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Abstract

In this paper we present a method for the compositional construction of the minimal
transition system that represents the semantics of a given distributed system. Our aim
is to control the state explosion caused by the interleavings of actions of communicating
parallel components by reduction steps that exploit global communication constraints
given in terms of interface speci�cations. The e�ect of the method, which is developed
for bisimulation semantics here, depends on the structure of the distributed system under
consideration, and the accuracy of the interface speci�cations. However, its correctness
does not: every \successful" construction is guaranteed to yield the desired minimal
transition system, independent of the correctness of the interface speci�cations provided
by the program designer.

Keywords

bisimulation, distributed system, interface speci�cation, minimization, reduction opera-
tor, speci�cation preorder, state explosion problem, transition system, veri�cation.



Contents

1 Introduction 1

2 General Notions 4

2.1 Representation of Processes : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2.2 Parallel Composition and Hiding : : : : : : : : : : : : : : : : : : : : : : : 6

2.3 Semantic Equivalence and Preorder : : : : : : : : : : : : : : : : : : : : : : 8

2.4 Interface Speci�cations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

3 Reduction Operators 13

3.1 General De�nitions and Properties : : : : : : : : : : : : : : : : : : : : : : 14

3.2 Theoretical View : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

3.3 Algorithmic View : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

3.4 Determining LI(q) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

4 Minimization Method 24

4.1 An Application of the RM-Method : : : : : : : : : : : : : : : : : : : : : : 28

4.2 The Power of the RM-Method : : : : : : : : : : : : : : : : : : : : : : : : 30

5 Conclusions 32



1 Introduction

Many tools for the automatic analysis or veri�cation of �nite state distributed systems
are based on the construction of the global state graph of the system under considera-
tion (cf. [CES83, CPS89a, CPS89b, FSS83, Ste94]). Thus they often fail because of the
state explosion problem: the state space of a distributed system potentially increases
exponentially in the number of its parallel components. To overcome this problem techni-
ques have been developed in order to avoid the construction of the complete state graph
(cf. [BFH90, CLM89, CR94, CS90b, DGG93, Fer88, GL93, GP93, Jos87, KM89, Kru89,
LSW94, LT88, LX90, Pnu90, SG89, SG90, Val93, Wal88, Win90, WL89]). In this paper
we present a method for the compositional minimization of �nite state distributed systems,
which is practically motivated by the following observation:

\For the veri�cation of a system it is usually su�cient to consider an abstraction of its
global state graph, because numerous computations are irrelevant from the observer's
point of view. Such abstractions often allow us to reduce the state graph drastically by
collapsing semantically equivalent states to a single state without a�ecting the observa-
ble behaviour. For example, the so obtained minimization of a complex communication
protocol may be a simple bu�er."

Let us refer to the size of the original state space of a system S as its apparent comple-
xity , and to the size of the minimized state space as its real complexity . The intention of
our method is to avoid the apparent complexity by constructing the minimal system re-
presentation taking context information into account. Unfortunately, the straightforward
idea to just successively combine and minimize the components of the system is not satis-
factory, because \local" minimization does not take context constraints into account and
therefore may even lead to subsystems with a higher real complexity than the apparent
complexity of the overall system. This is mainly due to the fact that parts need to be
considered that can never be reached in the global context. Partial or loose speci�cations
allow us to \cut o�" these unreachable parts. As in [CS90b, Kru89, LT88, SG90, Wal88]
we will exploit this feature to take advantage of context information. Furthermore, we
will refer to the size of the maximal transition system that is encountered by our method
as the algorithmic complexity .

Our method, called RM-Method,1 is tailored for establishing P j= Spec, i.e. whether P
satis�es the speci�cation or property Spec, when P is a system in standard concurrent
form, i.e. P = (p1kI1 : : : kIn�1

pn)hLi, which is annotated by interface speci�cations, and
Spec is preserved by the semantic equivalence under consideration, i.e. P j= Spec() Q j=
Spec if P and Q are semantically equivalent. To simplify the development of our theory, we
assume that the processes pi are already given as transition systems and that k represents
the parallel composition operator, hLi is a window or hiding operator that abstracts from
the activities considered as internal by transforming them into the unobservable action � ,
and Ii are interface speci�cations between Ri =df (p1k : : :kpi) and Qi =df (pi+1k : : : kpn),
namely supersets of the set of sequences that can be observed at the associated interfaces
which are also represented by transition systems.

1RM-Method means Reduction-Minimization-Method.
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The point of our method is the successive construction of partially de�ned transition
systems Pi with the following properties:

1. Pi is less speci�ed than Ri, i.e. Pi is smaller than Ri with respect to the speci�cation
preorder �. This is the key for proving the correctness of the RM-Method.

2. Pn is semantically equivalent to the full system P, whenever the interface speci�ca-
tions are correct.2 This guarantees the completeness of the RM-Method.

3. Pi has the least number of states and transitions in its semantic equivalence class.

Subsequently, the validation of Pn j= Spec completes the proof as it implies P j= Spec. In
this paper, we are dealing with a re�nement �d of observational equivalence [Mil80, Mil89].
However, the method also adapts to other equivalences.

An important factor in this approach are the interface speci�cations, which should be
provided by the program designer. However, the correctness of the RM-Method does
not depend on the correctness of these speci�cations. They are only used to \guide"
the proof. Thus wrong interface speci�cations will never lead to wrong proofs, i.e. if
Pn j= Spec is valid, then P satis�es Spec, too. Otherwise, if Pn j= Spec is not provable,
then P may satisfy Spec or not. Thus, wrong interface speci�cations may only prevent a
successful veri�cation of a valid statement. The RM-Method is complete in the following
sense: If all the considered interface speci�cations are correct and if Spec is a �d-consistent
property, then Pn �

d P, Pn has the least number of states and transitions in its semantic
equivalence class, and Pn j= Spec() P j= Spec. Hence, if Pn j= Spec is not valid, then P
does not satisfy Spec. It should be noted that the total de�nedness of Pn already implies
the semantical equivalence of Pn and P. This criterion is su�cient for most practical
applications.

Related Work

A great e�ort has already been made in order to avoid the construction of the complete
state graph, and therefore to avoid the state explosion problem. Roughly, the proposed
methods can be split into two categories, the compositional veri�cation and the composi-
tional minimization. Characteristic for the former category is that the global system need
not be considered at all during the veri�cation process, and for the latter that a minimal
semantically equivalent representation of the global system is constructed. This minimal
representation can subsequently be used for all kinds of veri�cation.

A pure approach to compositional veri�cation has been proposed by Winskel in [Win90],
where rules are given to decompose assertions of the form P j= � depending on the syntax
of the program P and the formula �. Unfortunately, the decomposition rules for proces-
ses involving the parallel operator are very restricted. Larsen and Xinxin [LX90] follow a
similar line, however, their decomposition rules are based on an operational semantics of

2This does not mean that, in general, Pi and Ri are semantically equivalent for 1 � i � n� 1.
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contexts rather than the syntax. In order to deal with the problems that arise from parallel
compositions Pnueli [Pnu90] proposed a \conditional" inference system, where assertions
of the form �P can be derived, meaning that the program P satis�es the property  
under the condition that its environment satis�es �. This inference system has been used
by Shurek and Grumberg in [SG90], where a semi-automatic modular veri�cation method
is presented, which, like ours, is based on \guesses" for context speci�cations. However,
in contrast to our method it requires a separate proof of the correctness of these guesses.
Another method based on interface speci�cations which must be proved correct separately
is given in [Kru89]. Josko [Jos87] also presented a method, where the assumptions on the
environment of a component are expressed by a formula, which must be proved in a se-
parate step. The main disadvantage of his method is that the algorithm is exponential in
the size of the assumptions about the environment. Other methods try to avoid the state
explosion problem using preorders for veri�cation [GP93, GW91, Val93] where unneces-
sary interleavings of actions are suppressed. In [LSW94] a constraint-oriented state-based
proof methodology for concurrent software systems is presented which exploits composi-
tionality and abstraction for the reduction of the (possibly in�nite) veri�cation problem
under consideration. There, Modal Transition Systems are used for �ne-granular, loose
state-based speci�cations of constraints.

Halbwachs et al. [BFH90] proposed a method of the second category. It constructs directly
a transition system minimized with respect to bisimulations by successive re�nement of
a single state. In this method symbolic computation is needed in order to keep the
expressions small which in general may grow exponentially. Another approach of this
category was presented by Clarke et al. [CLM89]. They exploit the knowledge about the
alphabet of interest in order to abstract and minimize the system's components. Using hLi
operators together with an elementary rule for distributing them over the parallel operator
(see Proposition 2.6) our method covers this approach. Larsen and Thomsen [LT88], and
Walker [Wal88] use partial speci�cations in order to take context constraints into account.
Our method is an elaboration of theirs. It uses a more appropriate preorder and de�nes
a concrete strategy for (semi-)automatic proofs where the required user support is kept
to a minimum.

The methods proposed in [BCG86, KM89, SG89, WL89] are tailored to verify properties of
classes of systems that are systematically built from large numbers of identical processes.
These methods are somewhat orthogonal to ours. This suggests to consider a combination
of both types of methods.

In practice, Binary Decision Diagrams are used to code state graphs for an interesting
class of systems [Bry86]. These codings do not explode directly, but they may explode
during veri�cation. All mentioned techniques can be accompanied by abstraction. Parallel
systems may be dramatically reduced by suppressing constraints that are irrelevant for the
veri�cation of the particular property under consideration [CC77, CGL92, CR94, DGG93,
LGS+92].
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Structure of the Paper

The remainder of the paper is structured as follows. Section 2 presents the basic notions,
and Section 3 the reduction operators our method, the RM-method, is based upon.
Subsequently, Section 4 develops the RM-Method for the compositional minimization of
�nite state distributed systems, proves its correctness and completeness, and illustrates
its power by means of an example, where the apparent exponential complexity is reduced
to a linear algorithmic complexity. Finally, Section 5 draws our conclusions.

A completely self-contained development is given in [L�ut94].

2 General Notions

Our framework is based on processes (systems) as labelled transition systems extended
by an unde�nedness predicate on states. Processes can be structured by means of par-
allel composition and hiding thus allowing a hierarchical treatment. The introduction of
unde�nedness predicates naturally leads to a speci�cation-implementation preorder bet-
ween processes, which induces a slightly �ner semantics on processes than observational
equivalence [Mil80, Mil89]. This equivalence is captured by our technique, which is based
on the language based notion of interface speci�cation introduced subsequently.

2.1 Representation of Processes

We model distributed systems by extended transition systems, i.e. a transition system
which is extended by an unde�nedness predicate that plays an important role in the
correctness proof of our RM-Method.

De�nition 2.1 (Extended Transition Systems)
An extended (�nite state) transition system is a quadruple (S;A[ f�g;�!; ") where

1. S is a �nite set of processes or states,

2. A is a �nite alphabet of observable actions, and � represents an internal or unob-
servable action not in A,

3. �!� (S �A[ f�g � S) is a transition relation, and

4. "� S � 2A[f�g is a predicate expressing guarded unde�nedness.3

Typically, S is a set of program states, and the relationship p
a
�! q indicates that p can

evolve to q under the observation of a. We write p
a
�! for 9q 2 S: p

a
�! q. Finally, p "a

32M denotes the power set of the set M .
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expresses that an a-transition would allow p to enter an unde�ned state. We say that p is
a-unde�ned in this case. Thus, transition systems involving the unde�nedness predicate
are only partially de�ned or speci�ed . It is this notion of partial speci�cation together
with its induced preorder which provides the framework for proving our method correct.

Processes are rooted extended transition systems, i.e. pairs consisting of an extended
transition system and a designated start state.

De�nition 2.2 (Processes)
Let T = (S;A[f�g;�!; ") be an extended transition system. A process is a pair ((Sp;Ap[
f�g;�!p; "p); p) for a state p 2 S where

� Sp is the set of states that are reachable from p in T ,

� Ap =df A, and

� �!p and "p are �! and " restricted to Sp, respectively.

p is called start state of the process. The set of all processes is denoted by P.

In future, obvious indices will be dropped, and we will shortly write p for ((Sp;Ap [
f�g;�!p; "p); p). The following property characterizes the subset of \standard" transition
systems: A process is totally de�ned if its unde�nedness predicate " is empty. Otherwise it
is called partial . Moreover, if p; q 2 P are identical up to renamings of states, we call p and
q isomorphic, in signs p �= q. If no confusion arises with syntactic equality, we will simply
write p = q. A process p is called deterministic if 8q 2 Sp; a 2 Ap: jfq

0jq
a
�! q0gj � 1.

Otherwise p is called nondeterministic.

As usually, processes can be characterized by their language. We will need this characteri-
zation when dealing with interface speci�cations. The following de�nition of the language
of processes uses the weak transition relation =) and unde�nedness predicate * presen-
ted in De�nition 2.8, which re
ect the relation �! and the predicate " of the view of an
observer who cannot see the internal action � .

De�nition 2.3 (Language of Processes)
The language, L(p), of a partially de�ned process p is de�ned as the least �xed point of
the following equation system:

L(p) =

(
A�

p if p * "S
fa � La(p) j La(p) 6= ;g [ f"g otherwise

and

La(p) =

(
A�

p if p * aS
fL(p0) j p

a
�! p0g otherwise

for any action a. Furthermore, given a language L, we denote the language of its a-
su�xes, fw j a �w 2 Lg, by La.
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The well-de�nedness of the above de�nition follows from elementary �xed point theory.
Note that this de�nition is standard for totally de�ned processes. The language of an a-
unde�ned process includes any sequence of actions starting with a and the language of an
�-unde�ned process is A� which re
ects our intuition that the language of an unde�ned
state is unconstraint. Therefore, we have to make the worst case assumption that the
language of an unde�ned process could be all possible sequences of actions.

2.2 Parallel Composition and Hiding

We now introduce a binary parallel operator k and unary hiding or window operators
hLi on processes, where L is the set of actions remaining visible. Intuitively, pkq is the
parallel composition of the processes p and q with synchronization of the actions common
to both of their alphabets and interleaving of the others (like in CSP [Hoa85]), and phLi
is the process in which only the actions in L are observable.

De�nition 2.4 (Operational Semantics)
Let p = ((Sp;Ap [ f�g;�!p; "p); p), q = ((Sq;Aq [ f�g;�!q; "q); q) be in P, let p0; p00 2
Sp; q

0; q00 2 Sq, and let L be a set of visible actions. We de�ne the alphabets of the
processes phLi and pkq by AphLi =df Ap \L and Apkq =df Ap [Aq, respectively, and their
state sets as the subsets of states of fp0hLi j p0 2 Spg and fp0kq0 j p0 2 Sp; q

0 2 Sqg which
are reachable from the initial states phLi and pkq, respectively, according to the following
transition relations de�ned in Plotkin style notation:

1.
p0

a
�!p p00

p0hLi
a
�!phLi p00hLi

a 2 L 2.
p0

a
�!p p00

p0hLi
�
�!phLi p00hLi

a 62 L

3.
p0

a
�!p p00

p0kq0
a
�!pkq p00kq0

a 62 Aq 4.
q0

a
�!q q00

p0kq0
a
�!pkq p0kq00

a 62 Ap

5.
p0

a
�!p p00 q0

a
�!q q00

p0kq0
a
�!pkq p00kq00

a 6= �

The unde�nedness predicates of phLi and pkq are de�ned by:

6.
p0 "p a

p0hLi "phLi a
a 2 L 7.

p0 "p a

p0hLi "phLi �
a 62 L

8.
p0 "p a

(p0kq0) "pkq a
a 62 Aq 9.

p0 "p a

(p0kq0) "pkq a
q0

a
�!q q00

10.
q0 "q a

(p0kq0) "pkq a
a 62 Ap 11.

q0 "q a

(p0kq0) "pkq a
p0

a
�!p p00

12.
p0 "p a q0 "q a

(p0kq0) "pkq a
.
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Thus p0 " a (q0 " a) implies (p0kq0) " a, whenever q0 (p0) does not preempt the execution
of a, i.e. whenever a 62 Aq or q0

a
�! q00 (a 62 Ap or p0

a
�! p00). Remember that � 62 Ap

for any p. The exact meaning of this de�nition will become clear in Section 3, where we
introduce reduction operators. We may immediately conclude from De�nition 2.4:

Proposition 2.5 (Associativity & Commutativity)
The parallel operator k is associative and commutative in the following sense:

1. 8p; q; r 2 P: (pkq)kr �= pk(qkr)

2. 8p; q 2 P: pkq �= qkp

Thus processes of the form (p1k : : : kpn)hLi are well-de�ned. Our method will concentrate
on this form which is called standard concurrent form in CCS [Mil80, Mil89].

Usually, the following correspondence between the parallel operator and the window ope-
rators is central.

Proposition 2.6 (Window Operator Law)
Let p; q 2 P and let L; L0 be sets of visible actions satisfying L0 � L [ (Ap \ Aq). Then

(pkq)hLi �= (phL0ikq)hLi

This proposition allows us to localize global hiding informations. In fact, this localization
is the essence of the construction of the `interface processes' in [CLM89]. The proof of
the proposition is done by induction similar to the proof of Theorem 3.8 including a case
analysis according to De�nition 2.4 in the induction step. It needs a tedious case analysis
occupying more than ten pages [L�ut94].

We �nish this section by presenting a simple example, which will accompany the develop-
ment of our method.

Example 2.7 Our example system System =df (P1kBkP2)hftk1; tk2gi, presented in Fi-
gure 1, consists of three processes P1, B, and P2 with alphabets AP1 = ftk1; tk2; rb1; sb1g,
AB = frb1; sb1; rb2; sb2g, and AP2 = ftk1; tk2; rb2; sb2g, respectively. I1 and I2 indicate
interface speci�cations which are presented and explained in Section 2.4. Process B mo-
dels a bu�er which is used by the processes P1 and P2 to exchange data, i.e. P1 reads data
from and sends data to P2 via B and vice versa. To guarantee mutual exclusion of the
\shared" bu�er a token is passed through the channels tk1 and tk2 between P1 and P2. If
Pi possesses the token, it may read some data from B via rbi and write some data to B
via sbi. The exact de�nition of P1, B, and P2 is given in Figure 2 at the top left corner,
at the bottom, and at the top right corner, respectively. The \shaded" states represent the
start states of the processes.
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P B P

tk1

tk2

I I

rb2

sb2

sb1

rb1

21

1 2

Figure 1: Communication Diagram of the Example System

Figure 2: De�nition of P1, B, and P2

2.3 Semantic Equivalence and Preorder

In this section, we de�ne a semantics of extended labelled transition systems in terms
of observational equivalence (cf. [Mil80]) and establish a speci�cation-implementation
relation in terms of a preorder, which is compatible with this semantics. This preorder
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plays a key role in the correctness proof of our RM-Method.

The �! relation does not distinguish between observable and unobservable actions. In
order to re
ect that � is internal, and hence not visible, we de�ne the weak transition
relation =) and the weak unde�nedness predicate * as usual.

De�nition 2.8 (Weak Transition Relation and Unde�nedness)
Let �!� S�A[f�g�S be the transition relation and "� S�2A[f�g be the unde�nedness
predicate of an extended transition system (S;A;�!; "). The weak transition relation
=)� S � A � S and the weak unde�nedness predicate *� S � 2A are de�ned as the
least relation satisfying for all p; q 2 S and all a 2 A:

1. p
�
�!

� a
�!

�
�!

�
q implies p

a
=) q,

2. p
�
�!

�
q implies p

�
=) q,

3. q " a and p
�

=) q implies p * a,

4. q " � and p
�

=) q implies p * �,

5. q * � and p
a

=) q implies p * a, and

6. p * � implies p * a

As already mentioned in Section 1, the minimization of transition systems is based on the
fact that many computations are irrelevant from the observer's point of view. Our notion
of semantics, which is de�ned by means of the following equivalence relation, re
ects this
intuition.4

De�nition 2.9 (Semantic Equivalence)
Let �!� S�A[f�g�S be the transition relation and "� S�2A[f�g be the unde�nedness
predicate of an extended transition system (S;A;�!; "). Then �d is the union of all
relations R � S � S satisfying that (p; q) 2 R implies for all a 2 A:

1. p * a if and only if q * a,

2. p
a

=) p0 implies 9q0: q
a

=) q0 ^ (p0; q0) 2 R, and

3. q
a

=) q0 implies 9p0: p
a

=) p0 ^ (p0; q0) 2 R.

This de�nition implies that only those processes could be equivalent which have the same
alphabet, i.e. the same sychronisation potential. Note that �d coincides with the well-
known observational equivalence � (cf. [Mil80, Mil89]) if the �rst of the three de�ning
requirements is dropped. Especially, isomorphic or syntactically identical processes are
�d-equivalent.

4A similar de�nition has been given in [CS90b].
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The following preorder which intuitively de�nes a \less de�ned than" relation between
processes is the basis of the framework in which we establish the correctness of our RM-
Method.

De�nition 2.10 (Speci�cation Preorder)
Let �!� S�A[f�g�S be the transition relation and "� S�2A[f�g be the unde�nedness
predicate of an extended transition system (S;A;�!; "). The speci�cation preorder � is
the union of all relations R � S � S satisfying (p; q) 2 R implies for all a 2 A with
:(p * a):

1. :(q * a),

2. p
a

=) p0 implies 9q0: q
a

=) q0 ^ (p0; q0) 2 R, and

3. q
a

=) q0 implies 9p0: p
a

=) p0 ^ (p0; q0) 2 R.

� is a variant of the divergence preorder (cf. [Wal88]) in which a-divergence does not
require the potential of an a-move. Our modi�cation serves for a di�erent intend. We do
not want to cover divergence, i.e. the potential of an in�nite internal computation, but
(guarded) unde�nedness. This establishes � as a speci�cation-implementation relation:
a partial speci�cation p is met by an implementation q if and only if p � q; in contrast
to [CS90b, Wal88] we do not require an implementation of an a-unde�ned process to
possess any a-transition. This modi�cation enhances the practicality of the preorder as
speci�cation-implementation relation. A more detailed discussion can be found in [CS90a].

Observational equivalence � and our speci�cation-preorder � induce slightly di�erent
semantics on processes. However, by de�nitions of �d, � and � we have that �d is a
re�nement of all of them.

Proposition 2.11 For all processes p; q 2 P we have p �d q implies p � q and p � q,
and for totally de�ned processes �d, � and � coincide.

Moreover, it can be proven in the usual way that both k and hLi preserve � and �d

which is of particular importance for our minimization method.

Proposition 2.12 (Compositionality)
For all processes p; q; r 2 P and all sets L of visible actions we have:

1. p � q implies pkr � qkr,

2. p �d q implies pkr �d qkr,

3. p � q implies phLi � qhLi, and

4. p �d q implies phLi �d qhLi.

10



The relationship between the notions preorder, semantic equivalence and languages is
characterized by the following lemma.

Lemma 2.13 For all processes p; q 2 P we have:

1. p � q implies L(p) � L(q), and

2. p �d q implies L(p) = L(q).

The proof of Part (1) is a consequence of the De�nitions 2.10 and 2.3, whereas Part (2)
is an immediate consequence of Part (1) and Proposition 2.11.

The RM-Method presented in Section 4 works for every equivalence relation and every
preorder satisfying Propositions 2.11, 2.12 and Lemma 2.13.

2.4 Interface Speci�cations

In this section we introduce our notion of interface speci�cation together with a notion of
correctness, which guarantees the success of the RM-Method. These notions concentrate
on the set of observable sequences that may pass the interface. Thus the exact speci�cation
of the interface between processes p and q is the language of (pkq)hAp \ Aqi, i.e. its set
of observable sequences.

We are going to use interface speci�cations in order to express context constraints. Thus
interface speci�cations are correct or safe if the corresponding exact interface speci�cation
is more constraint. This motivates the following de�nition.

De�nition 2.14 (Interface Speci�cations)
Given two processes p; q 2 P we de�ne:

1. A totally de�ned process I is an interface speci�cation for p i� AI � Ap and � =2 AI.
It is an interface speci�cation for p and q i� AI = Ap \ Aq and � =2 AI.

2. An interface speci�cation I for p and q is called correct for p and q i�
L((pkq)hAp \ Aqi) � L(I).

The set of all interface speci�cations is denoted by I, the set of all interface speci�cations
for p by I(p), and the set of all correct interface speci�cations for p and q by I(p; q).

Corollary 3.20 will show that these language-based de�nitions are adequate for our pur-
pose. The following example illustrates the intuition-guided way of deriving interface
speci�cations.
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Example 2.15 (Interface Speci�cations for the Example System)
An interface speci�cation I1 for the system of Example 2.7 can be constructed according
to the following intuition: process P1 waits for the token passed via tk1 before it reads
data from and writes data to B via rb1 and sb1, respectively. Subsequently, P1 passes the
token to P2 via tk2 and waits until it receives the token again.

This intuition would already result in an exact interface speci�cation for P1 and BkP2,
which is identical to the process P1 itself. Since a correct interface speci�cation may
describe a superset of the exact interface language (cf. De�nition 2.14), the de�nition of
I1 given on the left in Figure 3 is correct.

Figure 3: Interface Speci�cations I1 and I2

The same argument shows the correctness of the de�nition of I2 given on the right in
Figure 3.

The languages of I1 and I2 result from the following equation systems (cf. De�nition 2.3).

L(I1) = L(I13) = tk1 � L(I12) [ f�g
L(I12) = rb1 � L(I11) [ tk2 � L(I13) [ f�g
L(I11) = sb1 � L(I12) [ f�g

L(I2) = L(I22) = tk1 � tk2 � L(I22) [ rb2 � sb2 � L(I22) [ ftk1 � �g [ frb2 � �g [ f�g

Note, however, that our method does not require to compute L(I1) and L(I2).

The following properties of interface speci�cations are important.

Lemma 2.16 (Properties of Interface Speci�cations)
For all processes p; p0; q 2 P we have:

1. p � p0 implies I(p; q) � I(p0; q)

2. p �d p0 implies I(p; q) = I(p0; q)

12



Proof:

Let p; p0; q 2 P satisfying p � p0. As Ap = Ap0, we have by Proposition 2.12:

(pkq)hAp \ Aqi � (p0kq)hA0
p \ Aqi

and by Lemma 2.13(1):

(�) L((pkq)hAp \ Aqi) � L((p0kq)hA0
p \ Aqi):

Now, let I 2 I(p; q) be arbitrary. Then we conclude the �rst part as follows:

I 2 I(p; q)

(De�nition 2.14) ) L(I) � L((pkq)hAp \ Aqi)

(�) ) L(I) � L((p0kq)hAp0 \ Aqi)

(De�nition 2.14) ) I 2 I(p0; q):

The second part is a consequence of Proposition 2.11 and part one.

2

The following proposition is particularly important for the completeness proof of the
RM-Method.

Proposition 2.17 For all processes p; q 2 P and all sets L of visible actions we have:
I(p; q) = I(ph(Ap \ Aq) [ Li; q).

Proof: Let p; q 2 P and L be a set of visible actions. Then we have:

I 2 I(p; q)

(Def. 2.14) () L(I) � L((pkq)hAp \ Aqi)

(Prop. 2.6 & Lemma 2.13(2)) () L(I) � L((ph(Ap \ Aq) [ Likq)hAp \ Aqi)

(Def. 2.14) () I 2 I(ph(Ap \ Aq) [ Li; q):

2

3 Reduction Operators

In this section we propose a general notion of reduction operators, and a special instance
of it (�), which is suitable for our purposes (cf. Section 3.1). � will then be analysed
from two di�erent views, the theoretical view (cf. Section 3.2) and the algorithmic view
(cf. Section 3.3).

13



3.1 General De�nitions and Properties

Reduction operators are characterized by three properties:

De�nition 3.1 (Reduction Operators)
A partial mapping � : I � P �! P is called reduction operator if

(i) 8p 2 P; I 2 I(p): �(I; p) � p (Correctness)

(ii) 8p; q 2 P; I 2 I(p; q): �(I; p)kq �d pkq (Context Preservation)

(iii) 8p 2 P; I 2 I(p): j S�(I;p) j � j Sp j and j�!�(I;p)j � j�!pj (Reduction)5

In the following we will often write �I(p) instead of �(I; p).

The intuition behind this de�nition is the following: A reduction operator � should
eliminate those states and transitions of a process p 2 P which are not reachable in each
global context satisfying the interface speci�cation I 2 I(p). This `algorithmic' intuition
guarantees the �rst two conditions, which are essential for a sensible notion of reduction
operator: the �rst condition is a correctness requirement. The reduction always yields
a process which behaves as p on its de�ned part. The second condition guarantees that
the reduction does not a�ect the behaviour of p in a context satisfying the interface
speci�cation. Finally, the third condition re
ects the primary intuition of reduction: the
number of states and transitions should be reduced. This is by no means guaranteed by
a decrease in the preorder!

We obtain the following technical result.

Proposition 3.2
Let � be a reduction operator. Then we have for all p; p0; q 2 P and I 2 I(p; q):

p �d p0 implies �I(p)kq �
d �I(p

0)kq

Proof: Let � be a reduction operator, p; p0; q 2 P and I 2 I(p; q). Then we may
conclude:

�I(p)kq

(Def. 3.1 (ii)) �d pkq

(p �d p0 & Prop. 2.12) �d p0kq

(Lemma 2.13(2) & Def. 3.1 (i)) �d �I(p
0)kq:

2

5jM j denotes the cardinality of the set M .
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As we will see in Section 3.2, the following operator � satis�es the conditions of De�ni-
tion 3.1.

De�nition 3.3 (The Reduction Operator �)
Let p = ((Sp;Ap [ f�g;�!p; "p); p) 2 P and I 2 I(p). Then � : I � P �! P is de�ned
by

(I; p) 7�! �(I; p) =df �I(p) =df ((S;A[ f�g;�!; "); p)

where

1. S = fq 2 Spj9i 2 SI : qki 2 SpkIg,

2. A = Ap,

3. 8q; q0 2 S; a 2 A [ f�g: q
a
�! q0 i� 9i; i0 2 SI : qki

a
�!pkI q

0ki0,6

4. 8q 2 S: q " � i� q "p � , and

5. 8q 2 S; a 2 A: q " a i�

(a) q "p a or

(b) 9q0 2 Sp: q
a
�!p q

0 and 6 9q0 2 S: q
a
�! q0.

The only di�erence between �(I; p) and the projection of pkI onto p concerns the unde-
�nedness predicates: �(I; p) inherits all unde�nedness predicates from p, and new ones
are introduced where transitions of p have been cut o� by I. The point of the reduction
operator is that for correct interface speci�cations this second kind of unde�nedness di-
sappears again in the full context �(I; p)kq. This holds, because if an a-transition of p
has been replaced by " a, this predicate disappears again in �(I; p)kq exactly if q, in its
corresponding state, preempts the execution of an a-transition. Thus the presence of an
" a in �(I; p)kq indicates a fault in the interface speci�cation, whenever p and q are totally
de�ned processes. Note that it is possible that �(I; p)kq is totally de�ned, although I is
not correct for p and q. This is the case if the incorrect parts of I need not be considered
for the reduction.

Example 3.4 Consider process p presented on the left in Figure 4 with alphabet Ap =
ftk1; tk2; rb2; sb2g and the interface speci�cation I2 de�ned in Example 2.15. In order to
determine �I2(p) we �rst consider the projection of pkI2 onto p (Figure 4, right). Fol-
lowing De�nition 3.3, �I2(p) can now be derived by inserting some additional unde�ned-
nesses indicating a transition of p which is preempted by the interface. These are already
computed by our system (implemented within the META{Frame environment [MCS95])
and can be revealed by the Graph Inspector: the �eld node syntax in Figure 4 shows
that the highlighted state (p12kb2) has an rb2-unde�nedess. A further investigation would
reveal the tk1-unde�nedness of (p11kb3) and the rb2-unde�nedness of (p13kb1).

6This already implies that qki is reachable in pkI .
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Figure 4: An Example Reduction

3.2 Theoretical View

In this section we establish that � is indeed a reduction operator. The correctness property
(cf. De�nition 3.1(i)) is straightforward:

Lemma 3.5 8p 2 P; I 2 I(p): �I(p) � p.

The remaining properties require two lemmata. The �rst lemma, which intuitively states
that no \new" states and transitions are inserted, is a consequence of De�nition 3.3 (iii)
and De�nition 2.4 (3) and (5).

Lemma 3.6 Let p 2 P and I 2 I(p) be arbitrary. Then we have:

8p0; p00 2 S�(I;p); a 2 Ap [ f�g: p
0 a
�!�(I;p) p

00 implies p0
a
�!p p

00

The second lemma guarantees that � does not cut o� too many states or transitions. It
requires a more involved argument.

Lemma 3.7 Let p; q 2 P, I 2 I(p; q), a 2 Ap[f�; �g and pkq �!�
pkq p

0kq0
a
�!pkq p

00kq00.
Then we have:

1. 9I 00 2 SI : p
00kI 00 is reachable in pkI.
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2. p0
a
�!�(I;p) p

00.

Proof: Because of Corollary 3.20 which is the central result of Section 3.4, we may
assume that I is a deterministic interface speci�cation.

We prove Lemma 3.7 by induction on n where n is the length of the path pkq �!n
pkq p

00kq00.

Base Case: (n = 0)

Here we have a = � and pkq = p0kq0 = p00kq00, i.e. p = p0 = p00 and q = q0 = q00. Choose
I 00 =df I and hence that p00kI 00 = pkI is reachable in pkI, such that (1) holds. Part (2) is
trivial because p0

�
�!�(I;p) p

00.

Induction step: (n �! n+1)

Here, we have pkq �!n
pkq p

0kq0
a
�!pkq p

00kq00.

By induction hypothesis it exists I 0 2 SI satisfying:

(�) p0kI 0 is reachable in pkI:

The application of hAp \ Aqi yields:

(pkq)hAp \ Aqi �!
n
pkq (p0kq0)hAp \ Aqi

b
�!pkq (p00kq00)hAp \ Aqi

where b =

(
a if a 2 Aq

� otherwise
. Let b0 =

(
b if b 6= �
� otherwise

.

By the induction hypothesis, the premise L((pkq)hAp \Aqi) � L(I) (cf. De�nition 2.14),
the deterministic interface speci�cation I, and De�nition 2.3 we conclude the existence of

some I 00 2 SI satisfying I
0 b0

=)I I
00, i.e.

9i0; i00: I 0
�
�!I : : :

�
�!I i

0 b0

�!I i
00 �
�!I : : :

�
�!I I

00

Hence by De�nition 2.4 Rule (3) (and (5) if b0 = a):

p0kI 0
�
�!pkI : : :

�
�!pkI p

0ki0
a
�!pkI p

00ki00
�
�!pkI : : :

�
�!pkI p

00kI 00

This shows together with (�) that p00kI 00 is reachable in pkI, i.e. (1) holds. Part (2) is a
consequence of De�nition 3.3 (3), because of the existence of i0 und i00, the reachability of
p00ki00 in pkI, and p0ki0

a
�!pkI p

00ki00. 2

Now we are able to prove the key property for the completeness proof of theRM-Method,
which implies context preservation in the sense of De�nition 3.1(ii), as we require isomor-
phie, =, instead of semantic equivalence.

17



Proposition 3.8 (Context Preservation) 8p; q 2 P; I 2 I(p; q): pkq = �I(p)kq.

Proof: Let p = ((Sp;Ap [ f�g;�!p; "p); p); q = ((Sq;Aq [ f�g;�!q; "q); q) 2 P, I 2
I(p; q) and A =df AI = Ap \ Aq. For this proof we de�ne the following processes:

pkq = ((S1;Ap [ Aq [ f�g;�!1; "1); pkq)
�I(p) = ((SpI ;Ap [ f�g;�!pI ; "pI ); p)

�I(p)kq = ((S2;Ap [ Aq [ f�g;�!2; "2); pkq)

Then both S1 and S2 are subsets of f(p0kq0)jp0 2 Sp; q
0 2 Sqg. Thus, it remains to show

that S1 = S2, �!1=�!2, and "1= "2 holds. For this purpose we de�ne for i = 1; 2:

� Sn
i , the subset of states reachable in n steps from the initial state,

� �!n
i , the set of transitions leaving the states of Sn

i , and

� "ni , the unde�nedness predicate of states of S
n
i .

Because of S0
1 = S0

2 = fpkqg, it is enough7 to verify the following simultaneous induction
step for n � 1 under the induction hypothesis Sn�1

1 = Sn�1
2 , in order to complete the

proof:

1. �!n�1
1 =�!n�1

2

2. Sn
1 = Sn

2

3. "n�11 ="n�12 .

First we verify point (1) of the induction step according to the operational rules (cf.
De�nition 2.4), i.e. we show the equivalence \p0kq0

a
�!1 p

00kq00 () p0kq0
a
�!2 p

00kq00".
This requires the investigation of Rules 3, 4 and 5 of De�nition 2.4.

Rule 3: Here we have a 2 (Ap n Aq) [ f�g and q0 = q00, which allows to complete the
argument as follows:

p0kq0
a
�!1 p

00kq00

(Rule 3) () p0
a
�!p p

00

(Lemma 3.7, 3.6, resp.8) () p0
a
�!pI p

00

(Rule 3) () p0kq0
a
�!2 p

00kq00

7Remember that we are dealing with �nite state systems.
8More precisely: for \)" we apply Lemma 3.7 and for \(" Lemma 3.6.
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Rule 4: Here we have a 2 (Aq n Ap) [ f�g and p0 = p00, and therefore:

p0kq0
a
�!1 p

00kq00

(Rule 4) () q0
a
�!q q

00

(Rule 4) () p0kq0
a
�!2 p

00kq00

Regel 5: Here we have a 2 A, p0
a
�!p p

00, and q0
a
�!q q

00:

p0kq0
a
�!1 p

00kq00

(Rule 5) () p0
a
�!p p

00 ^ q0
a
�!q q

00

(Lemma 3.7, 3.6, resp.) () p0
a
�!pI p

00 ^ q0
a
�!q q

00

(Rule 5) () p0kq0
a
�!2 p

00kq00

Point (2) of the induction step is an immediate consequence of point (1). Thus it remains
to verify point (3). The � -unde�nedness of a process is not a�ected by the reduction opera-
tor (see Clause (4) of De�nition 3.3), which leaves us with the case of an a-unde�nedness.
In order to prove the equivalence \(p0kq0) "1 a () (p0kq0) "2 a" we must deal with the
�ve applicable rules given in De�nition 2.4.

Rule 8: Here we have p0 "p a and a =2 Aq, and therefore:

(p0kq0) "1 a

(Rule 8) () p0 "p a

(De�nition 3.3 (5) (a)9) () p0 "pI a

(Rule 8) () (p0kq0) "2 a

Rule 9: Here we have p0 "p a and q0
a
�!q, hence a 2 Aq:

(p0kq0) "1 a

(Rule 9) () p0 "p a ^ q0
a
�!q

(De�nition 3.3 (5) (a)) () p0 "pI a ^ q
0 a
�!q

(Rule 9) () (p0kq0) "2 a

9Ad \(": The application of De�nition 3.3 (5) (b) is not possible. Otherwise we would have by

Rule (3) that p0kq0
a
�!1, and therefore by Rule (3), p0kq0

a
�!2 in contradiction to (p0kq0) "2 a.
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Rule 10: Here we have q0 "q a and a =2 Ap:

(p0kq0) "1 a

(Rule 10) () q0 "q a

(Rule 10) () (p0kq0) "2 a

Rule 11: Here we have q0 "q a and p0
a
�!p, hence a 2 Ap:

(p0kq0) "1 a

(Rule 11) () q0 "q a ^ p
0 a
�!p

(Lemma 3.7, 3.6, resp.) () q0 "q a ^ p0
a
�!pI

(Rule 11) () (p0kq0) "2 a

Rule 12: Here we have p0 "p a and q0 "q a, and therefore:

\)":
(p0kq0) "1 a ) p0 "p a ^ q

0 "q a

(De�nition 3.3 (5) (a)) ) p0 "pI a ^ q
0 "q a

(Rule 12) ) (p0kq0) "2 a

\(":

(p0kq0) "2 a ) p0 "pI a ^ q
0 "q a

(De�nition 3.3 (5)) ) (5a) p0 "p a ^ q
0 "q a) (Rule 12) (p0kq0) "1 a

or (5b) p0
a
�!p ^ q

0 "q a) (Rule 11) (p0kq0) "1 a

2

Together with Lemma 3.5 and the obvious fact that � is reducing, this proposition yields:

Proposition 3.9 The mapping � : I � P �! P of De�nition 3.3 de�nes a reduction
operator.

We conjecture that the reduction operator � is optimal in the following sense.

Conjecture 3.10 (Optimality of �)
Let � be an arbitrary reduction operator according to De�nition 3.1, p 2 P and I 2 I(p).
Then M(�I(p)) has not more states and transitions than M(�I(p)), i.e. � is maximal
reducing.
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3.3 Algorithmic View

In this section we present an algorithmic characterization of � on the basis of a data 
ow
analysis algorithm. As a byproduct we obtain the important representation independency
of the interface speci�cations (cf. Corollary 3.20), which we have used already in the proof
of Lemma 3.7.

In order to prepare an algorithmic characterization of the reduction operator �I(p) the
following proposition introduces sets ILq that contain exactly those actions which q can
perform within the global context described by I. In particular, as every state can engage
in �, this implies that a state q is reachable in the process �I(p) if and only if � 2 ILq.

Proposition 3.11 (ILq-Sets)
Let p 2 P, I 2 I(p), q 2 Sp, and LI(q) =df fa 2 AI [ f�gj9qki 2 SpkI : i

a
�!Ig. Then

�I(p) is determined by the sets ILq =df LI(q) [ (Ap n AI) [ f�g and a �nite sequence of
reduction steps for all q 2 Sp:

1. If � =2 ILq, then eliminate q and all transitions ending or starting at q.

2. If q
a
�!p but a =2 ILq, then eliminate all a-transitions starting at q and add q "p a

to the divergence relation.

Proof: It su�ces to show that

1. 8q 2 Sp: q 2 S () � 2 ILq and

2. 8q 2 S; a 2 A [ f�g: q
a
�!() q

a
�!p ^ a 2 ILq.

The proof of (1) is straightforward by using the de�nition of ILq and De�nition 3.3 (1).
A case distinction is needed for (2): for the case a 2 (A n AI) [ f�g De�nitions 3.3 (3),
2.4 (3), and the de�nition of ILq must be considered. The case a 2 AI [ f�g requires to
look at De�nitions 3.3 (3), 2.4 (5), 2.14 and the de�nition of ILq. 2

Proposition 3.11 shows how to compute �I(p) on the basis of LI(q), q 2 Sp. The key to
a complete algorithm for �I(p) is the following easy to prove characterization for the sets
LI(q), which is the basis for the algorithm developed in the next section.

Lemma 3.12 (Characterization of LI(q))
Let q 2 Sp and L0

I(q) =df fa 2 AI [ f�gj9v 2 A�
I : av 2

S
fL(i)jqki 2 SpkIgg the set of

pre�xes of length at most one of
S
fL(i)jqki 2 SpkIg. Then LI(q) = L0

I(q) holds.
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3.4 Determining LI(q)

In this section we show how to compute the sets LI(q) on the basis of their alternative
characterizations by means of a data 
ow analysis algorithm. This requires a brief review
of the relevant data 
ow analysis scenario.

Given a complete partial order hC;vi, whose elements are intended to express the relevant
data 
ow information, the local abstract semantics of a process ((Sp;Ap[f�g;�!p; "p); p)
is de�ned by the semantic functional [[�]] : (�!p)! (C ! C) which maps each transition
t 2�!p to a transformation on C. [[�]] extends to paths pth = (t1; : : : ; tq), q � 0, in p in
the usual way: [[pth]] =df [[tq]] � � � � � [[t1]].

Let us now �x an arbitrary process p = ((Sp;Ap [ f�g;�!p; "p); p) 2 P and an interface
speci�cation I = ((SI ;AI;�!I ; "I); I) 2 I. For technical reasons we assume w.l.o.g. that
p possesses no transition to its start state.

For our application we need the following local abstract semantics over the complete
partial order h2L(I);�i.

De�nition 3.13 (Local Abstract Semantics)
For a 2 A consider the functions EI

a : 2L(I) ! 2L(I) with

EI
a (L) =df

(
La if a 2 AI

L otherwise

Then the local abstract semantic function for (q; a; q0) 2�!p with respect to I is de�ned
by [[(q; a; q0)]] =df EI

a .

The following property of these local semantic functions is important:

Lemma 3.14 (Additivity)
The functions EI

a are additive, i.e. for all fLkjk � 0g � 2L(I) we have

EI
a(
[
fLkjk � 0g) =

[
fEI

a(Lk)jk � 0g

As a consequence, the local abstract semantic functions [[t]] are additive for all t 2�!p.

The local semantics can be globalized according to two strategies: the \operational" join
over all paths (JOP) strategy , which (usually) directly re
ects the intuition behind the
analysis problem and the \denotational" minimal �xed point (MFP) strategy , which is
algorithmic (cf. [Kil73, KU77]).10 In the following P [q; q0] denotes the set of all �nite
paths from q to q0.

10Originally, a dual setup was proposed, considering meet over all paths and maximal �xed point

strategies.
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De�nition 3.15 (JOP-Solution)
8q 2 Sp; c0 2 C: JOPc0(q) =df

F
f[[pth]](c0)jpth 2 P [p; q]g

For our application we have the following characterization of the JOP-Solution.

Proposition 3.16 (Characterization of the JOP-Solution)
8q 2 Sp: JOPL(I)(q) =

S
fL(i)jqki 2 SpkIg

Proof: For '`�" one easily establishes

8qki 2 SpkI9pth 2 P [p; q]: L(i) � [[pth]](L(I))

by induction on the length of a path from pkI to qki, and for \�" it is su�cient to prove
for all paths pth 2 P [p; q] that w 2 [[pth]](L(I)) implies 9qki 2 SpkI :w 2 L(i) by induction
on the length of pth. 2

The MFP-solution iteratively approximates the smallest solution of a set of simultaneous
equations that express consistency between data 
ow informations.

De�nition 3.17 (MFP-Solution)
The least solution lc0 of the equation system consisting of the equation

l(q) =

(
c0 if q = p
l(q) t

F
f[[(q0; a; q)]](l(q0))j(q0; a; q) 2�!pg otherwise

for each q 2 Sp includes the MFP-Solution with repect to the initial information c0 2 C.

8q 2 Sp; c0 2 C: MFPc0(q) =df lc0(q)

As in our application, this often leads to an algorithmic description. The well-known coin-
cidence theorem of Kam and Ullman [KU77] bridges the gap between the JOP-Solution
and the MFP-Solution.

Theorem 3.18 (Coincidence Theorem)
If all local abstract semantic functions [[t]] for t 2�!p are additive, then the MFP-Solution
is correct and complete with respect to the JOP-Solution, i.e.

8q 2 Sp; c0 2 C: JOPc0(q) = MFPc0(q)

Thus according to Lemma 3.14, we can compute the desired JOP-solution (cf. Propo-
sition 3.16) by iteratively approximating the smallest solution of the equation system
de�ned in De�nition 3.17 in the following fashion:
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Procedure 3.19 (Language Labelling)
Given p 2 P and I 2 I(p), the iterative Language Labelling Procedure works by succes-
sively enlarging approximative labellings according to the following two steps:

1. It initially labels p with L(I) and all the other states with the empty language.

2. If a state q of p is currently labelled by L and q0 is one of its a-successors then EI
a (L)

is joined to the current language labelling q0, until a �xed point is reached.

In terms of DFA, the Language Labelling Procedure computes the minimal �xed point
solution with respect to the start information L(I).

The Language Labelling Procedure 3.19 has been implemented by means of a workset
algorithm, as a part of the META{Frame environment [MCS95]. Its time and state com-
plexity can be estimated by the product of the number of transitions of p and the number
of states of I.

As the algorithm does not exploit the structure of the representation of interface language,
we obtain as a simple but important consequence:

Corollary 3.20 (Representation Independency)
For all p 2 P and for all I; I 0 2 I(p) we have:

L(I) = L(I 0) implies �I(p) = �I0(p)

4 Minimization Method

In this section, we develop the RM-method, which compositionally minimizes �nite state
distributed systems, on top of a reduction operator �. This method is correct in that it
always produces processes that are smaller in the speci�cation-implementation preorder
(cf. Theorem 4.1), guaranteeing that even faulty interface speci�cations will never allow
us to establish wrong properties. Moreover, it is complete, in that it only produces
semantically equivalent processes as long as the interface speci�cations are correct (cf.
Theorem 4.2), guaranteeing that the reduction preserves all the considered properties in
this case. The RM-method is illustrated by means of an example, where the apparent
complexity is exponential in the number of components, whereas the algorithmic and the
real complexity are linear. The e�ects of the RM-Method are shown via screen dumps
that have been obtained from our implementation within the META{Frame environment.

The RM-Method is taylored to deal with processes of the form P = (p1k : : : kpn)hLi. This
form, called standard concurrent form in CCS, is of particular interest, as it is responsible
for the state explosion problem and therefore characterizes the processes that are critical
during analysis and veri�cation. Our method expects the �nite state system P as to be
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annotated with interface speci�cations that describe the interface between the right hand
process and the left hand process of the parallel operator they are attached to:

P = (p1kI1p2kI2 : : : kIn�1
pn)hLi

It proceeds by successively constructing transition systems Pi as follows:

(p1kI1| {z }
P1

p2kI2

| {z }
P2

: : : kIn�1
pn)hLi

...| {z }
Pn

where Pi is de�ned by:

� P1 =df M(�I1(M(p1hAI1 [ Li))),

� Pi =df M(�Ii(M((Pi�1kpi)hAIi [ Li))) for 2 � i � n� 1, and

� Pn =df M((Pn�1kpn)hLi).

In order to avoid unnecessarily large intermediate transition systems during the construc-
tion of the minimal transition system, it is important to minimize all the intermediate
constructions as it is done above. Note that our method covers the naive method (only
using M) and methods which only consider the correspondence of the parallel and the
window operator (see Proposition 2.6). The new additional power of the RM-Method
is due to the reduction operator � which minimizes all intermediate transition systems
Pi according to global constraints speci�ed in terms of the interface speci�cations Ii (for
1 � i � n� 1).

In the remainder of this section let P and Pi be as de�ned above and Qi =df (pi+1k : : : pn)
for 1 � i � n.11 Then we obtain the following correctness result, which is independent of
the correctness of the interface speci�cations.

Theorem 4.1 (Correctness of the RM-Method) 81 � i � n: (PikQi)hLi � P.

Proof: The proof is done by induction on i.

Base case (i = 1):

(P1kQ1)hLi

(def. P1) = (M(�I1(M(p1hAI1 [ Li)))kQ1)hLi

(Prop. 2.11, 2.12, Def. 3.1(i)) � (p1hAI1 [ LikQ1)hLi

(Prop. 2.6) = (p1kQ1)hLi

(def. P) = P

11Qn denotes the empty process consisting of a single state, an empty alphabet and no transition.
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Induction step (i� 1 �! i):

The case 2 � i � n� 1 proceeds as follows:

(PikQi)hLi

(def. Pi) = (M(�Ii(M((Pi�1kpi)hAIi [ Li)))kQi)hLi

(Prop. 2.11, 2.12, Def. 3.1(i)) � ((Pi�1kpi)hAIi [ LikQi)hLi

(Prop. 2.6) = ((Pi�1kpi)kQi)hLi

(Prop. 2.5) = (Pi�1k(pikQi))hLi

(def. Qi�1) = (Pi�1kQi�1)hLi

(ind. hyp.) � P

For i = n we conclude:

(PnkQn)hLi

(def. Qn) = PnhLi

(def. Pn) = (M((Pn�1kpn)hLi))hLi

(Prop. 2.11, 2.12, Def. 3.1(i), def. of h�i) � (Pn�1kpn)hLi

(def. Qn�1) = (Pn�1kQn�1)hLi

(ind. hyp.) � P

2

For i = n Theorem 4.1 states that Pn � P. This is already enough to guarantee the
correctness of the method, i.e. that a proof of a �d-consistent property for Pn is valid
for P. Thus wrong interface speci�cations never lead to wrong proofs. They may only
prevent a successful veri�cation of a valid statement. In order to guarantee the success of
the method, the correctness of the interface speci�cations is su�cient.

Theorem 4.2 (Completeness of the RM-Method)
81 � i � n: (8j � i: Ij 2 I(p1k : : :kpj; Qj)) implies (PikQi)hLi �d P.
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Proof: The proof, which is done by induction on i again, requires special attention:
an instance of the induction hypothesis is necessary to establish an auxiliary statement
concerning the correctness of the given interface speci�cations in the special proof context.

For i = 1 we have:

(P1kQ1)hLi

(def. P1) = (M(�I1(M(p1hAI1 [ Li)))kQ1)hLi

(def. M, Prop. 2.12) �d (�I1(M(p1hAI1 [ Li))kQ1)hLi

(Prop. 3.2, 2.12) �d (�I1(p1hAI1 [ Li)kQ1)hLi

(Def. 3.1(ii), Prop. 2.17, 2.12) �d (p1hAI1 [ LikQ1)hLi

(Theorem 2.6) = (p1kQ1)hLi

(def. P) = P

The induction step, i� 1 �! i, needs the following auxiliary statement:

(�) Ii 2 I(p1k : : : kpi; Qi) implies Ii 2 I(M((Pi�1kpi)hAIi [ Li); Qi)

The statement follows by De�nition 2.14 considering

L(Ii)

(Def. 2.14) � L(((p1k : : : kpi)kQi)hAIii)

(def. Qi, Prop. 2.5, 2.12, La. 2.13(2)) = L((p1k : : : kpn)hAIii)

(ind. hyp. for L = AIi , La. 2.13(2)) = L((Pi�1kQi�1)hAIii)

(def. Qi�1, Prop. 2.5, 2.12, La. 2) = L(((Pi�1kpi)kQi)hAIii)

(Prop. 2.6, La. 2.13(2)) = L(((Pi�1kpi)hAIi [ LikQi)hAIii)

(def. M, Prop. 2.12, La. 2.13(2)) = L((M((Pi�1kpi)hAIi [ Li)kQi)hAIii)
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Now, the case 2 � i � n� 1 proceeds as follows:

(PikQi)hLi

(def. Pi) = (M(�Ii(M((Pi�1kpi)hAIi [ Li)))kQi)hLi

(def. M, Prop. 2.12) �d (�Ii(M((Pi�1kpi)hAIi [ Li))kQi)hLi

((�), Def. 3.1(ii), Prop. 2.12) �d (M((Pi�1kpi)hAIi [ Li)kQi)hLi

(def. M, Prop. 2.12) �d ((Pi�1kpi)hAIi [ LikQi)hLi

(Prop. 2.6) = ((Pi�1kpi)kQi)hLi

(Prop. 2.5, 2.12, def. Qi�1) �d (Pi�1kQi�1)hLi

(ind. hyp.) �d P

For i = n we conclude:

(PnkQn)hLi

(def. Qn) = PnhLi

(def. Pn) = (M((Pn�1kpn)hLi))hLi

(def. M, def. of h�i, Prop. 2.12) �d (Pn�1kpn)hLi

(def. Qn�1) = (Pn�1kQn�1)hLi

(ind. hyp.) �d P

2

In practice, P is usually totally de�ned. Applying Theorem 4.1 it is easy to see that the
proof of Pn �d P reduces to the veri�cation of the total de�nedness of Pn in this case:

Corollary 4.3 (Total De�nedness)
Whenever P is totally de�ned, we have: Pn �

d P i� Pn is totally de�ned.

Up to now, we considered the reduction operator as a parameter. The following applica-
tions use the reduction operator �.

4.1 An Application of the RM-Method

The application of our method to the system of Example 2.7 and the interface speci�-
cations de�ned in Example 2.15 leads to a successive computation of the following three
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processes:
P1 = M(�I1(M(P1hftk1; tk2; rb1; sb1gi)))
P2 = M(�I2(M((P1kB)hftk1; tk2; rb2; sb2gi)))
P3 = M((P2kP2)hftk1; tk2gi)

Figure 5: Application of the Method to our Example

As already suggested in Example 2.15, �I1 has no e�ect on P1 due to the ILq-sets
ILp11 = ftk1; �g, ILp12 = frb1; tk2; �g, ILp13 = fsb1; �g, and ILp14 = frb1; tk2; �g (cf.
Figure 5, top left corner). Let us now look at the stepwise computation of P2. Com-
puting M((P1kB)hftk1; tk2; rb2; sb2gi) leads to the process presented at the right top
of Figure 5, and the application of the algorithm of Section 3.3 provides the following
ILq-sets: ILp11kb2 = ftk1; rb2; �g, ILp12kb2 = ftk2; �g = ILp14kb2, ILp11kb3 = fsb2; �g, and
ILp12kb3 = ; = ILp14kb3. P2 is presented at the bottom left corner of Figure 5 with the
unde�nedness for rb2 at the state (p12kb2) and for tk1 at the state (p11kb3).

The result of the reduction algorithm is P3 (cf. Figure 5, bottom right corner), and as P3

is totally de�ned, Corollary 4.3 yields that P3 �
d System holds. This re
ects our intuition

that an observer may only see the cyclical passing of the token on the channels tk1 and
tk2.
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4.2 The Power of the RM-Method

Let us consider a system guaranteeing the mutually exclusive access of n processes Pi to
a common resource R as illustrated in Figure 6 for n = 4.12 The idea behind the system
is to pass a \token" via the communication channels tki, and to allow access to R only for
the process that currently possesses the token. This process sends its request via psi to
the resource R, which responds by transmitting the requested object. The corresponding
transmission line is modelled by a bu�er Bi. This choice is motivated by thinking of large
objects whose transmission cannot be modelled by an atomic \handshake" communica-
tion.

In order to prove that the access is modelled as intended, we can hide everything except
for the actions corresponding to the transmission of the token, and prove that the resulting
process is equivalent to the process Spec(n) that just repeatedly executes the sequence
tk1; : : : ; tkn. I.e. it is enough to show

System(n) =df (R kP1kB1k : : : kPnkBn)hftk1; : : : ; tkngi �
d Spec(n)

It is easy to see that the apparent complexity of System(n) is exponential in n, whereas its
real complexity is linear. In fact, it is also possible to obtain an algorithmic complexity
that is linear in n. This can be achieved by processing the system according to the
structure indicated below, where the Ii denote the exact interface speci�cations presented
in Figure 7:

(
z }| {
RkP1kB1 kI1

z }| {
P2kB2 kI2 : : : kIn�1

z }| {
PnkBn)hftk1; : : : ; tkngi

The table below summarizes a quantitative evaluation of the e�ect of our method by
means of the Aldebaran Veri�cation Tool [Fer88]. It displays the size of the global state
graph (its apparent complexity), the size of the maximal transition system constructed du-
ring stepwise minimization when exploiting exact interface speci�cations (the algorithmic
complexity), and the size of the minimized global state graph (its real complexity).

n apparent complexity algorithmic complexity real complexity
states trans. states trans. states trans.

4 144 368 20 29 4 4
5 361 1101 24 35 5 5
6 865 3073 28 41 6 6
7 2017 8177 32 47 7 7

It is worth mentioning that the method which works just by stepwise composition and
minimization of components encounters transition systems that are even larger than the
global state graph:

12It should be noted that in contrast to all the other Pi, which are displayed correctly, Pn is assumed
to be initially in the bottom right state.
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n states trans.
4 96 243
5 324 927
6 972 3024
7 2916 9801
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Figure 7: Exact Interface Speci�cations

This stresses the importance of interface speci�cations for automatic proof techniques.
Software designers should always provide these speci�cations as part of the implementa-
tion. We believe that besides enabling automatic veri�cation, this requirement also leads
to a transparent and well structured programming. Note the similarity to the situation for
while-programs, where automatic veri�cation depends on loop invariants that also need
to be provided by the programmer.

5 Conclusions

We have presented a method, called RM-Method, for the compositional minimization of
�nite state distributed systems, which is intended to avoid the state explosion problem.
This method can be used to support the veri�cation of any property that is consistent
with �d. However, the RM-Method is not tailored to this particular semantic equi-
valence. Other equivalences can be dealt with by adapting the preorder de�nition and
the minimization function accordingly. The RM-Method is implemented as part of the
META{Frame tool [MCS95] for the reduction operator � and the semantic equivalence
�d.

The e�ect of our method, which is intended to get the algorithmic complexity as close as
possible to the real complexity, depends on interface speci�cations, which we assume as to
be given by the program designer. However, the correctness of the RM-Method does not
depend on the correctness of these interface speci�cations. Wrong interface speci�cations
never lead to wrong proofs. They may only prevent a successful veri�cation of a valid
property. This is very important, because it allows the designer to simply \guess" interface
speci�cations, while maintaining the reliability of a successful veri�cation.

Indeed, a way to obtain interface speci�cations is by using the property to be veri�ed
as interface speci�cation. This is what Clarke et al. [CLM89] had in mind. However,
their approach only exploits the alphabet of the property under consideration. A re�-
ned treatment of property constraints using our notion of interface speci�cation is under
investigation.
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