
UNIVERSITaT PASSAU

Fakult�at f�ur Mathematik und Informatik

P

Chaotic Fixed Point Iterations

Alfons Geser, Jens Knoop, Gerald L�uttgen, Bernhard Ste�en
Fakult�at f�ur Mathematik und Informatik

Universit�at Passau
Innstra�e 33

D{94032 Passau
Germany

Oliver R�uthing
Institut f�ur Informatik und Praktische Mathematik

Christian-Albrechts-Universit�at
Preu�erstra�e 1{9
D{24105 Kiel
Germany

MIP-9403
Oktober 1994

Abstract

In this paper we present a new �xed point theorem applicable for a countable system of
recursive equations over a wellfounded domain. Wellfoundedness is an essential feature
of many computer science applications as it guarantees termination of the corresponding
�xed point computation algorithms. Besides being a natural restriction, it marks a new
area of application, where not even monotonicity is required. We demonstrate the power
and versatility of our �xed point theorem, which under the wellfoundedness condition cov-
ers all the known `synchronous' versions of �xed point theorems, by means of applications
in data
ow analysis and program optimization.

Keywords

Fixed point, chaotic iteration, vector iteration, data
ow analysis, program optimization,
workset algorithm, partial dead code elimination.

Contents

1 Introduction 1

2 Theory 2

2.1 The Main Theorem : 2

2.2 Vector Iterations : 3

3 Applications 5

3.1 Data Flow Analysis: Workset Algorithms : : : : : : : : : : : : : : : : : : : 5

3.2 Program Optimization: Partial Dead Code Elimination : : : : : : : : : : : 7

4 Conclusions and Future Work 13

1 Introduction

Many practically relevant problems in computer science can be formalized as follows.
Given some family of functions F =df ffk j k 2 INg on a wellfounded partial order hD;vi,
�nd the least solution of the system of recursive equations x = f1(x); x = f2(x); : : : , i.e.
the least common �xed point, �F , of the functions fk. A typical algorithm solving this
task would start with the initial value x0 = ? for x, where ? denotes the least element
of D, and successively apply the functions fk 2 F in an arbitrary order producing a so
called chaotic iteration, e.g.

x1 = f1(x0); x2 = f5(x1); x3 = f27(x2); x4 = f1(x3); : : :

Our main theorem guarantees the existence of a common �xed point of F , if all functions
in F are increasing with respect to v, and it guarantees the success of the procedure
above, if the functions are additonally locally monotonic and applied su�ciently often.
Whereas local monotonicity is a generalization of the usual monotonicity property, the
second requirement is essentially a fairness property.

The remainder of the paper is structured as follows. In Section 2 we present a new �xed
point theorem. In particular, we show that vector iterations are a special case of chaotic
iterations. In Section 3 we demonstrate the power and versatility of our theorem by an
application each in data
ow analysis and program optimization. In data
ow analysis it
is the key for proving correctness of some common iterative workset algorithms, i.e. they
compute the extreme �xed point solution of a data
ow analysis problem. In program
optimization it is central for proving the optimality of an algorithm for partial dead code
elimination. Section 4 contains our conclusions and directions to future work.

Related Work

The origin of �xed point theorems in computer science dates back to the fundamental
work of Tarski [Tar55]. Tarski's theorem considers a monotonic function and guarantees
the existence of its least �xed point with respect to a complete partial order. This setup,
however, turned out to be too restrictive for a lot of practically relevant applications which
led to a number of generalizations. See [LNS82] for a survey of the history of �xed point
theory.

In numerical analysis one is interested in computing the least �xed point of x = f(x)
where x is a vector (x0; : : : ; xn�1) 2 Dn and f : Dn ! Dn is a monotonic vector function
(f 0; : : : ; fn�1) where fk : Dn ! D (cf. [Rob76]). Liberalizing Tarski's iteration x0 =
?; x1 = f(x0); x2 = f(x1); : : : , one may choose x0 = ?; x1 = fJ0(x0); x2 = fJ1(x1); : : : ,
where the k-th component fJi(x)

k of fJi(x) is f
k(x) if k 2 Ji and x

k otherwise. Intuitively,
at each step i the set Ji denotes the indices k of the components which are updated. We
call such an iteration a (synchronous) vector iteration. As we will show, vector iterations
are special chaotic iterations. The vector approach has been further generalized towards
asynchronous iterations [Cou77, �UD89, Wei93], where fJi may use components of a choice
of earlier vectors xj, with j � i, of the iteration.

It is worth noting that the vector iteration approach is still concerned with the �xed point

1

of a single function f which is expressed in terms of the common �xed point of the vector
functions f 0; f 1; : : : ; fn�1. Moreover, as in Tarski's setup, it requires monotonicity of f .

In contrast, we treat common �xed points of a family of functions F =df ffk j k 2 INg,
fk : D ! D, which satis�es a weaker notion of monotonicity, called local monotonicity,
since monotonicity is often too restrictive in practice.

Basic Notions

A partial order hD;vi is a set D together with a re
exive, antisymmetric, and transitive
binary relationv �D�D. A sequence (di)i2IN of elements di 2 D is called an (ascending)
chain if 8i 2 IN: di v di+1. A chain T =df (di)i2IN is stationary if fdi j i 2 INg is
�nite. The partial order relation v is called wellfounded if every chain is stationary. A
function f : D ! D on D is increasing if d v f(d) for all d 2 D, and monotonic
if 8d; d0 2 D: d v d0) f(d) v f(d0). If F =df (fk)k2IN is a family of functions and
s = (s1; : : : ; sn) 2 IN� then fs is de�ned by the composition fs=df fsn � � � � � fs1.

2 Theory

In this section we present our new �xed point theorem which gives su�cient conditions
that a family of functions, F =df (fk)k2IN , has a least common �xed point �F . Here each
fk, k 2 IN , is a function fk : D ! D on a wellfounded partial order hD;vi with least
element ?. We present a skeleton algorithm which computes �F if the conditions hold.

2.1 The Main Theorem

The following notions are central for dealing with �xed point iterations of a family of
functions.

De�nition 2.1 (Strategy, Chaotic Iteration Sequence and Fairness)
Let hD;vi be a partial order and F =df (fk)k2IN be a family of increasing functions fk :
D ! D. A strategy is any function
 : IN ! IN . A strategy
 and an element d 2 D

induce a chaotic iteration f
(d) = (di)i2IN of elements di 2 D inductively de�ned by d0 = d

and di+1 = f
(i)(di). A strategy
 is called fair i�

8i 2 IN: (9k 2 IN: fk(di) 6= di implies 9j > i: dj 6= di)

Fixed point theorems usually require that the considered functions are monotonic. In
practice, however, functions are often not monotonic, but satisfy the following weaker
notion.

De�nition 2.2 (Local Monotonicity)
Let hD;vi be a partial order and F =df (fk)k2IN be a family of functions fk : D ! D.
Then F is called locally monotonic, if for all k 2 IN :

d v d0 implies 9s 2 IN�: fk(d) v fs(d
0)

2

d := ?;
while 9 k 2 IN: d 6= fk(d) do

choose k 2 IN where d 6= fk(d) in
d := fk(d)

ni

od

Figure 1: The Nondeterministic Skeleton Algorithm

If every fk is a monotonic function in the usual sense, then F is locally monotonic. But
note that local monotonicity in general does not carry over to proper subsets of F .

The following theorem states our main result.

Theorem 2.3 (Chaotic Fixed Point Iterations)
Let hD;vi be a wellfounded partial order with least element ?, F =df (fk)k2IN a locally
monotonic family of increasing functions, and
 : IN ! IN a fair strategy. Then

F
f
(?)

is the least �xed point �F of F .

As a consequence of the uniqueness of the least �xed point,
F
f
(?) is independent of the

choice of
.

Proof The wellfoundedness of v, the increasingness of the functions of F , and the fairness
of the strategy directly imply that

F
f
(?) is a �xed point. Thus, we are left with showing

that
F
f
(?) is a lower bound for every �xed point of F . Let d be an arbitrary �xed point

of F , i.e. fk(d) = d for all fk 2 F and as a consequence fs(d) = d for all s 2 IN�.
We show di v d for all i 2 IN by induction on i. For i = 0, we have d0 = ? v d.
The induction step, di+1 = f
(i)(di) v fs(d) = d for some s 2 IN�, then follows from
the induction hypothesis, the local monotonicity, and the �xed point property of d. Hence
di v d for all i and so

F
f
(?) v d by de�nition of

F
. �

Theorem 2.3 induces an iterative strategy for computing the least �xed point of F . One
de�nes
(i) at step i during the run of the algorithm. Whenever di is not yet a �xed
point of F , i.e. there is some k 2 IN where fk(di) is strictly greater than di, one chooses

(i) = k for an arbitrary such k. This idea is illustrated in the nondeterministic skeleton
algorithm presented in Figure 1.

2.2 Vector Iterations

Let hC;vCi be a wellfounded partial order and D = Cn for some n 2 IN , ordered by
the pointwise extension v of vC . Now let f : D ! D be a monotonic function. Instead
of iterating d1 = f(?); d2 = f(d1); : : : according to Tarski's theorem, one may pass over
to a dissection of f into its components, fk, i.e. f(d) = (f 0(d); f 1(d); : : : ; fn�1(d)) and
perform selective updates.1 Note that the set of �xed points of the function f and the set

1Upper indices select a component of a vector of length n.

3

of common �xed points of the function family ff 0; : : : ; fn�1g coincide. A vector iteration
is an iteration of the form d1 = fJ0(?); d2 = fJ1(d1); : : : , where Ji � f0; : : : ; n� 1g and

fJ(d)
i=df

(
f i(d) if i 2 J

di otherwise

performs a selective update of the components speci�ed by J . The set of common �xed
points of the function family F =df ffJ j J � f0; : : : ; n� 1gg is equal to the set of �xed
points of f . Note that each fJ is monotonic since f is monotonic.

Now let us demonstrate that the vector approach is modelled conveniently in our setting.
To this end, we generalize the notion of a strategy to that of a set strategy whose range is
a subset of f0; : : : ; n� 1g.

The following result shows that for a monotonic vector function f , every chaotic iteration
sequence is a chain.

Lemma 2.4 (Vector Iterations)
Let hC;vCi be a wellfounded partial order with least element ?, let n 2 IN , and let
D = Cn be ordered by the pointwise extension v of vC. Let f = (f 0; f 1; : : : ; fn�1)
be a monotonic function on D, and let F =df ffJ j J � f0; : : : ; n� 1gg with functions
fJ : D ! D as de�ned above and
 be a set strategy (on f0; : : : ; n� 1g). Then every
chaotic iteration f
(?) is a chain.

Proof Let
 be an arbitrary set strategy on f0; : : : ; n� 1g, and (di)i2IN be its induced
chaotic iteration. We have to show

8i 2 IN 8J � IN: di v fJ(di)

The proof is by induction on i. By de�nition of fJ the property

8k 62 J � IN 8d 2 D: fJ(d)
k = dk

holds. Therefore, it su�ces to show dki vC fk(di)
k for k 2 J. The case where dki is the

least element of C, is trivial. Otherwise, dki must have been updated in an earlier step.
More precisely, dki = f
(j)(dj)

k where j is the greatest index j < i such that k 2
(j).
By induction hypothesis for each j 0 = j; : : : ; i � 1 and the choice of j, we obtain dj0 v
f
(j0)(dj0) = dj0+1, from which dj v di follows by the transitivity of v. By monotonicity,
dki = f
(j)(dj)

k v f
(j)(di)
k = fk(di) = fJ(di)

k = dki+1, as required. �

The following corollary is a special case of Theorem 2.3 for vector iterations and follows
by Lemma 2.4. In particular, if jFj = 1 our corollary reduces to the wellfounded case of
Tarski's theorem. W.l.o.g. we may assume that D = fd 2 D j 9s 2 IN�: fs(?) = dg.

Corollary 2.5 (Chaotic Vector Iterations)
Let hC;vCi be a wellfounded partial order with least element ?, let n 2 IN , and let
D = Cn be ordered by the pointwise extension v of vC . Let f = (f 0; f 1; : : : ; fn�1) be
a monotonic function on D, and let F =df ffJ j J � f0; : : : ; n� 1gg, and
 be a fair set
strategy. Then

F
f
(?) is the least �xed point �F of F .

4

3 Applications

In this section we consider applications of the Fixed Point Theorem 2.3 in data
ow
analysis and program optimization. In data
ow analysis we use Corollary 2.5 as the key
for proving the correctness of some iterative workset algorithms as they are common in
practice. More precisely, we prove that they compute the extreme2 �xed point solution
of a data
ow analysis problem. In program optimization we show that Theorem 2.3 is
central for proving the optimality of an algorithm for partial dead code elimination.

3.1 Data Flow Analysis: Workset Algorithms

Data
ow analysis (DFA) is concerned with the static analysis of programs in order to
support the generation of e�cient object code by \optimizing" compilers (cf. [Hec77,
MJ81]). For imperative languages, it provides information about the program states
that may occur at a given program point during execution. Usually, this information is
computed by means of some iterative workset algorithm, which can elegantly be modelled
by the vector iteration approach.

In DFA and program optimization (cf. Section 3.2) it is common to represent programs
as directed
ow graphs G = (N;E; s; e) with node set N and edge set E. Nodes n 2 N

represent the statements, edges (n;m) 2 E the nondeterministic branching structure of
the program under consideration, and s and e the unique start node and end node of
G, which are assumed to possess no predecessors and successors, respectively. Moreover,
predG(n)=df fm j (m;n) 2 E g denotes the set of all immediate predecessors, whereas
succG(n)=df fm j (n;m) 2 E g denotes the set of all immediate successors of a node n.
Finally, every node n 2 N is assumed to lie on a path from s to e, i.e. every node n 2 N

is reachable from s, and e is reachable from every node n 2 N .

Theoretically wellfounded are DFAs that are based on abstract interpretation (cf. [CC77,
Mar93]). The point of this approach is to replace the \full" semantics of a program by a
simpler more abstract version, which is tailored to deal with a speci�c problem. Usually,
the abstract semantics is speci�ed by means of a local semantic functional

[[]] : N! (C !C)

which gives abstract meaning to every program statement in terms of a monotonic (or
even continuous) transformation function on a wellfounded partial order hC;vi with least
element ?, whose elements express the DFA-information of interest.

Given a program G and a local abstract semantics [[]], the goal of DFA is to annotate the
program points of G with DFA-information that properly re
ect the run-time behaviour
of G with respect to the problem under consideration. Formally, this annotation is de�ned
by the least solution of Equation System 3.1 which speci�es the consistency between pre-
conditions of the statements of G expressed in terms of C with respect to some start
information c0 2 C. This annotation is known as the solution of the minimal �xed point
(MFP) strategy in the sense of Kam and Ullman [KU77].

2I.e., either minimal or maximal.

5

pre[s] := c0;
forall n 2 Nnfsg do pre[n] := ? od;
workset := N ;
while workset 6= ; do

choose n 2 workset in
workset := worksetnfn g;
new := pre[n] t

F
f[[m]](pre[m]) jm 2 predG(n)g;

if new A pre[n] then
pre[n] := new ;
workset := workset [succG(n)

�

ni

od

Figure 2: A Workset Algorithm

Equation System 3.1

pre(n) =

(
c0 if n = sF
f [[m]](pre(m)) jm 2 predG(n) g otherwise

In practice the MFP -solution, which we denote by prec0, is computed by means of some
iterative workset algorithm (see Figure 2).

The correctness of this approach is a consequence of Corollary 2.5 as we are going to
show. To begin with, let G = (N;E; s; e) be the
ow graph under consideration, and
let [[]] : N! (C !C) be a local abstract semantics, such that all semantic functions
are monotonic. Next let n denote the number of nodes of N , i.e. n=df jN j, and let
� : f0; : : : ; n� 1g!N be a bijective mapping between the set f0; : : : ; n� 1g of natural
numbers and the set N of nodes of G.

Now let us de�ne D=df C
n equipped with the pointwise extension of v. One easily ver-

i�es that D is a wellfounded partial order. A value d = (d0; : : : ; dn�1) represents a
con�guration of the
ow graph where the value dk is assigned to node �(k).

For every node �(k) of the
ow graph we de�ne a function fk : D!D by

fk(d
0; : : : ; dn�1)=df (d

00; : : : ; d0n�1)

where

d0i =

(
di if i 6= k

di t
F
f[[�(m)]](dm) j �(m) 2 predG(�(i))g otherwise

Intuitively, fk describes the e�ect of a computation of the local semantics at node �(k)
for the whole con�guration. One easily veri�es that all fk are monotonic, and, as a
consequence of Lemma 2.4, also increasing. Hence, they are also locally monotonic, where
F is given by (fk)k<n

. The following lemma states that the task is modelled correctly.

6

Lemma 3.2 For all d 2 D we have: d is a �xed point of Equation System 3.1 if and
only if d is a �xed point of F .

The workset algorithm of Figure 2 follows the general pattern of the nondeterministic
skeleton algorithm of Figure 1. It pro�ts from a set workset of indices which satis�es the
invariant: workset � fkj fk(d) 6= dg. As shown above, the premises of Theorem 2.3 are
satis�ed. Hence we obtain the following correctness theorem.

Theorem 3.3 (Correctness)
Every run of the workset algorithm terminates and computes the MFP -solution prec0.

3.2 Program Optimization: Partial Dead Code Elimination

In this section we demonstrate an application of the Chaotic Fixed Point Iteration The-
orem 2.3 in program optimization by proving the optimality of the partial dead code
elimination algorithm of [KRS94b]. Intuitively, an assignment in a program is dead if its
left hand side variable is dead immediately after its execution, i.e., if on every program
continuation reaching the end node of the program the �rst use of the left hand side
variable is preceded by a rede�nition of it. Correspondingly, an assignment is partially
dead , if it is dead along some program paths reaching the end node of the program.

Conceptually, the elimination of partially dead occurrences of an assignment pattern
� (for short: partially dead �-occurrences) can be decomposed into two steps. First,
by moving them as far as possible in the direction of the control
ow, and second, by
removing all �-occurrences, whose left hand side variable is dead after the execution
of the assignment it occurs in. In order to preserve the program semantics, both the
sinking and the elimination steps must be admissible. The corresponding de�nitions are
given in full detail in [KRS94b], and, therefore, we do not recall them here, but restrict
the presentation of the framework of [KRS94b] to those parts that are essential for the
application of Theorem 2.3.

The relevance of Theorem 2.3 for partial dead code elimination stems from the fact that
assignment sinking and elimination steps in general have second order e�ects, i.e. they
usually enable assignment sinking and elimination steps for other assignment patterns.
For example, eliminating the partially dead occurrences of a given assignment pattern is
often the premise that occurrences of other assignment patterns can be eliminated at all.
In [KRS94b] this is taken care of by repeatedly applying admissible assignment sinking
and elimination steps to the assignment patterns of the program under consideration until
the program stabilizes, i.e. until a �xed point is reached. The correctness of this iterative
approach is a consequence of Theorem 2.3, as we are going to show in the remainder of
this section.

Given a program G, we will write G `se G
0 if the
ow graph G0 results from G by

applying an admissible assignment sinking or elimination transformation. Then,

G=df fG
0 j G `�se G

0 g

denotes the universe of programs resulting from partial dead code elimination.

7

Moreover, we denote the set of all admissible assignment sinking and dead code elimination
functions by S and E , respectively, and introduce the abbreviation T =df S [E . T
consists of all functions fG1;G2

: G!G de�ned by

8G0 2 G: fG1;G2
(G0)=df

(
G2 if G0=G1

G0 otherwise

where G1; G2 2 G with G1 `se G2.

Additionally, we introduce the set of maximal assignment sinkings and eliminations. A
function fG1;G2

2 S (E) is called maximal , if for all functions fG1;G3
2 S (E) there is

a function fG3;G2
2 T with fG1;G2

= fG3;G2
� fG1;G3

. We denote the set of all maximal
sinking and elimination functions by Smax and Emax, respectively, and denote the union
of Smax and Emax by F � T . The functions of F are important because they are
precisely those functions that are involved in the partial dead code elimination algorithm
of [KRS94b].

Finally, given a function f 2 T and a program G0 2 G, we introduce the following
conventions: The notations f(G0) = G00 and G0 `fse G

00 are used alternatively. If � is an
assignment pattern, then T� (F�) denotes the set of (maximal) admissible assignment
sinkings and eliminations with respect to �. If f 2 E�, then �f;G0 denotes the set of
�-occurrences in G0 that are eliminated by f .

In order to compare the quality of di�erent programs in G, we introduce the relation
\better" between programs of G.

De�nition 3.4 (Optimality)

1. Let G0; G00 2 G. Then G0 is better3 than G00, in signs G00 @
� G0, if and only if

8 p 2 P[s; e] 8� 2 AP: �#(pG0) � �#(pG00)

where AP denotes the set of all assignment patterns occurring in G, and �#(pG0)
and �#(pG00) denote the number of occurrences of the assignment pattern � on p

in G0 and G00, respectively.4

2. G� 2 G is optimal if and only if G� is better than any other program in G.

It is easy to check that the relation @� is wellfounded. Unfortunately, it is not a partial
order on G, but a pre-order only, i.e., it is re
exive and transitive (but not antisymmetric).
Hence, there may be several programs being optimal in the sense of De�nition 3.4. In
order to apply Theorem 2.3, we therefore consider the partial order `�se instead of @�.

As a �rst result we have the Dominance Lemma 3.5, which immediately follows from the
de�nitions of F� and T�.

3Note that this relation is re
exive. In fact, at least as good would be the more precise but uglier
notion.

4Partial dead code elimination preserves the branching structure of the argument program. Hence,
starting from a path in G, we can easily identify corresponding paths in G0 and G00.

8

Lemma 3.5 (Dominance)
Let G1 2 G, let f 2 F� and g 2 T� be corresponding functions, i.e. both sinking or both
elimination functions, let G1 `

g
se G2, and G1 `

f
se G3. Then we have: G2 `se G3. In

particular: G3 6= G1 if G2 6= G1.

The next lemma can be proved by a straightforward induction on the length of a deriva-
tion sequence. The point for proving the induction step is that a program resulting from
a transformation of T is at least as good as its argument with respect to @

�. More
detailed, it is in the same equivalence class after a sinking (elimination) step, if no assign-
ment occurrence has been moved out of a loop (eliminated), and it is better otherwise.
This follow immediately from the constraints that are satis�ed by admissible assignment
sinkings and eliminations.

Lemma 3.6 We have: G0 `�se G00) G0@
�G00

It is worth noting that Lemma 3.6 yields `�se�
@
�. Thus, the wellfoundedness of

@
� carries

over to `�se. Moreover, the de�nitions of `se and F directly yield that the functions of
F are increasing. Thus, we have:

Lemma 3.7 (Wellfoundedness and Increasingness)

1. The relation `�se is wellfounded.

2. All functions f 2 F are increasing, i.e. 8 f 2 F 8G0 2 G: G0 `�se f(G0).

Next we are going to show that T is locally monotonic. We have:

Lemma 3.8 Let G1; G2; G3 2 G, and g; h 2 T such that G1 `gse G2 and G1 `hse G3.

1. If g 2 E�, and occ is an �-occurrence in G1 with occ 62 �g;G1
, then we have:

If occ is dead in G1, then it is dead in G2.

2. If g; h 2 S�, occ an �-occurrence that has been moved by g into a join-node n of
G2, and occ0 an �-occurrence that has been moved by h into a predecessor m of
n, then we have:5

occ is dead in n i� occ0 is dead in m.

Obviously, eliminating certain assignment occurrences does not reanimate assignment
occurrences that have been dead before. This observation directly implies the �rst part
of Lemma 3.8. The second part of this lemma is a consequence of the admissibility of
g and a simple program transformation supposed in [KRS94b] that is typical for code
motion transformations (cf. [DRZ92, KRS92, KRS94a, RWZ88]), namely to insert in every
edge leading from a node with more than one successor to a node with more than one
predecessor a new `synthetic' node.

5A node n is called a join-node, if it has more than one predecessor.

9

G

G

G1

G

2

3 4

f f

g

g

se

se

se se

Figure 3: Commuting Diagram

Lemma 3.9 Let G1; G2 2 G, let g 2 T such that G1 `gse G2, let f 2 F , and let
�; � 2 AP be two di�erent assignment patterns. Then we have:

1. If f; g 2 E, then there are transformations f 0; g0 2 E such that the diagram in
Figure 3 commutes.

2. If f; g 2 S, then there are transformations f 0; g0 2 S such that the diagram in
Figure 3 commutes.

3. If g 2 E� and f 2 S�, then there are transformations g0 2 E� and f 0 2 S� such
that the diagram in Figure 3 commutes.

4. If g 2 S� and f 2 E�, then there are transformations g0 2 S� and f 0 2 E� such
that the diagram in Figure 3 commutes.

Proof The �rst part of Lemma 3.9 is proved by investigating two cases: (1) g; f 2 E�,
(2) g 2 E�, f 2 E�

In case (1), the maximality of f guarantees: �g;G1
� �f;G1

. Applying Lemma 3.8(1) we
obtain that all �-occurrences in �f;G1

n�g;G1
are dead in G2. Hence, there is a trans-

formation in E, which eliminates all �-occurrences in �f;G1
n�g;G1

in G2. Choosing this
transformation as f 0, and an arbitrary function of F leaving G3 invariant as g0, we get:

G2 `
f 0

se G4=G3

and therefore as desired:
G3 `

g0

se G3=G4

In case (2) Lemma 3.8(1) yields that �g;G1
and �f;G1

are subsets of the sets of dead �-
and �-occurrences in G3 and G2, respectively. Hence, there are transformations in E,
which eliminate all �-occurrences of �g;G1

in G3 and all �-occurrences of �f;G1
in G2.

Choosing these transformations as g0 and f 0, respectively, we obtain as desired

G2 `
f 0

se G4 and G3 `
g0

se G4

Similarly to the proof of the �rst part of Lemma 3.9 also in the proof of the second part
two cases must be considered: (2a) g; f 2 S�, (2b) g 2 S�, f 2 S�

10

In case (2a) the Dominance Lemma 3.5 yields the existence of an admissible assignment
sinking f 0 2 S, which directly transforms G2 into G3. Thus, by choosing an arbitrary
function of F leaving G3 invariant as g0, we succeed in this case.

In order to prove case (2b) consider the program G
0

2, which results from G2 by reinserting
all �-occurrences that have been moved by g. Let G

0

4 be the program which results from
the maximal �-sinking to G

0

2, i.e., G
0

2 `
f
se G

0

4, and let G4 result from G
0

4 by eliminating
the reinserted �-occurrences. Obviously, there is a transformation f 0 2 S�, which directly
transforms G2 into G4. The admissibility of g implies that G2 and G4 are identical
except for �-occurrences. Thus, interchanging the roles of � and � and applying the same
construction to G2, we get the existence of a transformation g0 2 S�, which transforms
G2 into G4. This completes the proof of case (2b).

The remaining two parts of Lemma 3.9 can now be proved straightforward along the proof
lines of part (2) by additionally applying Lemma 3.8(1). �

Lemma 3.8 and Lemma 3.9 allow us to establish the Main Lemma 3.10, which is the key
for proving the local monotonicity of T .

Lemma 3.10 (Main Lemma)
8 g 2 T : G1 `gse G2) 8 f 2 T 9 f1; : : : ; fn 2 T : f(G1) `�se fn � : : : � f1(G2)

Proof Let �; � 2 AP be di�erent assignment patterns. Then the Main Lemma 3.10 is
proved by investigating the following cases:

1. g; f 2 E

2. g; f 2 S

3. g 2 E�, f 2 S�

4. g 2 S�, f 2 E�

5. g 2 E�, f 2 S�

6. g 2 S�, f 2 E�

Due to the Dominance Lemma 3.5 we can assume without loss of generality that f is
maximal, i.e., f 2 F . The cases (1), (2), (3), and (4) are then immediate consequences
of the corresponding parts of Lemma 3.9. Hence, we are left with the cases (5) and (6),
which can be proved in the same fashion. Thus, we only present the proof of case (5) here.

In the situation of case (5) let G
0

2 be the program, which results from G2 by reinserting a
labelled version of all �-occurrences that have been eliminated by g. Due to the labelling
the reinserted �-occurrences can be distinguished from the remaining ones. In G

0

2, we
assume that only unlabelled �-occurrences can be subject to assignment sinkings; however,
all �-occurrences, i.e., labelled or not, are considered to block the sinking of �-occurrences,
i.e., no �-occurrence can sink across a labelled or unlabelled �-occurrence in G

0

2. Now
we choose the uniquely determined maximal �-sinking and �-elimination as f1 and f2,
respectively, and denote the program resulting from the subsequent application of f1 and
f2 to G

0

2 by G
0

4. By eliminating all labelled �-occurrences in G
0

4 we obtain the program
G4. Of course, f1 and f2 have corresponding functions in T which directly transform
G2 into G4. Thus, in order to complete the proof of case (5), it is su�cient to show
that a maximal �-elimination transforms G3 into G4 as well. The point here is that

11

G

G

*

G G

)

*

* *

Ind. Hyp.Premise

Ind. Hyp.

* *

*

 f (

*

se se

sese

se

se se

sese

se

Figure 4: Commuting Diagram

due to the reinsertion of �-occurrences eliminated by g, G
0

2 has precisely the same `�-
blockades' as G1. Hence, on join-free paths, i.e., on paths where no node has more
than one predecessor, (unlabelled) �-occurrences in G

0

2 have precisely the same sinking
potential as their corresponding occurrences in G1. Only on paths containing join-nodes
the sinking potential can be di�erent: In G

0

2 an �-occurrence occ can be blocked in a
predecessor n of a join-node j, because there is a brother m of n,6 to which no �-
occurrence is sinkable; in G1, however, the same �-occurrence can successfully be sunk
into j, because some of the �-occurrences of �g;G1

are sinkable to m. It is worth noting
that the �-occurrence is dead in j and will never become live again. Hence, it is eliminated
by the subsequent application of f2. This, however, holds for the �-occurrence blocked in
the predecessor n of j as well, since it is dead according to Lemma 3.8(2). Combining
these results we obtain as desired that maximal �-elimination transforms G3 into G4. �

The following theorem states the desired monotonicity result.

Theorem 3.11 (Local Monotonicity)
T is locally monotonic, i.e.,

8 f 2 T : G0 `�se G
00) 9 f1; : : : ; fn 2 T : f(G

0) `�se fn � : : : � f1(G
00)

Proof By K�onig's Lemma, any �nitely branching tree where all paths have �nite length,
is �nite. Hence, the length of any path is bounded. The derivation tree with root G with
respect to `se has this property. Thus we can prove our claim by induction on the length
of the longest path starting from G0. The cases G0 = G00 and G0 = f(G0) are trivial.
Otherwise, we apply Figure 4 where the inductive hypothesis applies for G000 and f(G0),
respectively, because the longest path starting from G000 is smaller than the longest path
starting from G0. Likewise for f(G0), which completes the proof. �

Finally, we have to show that the set of common �xed points of F and T coincide.
Central for proving this result is the Dominance Lemma 3.5. Moreover, we have to check
that the �xed points of T are maximal in G.

6The set of brothers of a node n is given by
S

fpred(m) jm 2 succ(n)g.

12

Theorem 3.12 (Fixed Point Characterization)
Let G0 2 G.

1. G0 is a �xed point of the functions of T if and only if G0 is a �xed point of the
functions of F .

2. G0 2 G is a �xed point of the functions of T if and only if G0 is maximal in G.

Proof Since (2) holds trivially, we only prove (1). The �rst implication, \)", is a
simple consequence of F � T . The second implication, \ (", is proved by showing the
contrapositive. Without loss of generality, we can assume g 2 T�nF� and G0 `gse G

00 with
G00 6= G0. Let now f 2 F� be the uniquely determined function f of F� corresponding
to g. Then the Dominance Lemma 3.5 yields as desired that the program resulting from
the application of f to G0 is di�erent from G0. �

Collecting our results we have: `�se is a wellfounded (Lemma 3.7(1)) complete partial
order on G, whose least element is G itself; all functions f 2 F are increasing (Lemma
3.7(2)) and T is locally monotonic with respect to `�se (Theorem 3.11). Hence, Theo-
rem 2.3 is applicable.

Moreover, the function families F and T have the same common �xed points (Theorem
3.12(1)), and all of their �xed points are maximal in `�se (Theorem 3.12(2)).

Combining these results and applying Lemma 3.6 we obtain as desired the central theorem
of [KRS94b]:

Theorem 3.13 (Existence of Optimal Programs)
G has an optimal element (with respect to @�) which can be computed by any sequence of
function applications that contains all elements of F `su�ciently' often.

It is worth noting that the optimality of the partial faint code elimination algorithm which
is also introduced in [KRS94b] can be proved in exactly the same fashion.

4 Conclusions and Future Work

We have presented a new �xed point theorem, which gives a su�cient condition for the
existence of the least common �xed point of a family of functions on a wellfounded partial
order. The point of this theorem is that the usual monotonicity condition can be weakened
for wellfounded partial orders. This allows us to capture a new and interesting class of
practically relevant applications. As two representatives of this class, we have discussed
applications in data
ow analysis and program optimization.

Currently we are investigating a generalization of our approach to cover asynchronous
iterations [Wei93], and we examine its suitability for applications in distant areas of
computer science, like e.g. the Knuth/Bendix procedure in term rewriting and partitioning
algorithms establishing bisimulation between �nite state systems.

13

References

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints. In
Conf. Record of the 4th ACM Symp. on Principles of Programming Languages,
pages 238 { 252, Los Angeles, CA, 1977.

[Cou77] P. Cousot. Asynchronous iterative methods for solving a �xed point system of
monotone equations in a complete lattice. Technical Report 88, Laboratoire
d'Informatique, U.S.M.G., Grenoble, France, September 1977.

[DRZ92] D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck. How to analyze large
programs e�ciently and informatively. In Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation'92, volume 27,7 of ACM
SIGPLAN Notices, pages 212 { 223, San Francisco, CA, June 1992.

[Hec77] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, North-Holland,
1977.

[KRS92] J. Knoop, O. R�uthing, and B. Ste�en. Lazy code motion. In Proc. ACM
SIGPLAN Conf. on Programming Language Design and Implementation'92,
volume 27,7 of ACM SIGPLAN Notices, pages 224 { 234, San Francisco, CA,
June 1992.

[KRS94a] J. Knoop, O. R�uthing, and B. Ste�en. Optimal code motion: Theory and prac-
tice. ACM Transactions on Programming Languages and Systems, 16(4):1117{
1155, 1994.

[KRS94b] J. Knoop, O. R�uthing, and B. Ste�en. Partial dead code elimination. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and Implemen-
tation'94, volume 29,6 of ACM SIGPLAN Notices, pages 147 { 158, Orlando,
FL, June 1994.

[KU77] J. B. Kam and J. D. Ullman. Monotone data
ow analysis frameworks. Acta
Informatica, 7:309 { 317, 1977.

[LNS82] J.-L. Lassez, V.L. Nguyen, and E.A. Sonnenberg. Fixed point theorems and
semantics: A folk tale. Information Processing Letters, 14(3):112{116, 1982.

[Mar93] K. Marriot. Frameworks for abstract interpretation. Acta Informatica, 30:103
{ 129, 1993.

[MJ81] S. S. Muchnick and N. D. Jones, editors. Program Flow Analysis: Theory and
Applications. Prentice Hall, Englewood Cli�s, NJ, 1981.

[Rob76] F. Robert. Convergence locale d'it�erations chaotiques non lin�eaires. Technical
Report 58, Laboratoire d'Informatique, U.S.M.G., Grenoble, France, December
1976.

14

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Conf. Record of the 15th ACM Symp. on Principles
of Programming Languages, pages 12 { 27, San Diego, CA, 1988.

[Tar55] A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c
Journal of Mathematics, 5:285{309, 1955.

[�UD89] Aydin �Uresin and Michel Dubois. Su�cient conditions for the convergence of
asynchronous iterations. Parallel Computing, 10:83{92, 1989.

[Wei93] Jiawang Wei. Parallel asynchronous iterations of least �xed points. Parallel
Computing, 19:887{895, 1993.

15

