actions do not have priority over
unprioritized actions is that visible actions only indicate the potential of a synchronization, i.e.
the potential of progress, whereas internal actions describe real progress in our model.
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Table 1: Initial action sets

Im(C) =df Im(P ) where C
def
= P I�(�:P ) =dff�g

Im�l(P + Q) =df Im(P ) In�r(P + Q) =df In(Q)

Im(P [f ]) =dfff(�) j� 2 Im(P )g Im(P n L) =df Im(P ) n (L [ L)

Im�L(P jQ) =df Im(P ) In�R(P jQ) =df In(Q)

Ihm�L;n�Ri(P jQ) =df Im(P ) [ In(Q) [ f� j IIm(P ) \ IIn(Q) 6= ;g

IM(P ) =df
S
fIm(P ) jm 2Mg IIM(P ) =df IM(P ) n f�g

I(P ) =df
S
fIhm;ni(P ) jm;n 2 Locg II(P ) =df I(P ) n f�g

The semantics of CCSprio according to prioritized transitions is the same as the usual CCS seman-
tics. The di�erence arises by the side conditions in the rules for unprioritized transitions. The
process :P may engage in action  and then behave like P . The summation operator + denotes
nondeterministic choice. The process P + Q may behave like process P (Q) if Q (P ) does not
preempt unprioritized actions by performing a � -action. Consequently, priorities arising from dif-
ferent sides of the summation operator are comparable. The restriction operator nL prohibits the
execution of actions in L[L . Thus, the restriction operator permits the scoping of actions. P [f ]
behaves exactly as the process P where the actions are renamed with respect to the relabeling
f . The process P jQ stands for the parallel composition of P and Q according to an interleaving

semantics with synchronized communication on complementary actions resulting in the internal
action � . Since locations on di�erent sides of a parallel operator are incomparable, � 's arising
from a location of P (Q) cannot preempt the execution of an action, even an unprioritized one,
of Q (P ). Only if P (Q) engages in a prioritized synchronization with Q (P ), then unprioritized

actions of P and Q are preempted. Finally, C
def
= P denotes a constant de�nition, i.e. C is a recur-

sively de�ned process which behaves as a distinguished solution of the equation C = P . Note that
the side conditions of summation and parallel composition are conform with our comparability
relation. Moreover, the operational semantics possesses the following important properties.

Lemma 3.2 (Associativity & Commutativity)
The summation and the parallel operator of CCSprio are associative and commutative in the sense

that corresponding transition systems are identical up to renaming of states.

4 Prioritized Strong Bisimulation

In this section, we present an equivalence relation for CCSprio processes which is based on bisim-
ulation [28]. Our aim is to characterize the largest congruence contained in the standard strong
bisimulation [22].
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Table 2: Operational semantics for CCSprio

Act
��

�:P
�
�!P

Act
��

�:P
�;�
�!P

Sum1
P

�
�!P 0

P + Q
�
�!P 0

Sum1
P

m;�
�!P 0

P + Q
m�l;�
��!P 0

� =2 I(Q)

Sum2
Q

�
�!Q0

P + Q
�
�!Q0

Sum2
Q

n;�
�!Q0

P + Q
n�r;�
��!Q0

� =2 I(P )

Rel
P

�
�!P 0

P [f ]
f(�)
�!P 0[f ]

Rel
P

m;�
�!P 0

P [f ]
m;f(�)
���!P 0[f ]

Res
P

�
�!P 0

P n L
�
�!P 0 n L

� =2 L [L Res
P

m;�
�!P 0

P n L
m;�
�!P 0 n L

� =2 L [ L

Com1
P

�
�!P 0

P jQ
�
�!P 0jQ

Com1
P

m;�
�!P 0

P jQ
m�L;�
���!P 0jQ

II[m](P )\ II(Q) = ;

Com2
Q

�
�!Q0

P jQ
�
�!P jQ0

Com2
Q

n;�
�!Q0

P jQ
n�R;�
��!P jQ0

II[n](Q) \ II(P ) = ;

Com3
P

a
�!P 0 Q

a
�!Q0

P jQ
�
�!P 0jQ0

Com3
P

m;a
�!P 0 Q

n;a
�!Q0

P jQ
hm�L;n�Ri;�
������!P 0jQ0

II[m](P ) \ II(Q) = ; and

II[n](Q) \ II(P ) = ;

Con
P

�
�!P 0

C
�
�!P 0

C
def
= P Con

P
m;�
�!P 0

C
m;�
�!P 0

C
def
= P

De�nition 4.1 (Prioritized Strong Bisimulation)
A symmetric relation R � P�P is called prioritized strong bisimulation if for every hP;Qi 2 R ,

 2 A , and m 2 Loc the following condition holds.

P
m;
�!P 0 implies 9Q0; n: Q

n;
�!Q0 and hP 0; Q0i 2 R :

We write P ' Q if there exists a prioritized strong bisimulation R such that hP;Qi 2 R .

It is straightforward to establish that ' is the largest prioritized strong bisimulation and that '
is an equivalence relation. Unfortunately, ' is not a congruence which is a necessary requirement
for an equivalence to be suitable for compositional reasoning. The lack of compositionality is
demonstrated by the following example which presents the traditional view of process algebras
that \parallelism = nondeterminism". We have

a:b:0+ b:a:0 ' a:0 j b:0

but

(a:b:0+ b:a:0) j b:0 6' (a:0 j b:0) jb:0
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since the latter can do an a-transition while the corresponding a-transition of the former process
is preempted because the right process in the summation can engage in a � -transition.

The above observation is not surprising since the distribution of processes has inuence on the
preemption of transitions and, consequently, on the bisimulation. Thus, in order to �nd the
largest congruence relation '+ contained in ' we have to take the local preemption of processes
into account. However, it turns out that the locations themselves are not important. In the
following, we de�ne prioritized strong congruence '+ , and we show that it is indeed the largest
congruence contained in ' .

De�nition 4.2 (Prioritized Strong Congruence)

A symmetric relation R � P � P is a prioritized strong congruence if for every hP;Qi 2 R ,

� 2 A , � 2 A , and m 2 Loc the following conditions hold.

1. P
�
�!P 0 implies 9Q0: Q

�
�!Q0 and hP 0; Q0i 2 R .

2. P
m;�
�!P 0 implies 9Q0; n: Q

n;�
�!Q0 ; II[n](Q) � II[m](P ) ; and hP

0; Q0i 2 R .

We write P '+ Q if there exists a prioritized strong congruence R such that hP;Qi 2 R .

The di�erence between this de�nition and the de�nition of ' is the additional requirement con-
cerning the initial action sets, parameterized with the appropriate location, in the condition for
unprioritized transitions. Intuitively, the prioritized initial action set of a process with respect to
some location, and not the location itself, is a measure of the preemptive power of the process
relative to the speci�c location. Thus, the second condition of De�nition 4.2 states that an un-
prioritized action � from some location m of the process P has to be matched by the same action
from some location n of Q . Moreover, the preemptive power of Q with respect to n is at most
as strong as the preemptive power of P with respect to m .

Proposition 4.3 The relation '+ is a congruence, i.e. for all CCSprio contexts C[X ] we have:

P '+Q implies C[P ]'+ C[Q] .

The next theorem states the main result of this section.

Theorem 4.4 The congruence '+ is the largest congruence contained in ' .

4.1 Axiomatization of '+

In this section, we give an axiomatization of '+ for �nite processes, i.e. processes that do not
contain recursion. In order to develop the axiomatization, we need to add a new summation
operator � to the process algebra CCSprio. This operator is called distributed summation and
its semantics is similar to + but priorities on di�erent sides of the operator are considered as
incomparable.

De�nition 4.5 (Distributed Summation)
The semantics of the new binary operator � on processes is de�ned by the following semantic

rules.
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iSum1
P

�
�!P 0

P � Q
�
�!P 0

iSum1
P

m;�
�!P 0

P � Q
m�L;�
��! P 0

iSum2
Q

�
�!Q0

P � Q
�
�!Q0

iSum2
Q

n;�
�!Q0

P � Q
n�R;�
��!Q0

Table 3: Axiomatization of '+ (Part I)

(A1) x+ y = y + x
(A2) x+ (y + z) = (x+ y) + z
(A3) x+ x = x
(A4) x+ 0 = x

(iA1) x� y = y � x
(iA2) x� (y � z) = (x� y) � z
(iA3) x� x = x
(iA4) x� 0 = x

(P) � :x+ �:y = � :x

(E) P �
L

i

P
j
ij :Pij and Q �

L
k

P
l
�kl:Qkl implies

P jQ =L
i

P
j(ij :(Pij jQ) +

P
k

P
lf�:(Pij jQkl) j ij = �kl; ij ; �kl 2 Ag

+
P

k

P
lf� :(Pij jQkl) jij = �kl; ij ; �kl 2 Ag) �L

k

P
l(�kl:(P jPkl) +

P
i

P
jf�:(Pij jQkl) jij = �kl; ij ; �kl 2 Ag

+
P

i

P
jf� :(Pij jQkl) j ij = �kl; ij ; �kl 2 Ag)

(Res1) 0 n L = 0

(Res2) (:x) n L = 0 ( 2 L [ L)
(Res3) (:x) n L = :(x n L) ( =2 L [ L)
(Res4) (x+ y) n L = (x n L) + (y n L)
(iRes4) (x� y) n L = (x n L) � (y n L)

(Rel1) 0[f ] = 0

(Rel2) (:x)[f ] = f():(x[f ])
(Rel3) (x+ y)[f ] = x[f ] + y[f ]
(iRel3) (x� y)[f ] = x[f ]� y[f ]

Now, we turn to the axioms for prioritized strong congruence. We write `E P = Q if P can be
rewritten to Q by using the axioms in the Tables 3 and 4. The Axioms (S2) and (S3) involve side
conditions. The relation vi is the precongruence on �nite processes generated from the axioms
presented in Table 5 using the laws of inequational reasoning. The axioms in Table 3 are basically
those presented in [13] augmented with the corresponding axioms for the incomparable summation
operator. Moreover, the expansion axiom has been adapted for our algebra (cf. Axiom (E)). The
axioms in Table 4 are new and show how we may `restructure' locations. They deal with the
distributivity of the summation operators (Axioms (D1), (D2), and (D3)), the interchangeability of
the summation operators (Axioms (Ic1) and (Ic2)), and the saturation of locations (Axioms (S1),
(S2), and (S3)), respectively.
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Table 4: Axiomatization of '+ (Part II)

(D1) (x� �:y) + �:z = (x+ �:z) � �:y
(D2) (x� �:y) + �:z = x� (x+ �:y + �:z)
(D3) (x� y) + �:z = (x+ �:z)� (y + �:z)

(Ic1) �:x� �:y = �:x+ �:y
(Ic2) (�:x+ y) = (�:x+ y) � �:x

(S1) (x+ �:y) � (x0 + �:y0) = (x+ �:y + �:y0)� (x0 + �:y + �:y0)
(S2) (x+ �:z)� (y + �:z) = (x+ �:z)� y (` xvi y)
(S3) x� y = x+ y (` x=i y)

Table 5: Axiomatization of vi

(iC1) �:xvi �:y
(iC2) 0vi �:x � 2 A n f�g
(iC3) �:xvi 0

Lemma 4.6 Let ` P viQ for some processes P;Q 2 P . Then, II(P ) � II(Q) holds. Moreover,

� 2 I(P ) if and only if � 2 I(Q) .

We write ` P =iQ i� ` P viQ and ` Qvi P . Considering the meaning of the side conditions as
made precise in Lemma 4.6, it is immediately clear that the Axioms (S2) and (S3) are sound.

In order to prove our axiomatization complete, we de�ne a notion of normal form of processes
which is based on the following de�nition.

De�nition 4.7 (Summation Form)

A process P 2 P is called in summation form if it has the form P �
Lm

i=1

Pni
j=1 ij :Pij where

m;ni 2 N and the processes Pij are again in summation form. Per de�nition, 0 is in summation

form.

Intuitively, P is distributed throughout m incomparable locations which themselves consist of ni
comparable locations, 1 � i � m . Now, we are able to de�ne normal forms .

De�nition 4.8 (Normal Form)

Let P �
Lm

i=1

Pni
j=1 ij :Pij be in summation form. We de�ne 

i�
=dffij j 1 � j �nig \ A . The

process P is said to be in normal form if the following properties hold.

1. ; � L � I(P ) implies 9i: 
i�
= L .

2. ij = � and kl 2 A imply i 6= k .

3. ij = kl = � implies 9j0: Pij0 � Pkl and ij0 = � .
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4. i 6= k implies 
i�
6= 

k�
.

5. ij:Pij � kl:Pkl , ij 2 A , and i 6= k imply 
i�
6� 

j�
.

The following proposition plays a key role for the completeness proof of our axiomatization.

Proposition 4.9 If P is a �nite process, then there exists a normal form N such that `E N = P .

Rewriting a process in its normal form means to restructure its locations. After this is done,
standard techniques used in CCS (cf. [23]) can be applied in order to show our axiomatization
complete.

The following theorem presents the main result of this section, namely that the axioms in the
Tables 3, 4, and 5 equationally characterize '+ .

Theorem 4.10 (Soundness & Completeness)

For �nite processes P;Q 2 P we have: `E P = Q i� P '+ Q .

4.2 Logical Characterization of '+

In this section, we provide a logical characterization of '+ . We adapt the well-known Hennessy-
Milner Logic [23] by changing the semantics of the modal operators.

The syntax of the logic we use is de�ned by the following BNF where L � A n f�g .

� ::= tt j :� j � ^ � j h�i� j h�; Li�

The set of all formulae is denoted by F and ranged over by �;	; : : : . For notational con-
venience, we also introduce the following dual operators: tt=df :�, � _ 	=df :(:� ^ :	),
[�]�=df :h�i(:�), and [�; L]�=df :h�; Li(:�) .

We de�ne the satisfaction relation j= � P�F between processes and formulae inductively on the
structure of formulae.

P j= tt

P j=:� if not P j=�

P j=� ^	 if P j=� and P j=	

P j=h�i� if 9P 0 2 P: P
�
�!P 0 and P 0 j=�

P j=h�; Li� if 9P 0 2 P ; m 2 Loc: P
m;�
�!P 0 ; II[m](P ) � L ; and P 0 j=�

Intuitively, P satis�es h�; Li� if P possesses an �-transition from some location m to a process
satisfying � . Moreover, the preemptive power of P with respect to m may be at most L .

The above de�ned logic characterizes prioritized strong congruence.

Theorem 4.11 (Characterization of '+)
Let P;Q 2 P . We have P '+Q if and only if f� 2 F jP j=�g = f� 2 F jQ j=�g .
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5 Prioritized Observational Congruence

The semantic congruence developed in the previous section is too strong for verifying systems in
practice. The prioritized strong congruence requires that two equivalent systems have to match
exactly each others transitions, even those labeled with internal actions. Therefore, we want to
abstract from internal actions and develop a semantic congruence from the point of view of an
external observer. Our approach follows the lines of [26, 22]. We start o� with the de�nition of
a naive prioritized weak bisimulation which abstracts from internal actions. This relation is an
adaption of observational equivalence [23].

De�nition 5.1 (Naive Weak Transition Relation)
We de�ne:

1. ̂=df � if  2 f�; �g and ̂=df  , otherwise.

2.
�

=)� =df(f
m;�
�! jm 2 Locg [

�
�! )�

3.
�

=)� =df
�

=)� �
�
�!�

�
=)�

4.
m;�
=)� =df

�
=)� �

m;�
�!�

�
=)�

Now, we de�ne the naive prioritized weak bisimulation as follows.

De�nition 5.2 (Naive Prioritized Weak Bisimulation)
A symmetric relation R � P�P is a naive prioritized weak bisimulation if for every hP;Qi 2 R ,

 2 A , and m 2 Loc the following condition holds.

P
m;
�! P 0 implies 9Q0; n: Q

n;̂
=)� Q0 and hP 0; Q0i 2 R :

We write P �� Q if there exists a naive prioritized weak bisimulation R such that hP;Qi 2 R .

Since no initial action sets are considered, it is easy to see that �� is no congruence. In order
to get closer to our goal to de�ne a prioritized observational congruence, we rede�ne the weak
transition relation.

De�nition 5.3 (Prioritized Weak Transition Relation)

We introduce the following notations where L;M � A n f�g .

1. �̂ =df � and â=df a .
�̂ =df � and â=df a .

2. P
m;�
�!
L
P 0 i� P

m;�
�!P 0 and II[m](P ) � L .

3.
�

=) =df(f
�
�!g [ f

m;�
�!
;
jm 2 Locg)�

4.
�

=) =df
�

=) �
�
�!�

�
=)

5.
�

=)
L
=df(f

�
�!g [ f

m;�
�!
L
jm 2 Locg)�

6. P
m;�
=)
L;M

P 0 i� 9P 00; P 000: P
�

=)
L
P 00m;�

�!
L
P 000 �

=) P 0 and II(P 00) �M .
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Intuitively, P
m;�
�!
L
P 0 means that P can evolve to P 0 by performing action � from location m and

the preemptive power of P at location m is at most L . Recall that the prioritized initial action
set of a process (with respect to a location) is a measure for its preemptive power. Actually, there
are two slightly di�erent perspectives of preemption which are encoded in the sets L andM in the

de�nition of P
m;�
=)
L;M

P 0 , respectively. Whereas L is concerned with the inuence of the environment,

i.e. a parallel context, on actions performed on the path from P to P 000 , the set M reects the
impact of P 00 on potential synchronization partners (cf. Rule Com3). Note that the de�nition of

P
�

=)
L
P 0 reects our intuition that internal actions, and, therefore, their locations are unobservable.

Additionally, a parallel context of P is not inuenced by internal actions performed by P since
priorities arising from di�erent sides of the parallel operator are incomparable. Therefore, the

parameter M is missing in the de�nition of the relation
�

=)
L
.

De�nition 5.4 (Prioritized Weak Bisimulation)
A symmetric relation R � P � P is a prioritized weak bisimulation if for every hP;Qi 2 R ,

� 2 A , � 2 A , and m 2 Loc the following conditions hold.

1. 9Q0; Q00: Q
�

=) Q00 �
=) Q0; II(Q00) � II(P ); and hP;Q0i 2 R .

2. P
�
�!P 0 implies 9Q0: Q

�̂
=) Q0 and hP 0; Q0i 2 R .

3. P
m;�
�!P 0 implies 9Q0; n: Q

n;�̂
=)
L;M

Q0; L = II[m](P ); M = II(P ); and hP 0; Q0i 2 R .

We write P �Q if there exists a prioritized weak bisimulation R such that hP;Qi 2 R .

From this de�nition, we may directly conclude that � is the largest prioritized weak bisimulation,
and that � is an equivalence relation.

The �rst condition of De�nition 5.4 guarantees that prioritized weak bisimulation is compositional
with respect to the parallel operator. Its necessity is best illustrated by the following example.

The processes P
def
= � :a:0 and Q

def
= a:0 would be considered as equivalent if the �rst condition

would be absent. However, the parallel context C[X ]
def
= X j(a:0 + b:0) is able to distinguish

them since C[P ] can perform a b -transition while C[Q] cannot perform a weak b -transition.
This example is surprising because the transition relation of CCSprio with respect to prioritized
transitions is exactly de�ned as in CCS.

Proposition 5.5 The equivalence relation � is a congruence relation with respect to all CCSprio

operators except the summation operator + , the distributed summation operator � , and recursion.

In contrast to [26], the summation �x presented in [23] is not su�cient in order to achieve a

congruence relation. E.g., let C
def
= � :D and D

def
= �:C . Now, de�ne P

def
= �:C and Q

def
= � :D . By

De�nition 5.4 we may observe P �Q , but P + a:0 6� Q + a:0 since the former can perform
an a-action whereas the latter cannot. It turns out that we have to require that observationally
congruent processes must have the same initial actions. This requirement is stronger than the
�rst condition of De�nition 5.4.

De�nition 5.6 (Prioritized Observational Congruence)

We de�ne P �+Q if for all � 2 A , � 2 A , and m 2 Loc the following conditions hold.
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1. I(P ) = I(Q)

2. P
�
�!P 0 implies 9Q0: Q

�
=) Q0 and P 0�Q0 .

3. P
m;�
�!P 0 implies 9Q0; n: Q

n;�
=)
L;M

Q0; L = II[m](P ); M = II(P ); and P 0�Q0 .

4. Q
�
�!Q0 implies 9P 0: P

�
=) P 0 and P 0�Q0 .

5. Q
m;�
�!Q0 implies 9P 0; n: P

n;�
=)
L;M

P 0; L = II[m](Q); M = II(Q); and P 0�Q0 .

Now, we are able to present the main result of this section.

Theorem 5.7 The relation �+ is the largest congruence contained in �� .

We want to conclude this section with a remark on the logical characterization of � . De�ning a
suitable logic can be done by replacing the h�; Li operators of the logic presented in Section 4.2
by new operators hh�; L;Mii for M � A n f�g where a process P 2 P satis�es the formula

hh�; L;Mii� if there exists a process P 0 2 P and a location m 2 Loc such that P
m;�
=)
L;M

P 0 and

P 0 j=�. The operators h�i have also to be replaced by operators hh�ii where P j=hh�ii� if there

exists a process P 0 2 P such that P
�

=) P 0 and P 0 j=�. Moreover, the logic has to be extendeded
by new operators *L� in order to match the �rst requirement of De�nition 5.4 where P j= *L�

if 9P 0; P 00: P
�

=) P 00 �
=) P 0 , II(P 00) � L , and P 0 j=� . With these de�nitions, a characterization

of � can be done along the lines of [23].

6 Example

In this section, we demonstrate the usefulness of CCSprio for the veri�cation of distributed systems
by a typical example which involves an architecture scheme that is realized in many of todays
computers.

Our example system consists of some application which receives and writes data from two memory
benches (cf. Figure 2). In order to improve the e�ciency in a computer system each bench is
connected to a direct-memory-access (DMA) controller.

dma dma

Appl

Bench1 Bench2

Figure 2: Example system

To overcome the low speed of most memory modules, the application Appl works alternately with
each memory bench. We model Appl in CCSprio by

Appl
def
= fetch1:fetch2:Appl :
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Each memory bench Bench1 and Bench2 is continuously able to serve the application or to allow
the external DMA controller to access the memory (action dma). However, if a memory bench has
to decide between both activities, then it chooses the former since the progress of the application
is considered as more important. Consequently, we de�ne

Bench1
def
= fetch1:Bench1+ dma:Bench1

and

Bench2
def
= fetch2:Bench2+ dma:Bench2 :

Now, the overall system Sys is given by

Sys
def
=(Appl jBench1 jBench2) n ffetch1; fetch2g :

Since the application uses the memory cells alternately, the DMA is expected to be allowed to

access the free memory bench. Therefore, the speci�cation is simply Spec
def
= dma:Spec .

ττ

dma

dma

Figure 3: CCSprio semantics of the example system

The CCSprio semantics of Sys is given in Figure 3 where we abstract from the locations of the
unprioritized action dma. It is easy to see that the symmetric closure of

fhSpec; Sysi; hSpec; (fetch2:Appl jBench1 jBench2) n ffetch1; fetch2gig

is a prioritized weak bisimulation. Note that Condition (1) of De�nition 5.4 is trivially satis�ed
since Spec and Sys do not contain any visible prioritized actions. Therefore, we obtain Spec� Sys

as expected. However, in the traditional approach [13, 26] the dma-loops in the labeled transition
system of Sys would be missing, and Sys would not be observationally equivalent to Spec. In other
words, the traditional approach would not allow a memory bench to engage in a communication,
e.g. with a DMA controller, at any time although the application does not need the bench at all
moments. This example shows that traditional approaches to priorities in process algebras which
consider a global notion of preemption have undesired side-e�ects and are often not useful for
modeling and verifying distributed systems.

7 Discussion and Related Work

Several approaches have been made in order to extend traditional process algebras with priorities.
They di�er in their objectives which priority aspects of real systems or programming languages
to model. The objectives arise from modeling interrupt systems [3], from programming language
constructs like the PRIALT-construct in occam [10, 20], and from e�orts to combine real-time
approaches with priorities [9, 16].
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Another approach for extending the process algebra CCS [23] has been proposed in [13] where
priorities are assigned to actions in a globally dynamic way, i.e. in one state of a system action �

may have priority over action � while the situation may be converse in another state of the system.
For that process algebra a complete semantic theory has been developed in an analogous fashion
to [23] which includes congruences based on strong and weak bisimulation and their axiomatic
characterizations [26].

The di�erence of most above mentioned process algebras with respect to their expressiveness of
priority constraints has been studied in [31].

Our process algebra CCSprio is based on the approach in [13, 26] where we adopt all design deci-
sions except the notion of global preemption. Therefore, CCSprio has the following characteristics.
Only transitions labeled by complementary actions with the same priority may engage in a syn-
chronization. As in [13], we consider actions with di�erent priorities as di�erent channels. This
is su�cient for most cases occurring in practice [14] and avoids that priorities values have to
be adjusted in case of communication. Existing approaches to priorities often take the sum of
the priorities of the sending and receiving action as the priority of the resulting synchronization
action [16, 17]. Thus, prioritized �-actions may always have priority over unprioritized �-actions,
even if the system is composed with another concurrent system, since relative priorities are pre-
served. However, that approach, mostly considered in CSP-based frameworks, is inconvenient.
The more parallel components participate in a synchronization, the higher the priority of a syn-
chronized action becomes. Other adjustments, e.g. taking the minimum or maximum priority of
the communicating actions, are also possible and well motivated for some examples.

The strong relation of CCSprio to the process algebra proposed in [13, 26] can be made precise
by the following fact. If we globalize preemption in our framework by de�ning [m] =df Loc for
all m 2 Loc , our operational semantics and our behavioral relations reduce to the corresponding
notions presented in [13, 26].

For a comparison with our work it is of importance that all the above mentioned traditional
approaches are provided with a semantics which deals with global preemption. In contrast, we
consider a notion of localized preemption. This idea is also presented in [17], where a CSP-based
language is extended with priorities. However, this process algebra su�ers from a complicated
semantics, especially for the hiding operator. The authors only conjecture that their strong
bisimulation is a congruence. They do not provide an axiomatization for their equivalence and
do not present a theory for observational congruence.

We want to remark on our notion of strong and weak bisimulation. Since our semantic theory re-
ects local preemption, locations are implicitly occurring in our semantic equivalences. However,
in contrast to [1, 8], where CCS has been syntactically extended by locations and a bisimulation
called observational equivalence respecting localities has been developed, locations are not explic-
itly considered in our bisimulations. Our objective is not to observe locations but to observe local
preemption which is necessary for causal reasoning in process algebras with priorities. However, if
we abstract from priorities, our prioritized observational equivalence lies in between observational
equivalence [23] and location equivalence.

8 Conclusions and Future Work

We have presented a process algebra with distributed priorities, called CCSprio, which is more
suitable for modeling and verifying distributed systems than traditional approaches. The key
idea for this algebra is to take the distribution of the considered system, i.e. the location of
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actions, into account for de�ning a notion of localized preemption. We have developed a semantic
theory for this algebra and have shown its suitability by an example which models a direct-
memory-access scheme. However, it remains to show how our prioritized bisimulations can be
computed e�ciently before implementing CCS

prio in an automated veri�cation tool [15]. In order
to apply standard algorithms [21, 27] the bisimulations have to be characterized using a transition
relation that is not parameterized with prioritized initial action sets. Moreover, developing an
axiomatization of prioritized observational congruence would help for comparing it with other
behavioral relations such as location equivalence [1, 8].

We have seen that the introduction of priorities in process algebras provides a motivation for
considering the distribution of systems and, hereby, gives a strong argument for rejecting the view
\parallelism = nondeterminism" when dealing with priorities. Having done the �rst step towards
a non-interleaving semantics, it is worth investigating how our notion of localized preemption
goes along with traditional non-interleaving semantics like transition systems with independence,
asynchronous transition systems [33] or Petri Net semantics [6, 32]. For the former model, a
bisimulation has already been proposed that coincides with location equivalence for special classes
of processes [25]. Because of the relationship between our prioritized weak bisimulation and
location equivalence mentioned above, this direction of research is especially interesting.
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A Proofs

In the appendix, we prove the most interesting cases of the above propositions and theorems.
It includes especially the largest congruence proofs of the prioritized strong congruence '+ and
the prioritized weak congruence �+ for CCSprio. Moreover, we prove the completeness of the
axiomatization of '+ . Due to tedious case distinctions the proofs are most often not complete.
However, we give all non-standard parts in full detail. The other parts follow exactly along the
lines of the corresponding proofs in [23].

A.1 Proof of Proposition 4.3

Here, we present an outline of the proof that '+ is a congruence. The most cases of the proof
are standard (cf. [22]) or especially long; e.g. the compositionality proof of '+ with respect to
the recursion operator requires the introduction of prioritized strong bisimulation up to similar
to the according notion presented in [22].

In the remainder, we restrict ourselves to prove the compositionality of '+ with respect to
summation and parallel composition. The following lemma is useful for the congruence proofs of
'+ and �+ with respect to summation. Therefore, we present it slightly more general than it is
necessary for proving Proposition 4.3.

Lemma A.1 Let P;Q 2 P and m;n 2 Loc . Then the following properties hold for all R 2 P
and o 2 Loc .

1. P '+Q implies I(P ) = I(Q)

2. II[n](Q) � II[m](P ) implies II[n�l](Q+R) � II[m�l](P +R)

3. II(Q) � II(P ) implies II[o�r](Q+R) � II[o�r](P + R)

4. II(Q) � II(P ) implies II(Q+R) � II(P +R) .

Proof:

1. This part follows directly from the de�nition of '+ .

2.

II[n�l](Q+R)

(Def. 3.1) = II[n](Q) [ II(R)

(premise) � II[m](P ) [ II(R)

(Def. 3.1) = II[m�l](P +R)

3.

II[o�r](Q+ R)

(Def. 3.1) = II(Q)[ II[o](R)

(premise) � II(P ) [ II[o](R)

(Def. 3.1) = II[o�r](P +R)
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4.

II(Q+R)

(def. of II(�)) = II(Q)[ II(R)

(premise) � II(P ) [ II(R)

(def. of II(�)) = II(P + R)

�

Now, we are able to prove the following proposition.

Proposition A.2 P '+ Q implies P + R'+ Q+R for all processes R .

Proof: According to the de�nition of '+ it is su�cient to prove that

R=dffhP +R;Q+ Ri jP '+ Qg [ Id

is a prioritized strong congruence where Id is the identity relation on P .

Let P +R
p;�
�!V for some V 2 P and p 2 Loc . We have to show the existence of some W 2 P and

q 2 Loc such that Q+R
q;�
�!W and hV;W i 2 R . Therefore, consider the following case distinction

according to the operational rules for summation.

1. Case. V � P 0 and p = m � l .

Here, we conclude

P + R
m�l;�
��!P 0

(Sum1) implies P
m;�
�!P 0 and � =2 I(R)

(P '+ Q) implies 9Q0; n: Q
n;�
�!Q0 and P 0'+Q0 and

II[n](Q) � II[m](P ) and � =2 I(R)

(Sum1, def. of R , implies 9Q0; n: Q+ R
n�l;�
�!Q0 and hP 0; Q0i 2 R; and

La. A.1(2)) II[n�l](Q+ R) � II[m�l](P + R) :

Now, we obtain our claim by choosing W =df Q
0 and q=df n � l .

2. Case. V � R0 and p = o � r .

In this case, we observe

P +R
o�r;�
�!R0

(Sum2) implies R
o;�
�!R0 and � =2 I(P )

(P '+ Q) implies R
o;�
�!R0 and � =2 I(Q)

(Sum2, def. of R , implies Q+ R
o�r;�
�!R0 and hR0; R0i 2 R; and

La. A.1(1) and (3)) II[o�r](Q+R) = II[o�r](P + R) :

By choosing W =df R
0 and q=df o � r , we have �nished the proof.
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The above argument is su�cient to prove the second condition of the de�nition of '+ . The �rst
condition is standard since the semantics of the summation operator with respect to prioritized
transitions coincides with that of CCS. �

For proving the compositionality of '+ with respect to parallel composition we need the following
lemma.

Lemma A.3 Let P;Q;R 2 P . Then the following properties hold for all m;n; o 2 Loc .

1. P '+Q implies II(P ) = II(Q) .

2. II[n](Q) � II[m](P ) implies II[n�L](Q jR) � II[m�L](P jR) .

3. II[o�R](Q jR) = II[o�R](P jR)

4. II[n](Q) � II[m](P ) implies II[hn�L;o�Ri](Q jR) � II[hm�L;o�Ri](P jR) .

5. II(Q) � II(P ) implies II(Q jR) � II(P jR) .

Proof:

1. This property is an immediate consequence of Lemma A.1(1).

2.

II[n�L](Q jR)

(Def. 3.1) = II[n](Q)

(premise) � II[m](P )

(Def. 3.1) = II[m�L](P jR)

3.

II[o�R](Q jR)

(Def. 3.1) = II[o](R)

(Def. 3.1) = II[o�R](P jR)

4.

II[hn�L;o�Ri](Q jR)

(Def. 3.1) = II[n](Q)[ II[o](R)

(premise) � II[m](P ) [ II[o](R)

(Def. 3.1) = II[hm�L;o�Ri](P jR)
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5.

II(Q jR)

(def. of II(�)) = II(Q)[ II(R)

(premise) � II(P ) [ II(R)

(def. of II(�)) = II(P jR)

�

Now, we can prove the following.

Proposition A.4 P '+ Q implies P jR'+ Q jR for all processes R 2 P .

Proof: According to the de�nition of '+ it is su�cient to prove that

R=dffhP jR;Q jRi jP '
+ Qg

is a prioritized strong congruence.

Let P jR
p;�
�!V for some V 2 P and p 2 Loc . We have to show the existence of some W 2 P and

q 2 Loc such that Q jR
q;�
�!W , II[q](Q jR) � II[p](P jR) , and hV;W i 2 R . Consider the following

case distinction according to the operational rules for parallel composition.

1. Case. V � P 0 jR and p = m � L . We conclude

P jR
m�L;�
��!P 0 jR

(Com1) implies P
m;�
�! P 0 and II[m](P ) \ II(R) = ;

(P '+ Q) implies 9Q0; n: Q
n;�
�!Q0 and P 0'+Q0 and

II[n](Q) � II[m](P ) and

II[m](P ) \ II(R) = ;

(set theory) implies 9Q0; n: Q
n;�
�!Q0 and P 0'+Q0 and

II[n](Q) � II[m](P ) and

II[n](Q)\ II(R) = ;

(Com1, implies 9Q0 jR; n:Q jR
n�L;�
��!Q0 jR and

def. of R , hP 0 jR;Q0 jRi 2 R and

La. A.3(2)) II[n�L](Q jR) � II[m�L](P jR) :

By choosing W =df Q
0 jR and q=df n � L , we are done.

2. Case. V � P jR0 and p = o �R .
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Here, we observe

P jR
o�R;�
��!P jR0

(Com2) implies R
o;�
�!R0 and II[o](R) \ II(P ) = ;

(Lemma A.3(1)) implies R
o;�
�!R0 and II[o](R) \ II(Q) = ;

(Com2, implies Q jR
o�R;�
��!Q jR0 and

def. of R , hP jR0; Q jR0i 2 R and

La. A.3(3)) II[o�R](P jR) = II[o�R](Q jR) :

Our claim follows by choosing W =df Q jR0 and q=df o �R .

3. Case. V � P 0 jR0 and p = hm � L; o �Ri .

In this case, we establish

P jR
hm�L;o�Ri;�
������!P 0 jR0

(Com3) implies P
m;a
�!P 0 and II[m](P ) \ II(R) = ; and

R
o;a
�!R0 and II[o](R)\ II(P ) = ;

(P '+ Q) implies 9Q0; n: Q
n;a
�!Q0 and P 0'+ Q0 and

II[n](Q) � II[m](P ) and

II[m](P ) \ II(R) = ; and R
o;a
�!R0 and

II[o](R) \ II(P ) = ;

(set theory & La. A.3(1)) implies 9Q0; n: Q
n;a
�!Q0 and II[n](Q) � II[m](P ) and

II[n](Q)\ II(R) = ; and R
o;a
�!R0 and

II[o](R) \ II(Q) = ; and P 0'+ Q0

(Com3, implies 9Q0 jR0; n: Q jR
hn�L;o�Ri;�
�����!Q0 jR0

def. of R , and hP 0 jR0; Q0 jR0i 2 R and

La. A.3(4)) II[hn�L;o�Ri](Q jR) � II[hm�L;o�Ri](P jR) :

According to the de�nition of R and by de�ning W =df Q
0 jR0 and q=dfhn � L; o �Ri , we

have �nished the proof.

Proving the �rst condition of De�nition 4.2 is standard since the semantics of the parallel operator
with respect to prioritized transitions coincides with those of CCS. �

A.2 Proof of Theorem 4.4

In order for the processes used in the proof of Theorem 4.4 to be well-de�ned, we present the
following lemma.

Lemma A.5 (Finite Sorts)

Let P 2 P be a CCSprio process. Then the unprioritized sort of P , i.e. the set of unprioritized
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actions occurring in the semantics of P , and the prioritized sort of P , i.e. the set of prioritized

actions occurring in the semantics of P , are �nite. We denote the unprioritized sort of P by

S(P ) and the prioritized sort of P by S(P ) .

This observation is an immediate consequence of the fact that process terms are �nite, and
relabelings f satisfy the condition jf j f() 6= g j<1 .

Now, we prove Theorem 4.4 which states that the congruence '+ is the largest congruence
contained in ' .

Proof: The largest congruence contained in ' is characterized as the relation 'a � P�P which
satis�es for all P;Q 2 P:

P 'aQ i� 8CCSprio-contextsC:C[P ] ' C[Q] :

Since '+ is a congruence, we know that '+ � 'a . In order to prove the inclusion 'a � '+ , it
su�ces to show that

R=dffhP;Qi jCPQ[P ] ' CPQ[Q]g

is a prioritized strong congruence for some CCSprio-context C[X ] . For our purposes we de�ne
CPQ[X ] =df X jHPQ for P;Q 2 P where

HPQ
def
=

X

L�S(P )[S(Q)

� :(dL:HPQ +DL)

and

DL=df

X
c2L

c:0 :

Note that HPQ is well-de�ned because of Lemma A.5. We assume that dL =2 S(P ) [ S(P ) [
S(Q) [ S(Q) . Such dL's exist because the sort and the prioritized sort of a process are always
�nite according to Lemma A.5. Finally, we want to remark that the context CPQ is adapted
from [26].

Now, let P;Q 2 P satisfying CPQ[P ] ' CPQ[Q] and P
m;�
�!P 0 . Therefore, CPQ[P ] can engage in

the transitions illustrated in the left hand side of Figure 4 where L = fc j c 2 (S(P ) [ S(Q)) n
II[m](P )g . Since CPQ[P ] ' CPQ[Q] , the process CPQ[Q] has to match each step.

In order to be able to match the �rst step, CPQ[Q] has to choose exactly the same branch of
HPQ yielding to the process dL:HPQ + DL , because only this process is able to execute the
distinguished action dL . For matching the second step, the process Q must be able to perform an
�-transition from some location n 2 Loc . According to our semantics for the parallel composition,
the condition

II[n](Q)\ II(dL:HPQ +DL) = ;

must be satis�ed. Because of the choice of L , this implies

II[n](Q) � II[m](P ) :

Figure 4 shows the existence of some Q0 2 P satisfying CPQ[P 0] ' CPQ[Q0] . Since S(P 0) � S(P )
and S(Q0) � S(Q) it follows that CP 0Q0 [P 0] ' CP 0Q0 [Q0] as desired.

The case where P performs a prioritized transition needs no special attention since the De�-
nitions 4.1 and 4.2 are identical in this case. Summarizing, we have shown that all conditions
of De�nition 4.2 are satis�ed, and we may conclude that R is a prioritized strong congruence.
Hence, P '+Q , which completes the proof. �
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CPQ[P ] � P jHPQ ' Q jHPQ � CPQ[Q]

?

�

?

�

P jdL:HPQ +DL ' Q jdL:HPQ +DL

?

m � L; �

?

n � L; �

P 0 jdL:HPQ +DL ' Q0 jdL:HPQ +DL

?

dL

?

dL

CPQ[P
0] � P 0 jHPQ ' Q0 jHPQ � CPQ[Q

0]

Figure 4: Largest congruence proof - illustration

A.3 Proof of Theorem 4.10

For the soundness of all the axioms, which were presented in the Tables 3, 4, and 5, except
Axioms (S2) and (S3) we observe that those axioms are true when replacing = by '+ . The Ax-
ioms (S2) and (S3) involve a side condition. Their soundness follows immediately by considering
Lemma 4.6 that can be proven correct by reasoning on the structure of �nite process terms.

The key idea for the completeness proof of the axiomatization is to abstract from locations or their
prioritized initial action sets by rewriting �nite processes into a special normal form. Our normal
form as de�ned in De�nition 4.8, is not only a summation form (cf. [23] and De�nition 4.7),
but also let us reduce the completeness proof to the completeness proof of the axiomatization of
strong bisimulation for CCS as presented in [23].

We �rst argue that every �nite process can be rewritten in its normal form as de�ned in De�-
nition 4.8 (cf. Proposition 4.9). This normal form possesses an incomparable summand for each
subset of its prioritized initial actions. Moreover, terms pre�xed by an unprioritized action are
copied to each distributed summand which already has another term pre�xed by the same priori-
tized action. Finally, if there exists a term pre�xed by an unprioritized action in two incomparable
summands and the initial action set of one summand is included in that of the other, then the
pre�xed term is deleted in the summand with the larger prioritized initial action set.

Let P 2 P . First, we transform P into its summation form S (see De�nition 4.7). This procedure
corresponds to that in CCS and uses Axioms (A1){(A4), (iA1){(iA4), (E), (Res1){(Res3), (iRes3),
(Rel1){(Rel3), and (iRel3). The formal proof that every �nite process can be rewritten into
summation form can be done by induction on the depth of P which is de�ned as in [23]. Next,
we rewrite S into a term N which satis�es the conditions stated in De�nition 4.8, i.e N is in
normal form. We achieve Condition (1) by using the Exchange Axioms (Ic1) and (Ic2) together
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with the Distributive Axioms (D1), (D2) and (D3). Moreover, we use Axiom (P) to establish
Condition (2) and Saturation Axiom (S1) to establish Condition (3). By using Axioms (S2), (S3),
(Ic1) and (Ic2) we obtain Conditions (4) and (5). Also here, an induction argument on the depth
of S is necessary to show formally the existence of such a normal form N which is equal to S in
E . Combining both steps, the validity of Proposition 4.9 follows.

In order to prove the completeness part of Theorem 4.10, let P and Q be �nite processes satisfying
P '+Q which are already given in normal form. We show that P and Q are identical up to
(incomparable) associativity, commutativity, and idempotence such that they can be rewritten
as syntactically equal terms by using Axioms (A1), (A2), (A3), (iA1), (iA2), and (A3). Formally,
we reason by induction on the maximum depth of the processes P and Q . The induction base,
i.e. both processes correspond to 0 , is trivial. For the induction step, the key is the following
lemma. Its correctness follows by the conditions satis�ed by terms in normal form.

Lemma A.6
Let P �

Lm
i=1 Pi where Pi=df

Pni
j=1 ij:Pij and Q �

Lm0

k=1Qk where Qk =df
Pn0

k

l=1 �kl:Qkl be in

normal form satisfying P '+ Q . Then we have:

81 � i � m 91 � k � m0: Pi'
+Qk

and

81 � k � m0 91 � i � m: Qk '
+ Pi :

Using the above lemma we �nally get terms with only one location \on top level", i.e. locations
do not play a role any longer. In this case, prioritized strong bisimulation reduces on top level
to standard strong bisimulation. For those terms we can apply the standard technique presented
in [23] together with our induction hypothesis in order to show that equivalent terms of those
forms are equal with respect to our equations. Note that the axioms in [23] our included in our
set of axioms.

Now, we are almost done. Perhaps, we additionally have to apply the Axioms (A1), (A2), (A3),
(iA1), (iA2), and (iA3) to rewrite P and Q such that they are syntactically equal. Summarizing,
we have shown that `E P = Q , as desired.

A.4 Proof of Theorem 4.11

Most proof parts for Theorem 4.11, which states that our logic characterizes prioritized strong
bisimulation, are similar to the corresponding ones presented in [23].

First, we de�ne a characterization of prioritized strong congruence for �nite-branching transi-
tion systems over A . A transition system hP;A;�!; P i is called �nite-branching if the set
fP 00 jP 0 m;

�! P 00 ;  2 A ; m 2 Locg is �nite for all reachable states P 0 of the process P .

De�nition A.7 Let hP;A;�!; P i and hP;A;�!; Qi be �nite-branching transition systems. We

de�ne '+
0 = P � P and P '+

k+1Q for some k 2 N if the following properties hold:

1. P
�
�!P 0 implies 9Q0: Q

�
�!Q0 and P 0'+

k Q
0 .

2. P
m;�
�!P 0 implies 9Q0; n: Q

n;�
�!Q0 ; II[n](Q) � II[m](P ) ; and P 0'+

k Q
0 .

3. Q
�
�!Q0 implies 9P 0: P

�
�!P 0 and P 0'+

k Q
0 .
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4. Q
m;�
�!Q0 implies 9P 0; n: P

n;�
�!P 0 ; II[n](P ) � II[m](Q) ; and P 0'+

k Q
0 .

The proof of the next proposition follows the lines in [23]. Note that for all processes in CCSprio

their corresponding transition systems are �nite-branching.

Proposition A.8 Let P;Q 2 P . We have P '+ Q if and only if P '+
iQ for all i 2 N .

Now we are able to prove Theorem 4.11. By using Proposition A.8 it is su�cient to establish the
following two lemmata.

Lemma A.9 Let P;Q 2 P , i 2 N , and � 2 F such that P '+
iQ and P j=� . Then Q j=�

holds.

Proof: We prove the lemma by induction on i where the induction step is divided into several
cases according to the structure of � . The only non-standard case is � = h�; Li	 for � 2 A

and L � A n f�g . By de�nition of j= we conclude the existence of a process P 0 2 P and a
location m 2 Loc such that P

m;�
�!P 0 , II[m](P ) � L , and P 0 j=	 . Since P '+

iQ we also know

of the existence of some Q0 2 P and n 2 Loc such that Q
n;�
�!Q0 , II[n](Q) � II[m](P ) , and

P 0'+
i�1Q

0 . We conclude that II[n](Q) � L and, by the induction hypothesis, that Q0 j=	 .
Therefore, Q j=h�; Li	, as desired. �

Lemma A.10 Let P;Q 2 P and i 2 N such that P 6'+
iQ holds. There exists a formula � 2 F

such that P j=� but Q 6j=� .

Proof: Again, we prove this lemma by induction on i . The induction base is trivial since the
premise P 6'+

0Q does not hold. Now, let i > 0 and P 6'+
iQ . We have to �nd a formula � 2 P

such that P j=� and Q 6j=� . Since P 6'+
iQ we have P

m;
�!P 0 for some  2 A , m 2 Loc , and

P 0 2 P which cannot be matched by a step of Q . The case where  2 A follows the standard
lines. Now, let  = � 2 A , i.e. we know that whenever Q

n;�
�!Q0 and II[n](Q) � II[m](P ) then

P 0 6'+
i�1Q

0 . Let fQ0 jQ
n;�
�!Q0 and II[n](Q) � II[m](P )g = fQj j j 2 Jg for some index set J . By

induction hypothesis we conclude the existence of formulae 	j , for j 2 J , such that P 0 j=	j and
Qj 6j=	j . Now, de�ne �=dfh�; Li

V
j2J 	j where L=df II[m](P ). Because of the choice of L , it

is easy to see that P j=� . Since no �-derivative of Q from location n with II[n](Q) � L satis�esV
j2I 	j , we have Q 6j=� . �

A.5 Proof of Proposition 5.5

In this section, we present an outline of the proof that � is a congruence for all operators except
summation and recursion. The most interesting case is the compositionality with respect to
parallel composition which we give in full detail.

Proposition A.11 P � Q implies P jR � Q jR for all processes R .
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Proof: According to the de�nition of � it is su�cient to prove that

R=dffhP jR;Q jRi jP �Qg

is a prioritized weak bisimulation.

Let P jR
p;�
�!V for some V 2 P and p 2 Loc . We have to show the existence of some W 2 P and

q 2 Loc such that Q jR
q;�
=)
L;M

W and hV;W i 2 R where L = II[p](P jR) and M = II(P jR) . Consider
the following case distinction according to the operational rules for parallel composition.

1. Case. P
m;�
�!P 0 and II[m](P ) \ II(R) = ; , i.e. V � P 0 jR and p = m � L

Since P �Q there exists a process Q0 2 P and a location n 2 Loc satisfying Q
n;�̂
=)
L0;M 0Q

0 ,

L0 = II[m](P ) , M
0 = II(P ) , and P 0�Q0 .

According to the de�nition of the prioritized weak transition relation, we have the following
situation:

9s; t 2 N 80 � i < s 80 < j < t 9Qi; Qs+j 2 P 9ni; ns+j 2 Loc

where Q0 � Q;Qs+t � Q0 such that

(a) Qi

ni;�
�!
L0
Qi+1 or Qi

�
�!Qi+1 ,

(b) Qs

n;�̂
�!
L0
Qs+1 and II(Qs) �M 0 , and

(c) Qs+j

ns+j ;�
�!
;

Qs+j+1 or Qs+j
�
�!Qs+j+1 .

Considering the parallel composition with the process R , we obtain the following results.

(a) If Qi

ni;�
�!
L0
Qi+1 , then we have Qi jR

ni�L;�
�!
L

Qi+1 jR by Rule Com1 where L = II[m�L](P jR) .
This is because

i. L = L0 (by Def. 3.1),

ii. (II[ni](Qi) \ II(R)) � (II[m](P ) \ II(R)) = ; (since II[ni](Qi) � II[m](P )), and

iii. II[ni�L](Qi jR) � II[m�L](P jR) (by Lemma A.3(2)).

If Qi

�
�!Qi+1 , then we obtain Qi jR

�
�!Qi+1 jR by Rule Com1.

(b) Here, we conclude Qs jR
n;�̂
�!
L
Qs+1 jR where L is de�ned as above, since

i. (II[n](Qs)\ II(R)) � (II[m](P ) \ II(R)) = ; (because II[n](Qs) � II[m](P )),

ii. II[n�L](Qs jR) � II[m�L](P jR) (by Lemma A.3(2)).

Moreover, II(Qs jR) �M for M = II(P jR) (by Lemma A.3(5)).

(c) If Qs+j

ns+j;�
�!
;

Qs+j+1 , then Qs+j jR
ns+j�L;�
�!
;

Qs+j+1 jR holds by Rule Com1. The reason
for this is, that

i. (II[ns+j ](Qs+j) \ II(R)) � (; \ II(R)) = ; (since II[ns+j](Qs+j) � ;), and

ii. II[ns+j�L](Qs+j jR) � ; (by Lemma A.3(2)).

If Qs+j
�
�!Qs+j+1 , then we may immediately conclude Qs+j jR

�
�!Qs+j+1 jR by Rule

Com1.

According to the de�nition of the prioritized weak transition relation, we have shown that

Q jR
n�L;�̂
=)
L;M

Qs+t jR . By choosingW =df Qs+t jR and q=df n �L , and since hP jR;Qs+t jRi 2
R , we are done.
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2. Case. R
o;�
�!R0 and II[o](R) \ II(P ) = ; , i.e. V � P jR0 and p = o �R

Since P �Q there exists processes Q0; Q00 2 P such that Q
�

=) Q00 �
=) Q0 , II(Q00) � II(P ) ,

and P �Q0 .

According to the de�nition of the prioritized weak transition relation, we have the following
situation:

9s; t 2 N 80 � i < s 80 < j < t 9Qi; Qs+j 2 P 9ni; ns+j 2 Loc

where Q0 � Q , Qs � Q00 , Qs � Qs+1 , and Qs+t � Q0 such that

(a) Qi

ni;�
�!
;
Qi+1 or Qi

�
�!Qi+1 ,

(b) II(Qs) � II(P ) , and

(c) Qs+j

ns+j ;�
�!
;

Qs+j+1 or Qs+j
�
�!Qs+j+1 .

Adding the parallel context R , we obtain the following.

(a) If Qi

ni;�
�!
;
Qi+1 , then Qi jR

ni �L;�
�!
L

Qi+1 jR holds for all prioritized action sets L . The
reason for this is beside Rule Com1, that

i. (II[ni](Qi) \ II(R)) � (; \ II(R)) = ; (since II[ni](Qi) � ;), and

ii. II[ni�L](Qi jR) � ; � L (because II[ni](Qi) � ;).

If Qi

�
�!Qi+1 , then we may immediately conclude Qi jR

�
�!Qi+1 jR by Rule Com1.

(b) For L = II[o�R](P jR) and M = II(P jR) , we have Qs jR
m�R;�
�!
L

Qs+1 jR0 by Rule Com2
and

i. II[o�R](Qs jR) � L (by Lemma A.3(3) and the de�nition of L),

ii. (II[o](R)\ II(Qs)) � (II[o](R)\ II(P )) = ; (because II(Qs) � II(P )),

and II(Qs jR) �M (by Lemma A.3(5) and the de�nition of M).

(c) If Qs+j

ns+j;�
�!
;

Qs+j+1 , then Qs+j jR0
ns+j �L;�
�!
;

Qs+j+1 jR0 holds by Rule Com1 and

i. (II[ns+j ](Qs+j) \ II(R0)) � (; \ II(R0)) = ; (since II[ns+j ](Qs+j) � ;),

ii. II[ns+j�L](Qs+j jR
0) � ; (because II[ns+j](Qs+j) � ;).

If Qs+j
�
�!Qs+j+1 , then we may immediately conclude Qs+j jR0 �

�!Qs+j+1 jR0 by Rule
Com1.

According to the de�nition of the prioritized weak transition relation, we have shown that

Q jR
o�R;�̂
=)
L;M

Qs+t jR0 . By choosing W =df Qs+t jR0 � Q0 jR0 and q=df o �R we have �nished

this case, because hP jR0; Q0 jR0i 2 R holds according to the de�nition of R .

3. Case. P
m;a
�!P 0 , R

o�R;a
��!R0 , II[m](P )\ II(R) = ; , and II[o](R)\ II(P ) = ; , i.e. V � P 0 jR0 and

p = hm �L; o �Ri

Since P �Q there exists Q0 2 P and n 2 Loc satisfying Q
n;�̂
=)
L0;M 0Q

0 , L0 = II[m](P ) ,M
0 = II(P ) ,

and P 0�Q0 .

According to the de�nition of the prioritized weak transition relation, we have the following
situation:

9s; t 2 N 80 � i < s 81 < j < t 9Qi; Qs+j 2 P 9ni; ns+j 2 Loc

where Q0 � Q;Qs+t � Q0 such that
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(a) Qi

ni;�
�!
L0
Qi+1 or Qi

�
�!Qi+1 ,

(b) Qs

n;a
�!
L0
Qs+1 and II(Qs) �M 0 , and

(c) Qs+j

ns+j ;�
�!
;

Qs+j+1 or Qs+j
�
�!Qs+j+1 .

Now, we add the parallel context R .

(a) Here, we can argue similar to Case (1) since II[m](P ) � II[hm�L;o�Ri](P jR) (cf. Def. 3.1).

(b) The transition Qs jR
hn�L;o�Ri;�

�!
L;M

Qs+1 jR
0 where L = II[hm�L;o�Ri](P jR) and M = II(P jR)

is possible, because we have beside Rule Com3 that

i. (II[n](Q)\ II(R)) � (II[m](P ) \ II(R)) = ; (since II[n](Q) � II[m](P )),

ii. (II[o](R)\ II(Q)) � (II[o](R) \ II(P )) = ; (because II(Q) � II(P )),

iii. II[hn�L;o�Ri](Q jR) � L (by Lemma A.3(4) and the de�nition of L), and

iv. II(Q jR) �M (by Lemma A.3(5) and the de�nition of M).

(c) Here, we can follow the argumentation along the lines of the second case since II[m](P ) �
II[hm�L;o�Ri](P jR) (cf. Def. 3.1).

According to the de�nition of the prioritized weak transition relation, we have shown that

Q jR
hn�L;o�Ri;�

=)
L;M

Qs+t jR
0 . Thus, Q jR

�
=)
L
Qs+t jR

0 . By choosing W =df Qs+t jR
0 � Q0 jR0 and

because hP 0 jR0; Q0 jR0i 2 R , we are done.

For establishing the �rst condition of De�nition 5.4 we argue as follows.

Since P �Q there exists Q0; Q00 2 P such that Q
�

=) Q00 �
=) Q0 , II(Q00) � II(P ) , and

P �Q0 .

According to the de�nition of the prioritized weak transition relation, we have the following
situation:

9s; t 2 N 80 � i < s 80 �j < t 9Qi; Qs+j 2 P 9ni; ns+j 2 Loc

where Q0 � Q , Qs � Q00 , and Qs+t � Q0 such that

(a) Qi

ni;�
�!
;
Qi+1 or Qi

�
�!Qi+1 ,

(b) II(Qs) � II(P ) , and

(c) Qs+j

ns+j ;�
�!
;

Qs+j+1 or Qs+j
�
�!Qs+j+1 .

It follows, that

(a) Qi jR
ni�L;�
�!
;

Qi+1 jR or Qi jR
�
�!Qi+1 jR by the same argument as in Case (1),

(b) II(Qs jR) � II(P jR) by Lemma A.3(5), and

(c) Qs+j jR
ns+j �L;�
�!
;

Qs+j+1 jR or Qs+j jR
�
�!Qs+j+1 jR analogue to Case (1).

Moreover, we have hP jR;Q0 jRi 2 R according to the de�nition of R .

The second condition of De�nition 5.4 is standard since the semantics for the parallel operator
with respect to prioritized transitions coincides with those of CCS. �
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A.6 Proof of Theorem 5.7

In this section, we prove Theorem 5.7 which states that �+ is the largest congruence contained
in �� . First, we show that �+ is a congruence. Because we have not made use of matching a � -
transition by an `idling' �-transition in the proof of Proposition 5.5, and because of the de�nition
of initial action sets, we obtain immediately that �+ is compositional for all operators except
summation and recursion. We want to remark, that the compositionality proof of �+ with respect
to the distributed summation operator � is similar to the one for the usual summation in CCS.
In the following, we present the compositionality result of �+ with respect to summation and
recursion.

Proposition A.12 P �+Q implies P +R�+Q+R for all processes R .

Proof: Let P;Q 2 P satisfying P �+Q . According to the de�nition of �+ it is su�cient to
prove that

P + R
p;�
�!V implies 9W; q:Q+R

q;�
=)
L;M

W; L = II[p](P + R); M = II(P + R); and V � W

holds, since Property (1) of De�nition 5.6 follows directly by De�nition 5.6 for P �+Q and
De�nition 3.1, and the Properties (2) and (4) are analogue to those of observational congruence
in CCS.

It remains to show the existence of some W 2 P and q 2 Loc such that Q + R
q;�
=)
L;M

W and
V �W . Therefore, consider the following case distinction according to the operational rules for
summation.

1. Case. P
m;�
�!P 0 and � =2 I(R) , i.e. p = m � l and V � P 0 . Since P �+ Q we know

9Q0; n: Q
n;�
=)
L0;M 0Q

0; L0 = II[m](P ); M
0 = II(P ); and P 0 � Q0 :

According to the de�nition of the prioritized weak transition relation, we distinguish the
following cases where Q00 2 P and k 2 Loc .

(a) Q
n;�
�!
L0
Q00 �

=) Q0 . Therefore, we have II[n](Q) � L0 .

(b) Q
k;�
�!
L0
Q00

n;�
=)
L0 ;M 0Q

0 . Here, we have II[k](Q) � L0 .

(c) Q
�
�!Q00

n;�
=)
L0 ;M 0Q

0 .

Now, let us de�ne L=df II[m�l](P +R) and M =df II(P + R) . The �rst case implies that

Q+ R
n�l;�
�!
L
Q0

by Rule Sum1, the premise II[n](Q) � L0 , and Lemma A.1(2). Moreover, II(Q+R) �
II(P +R) holds by the fact I(P ) = I(Q) and Lemmata A.3(1) and A.3(5). Therefore, we
have

Q+ R
n�l;�
=)
L;M

Q00 �
=) Q0 and P 0 � Q0

by the de�nition of the prioritized weak transition relation. Hence, Q + R
n�l;�
=)
L;M

Q0 and

P 0 � Q0 . We conclude for this case by choosing W =df Q
0 and q=df n � l .
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The second case is similar to the �rst one, whereas the last case implies by Rule Sum1 that

Q+ R
�
�!Q00

n;�
=)
L0 ;M 0Q

0 :

Because of L0 � L andM 0 �M , we obtain Q+R
n;�
=)
L;M

Q0 and P 0 � Q0 . By choosingW =df Q
0

and q=df n we are done.

2. Case. R
o;�
�!R0 and � =2 I(P ) , i.e. V � R0 and p = o � r .

Since P �+ Q and, therefore, by De�nition 5.6 I(P ) = I(Q) , we have

(a) Q+R
o�r;�
�!R0 (because � =2 I(P ) = I(Q)),

(b) II[o�r](Q+R) � II[o�r](P + R) (by Lemmata A.3(2) and A.1(3)), and

(c) II(Q+ R) � II(P +R) (by Lemmata A.3(2) and A.1(4)).

According to the symmetry of � and the de�nition of the prioritized weak transition relation

we have R0 � R0 and Q + R
o�r;�
=)
L;M

R0 where L=df II[o�r](P +R) and M =df II(P +R) . By

choosing W =df R
0 and q=df o � r , we have �nished the proof.

�

In order to show that �+ is compositional with respect to recursion, we need to de�ne a notion
of prioritized weak bisimulation up to � (cf. [30]). With this de�nition, the proof is completely
standard [23].

De�nition A.13 (Prioritized Weak Bisimulation up to �)
A relation R � P �P is a prioritized weak bisimulation up to � if for every hP;Qi 2 R , � 2 A ,

� 2 A , and m 2 Loc the following conditions hold.

1. I(P ) = I(Q)

2. P
�
�!P 0 implies 9Q0: Q

�
=) Q0 and P 0 R� Q0 .

3. P
m;�
�!P 0 implies 9Q0; n: Q

n;�
=)
L;M

Q0; L = II[m](P ); M = II(P ); and P 0 R� Q0 .

4. Q
�
�!Q0 implies 9P 0: P

�
=) P 0 and P 0 �R Q0 .

5. Q
m;�
�!Q0 implies 9P 0; n: P

n;�
=)
L;M

P 0; L = II[m](Q); M = II(Q); and P 0 �R Q0 .

As expected, this notion satis�es the property that, if R is a prioritized weak bisimulation up to

� , then R � � .

Up to now, we only know that �+ is a congruence. However, it is relatively easy to establish the
following result, which turn out to be very useful for the proof of Theorem 5.7.

Proposition A.14 The congruence �+ is the largest congruence contained in � .

Proof: Since the relation �+ is a congruence it is su�cient to show that for all CCSprio-contexts
C and processes P;Q 2 P satisfying C[P ]�C[Q] we have P �+ Q . Moreover, we may re-
strict ourselves to a subset of CCSprio-contexts. For this proof, we choose the single context
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C[X ] =df(c:0+ d:0) +X where c =2 S(P ) [ S(Q) and d =2 S(P ) [ S(Q) . Note that such action c
and d exist by Lemma A.5.

Assume that � =2 I(P ) and, therefore, C[P ]
r�l;d
�! 0 . Since P � Q and d =2 S(Q) we necessarily have

C[Q]
r�l;d
=)
L;M

0 and 0 � 0 where L = M = II(P ) [ fcg . But this requires � =2 I(Q) and II(Q) � II(P ) .

Thus, we have I(Q) � I(P ) .

Let C[P ]
m;�
�!P 0 . Since P � Q there exists a process Q0 2 P and a location n 2 Loc satisfying

C[Q]
n;�
=)
L;M

Q0 , L = M = II(P ) [ fcg , and P 0 � Q0 . We know that Q0 6� C[Q] because P 0 � Q0 and

P 0 is not capable of performing a c-transition. Therefore, the matching step is necessary, even if
� = � .

Finally, let C[P ]
�
�!P 0 . The same argumentation as above leads to the conclusion that C[Q] must

perform at least one step to simulate a step of C[P ] .

Since also the symmetric properties hold, all conditions of De�nition 5.6 are satis�ed, and we
obtain P �+ Q as desired. �

Now, we are able to prove Theorem 5.7. This proof is going to be the hardest proof in the paper.
It uses the following result from universal algebra.

Fact A.15 Let X and Y be equivalence relations. Then the largest congruence X+ in X exists.

X+ is characterized by X+ = fhP;Qi j8CCSprio-contexts C: hC[P ]; C[Q]i 2 Xg . Moreover, if

X+ � Y � X then X+ = Y + .

In our case, we choose X = �� and Y = � . The inclusion � � �� follows immediately from the
de�nition of the naive and the prioritized weak transition relation. In order to apply Fact A.15,
we have to establish ��

+ � � . This inclusion turns out to be di�cult to show. Therefore, we
de�ne the equivalence relation

�a=dffhP;Qi jCPQ[P ]�� CPQ[Q]g :

Here, using the abbreviation S=df S(P ) [ S(Q) , we de�ne

CPQ[X ] =dfX jHPQ

and

HPQ
def
= c:0+DS +

X

L;M � S(P ) [ S(Q) ;

b 2 �

� :(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM):

Note that HPQ is well-de�ned because of Lemma A.5. Moreover, the processes DL and DM are
de�ned as in the proof of Theorem 4.4, and the actions c; dL;M;b; e; f are supposed to be `fresh'
actions, i.e. they are not in the unprioritized or prioritized sort of the processes P and Q under
consideration. By Fact A.15, we may immediately conclude that ��

+ � �a . The other necessary
inclusion is established by the following proposition.

Proposition A.16 The inclusion �a � � holds.

Proof: Let P;Q 2 P satisfying P �aQ , i.e. CPQ[P ]�� CPQ[P ] by de�nition of �a . In the
following, we consider four situations, each illustrated by an accompanying diagram. The double
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arrows in the diagrams symbolize the naive weak transition relation. The left hand side of each
diagram displays a sequence of transitions which we choose. According to the de�nition of �� ,
matching sequences exist which mimic each step by a corresponding naive weak transition. From
these transitions, we may extract additional conditions which have to be satis�ed according to
the semantics of CCSprio. Those conditions are su�cient to conclude that �a is a prioritized weak
bisimulation. Hence, P �Q , as desired.

Situation 1

Let P
m;�
�!P 0 for some process P 0 2 P and some location m 2 Loc .

Choose for the �rst step the transition CPQ[P ]
�
�!P jHLM where HLM =df(dL;M;b:HPQ +DL +

e:HPQ + b:(f:HPQ +DS))�DM for some b =2 S(P ) [ S(Q) , M = ; , and L=dffc j c 2 (S(P ) [
S(Q)) n II[m](P )g .

Since CPQ[P ]�� CPQ[Q] , we have CPQ[Q]
�

=)� W for some W 2 P . We know that HPQ has
to perform a � -transition to HLM since the action dL;M;b is unique. However, Q may be able to
perform some prioritized or unprioritized � -transition to a state Q 2 P , i.e. we have the following
situation:

9s; t 2 N 80 � i <s 80 <j <t 9Qi; Qs+j 2 P: Q0 � Q;Qs+t � Q

and

1. Qi jHPQ
ni�L;���!Qi+1 jHPQ or Qi jHPQ

�
�!Qi+1 jHPQ ,

2. Qs jHPQ
ns�L;�
���!Qs+1 jHLM or Qs jHPQ

�
�!Qs+1 jHLM , and

3. Qs+j jHLM

ns+j �L;�
����!Qs+j+1 jHLM or Qs+j jHLM

�
�!Qs+j+1 jHLM .

According to the de�nition of our semantics, the following conditions must be satis�ed if (unpri-
oritized) � -transitions are participating.

1. II[ni](Qi) \ II(HPQ) = ; , which implies II[ni](Qi) = ; ,

2. II[ns](Qs) \ II(HPQ) = ; , which implies II[ns](Qs) = ; , and

3. II[ns+j ](Qs+j)\ II(HLM) = ; , which implies II[ns+j](Qs+j) � II[m](P ) by our choice of L and
M .

In the second step, let P jHLM
m�L;�
��!P 0 jHLM . Note that this transition is possible according to

the semantics of CCSprio and the choice of L and M . Since P jHLM �� Q jHLM , there exists
some W 2 P such that Q jHLM

�
=)� W and P 0 jHLM ��W . Now, observe that HLM has

no � -transitions. Moreover, a communication involving HLM leads to a state which has the
distinguished action f enabled and, therefore, cannot be equivalent to P 0 jHLM . This leads to
the following two possible cases:

1. W � CPQ[Q] , and we de�ne Q
0
=df Q , or

2. W � Q
0
jHLM for some Q

0
2 P with Q

�
=)� Q

0
.
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P j HPQ �� Q j HPQ

?

�

??

�

P j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM) �� Q j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM)

?

m � L; �

??

�

P 0 j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM) �� Q

0
j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM)

?

dL;M;b

??

dL;M;b

P 0 j HPQ �� Q0 j HPQ

Figure 5: Largest congruence proof - illustration of Situation (1)

The �rst case corresponds to an `idling' and needs no special attention. In the second case, we
have the following situation according to the de�nition of the naive weak transition relation:

9s 2 N 80 � i <s 9Q
i
2 P : Q0 � Q;Qs � Q

0
such that Q

i

m
i
;�

�!Q
i+1 or Qi

�
�!Q

i+1 :

If Qi jHLM

m
i
�L;�

���!Qi+1 jHLM , then we have II[m
i
](Qi) \ II(HLM) = ; according to the semantics

of CCSprio. Because of the choice of L and M , we conclude II[m
i
](Qi) � L0 for L0 = II[m](P ) , i.e.

Qi

m
i
;�

�!
L0

Qi+1 . Additionally, we have P
0 jHLM �� Q

0
jHLM .

Finally, let P 0 jHLM

dL;M;b
���!CPQ[P 0] . In order for Q

0
jHLM to match this step with a naive weak

dL;M;b-transition to a state W 0 2 P satisfying CPQ[P
0]��W

0 , the process HLM has to perform
a dL;M;b-transition to the process HPQ . Moreover, HPQ cannot perform a � -transition because
of the distinguished action c . However, Q may be able to perform a sequence of prioritized and
unprioritized � -transitions to some process Q0 2 P , i.e.

9s0; t0 2 N 80 � i0 <s0 80 <j0 <t0 9Q
0
i0 ; Q

0
s0+j0 2 P : Q

0
0 � Q

0
; Q

0
s0+t0 � Q0

and

1. Q
0
i0 jHLM

ni0 �L;����!Q
0
i0+1 jHLM or Q

0
i0 jHLM

�
�!Q

0
i0+1 jHLM ,

2. Q
0
s0 jHLM

dL;M;b
���!Q

0
s0 jHPQ , and
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3. Q
0
s0+j0 jHPQ

ns0+j0 �L;�
�����!Q

0
s0+j0+1 jHPQ or Q

0
s0+j0 jHPQ

�
�!Q

0
s0+j0+1 jHPQ .

According to the de�nition of our semantics, the following conditions must be satis�ed for (un-
prioritized) � -transitions.

1. II[ni0 ](Q
0
i0) \ II(HLM) = ; , which implies II[ni0 ](Q

0
i0) � II[m](P ) , and

2. II[ns0+j0 ](Q
0
s0+j0) \ II(HPQ) = ; , which implies II[ns0+j0 ](Q

0
s0+j0) = ; .

Moreover, we have W 0 � CPQ[Q
0] . Summarizing, we have shown that Q

�
=)
L0
Q0 , according to the

de�nition of the prioritized weak transition relation. Since CPQ[P
0]�� CPQ[Q

0] , S(P 0) � S(P ) ,
and S(Q0) � S(Q) , we also have CP 0Q0 [P 0]�� CP 0Q0 [Q0] . Therefore, P 0�aQ

0 .

Situation 2

Let P
m;a
�!P 0 for some process P 0 2 P , some location m 2 Loc , and some action a 2 � . As

illustrated in Figure 6, we let CPQ[P ] perform a � -transition to the process P jHLM , where
HLM =df(dL;M;b:HPQ +DL + e:HPQ + b:(f:HPQ + DS)) � DM for b = a , L = fc j c 2 (S(P ) [
S(Q)) n II(P )g , and M = fc j c 2 (S(P ) [ S(Q)) n II[m](P )g n L . Now, P jHLM can perform a
� -transition from location hm �L; o �L �Ri to P 0 j(f:HPQ + DS) according to the semantics of
CCS

prio. Here, the location o 2 fl; rg� needs not to be speci�ed more precisely since priorities on
di�erent sides of the summation operator are comparable.

P j HPQ �� Q j HPQ

?

�

??

�

P j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM) �� Q j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM)

?

hm � L; o � L �Ri; �

??

�

P 0 j (f:HPQ +DS) �� Q
0
j (f:HPQ +DS)

?

f

??

f

P 0 j HPQ �� Q0 j HPQ

Figure 6: Largest congruence proof - illustration of Situation (2)
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Consider the �rst step. Since CPQ[P ]��CPQ[P ] , we have CPQ
�

=)� W for some W 2 P . We
know that HPQ has to perform a � -transition to HLM since the action dL;M;b is unique. However,
Q may be able to perform some prioritized or unprioritized � -transitions to some state Q 2 P ,
i.e. we have the following situation:

9s; t 2 N 80 � i <s 80 <j <t 9Qi; Qs+j 2 P: Q0 � Q;Qs+t � Q

and

1. Qi jHPQ
ni�L;�
��!Qi+1 jHPQ or Qi jHPQ

�
�!Qi+1 jHPQ ,

2. Qs jHPQ
ns�L;�
���!Qs+1 jHLM or Qs jHPQ

�
�!Qs+1 jHLM , and

3. Qs+j jHLM

ns+j �L;�
����!Qs+j+1 jHLM or Qs+j jHLM

�
�!Qs+j+1 jHLM .

According to the de�nition of our semantics, the following conditions must be satis�ed if � -
transitions are involved.

1. II[ni](Qi) \ II(HPQ) = ; , which implies II[ni](Qi) = ; ,

2. II[ns](Qs) \ II(HPQ) = ; , which implies II[ns](Qs) = ; , and

3. II[ns+j ](Qs+j)\ II(HLM) = ; , which implies II[ns+j](Qs+j) � II[m](P ) .

Now, we take a closer look at the second step. Since P jHLM ��Q jHLM , we know that some
W

0
2 P exist such that Q jHLM

�
=)� W

0
and CPQ[P 0]��W

0
. We �rst argue that the matching

transition must arise from a communication between Q and HLM . First, HLM must perform an
a-transition to f:HPQ+DS since only that process can engage in the distinguished f -transition.

Because we have to match a � -transition, we may conclude that Q
a

=)� Q
0
for some Q

0
2 P , i.e.

9s; t 2 N 80 � i <s 80 <j <t: 9Q
i
; Q

s+j 2 P: Q0 � Q;Qs+t � Q
0

such that

1. Q
i
jHLM

n
i
�L;�

��!Q
i+1 jHLM or Q

i
jHLM

�
�!Q

i+1 jHLM ,

2. Qs jHLM

hns�L;o�L�Ri;�
�������!Qs+1 j(f:HPQ +DS) , and

3. Q
s+j j(f:HPQ +DS)

n
s+j

�L;�
����!Q

s+j+1 j(f:HPQ +DS) or

Qs+j j(f:HPQ +DS)
�
�!Qs+j+1 j(f:HPQ +DS) .

Moreover, we conclude thatW
0
� Q

0
j(f:HPQ+DS) . According to the de�nition of our semantics,

the following conditions must be satis�ed if not a � -transition is chosen.

1. II[n
i
](Qi) \ II(HLM) = ; , which implies II[n

i
](Qi) � II[m](P ) ,

2. II[ns](Qs)\ II(HLM) = ; and II[o](HLM)\ II(Qs) = ; , which implies II[ns](Qs) � II[m](P ) and

II(Qs) � II(P ) , and

3. II[n
s+j

](Qs+j)\ II(f:HPQ +DS) = ; , which implies II[n
s+j

](Qs+j) = ; .
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Finally, let P 0 j(f:HPQ+DS)
f

�!CPQ[P
0] . Since P 0 j(f:HPQ+DS)��Q

0
j(f:HPQ+DS) , we know

that some W 0 2 P exist such that Q
0
j(f:HPQ +DS)

f
=)� W 0 and CPQ[P

0]��W
0 . Since f and

c are distinguished actions, we know that f :HPQ+DS has to perform its f action to the process

HPQ . However, Q
0
may be able to perform some prioritized or unprioritized � -transitions to

some state Q0 2 P , i.e. we have the following situation:

9s0; t0 2 N 80 � i0 <s0 80 <j0 <t0 9Q
0
i0 ; Q

0
s0+j0 2 P : Q

0
0 � Q

0
; Q

0
s0+t0 � Q0

and

1. Q
0
i0 j(f:HPQ +DS)

ni0 �L;����!Q
0
i0+1 j(f:HPQ +DS) or

Q
0
i0 j(f:HPQ +DS)

�
�!Q

0
i0+1 j(f:HPQ +DS) ,

2. Q
0
s0 j(f:HPQ +DS)

f

�!Q
0
s0+1 jHPQ , and

3. Q
0
s0+j0 jHPQ

ns0+j0 �L;�
�����!Q

0
s0+j0+1 jHPQ or Q

0
s0+j0 jHPQ

�
�!Q

0
s0+j0+1 jHPQ .

According to the de�nition of our semantics, the following conditions must be satis�ed if � -
transitions are involved.

1. II[ni0 ](Q
0
i0) \ II((f:HPQ +DS)) = ; , which implies II[ni0 ](Q

0
i0) = ; , and

2. II[ns0+j0 ](Q
0
s0+j0) \ II(HPQ) = ; , which implies II[ns0+j0 ](Q

0
s0+j0) = ; .

According to the de�nition of the prioritized weak transition relation we have shown that Q
a

=)
L0;M 0Q

0

where L0 = II[m](P ) and M 0 = II(P ) . Since CPQ[P
0]��CPQ[Q

0] , S(P 0) � S(P ) , and S(Q0) �
S(Q) , also CP 0Q0 [P 0]�� CP 0Q0 [Q0] holds, i.e. P 0�aQ

0 and this part of the proof is �nished.

After discussing the previous situations in fully detail, we omit the details of similar parts for the
remaining situations.

Situation 3

In this situation, let P
�
�!P 0 for some process P 0 2 P and some action � 2 A . We �rst choose the

transition CPQ[P ]
�
�!P jHLM where HLM =df(dL;M;b:HPQ+DL+e:HPQ+b:(f:HPQ+DS))�DM

for some b =2 S(P ) [ S(Q) , M = ; , and L=df S . Analogue to Situation (1), but considering

L = S , we may conclude the existence of some process Q 2 P such that CPQ[Q]
�

=) Q jHLM

and P jHLM �� Q jHLM .

In the second step, let P jHLM

�
�!P 0 jHLM . Since P jHLM �� Q jHLM , there exists someW 2 P

such that Q jHLM

�̂
=)� W and CPQ[P

0]��W . Because of the distinguished action dL;M;b , we
are in the following situation:

9s; t 2 N 80 � i <s 80 <j <t: 9Qi; Qs+j 2 P: Q0 � Q;Qs+t � Q
0

such that

1. Qi jHLM
ni�L;�
��!Qi+1 jHLM or Qi jHLM

�
�!Qi+1 jHLM ,
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2. Qs jHLM

�
�!Qs+1 jHPQ or (if � = �) Qs � Qs+1 , and

3. Qs+j jHPQ

ns+j�L;�
����!Qs+j+1 jHPQ or Qs+j jHPQ

�
�!Qs+j+1 jHPQ .

According to the de�nition of our semantics, the following conditions must be satis�ed for unpri-
oritized � -transitions.

1. II[ni](Qi) \ II(HLM) = ; , which implies II[ni](Qi) = ; ,

2. II[ns+j ](Qs+j)\ II(HPQ) = ; , which implies II[ns+j](Qs+j) = ; .

Therefore, we have Q
�

=) Q
0
and W � Q

0
jHLM .

P j HPQ �� Q j HPQ

?

�

??

�

P j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM) �� Q j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM)

?

�

??

�̂

P 0 j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM) �� Q

0
j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM)

?

dL;M;b

??

dL;M;b

P 0 j HPQ �� Q0 j HPQ

Figure 7: Largest congruence proof - illustration of Situation (3)

Finally, let P 0 jHLM

dL;M;b
���!CPQ[P

0] . Similar to Situation (1), we can show the existence of some

process Q0 2 P satisfying Q
0 �
=) Q0 and CPQ[P 0]�� CPQ[Q0] .

Altogether, we have shown that Q
�

=) Q0 . Since CPQ[P 0]�� CPQ[Q0] , S(P 0) � S(P ) , and
S(Q0) � S(Q) , we can also establish CP 0Q0 [P 0]�� CP 0Q0 [Q0] . Therefore, P 0�aQ

0 holds.

Situation 4

Here, we are going to establish Condition (1) of De�nition 5.4. We choose the transition sequence
displayed in Figure 8, where L=df S n II(P ) , M =df S , and b =2 S(P ) [ S(Q) . As before, HLM
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denotes the process (dL;M;b:HPQ+DL + e:HPQ+ b:(f:HPQ+DS))�DM . Observe that in each
step in Figure 8 the prioritized initial actions in our context are always the complete universe
S . This is important in order to conclude the following property. Whenever the left parallel
component at the right side does an unprioritized � -transition, the corresponding initial action
set is empty. However, the choice of L and the use of the incomparable summation operator in
the context ensure that the e-transition on the left side in Figure 8 is possible.

Therefore, the �rst two and the last two steps in Figure 8 are slight modi�cations of the proofs in
the preceding situations. The interesting part of this situation is the matching of the e-transition.

Let Q00 2 P be the process such thatQ
�

=)� Q00 �
=)� Q0 and Q00 jHLM

o�L�R;e
���!W for someW 2 P .

The location o 2 fl; rg� needs not to be speci�ed more precisely since priorities on di�erent sides
of the summation operator are comparable. According to the semantics of CCSprio we have the
constraint II[o�L](HLM) \ II(Q00) = ; which implies II(Q00) � II(P ) .

P j HPQ �� Q j HPQ

?

�

??

�

P j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM) �� Q j(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA �DM)

?

o �L �R; e

??

o � L �R; e

P j HPQ �� Q0 j HPQ

Figure 8: Largest congruence proof - illustration of Situation (4)

Considering also the similarity to the situations discussed above, we conclude that Q
�

=) Q00 �
=)

Q0 , II(Q00) � II(P ) , and CP 0Q0 [P 0]��CP 0Q0 [Q0] , i.e. P 0�aQ
0 .

Summarizing, we have shown according to De�nition 5.4 that �a is a prioritized weak bisimula-
tion. Therefore, P �Q , as desired. �

Considering the proof of Theorem 5.7 we are in the situation illustrated in Figure 9, where an
arrow from some relation R1 to a relation R2 means that R1 � R2 .

Combining Propositions A.14, A.16 and the observations made before Proposition A.16, our Main
Theorem 5.7 is now a simple corollary because of Fact A.15.

Corollary A.17 The congruence �+ is the largest congruence contained in �� .
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Figure 9: Situation in the proof of Theorem 5.7
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