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Abstract

This paper develops a real-time process algebra, TPLmc, for modeling and reasoning
about distributed real-time systems. Like the algebra PMC, TPLmc includes operators for
binding processes to di�erent clocks; unlike PMC, however, TPLmc includes a version of the
maximal progress assumption. Using simple examples, we motivate why these features are
useful and in some cases necessary for modeling and verifying distributed systems; we also
present a behavioral congruence based on Milner's observational equivalence and develop
logical characterizations of the behavioral relations.

Keywords: process algebras, distributed systems, real-time, multiple clocks, maximal
progress assumption, bisimulation.

1 Introduction

Process algebras [4, 12, 14, 16] provide a well-studied framework for modeling and verifying
concurrent systems [7, 10]. These theories typically consist of a simple language with a rigorously
de�ned semantics mapping terms to labeled transition systems. They also usually support
equational reasoning as a basis for system veri�cation: an equivalence on processes is de�ned
that relates systems on the basis of their observable behavior, and this relation is used to relate
speci�cations, which describe desired system behavior, and implementations. In order to support
compositional reasoning , researchers have typically concentrated on equivalences that are also
congruence relations for the given languages.

Traditionally, process algebras have been developed with a view toward modeling the nonde-
terministic behavior of concurrent and distributed systems. More recent work has incorporated
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other aspects of system behavior, including real time [2, 3, 13, 18, 24], priorities [6, 8, 9] and
probability [23]. Most of this later work, however, has been devoted to modeling centralized, as
opposed to distributed systems; the real-time work, in particular, has (implicitly or explicitly)
focused on systems with a single clock. In this paper we present a temporal process algebra,
called TPL

mc, which is aimed at modeling distributed real-time systems that contain a number
of di�erent clocks. The algebra extends Hennessy and Regan's TPL [13] with operators from
PMC [3] for managing multiple clocks. Like Yi's real-time calculus [24], TPL enjoys the maximal

progress assumption, which has been shown in practice to ease greatly the task of modeling real-
time systems [11], but it only supports the modeling of systems with a single clock. PMC can
model systems with many clocks, but in practice its lack of maximal progress limits its utility
for veri�cation purposes. Combining the two features into one model yields semantic subtleties
whose solutions constitute the body of this paper.

The rest of the paper is organized as follows. The remainder of this section is devoted to an
example illustrating the desirability of multiple clocks and maximal progress in modeling real-
time distributed systems. The next section de�nes the syntax and semantics of TPLmc, while
Section 3 provides two further examples illustrating the utility of our language. In the next
section strong bisimulation [17] is adapted to our language, and its theory is developed, while
the corresponding observational theory is presented in Section 5. The �nal section contains our
conclusions and directions for future research, while the appendices contain proofs of some of
the results stated in the paper.
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Figure 1: Client-server model

Motivating Example. We motivate the two main characteristics of TPLmc, multiple clocks
and maximal progress , by a generic example. Consider the basic architecture of a client-server

system as given in Figure 1. The clients and the server are physically di�erent computers having
their own clocks �c1 , �c2 , and �s , respectively. Clients repeatedly attempt to send requests to
the server, which is capable of processing one such request at a time. A client whose request is
accepted then awaits an answer, while the other client idles until the server is ready to process
another request. The server waits for a request, which he processes directly, and o�ers the answer
to the requesting client. Receiving the answer from the server, the client starts over again. From
the description of the system, it is clear that an adequate model for it should include support
for multiple clocks, since the system components are running on di�erent machines. Moreover,
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clients should receive responses as soon as they are o�ered; any delay could force the server to
wait, which is unacceptable in practice. This argues for the inclusion of a maximal progress
assumption. Moreover, the example shows why we would like a localized version of the maximal
progress assumption. Suppose that we have one client which engages in an in�nite, internal
computation. Although this situation seems to be arti�cial at �rst sight, it naturally occurs
when abstracting from timing aspects of some part of a distributed system, e.g. from the timing
behavior of a particular client. Ideally, this should not e�ect the proper work at other sites.
Unfortunately, the usual maximal progress assumption has the side-e�ect that no clock is able
to tick in such a situation. Thus, by localizing the maximal progress assumption we formalize
an important aspect of our intuition of distributed systems.

2 Syntax and Semantics of TPLmc

In this section, we de�ne the syntax and semantics of our language TPLmc which is based on
the temporal process algebras TPL [13] and PMC [3].

2.1 Syntax of TPLmc

The syntax of TPLmc is essentially the same as in PMC. It di�ers from CCS by the introduction
of timed actions , a timeout operator , and an ignore operator .

Formally, let � be a countable set of action labels, not including the so called silent or internal
action � . For every input action a 2 � , there exists a complementary action a , the corre-
sponding output action. Further, let �=dffa ja 2 �g , and let us denote the set of all actions
� [ � [ f�g , where � =2 � , by A . Intuitively, an action indicates that a process is willing to
perform a synchronization on the port associated with the action name, i.e. an action a means
that the process wants to receive a message from port a whereas a means that the process wants
to send a message via port a . The action � either indicates an internal action of a process or
the synchronization of two processes on some port in order to communicate with each other.
Finally, we let a; b; : : : range over � and �; �; : : : over A .

We extend the set A of ordinary actions by a �nite set T of timed actions . Sometimes we refer
to a timed action as a clock or a timer . We let �; �0; : : : range over T . A timed action � models
idling until the next clock cycle of the clock � . In contrast to the synchronization of ordinary
actions on complementary ports, timed actions synchronize in a broadcasting fashion in which
all components of a parallel composition or a summation have to take part. For the sake of
simplicity, we write 
 for a representative of A [ T .

Further, we use the standard de�nitions for sort of a process, where timed actions are never
included in sorts, free and bound variables , open and closed terms , and contexts . A process
variable is called guarded in a process term if each occurrence of the variable is in the scope of
a pre�x or in the scope of the second argument of a timeout (see below). We refer to closed and
guarded terms as processes and denote syntactic equality on P by � . Let P;Q;R; : : : range over
the set P of processes. The syntax of our language is de�ned by the BNF presented in Table 1
where f : A ! A is a �nite relabeling , L � A n f�g a restriction set , and C a process constant .
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A �nite relabeling satis�es the properties f(�) = � and jf� j f(�) 6= �g j < 1 . Moreover, " is
called ignore operator and b�c�(�) timeout operator .

Table 1: Syntax of TPLmc

P ::= 0 j 
:P j P + P j P jP j P [f ] j

P n L j P "� j bP c�(P ) j C
def
= P

In order to avoid too many parentheses we re�ne the `binding power'-hierarchy of CCS [17]. Our
operators have decreasing binding power in the following order: restriction and relabeling and
ignore, pre�x and timeout, parallel composition, summation.

2.2 Semantics of TPLmc

The (operational) semantics of a TPLmc process P 2 P is given by a labeled transition system
hP;A;�!; P i where P is the set of states, A the alphabet, �! the transition relation, and P
the start state.

We de�ne the semantics in such a fashion that communications must occur if they are possible.
This assumption, which is often referred to as maximal progress , ensures that a process cannot
delay if it is able to perform a communication. However, we are dealing with distributed systems.
As discussed in the introduction, it is natural to localize the maximal progress assumption
with respect to clocks. Incorporating maximal progress in the PMC-style semantics or local
clocks in the TPL-style semantics leads to a more intuitive operational semantics as discussed
in the previous example. Despite its intuitivity, our new semantics provides several challenges
in developing a semantic theory. In contrast to the PMC-semantics we do not choose a time-
stop interpretation for 0 and pre�xing since we feel that time cannot be stopped. Therefore,
a:P should model a process which waits for a communication partner on port a and does not
deadlock if no such partner is available immediately. Avoiding unnatural time-stops also helps
us to de�ne an intuitive notion of equivalence on processes.

The transition relation �!� P � (A [ T )� P for TPLmc is de�ned in Table 3 using Plotkin-
style [21] operational rules. We write P



�!P 0 instead of hP; 
; P 0i 2�! . We say that P may

engage in action 
 and thereafter behaves like process P 0. Sometimes it is convenient to write
P



�! for 9P 0 2 P: P



�!P 0 .

The presentation of the operational rules requires initial action sets . Beside the usual de�nition
I(P ) for the initial action set of a process P { where I(P "�) and I(bPc�(Q)) are given by I(P ) {
we de�ne the set I�(P ) of all initial actions of P within the scope of the timer � as the least set
satisfying the rules in Table 2. We also de�ne analogue initial actions sets ignoring � -actions by
II(P ) =df I(P )nf�g and II�(P ) =df I�(P )nf�g , respectively. The de�nition I�(P "�) = ; re
ects
our intuition of localizing clocks. The initial actions of P "� are not in the scope of the clock � ,
i.e. the process P is not attached to � or, in other words, P ignores � . Note that these action
sets are de�ned independently from the transition relation �! . Therefore, �! is well-de�ned
although its de�nition contains negative premises (side conditions) [5].
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Table 2: Initial action sets

I�(�:P)=dff�g

I�(P + Q)=df I�(P ) [ I�(Q) I�(C)=df I�(P ) where C
def
= P

I�(P [f ]) =dfff(�) j� 2 I�(P )g I�(P n L)=df I�(P ) n (L [ L)

I�(P jQ)=df I�(P ) [ I�(Q) [ f� j II�(P ) \ II(Q) 6= ; or II�(Q) \ II(P ) 6= ;g

I�(bP c�0(Q))=df I�(P ) I�(P "�0)=df

�
; if � = �0

I�(P ) otherwise

The semantics of TPLmc for ordinary action transitions is the same as the usual TPL or PMC
semantics which is basically that of CCS. The di�erence to PMC arises by the side conditions in
the rules for timed transitions, which guarantee that our localized maximal progress assumption
holds (cf. Proposition 2.3), and by disallowing time-stops. The process �:P may engage in
action � and then behave like P . If � 6= � it may also idle for each timer � . Similarly, �:P can
perform the timed action � and become P or idle for all other clocks. The summation operator
+ denotes nondeterministic choice. The process P + Q may behave like process P (Q). Time
has to proceed equally on both sides of summation, i.e. P + Q can engage in a timed action
and, thus, delay the nondeterministic choice if and only if both P and Q can engage in the
timed action. The restriction operator nL prohibits the execution of actions in L [ L . Thus,
the restriction operator permits the scoping of actions. P [f ] behaves exactly as the process P
where ordinary actions are renamed with respect to the relabeling f . The process P jQ stands
for the parallel composition of P and Q according to an interleaving semantics with synchronized
communication on complementary actions resulting in the internal action � . Also here, time
has to proceed equally on both sides of the operator. The side conditions ensure that P jQ can
only idle on � , if it cannot engage in an internal computation which is in the scope of � . The
process P " � behaves like the process P for all actions but the timed action � . Additionally,
P " � is capable of performing a timed action � to P " � itself, i.e. P ignores � . This allows
the scoping of clocks in such a way that the traditional temporal semantics for the summation
and parallel operator needs not to be changed. A central operator in a temporal process algebra
is the timeout operator. The process bPc�(Q) behaves as the process P but it can perform a
�-action only to the process Q whenever P cannot engage in an internal action which is in the

scope of the clock � . Finally, C
def
= P denotes a constant de�nition, i.e. C is a recursively de�ned

process which behaves as a distinguished solution of the equation C = P .

We want to remark that the side condition of Rule tCOM can be written as � =2 I�(P jQ) (cf.
Proposition 2.3 below). Although this is a shorter notation, the one used in the operational
semantic Rule tCom is more convenient for the proofs of our main theorems which we present
in the appendices of the paper. In contrast to PMC timed pre�xing is no longer a derived
operator since the semantics of the processes �:P and b0c�(P ) are di�erent. The former process
can engage in a timed action �0 to �:P , where �0 6= � , while the latter can only engage in a
�0-transition to the process 0 which is obviously semantically di�erent from the process �:P for
most processes P .
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Table 3: Operational semantics for TPLmc

tNil
��

0
��!0

tAct1
��

a:P ��! a:P

Act
��

�:P ��!P
tAct2

��

�:P ��!P

tAct3
��

�:P �0

�!�:P
� 6= �0

Sum1
P ��!P 0

P +Q ��!P 0
tSum

P ��!P 0 Q ��!Q0

P + Q ��!P 0 +Q0

Sum2
Q ��!Q0

P +Q ��!Q0

Rel
P ��!P 0

P [f ]
f(�)
�!P 0[f ]

tRel
P ��!P 0

P [f ] ��!P 0[f ]

Res
P ��!P 0

P n L ��!P 0 n L
� =2 L [ L tRes

P ��!P 0

P n L ��!P 0 n L

Com1
P ��!P 0

P jQ ��!P 0jQ

Com2
Q ��!Q0

P jQ ��!P jQ0
tCom

P ��!P 0 Q ��!Q0

P jQ ��!P 0jQ0

II�(P ) \ II(Q) = ; and
II�(Q) \ II(P ) = ;

Com3
P a�!P 0 Q a�!Q0

P jQ ��!P 0jQ0

Ign
P ��!P 0

P "� ��!P 0"�
tIgn1

��

P "� ��!P "�

tIgn2
P �0

�!P 0

P "� �0

�!P 0"�
� 6= �0

TO
P ��!P 0

bP c�(Q) ��!P 0
tTO1

��

bP c�(Q) ��!Q
� =2 I�(P )

tTO2
P �0

�!P 0

bP c�(Q) �0

�!P 0

� 6= �0

Con
P ��!P 0

C ��!P 0
C

def
= P tCon

P ��!P 0

C ��!P 0
C

def
= P
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The presented operational semantics for TPLmc possesses the following important properties.

Proposition 2.1 (Associativity & Commutativity)
The summation and the parallel operator of TPLmc are associative and commutative modulo

renaming of states.

The following proposition is essential for the congruence proofs of some of the behavioral relations
presented in the next sections. Its validity is a consequence of the idling capability of the
processes 0 and a:P for a 2 A n f�g and P 2 P .

Proposition 2.2 Let P 2 P and � 2 T satisfying � =2 I�(P ) . Then, P
��! holds.

Moreover, the semantics satis�es the local maximal progress and the local time determinacy
property. Both are adaptions of the well-known maximal progress and time determinacy prop-
erties [24], which deal with a global notion of time, to our situation of multiple, local clocks.

Proposition 2.3 (Local Maximal Progress)
Let P 2 P and � 2 T . Then, P ��! implies � =2 I�(P ) .

Proposition 2.4 (Local Time Determinacy)

Let P; P 0; P 00 2 P and � 2 T satisfying P
��!P 0 and P

��!P 00 . Then, P 0 � P 00 holds.

Both propositions can easily be checked by induction on the depth of the derivation tree of
P ��!P 0 and the maximum of the depths of the derivation trees of P ��!P 0 and P ��!P 00 , respec-
tively.

3 Examples

In this section, we demonstrate that our operators and their semantics are well-chosen. In the
�rst part, we deal with modeling distributed control systems . This example shows the usefulness
of multiple, local, abstract clocks in a speci�cation language. In the second part, we deal with
a simple communication protocol which shows that our algebra is more suitable for veri�cation
purposes than PMC.

3.1 Modeling a Distributed Control System

A distributed control system typically consists of several sensors which continuously measure
sizes of an environment, e.g. temperature and wind, and of several evaluators who use the data
collected by the sensors to compute values of interest, e.g. the wind-chill temperature. Figure 2
depicts the architecture of a typical distributed control system consisting of three sensors and
two evaluators where dashed lines represent clocks and solid lines represent usual communication
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channels. Evaluator1 is connected to Sensor1 via port v1 and to Sensor2 via port v2 . Similarly,
Evaluator2 is connected to Sensor2 via port v2 and to Sensor3 via port v3 . Moreover, Sensor1,
Sensor2, and Evaluator1 share the clock �E1 , whereas Sensor2, Sensor3, and Evaluator2

share the clock �E2 .

r

v

2

1

E1

E2

3

2

s

s

s

r

v

v

σ

2

σ

1
1

3

Evaluator1

Evaluator2

Sensor3

Sensor2

Sensor1

Figure 2: Distributed control system

Each sensor measures continuously its environment. The event of measuring is modeled by the
action si , 1 � i � 3 . Upon a tick of the clock �E1 the sensors Sensor1 and Sensor2 send
their latest values via channels v1 and v2 , respectively, to Evaluator1. Similarly, Sensor2 and
Sensor3 send their latest values via channels v2 and v3 to Evaluator2 at each tick of the clock
�E2 , respectively. Upon reception of the values, each evaluator computes a new value depending
on the values received and o�ers it via the output channel r1 ( r2 ).

Using the process algebra TPL
mc we can formalize the distributed control system System as

follows.

System
def
= (Sensor1"�E2 j Sensor2 j Sensor3"�E1 j

Evaluator1"�E2 j Evaluator2"�E1
) n fv1; v2; v3g

where
Sensor1

def
= bs1:Sensor1c�E1(v1:Sensor1)

Sensor2
def
= bbs2:Sensor2c�E1(v2:Sensor2)c�E2(v2:Sensor2)

Sensor3
def
= bs3:Sensor3c�E2(v3:Sensor3)

Evaluator1
def
= �E1:v1:v2:�:r1:Evaluator1

Evaluator2
def
= �E2:v2:v3:�:r2:Evaluator2

This example makes intensive use of the timeout operator. The timeout operator enables us
to model interrupts invoked by the ticking of the attached clocks. Our maximal progress as-
sumption plays an essential role in our model. One would intuitively demand the property that
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the sequence of actions v1 , v2 , and � and the sequence of actions v2 , v3 , and � are executed
atomically, i.e. no ticking of the clocks �E1 and �E2 can interfere or delay the sequences, respec-
tively. This is important since an evaluator can typically only produce a useful result when its
parameters v1 and v2, or v2 and v3 have been measured at approximately the same time. Our
maximal progress assumption ensures the atomicity of the mentioned sequences. However, the
above intuition can also be modeled in PMC by using the time-stop pre�xing operator in those
sequences. A time-stop pre�xing of a process P with an action a disallows a tick to occur after
the execution of a and before the execution of P . However, we give an example below, where
time-stop pre�xing cannot `replace' our maximal progress assumption.

We want to remark on our localized version of the maximal progress property. In this example, we
have abstracted from the internal clocks of the sensors since we are not concerned about real-time
constraints of the measuring processes. This concept of abstraction emphasizes again the utility
of the localized maximal progress assumption; e.g. if we model the environment of Sensor1 by
Env1=df s1:Env1 , then we introduce a � -loop in our system. Thus, the usual maximal progress
assumption would prevent the ticking of any clock. This shows that our notion of localized
maximal progress is necessary when dealing with abstraction from local timing constraints and
with multiple clocks in one process algebra.

Distributed control systems represent a large class of real-time systems where multiple clocks
which run independent from each other are a useful mean for modeling. Moreover, this class of
systems shows that time constraints often introduce qualitative aspects which e�ect the causal
behavior of a system. Those constraints are in practice often more important than constraints
dealing with quantitative aspects of time.

3.2 A Simple Communication Protocol

The next example models a simple communication protocol . It consists of a sender, a medium,
and a receiver. Both, sender and receiver, possess an own clock since they are supposed to be at
di�erent physical locations, e.g. the sender and the receiver are two computers. The following
equation Protocol de�nes the protocol formally in TPLmc.

Protocol
def
= (Sender"�R j

Medium"�S "�R j
Receiver"�S
) n fs; r; sack; rack; sfail; rfailg

where
Sender

def
= send:�S:S

S
def
= s:(rack:Sender+ rfail:S)

Medium
def
= s:r:Medium+ sack:rack:Medium+ sfail:rfail:Medium

Receiver
def
= br:Rc�R(sfail:Receiver)

R
def
= sack:receive:R
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The sender accepts a message from its environment and puts it on the medium immediately
after the next clock tick �S . Then it waits for an acknowledgment, after which the sender is
ready to accept a new message from the environment, or a failure message, which indicates that
the receiver has not received a message for a `long' time. In such a case the message is resent.
We consider a reliable medium, i.e. every message and acknowledgment put in the medium is
delivered and cannot get lost. Moreover, we abstract from the delay which could be caused
by transporting a message since we are not interested in the timing behavior of the medium.
However, we plug a receiver `out of the box' in our system which, as the sender, can also handle
unreliable media. The receiver works in the following fashion. It waits to receive a message
from the medium. However, if no message is o�ered from the medium, then the receiver may
timeout and send a failure message back to the sender. A received message is acknowledged and
delivered to the environment before the receiver is ready to accept a new message.

The point of this example is that Protocol can deadlock when we interprete the operators as in
PMC, also if the pre�x operator is interpreted as relaxed pre�x , i.e. the semantics for pre�xing
is as in TPLmc. One path to a deadlock, which is a state without outgoing transitions, is given
by performing the action send, a synchronization on s, and a timeout on �R . The reason for
this is that the receiver can choose to timeout although a message is o�ered from the medium.
However, in TPLmc the localized maximal progress assumption forces the synchronization on r

to occur such that the timeout on �R is preempted. This shows that the new temporal process
algebra TPLmc is more suitable for verifying systems than PMC. Another example showing the
same phenomenon as above is the well-known Alternating Bit Protocol.

In the following sections we develop a semantic theory for TPLmc.

4 Temporal Strong Bisimulation

In this section, we present a congruence on TPLmc processes which is based on bisimulation [20].
Our aim is to characterize the largest congruence contained in the standard strong bisimula-
tion [16] where we treat timed actions as any other action.

De�nition 4.1 (Naive Strong Bisimulation)
A symmetric relation R � P � P is called naive strong bisimulation if for every hP;Qi 2 R ,

� 2 A , and � 2 T the following conditions hold.

1. P
��!P 0 implies 9Q0: Q

��!Q0 and hP 0; Q0i 2 R .

2. P
��!P 0 implies 9Q0: Q

��!Q0 and hP 0; Q0i 2 R .

We write P ��Q if there exists a naive strong bisimulation R such that hP;Qi 2 R .

It is straightforward to establish that �� is the largest naive strong bisimulation and that
�� is an equivalence relation. Unfortunately, �� is not a congruence which is a necessary
requirement for an equivalence relation to be suitable for compositional reasoning. The lack of
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compositionality is demonstrated by the following example involving the parallel operator. We
have

a:0�� a:0"�

but

a:0 j(a:0"�) 6��(a:0"�) j(a:0"�)

since the latter can do a �-transition while the corresponding �-transition of the former process
is preempted because the a-transition of the former process is in the scope of the timer � .

The above observation is not surprising because the scope of timers has in
uence on the pre-
emption of transitions and, consequently, on the bisimulation. Thus, in order to �nd the largest
congruence relation �+ contained in �� we have to take the scopes of timers into account. In
the following, we de�ne �+ which repairs the congruence defect of �� shown above.

De�nition 4.2 (Temporal Strong Bisimulation)

A symmetric relation R � P � P is a temporal strong bisimulation if for every hP;Qi 2 R ,
� 2 A , and � 2 T the following conditions hold.

1. P ��!P 0 implies 9Q0: Q ��!Q0 and hP 0; Q0i 2 R .

2. P ��!P 0 implies 9Q0: Q ��!Q0 ; II�(Q) � II�(P ) ; and hP 0; Q0i 2 R .

We write P �+Q if there exists a temporal strong bisimulation R such that hP;Qi 2 R .

The di�erence between this de�nition and the de�nition of �� is the additional requirement
concerning the initial action sets { parameterized in the appropriate timer { in the second
condition. Intuitively, the initial action set of a process with respect to some clock is a measure
of the preemptive power of the process relative to the clock. Thus, the second condition of
De�nition 4.2 states that a timed action � of the process P has to be matched by the same
timed action of Q . Moreover, the preemptive power of Q with respect to � is at most as strong
as the preemptive power of P with respect to � .

Theorem 4.3 The relation �+ is a congruence with respect to all operators, i.e. for all TPLmc

contexts C we have: P �+ Q implies C[P ]�+C[Q] .

It is worth mentioning the following observation.

Remark 4.4 If we would adopt the semantics of 0 and the pre�x operator, as presented in [3]
where time-stops are intended, then the relation �+ would not be a congruence. In order to see

this, take a look at the processes �:0"�+ a:0 and �:0+ a:0 which are temporal strong bisimular
according to the modi�ed semantics. However, b�:0"� + a:0c�(b:0) and b�:0+ a:0c�(b:0) are
not temporal strong bisimular since the former can timeout on � to become the process b:0. The

latter process cannot timeout since the � -action is in the scope of �. Therefore, such a step
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would contradict our maximal progress assumption. It is relatively easy to see that a necessary
condition for �+ to be compositional with respect to the timeout operator would be

P �+Q implies (� 2 I�(P ) , � 2 I�(Q)) :

However, this condition is not su�cient since it is in con
ict with the compositionality of the

parallel operator. As an example, take the processes (a:0 "�) jb:0 and a:0 j b:0 and the context
C[X ] =dfX j(a:0"�) . Thus, our de�nition of the semantics of 0 and the pre�x operator which

prohibits time-stop is not only more intuitive than the PMC-semantics but also better treatable
from a technical point of view.

Before we continue to present the theoretical results concerning temporal strong bisimulation,
we provide an example.

Example 4.5 We return to the example of the communication protocol introduced in Section 3.
Considering the semantics of Protocol it is easy to see that Protocol�+ Specs where

Specs
def
= send:�S :�:�:(�:receive:Specs + receive:�:Specs) :

The next theorem states the main result of this section.

Theorem 4.6 The congruence �+ is the largest congruence contained in �� .

We conclude this section by providing a logical characterization of �+ . We adapt the well-
known Hennessy-Milner Logic [17] by changing the semantics of the modal operators.

The syntax of the logic we use is de�ned by the following BNF where L � A n f�g .

� ::= tt j :� j � ^ � j h�i� j h�; Li�

The set of all formulae, which can be generated by the BNF above, is denoted by F and ranged
over by �;	; : : : . For convenience, we also introduce the following dual operators: tt=df :�,
�_	=df :(:�^:	), [�]�=df :h�i(:�), and [�; L]�=df :h�; Li(:�) . Further, we abbreviate
�1 ^ �2 ^ : : : ^ �n for some n 2 N by

Vn
i=1 �i .

We de�ne the satisfaction relation j= � P � F between processes and formulae inductively on
the structure of formulae.

P j= tt

P j=:� if not P j=�

P j=� ^ 	 if P j=� and P j=	

P j=h�i� if 9P 0 2 P: P ��!P 0 and P 0 j=�

P j=h�; Li� if 9P 0 2 P: P ��!P 0 ; II�(P ) � L ; and P 0 j=�

12



Intuitively, P satis�es h�; Li� if P possesses a �-transition to a process satisfying � . Moreover,
the preemptive power of P with respect to the clock � may be at most L .

The above de�ned logic characterizes temporal strong bisimulation.

Theorem 4.7 (Characterization of �+)
Let P;Q 2 P . We have P �+Q if and only if f� 2 F jP j=�g = f� 2 F jQ j=�g .

5 Temporal Observation Congruence

The semantic congruence developed in the previous section is too strong for verifying systems
in practice. Temporal strong bisimulation requires that two equivalent systems have to match
exactly each others transitions, even those labeled with internal actions. Therefore, we want to
abstract from internal actions and develop a semantic congruence from the point of view of an
external observer.

Our approach follows the lines of [17]. We start o� with the de�nition of a naive temporal weak
bisimulation which abstracts from internal actions. This relation is an adaption of observation
equivalence [17].

De�nition 5.1 (Naive Temporal Weak Transition Relation)
We de�ne:

1. �̂=df � if � = � and �̂=df � , otherwise.

2.
�

=)� =df
��! �

3.
�

=)� =df
�

=)� �
��!�

�
=)�

4.
�

=)� =df
�

=)� �
��!�

�
=)�

Now, we de�ne naive temporal weak bisimulation as follows.

De�nition 5.2 (Naive Temporal Weak Bisimulation)
A symmetric relation R � P�P is a naive temporal weak bisimulation if for every hP;Qi 2 R ,

� 2 A , and � 2 T the following conditions hold.

1. P
��!P 0 implies 9Q0: Q

�̂
=)� Q0 and hP 0; Q0i 2 R .

2. P ��!P 0 implies 9Q0: Q
�

=)� Q0 and hP 0; Q0i 2 R .

We write P ��Q if there exists a naive temporal weak bisimulation R such that hP;Qi 2 R .

13



Since no initial action sets are considered, it is easy to see that �� is not a congruence. In
order to get closer to our goal to de�ne a temporal observation congruence, we rede�ne the weak
transition relation for timed actions.

De�nition 5.3 (Temporal Weak Transition Relation)

We introduce the following notation where L;M � A n f�g .

1. P
�

=) P 0 i� P
�

=)� P 0 .

2. P
�

=) P 0 i� P
�

=)� P 0 .

3. P
�
=)
L;M

P 0 i� 9P 00: P
�

=) P 00 ��!�
�

=) P 0 ; II�(P
00) � L and II(P 00) �M .

In the remainder, we drop the operator � which denotes the relation product. Recall that the
visible initial action set of a process (with respect to a clock) is a measure for its preemptive
power. There are two slightly di�erent perspectives of preemption which are encoded in the sets

L and M in the de�nition of P
�
=)
L;M

P 0 , respectively. Whereas L is concerned with the in
uence of
the environment, i.e. a parallel context, on the timed action � , the set M re
ects the impact of
P 00 on potential synchronization partners (cf. Rule tCom). Accordingly, we de�ne the following
notion of temporal weak bisimulation.

De�nition 5.4 (Temporal Weak Bisimulation)

A symmetric relation R � P � P is a temporal weak bisimulation if for every hP;Qi 2 R ,
� 2 A , and � 2 T the following conditions hold.

1. P ��!P 0 implies 9Q0: Q
�̂

=) Q0 and hP 0; Q0i 2 R .

2. P
��!P 0 implies 9Q0: Q

�
=)
L;M

Q0; L = II�(P ); M = II(P ); and hP 0; Q0i 2 R .

We write P �Q if there exists a temporal weak bisimulation R such that hP;Qi 2 R .

From this de�nition, we may conclude that � is the largest temporal weak bisimulation, and
that � is an equivalence relation. Moreover, we have the following proposition.

Proposition 5.5 The equivalence relation � is a congruence with respect to all TPLmc operators
except the summation operator, the timeout operator, and recursion.

The reason for the non-compositionality of the summation and the recursion operators is similar
to that with respect to observation equivalence in CCS [17]. In order to see why � is not
compositional with respect to the timeout operator, take a look at the processes 0 and �:0,
which are temporal weak bisimular, and the context C[X ] =dfbXc�(a:0) . Observe that C[0]
can engage in a �-transition but C[�:0] cannot because � 2 I�(�:0) .

The summation �x presented in [17] is not su�cient in order to achieve a congruence relation.
This is �rst because of the same reason that naive strong bisimulation is not a congruence with
respect to parallel composition in TPLmc and second because of the semantics of the timeout
operator.
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De�nition 5.6 (Temporal Observation Congruence)
We de�ne P �+Q if for all � 2 A and � 2 T the following conditions hold.

1. P ��!P 0 implies 9Q0: Q
�

=) Q0 and P 0�Q0 .

2. P
��!P 0 implies 9Q0: Q

��!
�

=) Q0; II�(Q) � II�(P ); II(Q) � II(P ); and P 0�Q0 .

3. Q ��!Q0 implies 9P 0: P
�

=) P 0 and P 0�Q0 .

4. Q ��!Q0 implies 9P 0: P ��!
�

=) P 0; II�(P ) � II�(Q); II(P ) � II(Q); and P 0�Q0 .

The timeout operator is also responsible that a �-transition has to be matched by a weak �-
transition not having any leading � 's. E.g., the processes �:0 and �:�:0 are not observation
congruent since the context C[X ] =dfbXc�(a:0) distinguishes them.

Again, we take a look at our example of the communication protocol.

Example 5.7 Let Protocol be the communication protocol introduced in Section 3 and de�ne

Specw
def
= send:�S :receive:Spec :

Then we have Protocol�+ Specw .

Since both Protocol and Specw are stable, i.e. they can initially engage only in visible actions, it
is by De�nitions 5.4 and 5.6 su�cient to show that Protocol� Specw . Consider the following

relation R where L=dffs; r; sack; rack; sfail; rfailg .

R =df f hProtocol; Specwi;
h(�S :S jMedium j Receiver) n L; �S :Si;
h(S jMedium j Receiver) n L; receive:Specwi
h((rack:Sender+ rfail:S) jr:Medium jReceiver) nL; receive:Specwi
h((rack:Sender+ rfail:S) jMedium jR) n L; receive:Specwi
h((rack:Sender+ rfail:S) jrack:Medium jreceive:R) n L; receive:Specwi
h(Sender jMedium jreceive:R) n L; receive:Specwi
h((rack:Sender+ rfail:S) jrack:Medium jR) nL; Specwi g

Then the symmetric closure of R is a temporal weak bisimulation which includes the pair

hProtocol; Specwi . We leave it to the interested reader to check that R is indeed a tempo-
ral weak bisimulation according to De�nition 5.4.

Now, we are able to present the main theorem of this section.

Theorem 5.8 The relation �+ is the largest congruence contained in �� .

We want to conclude this section by a remark on the logical characterization of � . De�ning a
suitable logic can simply be done by replacing the h�; Li operators from the logic in the previous
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section by new operators hh�; L;Mii where a process P 2 P satis�es the formulae hh�; L;Mii�

if there exists a process P 0 2 P such that P
�
=)
L;M

P 0 and P 0 j=� . Additionally, the operators h�i

have to be replaced by operators hh�ii . We de�ne P j=hh�ii� if 9P 0 2 P :P
�

=) P 0 and P 0 j=�.
The proof that the new logic characterizes � can be done along the lines of [17].

6 Conclusions and Future Work

We have presented a temporal process algebra with multiple clocks and localized maximal
progress assumption which is closely related to the process algebras TPL and PMC. Whereas
TPL does not deal with multiple clocks, and the semantics of PMC does not ensure maximal
progress, our process algebra combines both features. In contrast to PMC, we concentrate
in de�ning an intuitive operational semantics and provide a semantic equivalence in terms of
bisimulations. The characterizations of the largest congruences in the usual strong and weak
bisimulation are of special importance for compositional reasoning which underlies most of the
existing veri�cation techniques.

Future work should especially focus on two aspects. On the one hand, an adaption of standard
partitioning algorithms [15, 19] to compute temporal strong and weak equivalence is necessary in
order to incorporate TPLmc in automatic veri�cation tools, e.g. the NCSU Concurrency Work-
bench. On the other hand, an axiomatic characterization of the behavioral relations would
support a better understanding of the underlying semantic theory and simplify a comparison
with other temporal process algebras.

Acknowledgments. The second author would like to thank V. Natarajan for many helpful
discussions.
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A Congruence Proofs

A.1 Temporal Strong Bisimulation

In this section, we present an outline of the proof that�+ is a congruence. Since the semantics of
all operators beside pre�xing, parallel composition and timeout is the same as in PMC we obtain
the compositionality relatively easy by adapting the results presented in [3] under consideration
of the de�nition of visible initial action sets with respect to the scope of timed actions. Therefore,
we concentrate on the more interesting cases.

Lemma A.1 P �+Q implies P jR�+Q jR for all P;Q;R 2 P .

Proof: According to the de�nition of �+ it is su�cient to prove that

R=dffhP jR;Q jRi jP �+Qg

is a temporal strong bisimulation.

The case P jR ��! S for some � 2 A and S 2 P is the same as the corresponding case in CCS [17]
and, therefore, we omit it here.

Let P jR ��! S for some � 2 T and S 2 P . According to the only applicable semantic Rule tCom
we know that P ��!P 0 for some P 0 2 P , II�(P ) \ II(R) = ; , R ��!R0 for some R0 2 P , II�(R) \
II(P ) = ; , and S � P 0 jR0 . Since P �+ Q there exists a process Q0 2 P such that Q ��!Q0 ,
II�(Q) � II�(P ) , and P 0�+Q0 . Additionally, P �+ Q implies that II(P ) = II(Q) . Therefore, we
may conclude that Q jR ��!Q0 jR0 by Rule tCom. Moreover, hP 0; Q0i 2 R holds, and we have
�nished the proof. �

Now, we deal with the timeout operator.

Lemma A.2 P �+Q and R�+ S imply bP c�(R)�+bQc�(S) for all processes P;Q;R; S 2 P
and all timed actions � 2 T .

Proof: Let P;Q;R; S 2 P satisfying P �+Q and R�+ S . Moreover, let � 2 T . We show that
bPc�(R)�+bQc�(S) .

Let bPc�(R) ��!P 0 for some P 0 2 P . According to the only applicable semantic Rule TO of
TPLmc we know that P ��!P 0 . Since P �+ Q holds, the existence of some Q0 2 P such that
Q

��!Q0 and P 0�+Q0 is guaranteed. By Rule TO we may conclude that bQc�(S) ��!Q0 .

Let bPc�(R) �0�!P 0 for some P 0 2 P where �0 6= � . Thus, P �0�!P 0 by Rule tTO2. Since

P �+ Q it follows that Q �0�!Q0 , II�0(Q) � II�0(P ) , and P
0�+Q0 for some Q0 2 P . According to

Rule tTO2 we conclude that bQc�(S) �0�!Q0 . Moreover, we have II�0(bQc�(S)) � II�0(bPc�(R))
because II�0(bQc�(S)) = II�0(Q) and II�0(bP c�(R)) = II�0(P ) .
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Finally, let bPc�(R) ��!P 0 for some P 0 2 P . By Rule tTO1 we know that P 0 � R and � =2 I�(Q) .
Moreover, Proposition 2.2 guarantees that P

��! . Because P �+ Q , also Q
��! is satis�ed. Thus,

� =2 I�(Q) by our maximal progress assumption (cf. Proposition 2.3) and bQc�(R) ��!R . The
observation R�+ R concludes this case. �

Also the pre�xing of timed actions respects the compositionality of �+ . The compositionality
of the ignore operator with respect to temporal strong bisimulation is trivial since II�(P "�) = ;
for all processes P 2 P . However, the compositionality of recursion requires to introduce a
notion of temporal strong bisimulation up to. This can be done according to the lines of CCS
with respect to strong bisimulation (cf. [17]).

A.2 Temporal Weak Congruence

In this section, we show that �+ is the largest congruence contained in � . We start o� by
proving that �+ is in fact a congruence. Most cases are standard and can be checked along the
lines of [17]. Therefore, we restrict ourselves to the more interesting proof parts.

Lemma A.3 P �Q implies P jR�Q jR for all P;Q;R 2 P .

Proof: According to the de�nition of � it is su�cient to prove that

R=dffhP jR;Q jRi jP �Qg

is a temporal weak bisimulation.

The case where P jR ��!S for some S 2 P and � 2 A is standard.

Consider the case P jR ��!S for some S 2 P and � 2 T . By the only applicable Rule tCom we
know that P

��!P 0 for some P 0 2 P , II�(P )\II(R) = ; , R ��!R0 for some R0 2 P , II�(R)\II(P ) =

; , and S � P 0 jR0 . Since P �Q we know of the existence of a process Q0 2 P such that Q
�
=)
L;M

Q0

and P 0�Q0 where L = II�(P ) and M = II(P ) . This means that Q
�

=) Q00 ��!Q000 �
=) Q0 ,

II�(Q
00) � L , and II(Q00) � M for some Q00; Q000 2 P . First observe, that (II�(Q

00) \ II(R)) �
(II�(P ) \ II(R)) = ; and (II�(R) \ II(Q00)) � (II�(R) \ II(P )) = ; . Applying our semantic rules
again we conclude that Q jR

�
=) Q00 jR ��!Q000 jR0 �

=) Q0 jR0 since II(Q00 jR) = II(Q00)[ II(R) �
II(P ) [ II(R) = II(P jR) and II�(Q00 jR) = II�(Q00) [ II�(R) � II�(P ) [ II�(R) = II�(P jR) holds.
Obviously, we also have hP 0 jR0; Q0 jR0i 2 R . �

Observe that in the proofs of the standard cases of the above lemma a � -derivation is matched by
at least one � -transition. Moreover, R is de�ned symmetrically. Therefore, �+ is compositional
with respect to the parallel operator, too.

In the following, we establish the compositionality of �+ with respect to the timeout operator.

Lemma A.4 P �+Q and R�S imply bPc�(R)�+bQc�(S) for all processes P;Q;R; S 2 P
and all timed actions � 2 T .
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Proof: Let P;Q;R; S 2 P satisfying P �+Q and R�S . Moreover, let � 2 T . We show that
bPc�(R)�+bQc�(S) .

The case where bPc�(R) ��!P 0 for some � 2 A and P 0 2 P is straightforward.

Therefore, we directly consider the non-standard case where bPc�(R) �0�!P 0 for some P 0 2 P

and � 6= �0 . According to the only applicable Rule tTO2 we have P
�0�! P 0 . Since P �+Q there

exists some Q0 2 P such that Q
�0�!

�
=) Q0 , II�0(Q) � II�0(P ) , II(Q) � II(P ) , and P 0�Q0 .

Applying Rule tTO2 again, we conclude bQc�(S) �0�!
�

=) Q0 . Moreover, the necessary inclusion
conditions hold since II(bQc�(S)) = II(Q) � II(P ) = II(bPc�(R)) and II�0(bQc�(S)) = II�0(Q) �
II�0(P ) = II�0(bPc�(R)) . We also have Q0�Q0 because � is an equivalence relation.

Finally, let bP c�(R) ��! P 0 for some P 0 2 P . By Rule tTO1 we know that P 0 � R . Since
P �+Q we conclude the existence of some Q0 2 P such that Q ��!

�
=) Q0 , II�(Q) � II�(P ) ,

II(Q) � II(P ) , and P 0�Q0 . Because of Proposition 2.3 and Rule tTO1 we have bQc�(S) ��!S .
The required initial action set inclusions follow similarly to the case above. Additionally, we
also have P 0 � R�S .

Because of symmetry reasons, we have �nished the proof. �

In order to show that �+ is compositional with respect to recursion, we need to de�ne a notion of
temporal weak bisimulation up to � [22]. With this de�nition, the proof is completely standard
(cf. [17]).

De�nition A.5 (Temporal Weak Bisimulation up to �)
A relation R � P�P is a temporal weak bisimulation up to � if for every hP;Qi 2 R , � 2 A ,
and � 2 T the following conditions hold.

1. P ��!P 0 implies 9Q0: Q
�

=) Q0 and P 0 R� Q0 .

2. P ��!P 0 implies 9Q0: Q
�
=)
L;M

Q0; L = II�(P ); M = II(P ); and P 0 R� Q0 .

3. Q
��!Q0 implies 9P 0: P

�
=) P 0 and P 0 �R Q0 .

4. Q ��!Q0 implies 9P 0: P
�
=)
L;M

P 0; L = II�(Q); M = II(Q); and P 0 �R Q0 .

As expected, this notion satis�es the property that, if R is a temporal weak bisimulation up to
� , then R � � .

Now, we prove another property of �+ which turns out to be useful in the next section.

Proposition A.6 The congruence �+ is the largest congruence contained in � .

Proof: Since the relation �+ is a congruence, it is su�cient to show that for all TPLmc-contexts
C and processes P;Q 2 P satisfying C[P ]�C[Q] we have P �+ Q . Moreover, it is su�cient to
deal with the contexts C�[X ] =dfbX + c:0c�(d:0) where c; d =2 S(P ) [ S(Q) and � 2 T .
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Let C�[P ]
��! P 0 for some P 0 2 P , some � 2 A , and some � 2 T . Since P � Q there exists a

process Q0 2 P satisfying C[Q]
�̂

=) Q0 and P 0�Q0 . We know that Q0 6� C�[Q] because P
0 � Q0

and P 0 is not capable of performing the distinguished c-transition. Therefore, the matching step
is necessary, even if � = � .

Now, let C�[P ]
��!S for some � 2 T . By Rule tTO1 we know that � =2 I�(P ) and S � d:0 .

Because of the fact that C�[P ]�C�[Q] we have S�T and C�[Q]
�
=)
L;M

T where L = II�(C�[P ]) and

M = II(C�[P ]) . Since d is a distinguished action we may conclude by Rule tTO1 that T � d:0 ,
C�[Q]

��! d:0 , and � =2 I�(Q) , as desired.

Similarly, the symmetric properties hold, too. Thus, all conditions of De�nition 5.6 are satis�ed,
and we obtain P �+ Q , as desired. �

B Proof of the Main Theorems

In this section, we proof Theorems 4.6 and 5.8 which state that �+ is the largest congruence
contained in �� and �+ is the largest one contained in �� , respectively.

In both proofs, we use (parts of) the following fact from universal algebra.

Fact B.1 Let X and Y be equivalence relations. Then the largest congruence X+ in X exists.
X+ is characterized by X+ = fhP;Qi j8TPLmc-contexts C: hC[P ]; C[Q]i 2 Xg . Moreover, if

X+ � Y � X then X+ = Y + .

In the following, we construct contexts which include the summation operator over sorts. Since
TPL

mc just provides a binary summation operator, i.e. only �nite summations can be expressed
in TPLmc, the following lemma is important to show the well-de�nedness of these contexts.

Lemma B.2 (Finite Sorts)
Let P 2 P be a TPLmc process. Then the sort of P , i.e. the set of actions occurring in the

transition system for P , is �nite. We denote the sort of P by S(P ) .

This observation is an immediate consequence of the fact that process terms are �nite, and
relabelings f satisfy the condition jf� j f(�) 6= �g j <1 .

B.1 Proof of Theorem 4.6

By Theorem 4.3 we know already that the relation �+ is a congruence, and we know by Fact B.1
that the largest congruence in �� exists. Therefore, it remains to show that P �+Q for some
processes P;Q 2 P whenever C[P ]��C[Q] for all TPL

mc-contexts C . For this it su�ces to
consider the equivalence relation

�a=dffhP;Qi jCPQ[P ]�� CPQ[Q]g :
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Here, using the abbreviation S=df S(P ) [ S(Q) , we de�ne

CPQ[X ] =dfX jHPQ

and

HPQ
def
=

X
L � S;

� 2 T

�:(b(DL"�) + d�;L:0c�(HPQ)) :

Note that HPQ is well-de�ned because of Lemma B.2 and the �niteness of T . Moreover, the
process DL is de�ned as

P
d2L d:0 . The actions d�;L are supposed to be `fresh' actions, i.e. they

are not in the sorts of the processes P and Q . The following proposition contains the necessary
inclusion which has to be established.

Proposition B.3 The inclusion �a � �� holds.

Proof: It is su�cient to show that�a is a temporal strong bisimulation. Let P;Q 2 P satisfying
P �aQ , i.e. by the de�nition of �a we have CPQ[P ]�� CPQ[Q] . In the following, we consider
two cases distinguishing if the process P performs a transition labeled with an action in A or
in T . This transitions of P lead to transitions of CPQ[P ] . According to the de�nition of �� ,
matching sequences have to exist which mimic each step by a corresponding transition. From
these transitions, we may extract additional conditions which have to be satis�ed according to
the semantics of TPLmc. Those conditions are su�cient to conclude that �a is a temporal strong
bisimulation.

Case 1 Let P ��!P 0 for some process P 0 2 P and some action � 2 A . According to our
operational semantics we have CPQ[P ] � P jHPQ

��!P 0 jHPQ � CPQ[P 0] . This transition can
only be matched by a corresponding transition of the process Q, say Q

��!Q0 for some process
Q0 2 P . This is even true in the case � = � because the � -successors of HPQ have the distin-
guished actions d�;L enabled. Therefore, we have CPQ[Q] � Q jHPQ

��!Q0 jHPQ � CPQ[Q
0] and

CPQ[P 0]��CPQ[Q0] . Because S(P 0) � S(P ) and S(Q0) � S(Q) , also CP 0Q0 [P 0]��CP 0Q0 [Q0]
holds. Thus, P 0�aQ

0 .

Case 2 Let P ��!P 0 for some process P 0 2 P and some timed action � 2 T . As illustrated in
Figure 3, we let CPQ[P ] perform a � -transition to P jH�;L , where

H�;L=dfb(DL "�) + d�;L:0c�(HPQ)

and L=dffc j c 2 S n II�(P )g . Now, P jH�;L can perform a �-transition to P 0 jHPQ according
to Rule tCom.

The process CPQ[Q] has to match the �rst step by a � -transition to the process Q jH�;L since
only this process has the distinguished action d�;L enabled.

Now, we take a closer look at the second step. We have to match a �-transition. Therefore, Q has
to perform a �-transition to some process Q0 2 P and the process H�;L must perform its only
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P j HPQ �� Q j HPQ

?

�

?

�

P j(b(DL + d�;L:0)"�c�(HPQ)) �� Q j(b(DL + d�;L:0)"�c�(HPQ))

?

�

?

�

P 0 j HPQ �� Q0 j HPQ

Figure 3: Largest congruence proof of �+ { illustration of Case 2

�-transition to the state HPQ , i.e. Q jH�;L
��!Q0 jHPQ � CPQ[Q

0] and CPQ[P
0]��CPQ[Q

0] .
According to Rule tCom, the condition II�(Q)\ II(H�;L) = ; has to be satis�ed. Because of the
choice of L , this implies II�(Q) � II�(P ) . Since S(P

0) � S(P ) and S(Q0) � S(Q) it follows that
CP 0Q0 [P 0]�� CP 0Q0 [Q0] , i.e. P 0�aQ

0, as desired.

�

B.2 Proof of Theorem 5.8

Here, we make a stronger use of Fact B.1. We choose X = ��+ and Y = � . The inclusion
� � �� follows immediately from the de�nition of the naive and the temporal weak transition
relation. In order to apply Fact B.1, we have to establish ��+ � � . This inclusion turns out
to be di�cult to show. Therefore, we de�ne the equivalence relation

�a=dffhP;Qi jCPQ[P ]�� CPQ[Q]g :

Here, abbreviating S(P ) [ S(Q) by S, the process CPQ[X ] represents X jHPQ where

HPQ
def
= e:0+

X
L;M � S;

� 2 T

�:(bDL + d�;L;M :0+ (DM "�)c�(HPQ))

The processes HPQ are well-de�ned because of Lemma B.2 and the �niteness of the set T ,
and DL and DM are de�ned by

P
d2L d:0 and

P
d2M d:0 , respectively. The actions d�;L;M are

supposed to be `fresh' actions, i.e. they are not in the sort of the processes P and Q . By
Fact B.1, we may immediately conclude that ��

+ � �a . The other necessary inclusion can be
established by using the following proposition.
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Proposition B.4 The inclusion �a � � holds.

Proof: It is su�cient to show that �a is a temporal weak bisimulation. Let P;Q 2 P satisfying
P �aQ .

Case 1 Let P ��!P 0 for some process P 0 2 P and some action � 2 A . According to our
operational semantics we may derive CPQ[P ] � P jHPQ

��!P 0 jHPQ � CPQ[P
0] . This transition

can only be matched by a corresponding weak transition of the process Q, say Q
�̂

=)� Q0 for
some Q0 2 P , since only the process HPQ has the distinguished action c enabled. Therefore,

we have CPQ[Q] � Q jHPQ
�̂

=)� Q0 jHPQ � CPQ[Q0] and CPQ[P 0]��CPQ[Q0] . Because
S(P 0) � S(P ) and S(Q0) � S(Q) , also CP 0Q0 [P 0]��CP 0Q0 [Q0] holds. Thus, P 0�aQ

0 .

Case 2 Let P ��!P 0 for some process P 0 2 P and some timed action � 2 T . As illustrated in
Figure 4, we let CPQ[P ] perform a � -transition to the process P jH�;L;M , where

H�;L;M =dfbDL + d�;L;M :0+ (DM "�)c�(HPQ)) ;

L=dffc j c 2 S n II(P )g , and M =dffc j c 2 S n II�(P )g n L . Now, P jH�;L;M can perform a
�-transition to P 0 jHPQ according to Rule tCom.

P j HPQ �� Q j HPQ

?

�

??

�

�

P jH�;L;M �� Q jH�;L;M

?

�

??

�

�

P 0 j HPQ �� Q0 j HPQ

Figure 4: Largest congruence proof of �+ { illustration of Case 2

Consider the �rst step. Since CPQ[P ]��CPQ[P ] , we have CPQ
�

=)� W for some W 2 P . We
know that HPQ has to perform a � -transition to H�;L;M since d�;L;M is a distinguished action.

However, Q may be able to perform some � -transitions to some state Q 2 P , i.e. Q
�

=)� Q and
P 0 jH�;L;M �� Q jH�;L;M .

Now, we take a look at the more interesting second step. Since P jH�;L;M ��Q jH�;L;M , we

know that some W
0
2 P exist such that Q jH�;L;M

�
=)� W

0
and CPQ[P 0]��W

0
. According to

our operational semantics Q and H�;L;M have to perform a naive weak �-transition. Since e is a
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distinguished action we know that H�;L;M
��!HPQ . Therefore, W � Q0 jHPQ for some process

Q0 2 P such that Q
�

=)� Q0 , i.e.

9s; t 2 N 80 � i <s 80 <j <t: 9Qi; Qs+j 2 P: Q0 � Q;Qs+t � Q0

such that

1. Qi jH�;L;M
��!Qi+1 jH�;L;M ,

2. Qs jH�;L;M
��!Qs+1 jHPQ , and

3. Qs+j jHPQ
��!Qs+j+1 jHPQ .

According to the Rule tCom the following conditions must be satis�ed in order that the timed
action � 2 T may occur.

1. II�(Qs)\ II(H�;L;M) = ; which implies II�(Qs) � II�(P ) .

2. II�(H�;L;M)\ II(Qs) = ; which implies II(Qs) � II(P ) .

We have shown that Q
�
=)
L;M

Q0 according to the de�nition of the temporal weak transition relation.

We also have CP 0Q0 [P 0]�� CP 0Q0 [Q0] , i.e. P 0�aQ
0 since CPQ[P

0]��CPQ[Q
0] , S(P 0) � S(P ) ,

and S(Q0) � S(Q) . Therefore, the proof is �nished. �

Now, we are able to put our proof parts together in order to obtain Theorem 5.8. Proposition A.6
states that �+ is the largest congruence contained in � . Moreover, ��

+ is contained in �
according to Proposition B.4 and the inclusion ��+ � �a . Therefore, we may conclude by
Fact B.1 that �+ = ��

+ , i.e. �+ is the largest congruence contained in �� . Figure 5 depicts
the proof situation where an arrow from some relation R1 to a relation R2 means that R1 � R2 .

��

�

�a

�+��
+

6

�
���

�
���

6

-�

Figure 5: Situation in the proof of Theorem 5.8
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C Proof of the Logical Characterization of �+

In this section, we prove Theorem 4.7. Most proof parts are similar to the corresponding ones
presented in [17].

First, we de�ne a characterization of temporal strong bisimulation for �nite-branching transition
systems over A [ T . A transition system hP;A[ T ; �! ; P i is called �nite-branching if the set
fP 00 jP 0 


�!P 00 ; 
 2 A [ T g is �nite for all reachable states P 0 of the process P .

De�nition C.1 Let hP;A[ T ;�!; P i and hP;A [ T ;�!; Qi be �nite-branching transition

systems. We de�ne �+
0=df P � P and P �+

k+1Q for some k 2 N if the following proper-
ties hold:

1. P ��!P 0 implies 9Q0: Q ��!Q0 and P 0�+
k Q

0 .

2. P ��!P 0 implies 9Q0: Q ��!Q0 ; II�(Q) � II�(P ) ; and P 0�+
k Q

0 .

3. Q ��!Q0 implies 9P 0: P ��!P 0 and P 0�+
k Q

0 .

4. Q ��!Q0 implies 9P 0: P ��!P 0 ; II�(P ) � II�(Q) ; and P 0�+
k Q

0 .

The proof of the next proposition follows the lines in [17]. Note that for all processes in TPLmc

the according transition systems are �nite-branching.

Proposition C.2 Let P;Q 2 P . We have P �+Q if and only if P �+
k Q for all k 2 N .

Now we are able to prove Theorem 4.7. By Proposition C.2 it is su�cient to establish the
following two lemmata.

Lemma C.3 Let P;Q 2 P , k 2 N , and � 2 F such that P �+
k Q and P j=� . Then Q j=�

holds.

Proof: We prove the lemma by induction on k where the induction step is divided into several
cases according to the structure of � . The only non-standard case is � = h�; Li	 for � 2 T and
L � A n f�g . By the de�nition of j= we conclude the existence of a process P 0 2 P such that
P ��!P 0 , II�(P ) � L , and P 0 j=	 . Since P �+

k Q we also know of the existence of some Q0 2 P
such that Q ��!Q0 , II�(Q) � II�(P ) , and P 0�+

k�1Q
0 . Thus, II�(Q) � L and, by the induction

hypothesis, that Q0 j=	. Therefore, Q j=h�; Li	, as desired. �

Lemma C.4 Let P;Q 2 P and k 2 N such that P 6�+
k Q holds. It exists a formula � 2 F such

that P j=� but Q 6j=� .
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Proof: We prove this lemma by induction on k . The induction base is trivial since the premise
P 6�+

0Q does not hold. Now, let k > 0 and P 6�+
k Q . We have to �nd a formula � 2 F such

that P j=� and Q 6j=�. Since P 6�+
k Q we have P



�!P 0 for some 
 2 A [ T and P 0 2 P which

cannot be matched by a step of Q . The case where 
 2 A follows the standard lines. Now,
let 
 = � 2 T , i.e. we know that whenever Q

��!Q0 and II�(Q) � II�(P ) then P 0 6�+
k�1Q

0 .
Let fQ0 jQ ��!Q0 and II�(Q) � II�(P )g = fQi j i 2 Ig for some index set I . Note that I is a
�nite set, because the transition system for Q is �nite-branching. By induction hypothesis we
conclude the existence of formulae 	i , for i 2 I , such that P 0 j=	i and Qi 6j=	i . Now, de�ne
�=dfh�; Li

V
i2I 	i where L=df II�(P ). Because of the choice of L, it is easy to see that P j=�.

Since no �-derivative of Q with II�(Q) � L satis�es
V
i2I 	i , we have Q 6j=�. �
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