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Abstract. More than a decade ago, Moller and Tofts published their

seminal work on relating processes, which are annotated with lower

time bounds, with respect to speed. Their paper has left open many

questions regarding the semantic theory for the suggested bisimulation–

based faster–than preorder, the MT–preorder, which have not been

addressed since. The encountered difficulties concern a general com-

positionality result, a complete axiom system for finite processes, a

convincing intuitive justification of the MT–preorder, and the abstrac-

tion from internal computation.

This article solves these difficulties by developing and employing a

novel commutation lemma relating the sequencing of action and clock

transitions in discrete–time process algebra. Most importantly, it is

proved that the MT–preorder is fully–abstract with respect to a natu-

ral amortized preorder that uses a simple bookkeeping mechanism for

deciding whether one process is faster than another. Together these

results reveal the intuitive roots of the MT–preorder as a faster–than

relation, while testifying to its semantic elegance. This lifts some of

the barriers that have so far hampered progress in semantic theories

for comparing the speed of processes.
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1. Introduction

Over the past two decades, the field of process algebra [8] has proved successful
for modeling and reasoning about the communication behavior of concurrent pro-
cesses. Early process algebras, such as Milner’s CCS [21] and Hoare’s CSP [16],
have been augmented to capture other important system aspects as well, including
timing behavior [7]. Many variants of timed process algebra that employ either dis-
crete or continuous notions of time have been introduced, whose semantic theories
are usually based on the well–studied concepts of bisimulation [22], failures [25],
or testing [15].

While several approaches for comparing the efficiency of processes have been
proposed in the literature [5, 24], theories for comparing timed processes with re-
spect to speed are seeded very sparsely. The most seminal paper in the latter
category was published over a decade ago [23]. In this paper, the authors Moller
and Tofts argue that a faster–than relation on processes can only exist for those
process–algebraic settings where the passage of time cannot preempt behavior, and
especially not for settings involving timeout operators. For a timeout–less frag-
ment of TCCS [22], Moller and Tofts then introduced a compositional faster–than
preorder based on strong bisimulation [21], and discussed some of its underlying
algebraic laws. Despite the paper’s originality, the work is lacking regarding three
important aspects. Firstly, the advocated preorder is not intuitively justified but
appears to be an ad–hoc remedy for a compositionality problem. Secondly, the
framework possesses technical weaknesses. For example, Moller and Tofts only
managed to prove compositionality of their preorder for the class of regular pro-
cesses, and their proposed laws for characterizing their preorder are incomplete.
Thirdly, no semantic theory that abstracts from internal computation, in the sense
of observation equivalence [21], is presented in [23].

The aim of this article is to put the faster–than preorder of Moller and Tofts,
or MT–preorder for short, on solid semantic grounds and to highlight its intuitive
roots, thereby testifying to the elegance of Moller and Tofts’ approach. Technically,
we add to Milner’s CCS a discrete–time clock prefixing operator “σ.”, interpreted
as lower time bound. Intuitively, process P in σ.P is only activated after the tick-
ing of the abstract clock σ, i.e., after one time unit. The nesting of σ–prefixes
then allows the specification of arbitrary delays1, which results in a process algebra
equivalent to the fragment of TCCS studied by Moller and Tofts. We refer to this
algebra as Timed Asynchronous Communicating Systems with lower time bounds,
or TACS

lt. As our first main result we prove that the MT–preorder is composi-
tional and fully–abstract with respect to a natural amortized preorder that uses a
simple bookkeeping mechanism for deciding whether one process is faster than an-
other. The intuition behind this amortized preorder is that the faster process must
execute each action no later than the slower process does, while both processes
must be functionally equivalent in the sense of strong bisimulation. To obtain this
result we also establish a powerful semantic tool for reasoning within discrete–time

1Arbitrary delays are written as prefix (n) with n ∈ N in [23].
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process algebra, namely a commutation lemma relating the sequencing of action
and clock transitions. As our second main result we provide a sound and complete
axiomatization of the MT–preorder for the class of finite processes. This includes
the provision of a simple expansion law, which Moller and Tofts had claimed could
not exist. The twist is that this expansion law is only valid for finite processes
but interestingly not for arbitrary recursive processes, which prohibits a straight-
forward extension of our axiomatization to non–finite processes. As our third and
final main result we introduce the notion of a weak MT–preorder — a task that
turns out to be more challenging than in other bisimulation–based settings.

Our results shed light on the nature of the MT–preorder and overcome the
technical difficulties experienced by Moller and Tofts, thereby completing, gener-
alizing, and strengthening their results and providing groundwork for advancing
semantic theories that compare processes with respect to speed. This article also
complements our previous work on bisimulation–based faster–than relations for
timed process algebra with upper time bounds [19]. Indeed, several ideas and tech-
nical concepts can be carried over from the upper–time–bounds setting of [19] to
the lower–time–bounds setting presented here.

The remainder of this article is organized as follows. The next section intro-
duces our process–algebraic framework, while Sec. 3 revisits the MT–preorder’s
definition of [23] and establishes a general compositionality result. Secs. 4 and 5
then present our two most important theoretical contributions, namely the full–
abstraction result with respect to an amortized faster–than preorder and a com-
plete axiomatization for finite processes, respectively. The utility of our semantic
faster–than theory is demonstrated by means of two simple examples in Sec. 6,
before investigating an approach in Sec. 7 to abstracting from internal computa-
tion. Finally, related work is discussed in Sec. 8, and our conclusions and proposed
directions for future research are given in Sec. 9. For the sake of readability we
prove only those aspects of our results that are novel, and leave out proof details
which are either straightforward or follow the lines of corresponding proofs in CCS.

2. Timed Asynchronous Communicating Systems

Our process algebra TACS
lt conservatively extends Milner’s CCS [21] by per-

mitting the specification of lower time bounds for the execution of actions and
processes. These will then be used to compare processes with respect to speed.
Syntactically, TACS

lt includes a clock prefixing operator “σ.”, taken from Hen-
nessy and Regan’s TPL [15]. Semantically, it adopts a concept of global, discrete
time in which processes are lazy and can always let time pass. For example, σ.P
must wait for at least one time unit before it can start executing process P .

2.1. Syntax

The syntax of TACS
lt is identical to the one in [19], where we considered a

faster–than preorder that relates processes on the basis of upper rather than lower
time bounds. Formally, let Λ be a countably infinite set of actions not including
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Table 1. Operational semantics for TACS
lt (action transitions)

Act
−−

α.P
α

−→ P
Rel

P
α

−→ P ′

P [f ]
f(α)
−→ P ′[f ]

Rec
P

α
−→ P ′

µx.P
α

−→ P ′[µx.P/x]

Sum1
P

α
−→ P ′

P + Q
α

−→ P ′
Sum2

Q
α

−→ Q′

P + Q
α

−→ Q′
Res

P
α

−→ P ′

P \ L
α

−→ P ′ \ L
α /∈L∪L

Com1
P

α
−→ P ′

P |Q
α

−→ P ′|Q
Com2

Q
α

−→ Q′

P |Q
α

−→ P |Q′
Com3

P
a

−→ P ′ Q
a

−→ Q′

P |Q
τ

−→ P ′|Q′

the distinguished unobservable, internal action τ . With every a ∈ Λ we associate
a complementary action a. We define Λ =df {a | a ∈ Λ} and take A to denote the
set Λ ∪ Λ ∪ {τ}. Complementation is lifted to Λ ∪ Λ by defining a =df a. As in
CCS [21], an action a communicates with its complement a to produce the internal
action τ . We let a, b, . . . range over Λ ∪ Λ, α, β, . . . over A, and represent clock
ticks by σ. The syntax of TACS

lt is defined as follows:

P ::= 0 | x | α.P | σ.P | P + P | P |P | P \ L | P [f ] | µx.P

where x is a variable taken from a countably infinite set V of variables, L ⊆ A\{τ}
is a restriction set, and f : A → A is a finite relabeling. A finite relabeling satisfies
the properties f(τ) = τ , f(a) = f(a), and |{α | f(α) 6= α}| < ∞. The set of all

terms is abbreviated by P̂ , and we define L =df {a | a ∈ L}. Moreover, we use the
standard definition for the semantic sort sort(P ) ⊆ Λ ∪ Λ of some term P , open
and closed terms, and contexts (terms with a “hole”). A variable is called guarded
in a term if each occurrence of the variable is within the scope of an action or clock
prefix. Moreover, we require for terms of the form µx.P that x is guarded in P .
We refer to closed and guarded terms as processes, with the set of all processes
written as P , and write ≡ for syntactic equality.

2.2. Semantics

The operational semantics of a TACS
lt term P ∈ P̂ is given by a labeled

transition system 〈P̂ ,A ∪ {σ},−→, P 〉, where P̂ is the set of states, A ∪ {σ} the

alphabet, −→⊆ P̂ × (A∪ {σ})× P̂ the transition relation, and P the start state.
Transitions labeled with an action α are called action transitions which, like in
CCS, are local handshake communications in which two processes may synchronize
to take a joint state change together. Transitions labeled with the clock symbol σ
are called clock transitions representing a recurrent global synchronization which
encodes the progress of time.
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Table 2. Operational semantics for TACS
lt (clock transitions)

tNil
−−

0
σ

−→ 0
tRec

P
σ

−→ P ′

µx.P
σ

−→ P ′[µx.P/x]
tRes

P
σ

−→ P ′

P \ L
σ

−→ P ′ \ L

tAct
−−

α.P
σ

−→ α.P
tSum

P
σ

−→ P ′ Q
σ

−→ Q′

P + Q
σ

−→ P ′ + Q′
tRel

P
σ

−→ P ′

P [f ]
σ

−→ P ′[f ]

tPre
−−

σ.P
σ

−→ P
tCom

P
σ

−→ P ′ Q
σ

−→ Q′

P |Q
σ

−→ P ′|Q′

The operational semantics for action and clock transitions can be defined via
the structural operational rules shown in Tables 1 and 2, respectively. As usual,

we write P
γ

−→ P ′ instead of 〈P, γ, P ′〉 ∈−→, for γ ∈ A∪{σ}, and say that P may
engage in γ and thereafter behave like P ′. Sometimes it is also convenient to write

(i) P
γ

−→ for ∃P ′. P
γ

−→ P ′, (ii)
σ

−→
k

for k ∈ N consecutive clock transitions,

with N including 0, and (iii) P
w

−→ P ′, where either w = ε and P ≡ P ′, or w = γw′

for some γ ∈ A ∪ {σ} and w′ ∈ (A ∪ {σ})∗, and ∃P ′′. P
γ

−→ P ′′ w′

−→ P ′.
The action–prefix term α.P may engage in action α and then behave like P .

It may also idle, i.e., engage in a clock transition to itself, as process 0 does.
The clock–prefix term σ.P can engage in a clock transition to P and ensures that
there is a delay of at least one time unit before P is activated. The summation
operator + denotes nondeterministic choice: P + Q may behave like P or Q;
according to the deterministic nature of time, a clock transition does not resolve
choices. The restriction operator \L prohibits the execution of actions in L ∪ L
and, thus, permits the scoping of actions. P [f ] behaves exactly as P with actions
renamed by the relabeling f . The term P |Q stands for the parallel composition of P
and Q according to an interleaving semantics with synchronized communication
on complementary actions, resulting in the internal action τ . Again, time has to
proceed equally on both sides of the operator, i.e., deterministically. Finally, µx. P
denotes recursion which behaves as a distinguished solution to the equation x = P .
The rules for action transitions are the same as for CCS, with the exception of
the new clock–prefix operator and the rule for recursion; however, the former is
identical to the one in Hennessy and Regan’s TPL [15], and the latter is equivalent
to the standard CCS rule over guarded terms [6].

The operational semantics for TACS
lt possesses several important proper-

ties [15]. Firstly, any process — but not every term — can perform a clock
transition due to our adoption of a lazy nil–process 0 and a lazy prefix operator.
This is referred to as the laziness property of TACS

lt; formally, ∀P ∈ P . ∃P ′ ∈ P.

P
σ

−→ P ′. Secondly, the semantics is time–deterministic, i.e., progress of time
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does not resolve choices. Formally, P
σ

−→ P ′ and P
σ

−→ P ′′ implies P ′ ≡ P ′′, for

all P, P ′, P ′′ ∈ P̂, which can easily be proved via induction on the structure of P .

3. The Moller–Tofts Preorder

This section first recalls the faster–than preorder introduced by Moller and Tofts
in [23], to which we refer as Moller–Tofts preorder, or MT–preorder for short. As
the section’s main contribution, we prove the compositionality of this preorder for
arbitrary processes, which has only been conjectured by Moller and Tofts. Indeed,
the compositionality proof offered in [23] is restricted to processes that do not have
any parallel operators inside the scope of a recursion operator. The key for proving
compositionality in the general setting is a nontrivial commutation lemma which
considers what happens when adjacent action and clock transitions are transposed.
This lemma also plays an important role when obtaining the full–abstraction result
presented in Sec. 4 and when abstracting from internal computations in Sec. 7.

Definition 3.1 (MT–preorder [23]). A relation R ⊆ P ×P is an MT–relation if,
for all 〈P, Q〉 ∈ R and α ∈ A:

(1) P
α

−→ P ′ implies ∃Q′, k, P ′′. Q
σ

−→
k α
−→ Q′, P ′ σ

−→
k
P ′′, and 〈P ′′, Q′〉 ∈ R.

(2) Q
α

−→ Q′ implies ∃P ′. P
α

−→ P ′ and 〈P ′, Q′〉 ∈ R.

(3) P
σ

−→ P ′ implies ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

(4) Q
σ

−→ Q′ implies ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P =
∼mtQ if 〈P, Q〉 ∈ R for some MT–relation R, and call =

∼mt the MT–
preorder.

Technically, all conditions of this definition, with the exception of the first one,
are identical to the ones of temporal strong bisimulation (cf. [7,9]). Intuitively, the
weaker first condition states that, if the faster process P can perform an action,
then the slower process Q must not match this action right away, but can perform
some arbitrary number k of time steps before doing so.2 However, delaying k time
steps may make the resulting process Q′ faster than P ′. To account for this,
Moller and Tofts suggest that P ′ performs k time steps of its own, resulting in
process P ′′ that should then be faster than Q′. To see the necessity for this,
consider the processes a.0|σ.b.0 and σ.a.0|σ.b.0, for which a sensible faster–than
preorder should clearly identify the former process as the faster one. Here, the
a–transition of a.0|σ.b.0 to 0|σ.b.0 can only be matched by the latter process after
a delay of one time unit, leading to 0|b.0. However, 0|σ.b.0 is not faster than
0|b.0, but only if it has delayed a time unit as well. The first condition of the
MT–preorder forces the faster process to match the delay of the slower one. That
it does so immediately, i.e., within the same matching step, seems arbitrary and

2Note that we could have equally well quantified P ′′ universally in Def. 3.1(1), as P ′′ always
exists and is uniquely determined due to the laziness property and the time–determinacy property
of our semantics, respectively.
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restrictive. Nevertheless, we will show in the next section that this is not the case
and that there is a very natural explanation for this.

It is easy to see that =
∼mt

is indeed a preorder, i.e., it is reflexive and transitive,
and that it is the largest MT–relation. Moreover, if one studies CCS process terms
only, i.e., TACS

lt processes not containing any clock prefix operator, then two
processes are related in the MT–preorder if and only if they are strongly bisimilar.
This is because all clock transitions are idling transitions in such a restricted
setting, i.e., σ–loops; vice versa, every process can idle due to the laziness property.
Hence, CCS is a sub–calculus of TACS

lt.

Theorem 3.2 (Precongruence). The MT–preorder =
∼mt

is a precongruence for all

TACS
lt operators (including recursion).

The only difficult and non–standard part of the proof concerns compositionality
regarding parallel composition, which is also needed for proving recursion com-
positional. The proof is based on the following novel commutation lemma, which
does away with Moller and Tofts’ unnecessary restrictions for the compositionality
proof.

Lemma 3.3 (Commutation). Let P, P ′ ∈ P and w ∈ (A ∪ {σ})∗.

(1) Simple commutation lemma: If P
w

−→
σ

−→ P ′, then ∃P ′′. P
σ

−→
w

−→ P ′′

and P ′=
∼mt

P ′′.

(2) Commutation lemma: If P
w

−→
σ

−→
k
P ′, for k∈N, then ∃P ′′. P

σ
−→

k w
−→ P ′′

and P ′=
∼mt

P ′′.

Intuitively, the commutation lemma states that a delay, i.e., one or more clock
transitions, after a given sequence of transitions can also be made before this
sequence. Moreover, and perhaps surprisingly, the earlier a delay is performed,
the slower the resulting process is. One might expect that processes P ′ and P ′′

in the above lemma are equally fast. That this is not necessarily the case can be
demonstrated by a simple example, taking P =df a.σ.b.0 and w =df a. In this

example, P
a

−→
σ

−→ b.0 and P
σ

−→ P
a

−→ σ.b.0, where obviously b.0 is strictly
faster than σ.b.0. This is because the “real” σ–transition after action a is traded
against an idling or lazy σ–transition before a.

In the sequel we are mainly interested in Part (2) of the above lemma, which
follows by induction on k and by employing Part (1). The proof of the simple
commutation lemma is non–trivial and requires the introduction of some technical
machinery. Before doing so we apply the lemma for proving the compositionality
of the MT–preorder with respect to parallel composition.

Compositionality for parallel composition. According to Def. 3.1, it is sufficient to
establish that R =df {〈P1|P2, Q1|Q2〉 |P1

=
∼mtQ1, P2

=
∼mtQ2} is an MT–relation.

Let 〈P1|P2, Q1|Q2〉 ∈ R be arbitrary.

The only interesting case involves matching a transition P1|P2
α

−→ P ′
1|P

′
2, for

some P ′
1, P

′
2 and some α, since all conditions except Cond. (1) of Def. 3.1 coincide

with the standard ones for temporal strong bisimulation [7, 9]. According to the
operational rules for parallel composition we distinguish the following cases:
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• P1
α

−→ P ′
1 and P ′

2 ≡ P2: Since P1
=
∼mtQ1 we know of the existence of

some Q′
1, k, P ′′

1 such that Q1
σ

−→
k α
−→ Q′

1, P ′
1

σ
−→

k
P ′′

1 , and P ′′
1

=
∼mtQ

′
1.

Moreover, P2
σ

−→
k

P ′′
2 for some P ′′

2 , since every process is lazy and can
thus engage in arbitrary delays. Because of P2

=
∼mtQ2, there exists some Q′

2

such that Q2
σ

−→
k

Q′
2 and P ′′

2
=
∼mtQ

′
2. Hence by our operational rules and

the definition of R, (i) P ′
1|P

′
2

σ
−→

k
P ′′

1 |P
′′
2 , (ii) Q1|Q2

σ
−→

k α
−→ Q′

1|Q
′
2,

(iii) 〈P ′′
1 |P

′′
2 , Q′

1|Q
′
2〉 ∈ R.

• P2
α

−→ P ′
2 and P ′

1 ≡ P1: This case is similar to the previous one.

• α = τ , P1
a

−→ P ′
1, P2

a
−→ P ′

2, for some action a 6= τ : Since P1
=
∼mtQ1

we know of the existence of some Q′
1, k, P ′′

1 such that Q1
σ

−→
k a
−→ Q′

1,

P ′
1

σ
−→

k
P ′′

1 , and P ′′
1

=
∼mtQ

′
1. Similarly, since P2

=
∼mtQ2 we know of the

existence of some Q′
2, l, P

′′
2 such that Q2

σ
−→

l a
−→ Q′

2, P ′
2

σ
−→

l
P ′′

2 , and
P ′′

2
=
∼mtQ

′
2. We distinguish the following cases:

– k = l: Here, P ′
1|P

′
2

σ
−→

k
P ′′

1 |P
′′
2 and Q1|Q2

σ
−→

k τ
−→ Q′

1|Q
′
2. More-

over, 〈P ′′
1 |P

′′
2 , Q′

1|Q
′
2〉 ∈ R by the definition of R.

– k 6= l: W.l.o.g. we assume k > l; the other case k < l is analo-
gous. Moreover, we refer to the process between the clock transitions

and the action transition on the path Q2
σ

−→
l a
−→ Q′

2 as Q̂2. Due
to the laziness property of processes and by Cond. 3 of Def. 3.1,

there exists some P̂ ′′
2 , Q̂′′

2 satisfying P ′′
2

σ
−→

k−l
P̂ ′′

2 , Q̂2
a

−→ Q′
2

σ
−→

k−l

Q̂′′
2 , and P̂ ′′

2
=
∼mtQ̂

′′
2 . By Lemma 3.3(2) we know of the existence

of some Q̂′
2 such that Q̂2

σ
−→

k−l a
−→ Q̂′

2 and Q̂′′
2

=
∼mtQ̂

′
2. Hence,

P ′
1|P

′
2

σ
−→

k
P ′′

1 |P̂
′′
2 and Q1|Q2

σ
−→

k τ
−→ Q′

1|Q̂
′
2 by our operational

rules, and 〈P ′′
1 |P̂

′′
2 , Q′

1|Q̂
′
2〉 ∈ R by the definition of R and the transi-

tivity of =
∼mt.

This concludes the proof of compositionality. �

The remainder of this section is devoted to establishing the correctness of the
commutation lemma. While this exercise is quite technical, it sheds some light on
the nature of faster–than preorders in the context of lower time bounds. We first
define a simple syntactic faster–than relation on process terms that essentially
encodes the syntactic implications of our intuition that any term P should be
faster than σ.P .

Definition 3.4. The relation � ⊆ P̂ × P̂ is defined as the smallest relation
satisfying the following properties, for all P, P ′, Q, Q′ ∈ P̂.

Always: (1) P � P (2) P � σ.P
If P ′ � P and Q′ � Q: (3) P ′|Q′ � P |Q (4) P ′ + Q′ � P + Q

(5) P ′ \ L � P \ L (6) P ′[f ] � P [f ]
If P ′ � P and x guarded in P : (7) P ′[µx. P/x] � µx. P
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Observe that relation � is not transitive, e.g., P � σ.P and σ.P � σ.σ.P but
not P � σ.σ.P , and that it is also defined for open terms. It is interesting to
note that � is carried over from [19], where we studied bisimulation–based faster–
than relations in the context of upper time bounds. The syntactic and semantic
properties of �, relative to the process calculus TACS

lt considered in this article,
are summarized in the following lemma.

Lemma 3.5. Let P, P ′, Q, R ∈ P̂, y ∈ V, and α ∈ A. Then:

(1) P � Q implies P [R/y] � Q[R/y].

(2) P
σ

−→ P ′ implies P ′ � P .

(3) Q � P and P
α

−→ P ′ implies ∃Q′. Q
α

−→ Q′ and Q′ � P ′.

(4) Q � P and P
σ

−→ R implies R � Q.
(5) �| P×P is an MT–relation, whence �| P×P ⊆ =

∼mt
.

The most important part of this lemma is Part (5): if a process is syntactically
faster than another according to �, then it is also semantically faster according
to =

∼mt. In this light, Part (2) shows that delaying processes indeed results in
faster processes.

Proof. • Part (1): This statement is proved by induction on the inference length of
P � Q, exactly as in [19]. The only interesting case concerns Case (7) of Def. 3.4,
where we may assume y 6= x since x is neither free in P [µx.Q/x] nor in µx.Q, as
well as P [µx.Q/x] � µx.Q due to P � Q. Moreover, by Barendregt’s Assumption,
let us assume that there is no free occurrence of x in R. The induction hypothesis
yields P [R/y] � Q[R/y], whence (P [µx.Q/x])[R/y] ≡ (P [R/y])[µx.(Q[R/y])/x] �
µx.(Q[R/y]) ≡ (µx.Q)[R/y].

• Part (2): The proof of this statement is a straightforward induction on the
structure of P .

• Part (3): The proof is by induction on the inference length of P � Q. The
only interesting case concerns again Case (7) of Def. 3.4; note that Case (2) of

Def. 3.4 is not applicable. Assume, P ′ � P and P
α

−→ P̂ for some P̂ . Then we

have µx.P
α

−→ P̂ [µx.P/x]. By induction hypothesis, P ′ α
−→ P̂ ′ for some P̂ ′ � P̂ .

Hence, P ′[µx.P/x]
α

−→ P̂ ′[µx.P/x] and, by Part (1), P̂ ′[µx.P/x] � P̂ [µx.P/x].
• Part (4): The proof is again by induction on the inference length of Q � P .

Note that Case (1) of Def. 3.4 is dealt with by Part (2). We only consider here

Case (7) of Def. 3.4. Assume P ′ � P and P
σ

−→ P̂ for some P̂ . Then we have

µx.P
σ

−→ P̂ [µx.P/x]. By induction hypothesis, P̂ � P ′, whence P̂ [µx.P/x] �
P ′[µx.P/x] by Part (1).

• Part (5): Consider arbitrary processes P, Q such that P � Q. According to
Def. 3.1 we need to consider the following cases:

• P
α

−→ P ′: Due to the laziness property of our semantics regarding pro-
cesses, but not necessarily terms, we know of the existence of some pro-

cess Q′ such that Q
σ

−→ Q′ and, by Lemma 3.5(4), Q′ � P . When apply-

ing Lemma 3.5(3) we obtain some Q′′ such that Q′ α
−→ Q′′ and Q′′ � P ′.
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Since P ′ is a process as well, there is some P ′′ with P ′ σ
−→ P ′′. Finally,

by Lemma 3.5(4), P ′′ � Q′′.

• Q
α

−→ Q′: This case is dealt with by Lemma 3.5(3).

• P
σ

−→ P ′: Since Q is a process, there is some Q′ such that Q
σ

−→ Q′ and,
by Lemma 3.5(4), Q′ � P . Consequently, we must have P ′ � Q′ as well,
according to the same Lemma 3.5(4).

• Q
σ

−→ Q′: Lemma 3.5(4) immediately yields Q′ � P . Since P is a pro-

cess, there exists some P ′ with P
σ

−→ P ′ due to the laziness property of
TACS

lt. Hence, P ′ � Q′ by Lemma 3.5(4), again.

This concludes the proofs of important properties of �. �

With these prerequisites we can now prove the commutation lemma.

Proof. [of Lemma 3.3] • Part (1): Let P, P1, P
′ ∈ P and w ∈ (A ∪ {σ})∗ such

that P
w

−→ P1
σ

−→ P ′. Because of Lemma 3.5(5), it is sufficient to establish the

existence of some P ′′, P2 ∈ P such that P
σ

−→ P2
w

−→ P ′′ and P ′ � P ′′. Since every
process has a unique clock derivative due to time determinism and laziness, we

know of the existence of a unique P2 with P
σ

−→ P2. According to Lemma 3.5(2),

P2 � P holds. Further since P
w

−→ P1 and because of Lemma 3.5(5), there exists

some P ′′ such that P2
w

−→ P ′′ and P ′′ � P1. Now, P ′′ � P1 and P1
σ

−→ P ′ yields
P ′ � P ′′ by Lemma 3.5(4).

• Part (2): Let P, P1, P
′ ∈ P , w ∈ (A ∪ {σ})∗, and k ∈ N such that P

w
−→

P1
σ

−→
k

P ′. The proof of Part (2) is by induction on k. For k = 0, the statement
holds trivially. For k = 1, the statement is the one of Part (1). For the induction

step, consider P
w

−→ P1
σ

−→
k

P ′
1

σ
−→ P ′, for k ≥ 1 and some P ′

1 ∈ P. By the

induction hypothesis we know of the existence of some P2, P
′
2 such that P

σ
−→

k

P2
w

−→ P ′
2 and P ′

1
=
∼mtP

′
2. As the TACS

lt semantics for processes supports laziness,

P ′
2 can engage in a clock transition to some P ′′

2 , i.e., P ′
2

σ
−→ P ′′

2 . Because of
P ′

1
=
∼mtP

′
2 as well as time determinacy, we may conclude P ′=

∼mtP
′′
2 . Applying the

simple commutation lemma of Part (1) to P2
w

−→ P ′
2

σ
−→ P ′′

2 , we obtain some P ′′

such that P2
σ

−→
w

−→ P ′′ and P ′′
2

=
∼mtP

′′. Hence, P
σ

−→
k+1 w

−→ P ′′ and P ′=
∼mtP

′′

by the transitivity of =
∼mt. �

The next three sections of this article study the MT–preorder in detail. We will
justify its motivation as a faster–than relation by means of formal theorems, and
we will correct and generalize several statements made by Moller and Tofts in [23]
concerning its semantic theory.

4. The MT–Preorder is Fully–Abstract

While the MT–preorder is algebraically appealing due to its precongruence
property, it does not necessarily seem to be a natural choice for defining a faster–
than relation. As mentioned earlier, Def. 3.1 requires that differences in delays
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between processes must be accounted for within one step of matching, whence not
all the future behavior of P ′ in Cond. (1) of Def. 3.1 is considered. In the following
we explore an alternative amortized view of faster–than, where differences in delays
can be smoothened out over several matching steps. The idea behind amortization
is that processes performing delays later along execution paths are faster than
functionally equivalent ones that perform delays earlier; this is because the former
processes are executing actions at earlier absolute times — as measured from the
start of the processes — than the latter ones.

As a simple example, consider the processes P =df a.b.σ.σ.c.0 and σ.a.σ.b.c.0.
In process P , actions a, b are executed at absolute time 0 and action c at absolute
time 2. In process Q, analogously, action a is executed at absolute time 1 and
actions b, c at absolute time 2. Hence, every action in P is executed earlier than,
or at the same absolute time as in Q, whence P is strictly faster than Q. However,
P 6 =∼mt Q since the matching of P ’s a–transition requires Q to perform a delay
of one time unit which cannot be saved as credit, but must be immediately spent
by P , in this case in the form of idling. This enforced artificial idling is responsible
that P is not deemed faster than Q in the framework of Moller and Tofts.

The following definition of an amortized faster–than preorder makes this idea
of gaining and losing credit technically precise, using an index i ∈ N that keeps
track of how many absolute time units the slower process is ahead of the faster
one. Later on we will prove that the MT–preorder is fully–abstract with respect
to this amortized preorder, which demonstrates that the MT–preorder has after
all very intuitive roots.

Definition 4.1 (Amortized faster–than preorder). A family (Ri)i∈N of relations
over P is a family of faster–than relations if, for all i ∈ N, 〈P, Q〉 ∈ Ri, and α ∈ A:

(1) P
α

−→ P ′ implies ∃Q′, k. Q
σ

−→
k α
−→ Q′ and 〈P ′, Q′〉 ∈ Ri+k .

(2) Q
α

−→ Q′ implies ∃P ′, k≤i. P
σ

−→
k α
−→ P ′ and 〈P ′, Q′〉 ∈ Ri−k .

(3) P
σ

−→ P ′ implies ∃Q′, k≥0. k ≥ 1 − i, Q
σ

−→
k

Q′, and 〈P ′, Q′〉 ∈ Ri−1+k .

(4) Q
σ

−→ Q′ implies ∃P ′, k≥0. k ≤ i + 1, P
σ

−→
k

P ′, and 〈P ′, Q′〉 ∈ Ri+1−k.

We write P =
∼i

Q if 〈P, Q〉 ∈ Ri for some family of faster–than relations (Ri)i∈N,
and call =

∼0 the amortized faster–than preorder.

This definition formalizes the intuition behind amortization as follows: P =
∼i

Q
means that Q, or rather some predecessor of Q, has already performed i clock
transitions that were not matched by P ; therefore, P has a credit of i clock tran-
sitions that it might perform later without a match by Q (cf. Part (3) for k = 0).
Any extra delays of the slower process when matching an action or clock transition
of the faster process increase credit i accordingly (cf. Parts (1) and (3) for k > 1).
Vice versa, an action or clock transition of the slower process does not necessarily
have to be matched directly by the faster one: the latter may delay up to as many
clock transitions as are allowed by the current credit i (cf. Parts (2) and (4)).

Another, more subtle example highlighting the difference between =
∼0 and the

MT–preorder is exhibited by processes P =df c.a.σ.b.0+ c.a.b.0 and Q =df c.a.b.0.
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The family (Ri)i∈N of faster–than relations defined by R0 =df {〈P, Q〉}∪{〈R, R〉 |
R ∈ P}, R1 =df {〈a.σ.b.0, a.b.0〉, 〈σ.b.0, b.0〉, 〈b.0, b.0〉, 〈0,0〉} and Ri =df ∅, for

i>1, testifies to P =
∼0 Q; note that P

c
−→ a.σ.b.0 is matched by Q

σ
−→

c
−→ a.b.0 and

〈a.σ.b.0, a.b.0〉 ∈ R1. However, we do not have P =
∼mtQ. The step P

c
−→ a.σ.b.0

could only be matched by Q
σ

−→
k c
−→ a.b.0 for some k ∈ N. Since a.σ.b.0

σ
−→

k

a.σ.b.0, for any k, this would require a.σ.b.0=
∼mt

a.b.0, which is clearly wrong.
It can be shown that the amortized faster–than preorder is indeed a preorder

and that (=
∼i

)i∈N is the (componentwise) largest family of faster–than relations.
However, there is an important shortcoming: =

∼0 is not preserved under paral-
lel composition. Consider the processes P and Q above, where P =

∼0 Q. For
R =df µx.(σ.d.0 |σ.x), where d is a ‘fresh’ action not occurring in the sorts

of P and Q, one may show that P |R 6 =∼0
Q |R as follows: transition P |R

c
−→

a.σ.b.0 |R would need to be matched by a sequence of transitions Q |R
σ

−→
k c
−→

a.b.0 | d.0 | · · · | d.0 |R, for some k ∈ N and k parallel components d.0, such that
a.σ.b.0 |R =

∼k
a.b.0 | d.0 | · · · | d.0 |R holds. Now, let the latter process engage in

all d–computations of the k components d.0. Since d is a fresh action, these can
only be matched by unfolding process R in a.σ.b.0 |R k–times and by executing
k clock transitions and k d–transitions. Thus, a.σ.b.0 |R =

∼0 a.b.0 |R would neces-
sarily follow, i.e., no credit remains. While the right–hand process can now engage
in the sequence a.b, the left–hand process can only match action a, but not also
action b due to the lack of credit.

To address this compositionality problem of =
∼0 we refine its definition.

Definition 4.2 (Amortized faster–than precongruence). A family (Ri)i∈N of re-
lations over P is a precongruence family if, for all i ∈ N, 〈P, Q〉 ∈ Ri, and α ∈ A:

(1) P
α

−→ P ′ implies ∃Q′, k. Q
σ

−→
k α
−→ Q′ and 〈P ′, Q′〉 ∈ Ri+k .

(2) Q
α

−→ Q′ implies ∃P ′, k ≤ i. P
σ

−→
k α
−→ P ′ and 〈P ′, Q′〉 ∈ Ri−k.

(3) P
σ

−→ P ′ implies (a) i > 0 and 〈P ′, Q〉 ∈ Ri−1, or

(b) i = 0 and ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ Ri.

(4) Q
σ

−→ Q′ implies 〈P, Q′〉 ∈ Ri+1.

We write P =

'i
Q if 〈P, Q〉 ∈ Ri for some precongruence family (Ri)i∈N and call =

'0
the amortized faster–than precongruence.

One can show that this amortized faster–than precongruence is indeed a pre-
order and that (=

'i
)i∈N is the (componentwise) largest family of faster–than rela-

tions. This preorder’s definition is identical to the one of the amortized faster–
than preorder, with the exception that a delay of the faster process now always
results in consuming an available credit, while any delay of the slower process
results in increasing the credit available to the faster one. As a consequence,
it is easy to see that the amortized faster–than precongruence refines the amor-
tized faster–than preorder, i.e., =

'0 ⊆ =
∼0. That this is indeed a proper inclu-

sion can be seen by studying our example c.a.σ.b.0 + c.a.b.0 =
∼0 c.a.b.0. Again,

c.a.σ.b.0 + c.a.b.0
c

−→ a.σ.b.0 can only be matched by c.a.b.0
σ

−→
k c
−→ a.b.0
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for some k, which demands a.σ.b.0 =

'k
a.b.0. Now a.σ.b.0

σ
−→

k
a.σ.b.0 requires

a.σ.b.0 =

'0a.b.0 by Def. 4.2(1), which is obviously wrong since a.b.0
ab
−→ cannot be

matched.

Theorem 4.3 (Coincidence). The preorders =

'0
and =

∼mt
coincide.

Proof. The inclusion =

'0
⊆ =

∼mt
follows immediately by the definitions of these

preorders and the laziness property in TACS
lt; note that any credit the faster

process might gain according to Def. 4.2 can immediately be removed via Rule (3).
For establishing the other inclusion we prove that

Ri =df { 〈P, Q〉 | ∃P̂ . P
σ

−→
i
P̂ =
∼mt Q }

is a precongruence family (cf. Def. 4.2), whence P =
∼mt

Q implies 〈P, Q〉 ∈ R0. Let

〈P, Q〉 ∈ Ri for some arbitrary i, i.e., P
σ

−→
i
P̂ =
∼mt Q. By Def. 4.2 we need to

consider the following cases:

• P
α

−→ P ′: Because of the laziness and time–determinacy properties in

TACS
lt, there is a unique P ′′ such that P ′ σ

−→
i
P ′′. By Commutation

Lemma 3.3(2) and by time determinacy, we obtain P̂
α

−→ P̂ ′ for some P̂ ′

such that P ′′ =
∼mt

P̂ ′. Applying Def. 3.1(1) to P̂ =
∼mt

Q yields Q′, k, P̂ ′′

satisfying Q
σ

−→
k α
−→ Q′, P̂ ′ σ

−→
k

P̂ ′′, and P̂ ′′ =
∼mt Q′. Repeatedly ap-

plying Def. 3.1(4) to P ′′ =
∼mt P̂ ′, proves the existence of some P ′′′ such

that P ′′ σ
−→

k
P ′′′ and P ′′′ =

∼mt P̂ ′′. Hence, P ′ σ
−→

i+k
P ′′′ =

∼mt Q′, i.e.,
〈P ′, Q′〉 ∈ Ri+k .

• Q
α

−→ Q′: We know by Def. 3.1(2) of some P̂ ′ such that P̂
α

−→ P̂ ′ and

P̂ ′ =
∼mt Q′. Hence, P

σ
−→

i α
−→ P̂ ′ and 〈P̂ ′, Q′〉 ∈ R0.

• P
σ

−→ P ′: If i > 0, then we obtain 〈P ′, Q〉 ∈ Ri−1 immediately. Otherwise

(i = 0), P ≡ P̂ , i.e., P =
∼mt Q, whence establishing the existence of some Q′

such that Q
σ

−→ Q′ and P ′ =
∼mt Q′. This implies 〈P ′, Q′〉 ∈ R0, as desired.

• Q
σ

−→ Q′: Since P̂ =
∼mt Q, there exists some P̂ ′ satisfying P̂

σ
−→ P̂ ′ and

P̂ ′ =
∼mt Q′. Hence, P

σ
−→

i σ
−→ P̂ ′ =

∼mt Q′, i.e., 〈P, Q′〉 ∈ Ri+1.

Hence, preorders =

'0
and =

∼mt
coincide. �

Consequently, =

'0 is not only a preorder but indeed a precongruence, since =

∼mt

is a precongruence. Note, however, that the relations =

'i
, for i > 0, are not

precongruences; for example, σ.b.0 =

'1b.0 but not a.σ.b.0 =

'1a.b.0 due to Def. 4.2(3).

Theorem 4.4 (Full abstraction). The preorder =

'0 = =
∼mt

is the largest precon-
gruence contained in =

∼0
.

Proof. By universal algebra, there exists a largest precongruence =
∼

+
0 contained

in =
∼0, which is characterized by =

∼
+

0 = {〈P, Q〉| ∀contextsC[ ]. C[P ] =
∼0 C[Q] }.

Consequently, we are going to prove =
∼mt =

=
∼

+
0 .
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We have already established that =
∼mt is a precongruence and, by Thm. 4.3,

that =
∼mt = =

'0 ⊆ =
∼0. Hence, =

∼mt = =
∼

+
mt ⊆ =

∼
+
0 . For proving the reverse

inclusion =
∼

+

0 ⊆ =
∼mt, it turns out to be convenient to define yet another charac-

terization =
∼mt′ of =

∼mt and prove =
∼

+
0 ⊆ =

∼mt′ .
The preorder =

∼mt′ is defined as =
∼mt, except for Cond. (3) in Def. 3.1 which is

replaced by the following condition:

(3’) P
σ

−→ P ′ implies ∃Q′, P ′′, k≥1. Q
σ

−→
k
Q′, P ′ σ

−→
k−1

P ′′, 〈P ′′, Q′〉 ∈ R .

This leads us to a notion of MT’–relation. First, observe that =
∼mt′

= =
∼mt

. The
inclusion “⊇” is trivial since Cond. (3’) is less restrictive than Cond. (3). For
proving the reverse inclusion “⊆” we show that =

∼mt′ is an MT–relation. This is

trivial except for the case P
σ

−→ P ′. In that case, due to the laziness property of

TACS
lt, there exists a process Q′ with Q

σ
−→ Q′. According to Cond. (4) and

the time–determinacy property, P ′ =
∼mt′ Q′, as desired.

We may now establish the remaining inclusion =
∼

+

0 ⊆ =
∼mt′ = =

∼mt by showing
that

Ra =df { 〈P, Q〉 | C[P ] =
∼0 C[Q] }

is an MT’–relation, where C[ ] =df |µx.(σ.d.0 |σ.x) for some ‘fresh’ action d
that is not in the sorts of P and Q. Let 〈P, Q〉 ∈ Ra; according to Def. 3.1 we
distinguish the following cases.

• P
α

−→ P ′: Hence, C[P ]
α

−→ C[P ′] by the operational rules for TACS
lt.

Since C[P ] =
∼0

C[Q] and because of the definition of C[ ] we know of the
existence of some Q′, k such that

C[Q]
σ

−→
k α
−→ C[Q′] | d.0 | . . . | d.0︸ ︷︷ ︸

k times

,

where Q
σ

−→
k α
−→ Q′ and C[P ′] =

∼k
C[Q′] | d.0 | . . . | d.0. Further, con-

sider C[Q′] | d.0 | . . . | d.0
d

−→
k

C[Q′].3 These action transitions must be
matched by the faster process using exactly k clock transitions: according
to the definition of C[ ] at least k and according to Cond. (2) at most k
clock transitions. Hence, there exist processes P0, P1, P2, . . . , Pk and num-
bers j1, j2, . . . , jk with

∑
1≤i≤k ji = k such that, for 1≤ i≤k, (i) P0 ≡ P ′,

(ii) C[Pi−1]
σ

−→
ji d
−→ C[Pi], where Pi−1

σ
−→

ji

Pi, and (iii) C[Pk] =
∼0 C[Q′].

Thus, 〈Pk, Q′〉 ∈ Ra.

• Q
α

−→ Q′: By TACS
lt semantics, C[Q]

α
−→ C[Q′]. Further, by Def. 4.1

and by the definition of C[ ], there exists some process P ′ such that

C[P ]
α

−→ C[P ′], where P
α

−→ P ′ and C[P ′] =
∼0 C[Q′]. Thus, 〈P ′, Q′〉 ∈ Ra.

3The latter process is really C[Q′] |0 | . . . |0, but a parallel component 0 never makes any
difference regarding the semantic preorders considered in this article; hence, we freely omit
parallel components 0.



TITLE WILL BE SET BY THE PUBLISHER 15

• P
σ

−→ P ′: Here, C[P ]
σ

−→ C[P ′] | d.0 by the operational rules of TACS
lt.

Because of C[P ] =
∼0C[Q] and the definition of C[ ], there exists some Q′ and

some k ≥ 1 such that C[Q]
σ

−→
k

C[Q′] | d.0 | · · · | d.0 with k parallel com-

ponents d.0, where Q
σ

−→
k

Q′, and C[P ′] | d.0 =
∼k−1 C[Q′] | d.0 | · · · | d.0.

Because of the derivation C[Q′] | d.0 | · · · | d.0
d

−→
k

C[Q′] and since d is
a fresh action not in the sort of P , we conclude that C[P ′] | d.0 performs
at least (cf. definition of C[ ]) and at most (cf. Cond. (2)) k − 1 clock
transitions and k d–transitions, giving C[P ′′] =

∼0 C[Q′] for a process P ′′

satisfying P ′ σ
−→

k−1
P ′′. Hence, 〈P ′′, Q′〉 ∈ Ra, i.e., Cond. (3’) of the

definition of =
∼mt′ holds.

• Q
σ

−→ Q′: In this situation we may derive C[Q]
σ

−→ C[Q′] | d.0, and one
of the following cases holds:

– k = 1, i.e., C[P ]
σ

−→ C[P ′] | d.0 =
∼0 C[Q′] | d.0: The d–transition of

process C[Q′] | d.0 must be matched by the d–transition of C[P ′] | d.0
such that C[P ′] =

∼0 C[Q′].
– k = 0, i.e., C[P ] =

∼1 C[Q′] | d.0: Here, the d–transition of C[Q′] | d.0
can only be matched by a clock transition followed by a d–transition
such that C[P ′] =

∼0 C[Q′].

In both cases we know of the existence of some P ′ such that P
σ

−→ P ′ and
〈P ′, Q′〉 ∈ Ra.

This completes the full–abstraction proof. �

Intuitively, Thms. 4.3 and 4.4 show that the MT–preorder rests on a very natural,
amortized view of the notion of faster–than. Henceforth, we will call =

∼mt = =

'0
the strong faster–than precongruence.

5. Axiomatizing the Moller–Tofts Preorder

We give a sound and complete axiomatization of the strong faster–than precon-
gruence =

∼mt for the class of finite processes, i.e., processes that do not contain
any recursion operator. This allows us to compare our semantic theory for our
calculus TACS

lt with lower time bounds, with the semantic theory that we de-
veloped in [19] for a calculus with upper time bounds, as well as with the CCS
theory of strong bisimulation [21].

The axioms for the faster–than precongruence are shown in Table 3, where a
term in square brackets is meant to be optional. Moreover,

∑
is the indexed

version of +, and we adopt the convention that the sum over the empty index set
is identified with process 0. Any axiom of the form t = u should be read as two
axioms t w u and u w t. We write ` t w u if t w u can be derived from the
axioms.

Axioms (A1)–(A4), (D1)–(D4), and (C1)–(C5) are exactly the ones for strong
bisimulation in CCS [21]. Hence, the semantic theory of our calculus is distin-
guished from the one for strong bisimulation by the additional Axioms (P3)–(P6)
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Table 3. Axiom system for finite processes

(A1) t + u = u + t (D1) 0[f ] = 0

(A2) t + (u + v) = (t + u) + v (D2) (α.t)[f ] = f(α).(t[f ])
(A3) t + t = t (D3) (σ.t)[f ] = σ.(t[f ])
(A4) t + 0 = t (D4) (t + u)[f ] = t[f ] + u[f ]
(P3) t + σ.t = t (C1) 0 \ L = 0

(P4) σ.(t + u) = σ.t + σ.u (C2) (α.t) \ L = 0 α ∈ L ∪ L
(P5) t w σ.t (C3) (α.t) \ L = α.(t \ L) α /∈ L ∪ L

(C4) (σ.t) \ L = σ.(t \ L)
(P6) α.t = α.σ.t + α.t (C5) (t + u) \ L = (t \ L) + (u \ L)
Let t ≡

∑
i∈I αi.ti [ + σ.tσ ] and u ≡

∑
j∈J βj .uj [ + σ.uσ ] .

(E) t|u =
∑

i∈I αi.(ti|u) +
∑

j∈J βj .(t|uj) +
∑

αi=βj
τ.(ti|uj) +




0 if σ.tσ and σ.uσ are absent
σ.(((

∑
i∈I αi.ti) + tσ) | (

∑
j∈J βj .uj)) if only σ.uσ is absent

σ.((
∑

i∈I αi.ti) | ((
∑

j∈J βj .uj) + uσ)) if only σ.tσ is absent

σ.(((
∑

i∈I αi.ti) + tσ) | ((
∑

j∈J βj .uj) + uσ)) otherwise

and the refined Expansion Law (E). Further, it is distinguished from the one for
the faster–than preorder for upper time bounds [19] by leaving out Axioms (P1)
and (P2) related to enforcing upper time bounds, and by adding Axiom (P6).
Intuitively, this added axiom states that inserting a delay within a path of a pro-
cess does not alter the speed of the process, as long as there exists a functionally
equivalent path without delay. This shows that our theory concentrates on best–
case behavior: the slower summand that has the optional delay can be ignored.
Axiom (P6) generalizes to

(P6’) α.t = α.σk.t + α.t ,

for any k ∈ N, by repeated application; here, “σk.” stands for k nested clock
prefixes. Axiom (P3) is similar in spirit to Axiom (P6) but cannot be derived.
Axiom (P4) is a standard axiom in timed process algebras and testifies to the
fact that time is a deterministic concept and does not resolve choices. Finally,
Axiom (P5) encodes our elementary intuition of clock prefixes and speed within
TACS

lt: any process t is faster than process σ.t that must delay the execution
of t by at least one clock tick.

5.1. Correctness

The correctness of our axioms relative to =
∼mt can be established as usual [21].

Note that all axioms, with the exception of Expansion Axiom (E) and Axiom (P3),
are sound for arbitrary processes, not only for finite ones. For example, the correct-
ness of Axiom (P5) follows from our syntactic relation � and Lemma 3.5(5). The
correctness of direction “α.t w α.σ.t+α.t” of Axiom (P6) is due to the correctness
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of Axioms (P5) and (A3). To prove the correctness of direction “α.σ.t+α.t w α.t”,

the only interesting case is the matching of α.σ.t + α.t
α

−→ σ.t. Here, we consider

α.t
σ

−→ α.t
α

−→ t, and observe σ.t
σ

−→ t and t =
∼mt

t. It should be noted that
the axioms presented in [23] do not completely correspond with the MT–preorder,
as has also been noted by Moller and Tofts since the publication of their paper
in 1991 [priv. commun.]. For example, a.σ.b.0 + a.b.0 is as fast as a.b.0, which
does not seem to be derivable from the axioms in [23]. In our theory, this example
is a simple instantiation of Axiom (P6).

The only correctness proofs we provide in more detail concern the Expansion
Axiom (E) and Axiom (P3). Moller and Tofts state in [23] that the “stan-
dard” expansion law [21] for faster–than relations based on lower time bounds
does not hold, even for finite processes. While this observation is true for ar-
bitrary processes, it is incorrect for finite ones. As a simple example we have
a.0 |σ.b.0 = a.(0|σ.b.0) + σ.(a.0|b.0), contrary to the claims in [23].

Correctness of Axiom (E) for finite processes. It suffices to consider the case P ≡∑
i∈I αi.Pi + σ.Pσ and Q ≡

∑
j∈J βj .Qj + σ.Qσ . The other three cases are sim-

ilar: in fact, the first case is obvious and coincides with the expansion axiom for
CCS [21], while the second and third case can be derived from the fourth by con-
sidering uσ ≡ 0 and tσ ≡ 0, respectively. For notational convenience we simply
abbreviate

∑
i∈I αi.Pi by

∑
i and

∑
j∈J βj .Qj by

∑
j . To prove the Expansion

Axiom (E) correct, we show that

(i) R ∪ {〈P |Q,
∑

i∈I αi.(Pi|Q) +
∑

j∈J βj .(P |Qj) +∑
αi=βj

τ.(Pi|Qj) +σ.((
∑

i +Pσ) | (
∑

j +Qσ))〉} ∪ =
∼mt and

(ii) R−1 ∪ {〈
∑

i∈I αi.(Pi|Q) +
∑

j∈J βj .(P |Qj) +∑
αi=βj

τ.(Pi|Qj) + σ.((
∑

i +Pσ) | (
∑

j +Qσ)) , P |Q〉} ∪ =
∼mt

are MT–relations, where

R = { 〈lhs, rhs〉 | ∃k ∈ N. Pσ
σ

−→
k
P ′

σ and Qσ
σ

−→
k
Q′

σ }

lhs = (
∑

i

+ P ′
σ) | (

∑

j

+ Q′
σ)

rhs =
∑

i∈I

αi.(Pi|Q) +
∑

j∈J

βj .(P |Qj) +
∑

αi=βj

τ.(Pi|Qj) +

((
∑

i

+ P ′
σ) | (

∑

j

+ Q′
σ))

We also implicitly exploit the correctness of Axiom (P6). Obviously, the action
transitions of the left–hand side and of the right–hand side of Axiom (E) match,
while the matching of a clock transition leads to the pair in R for k = 0. Hence,
it is sufficient to consider some arbitrary pair 〈lhs, rhs〉 ∈ R. Thus, there exists

some k ∈ N such that Pσ
σ

−→
k
P ′

σ and Qσ
σ

−→
k
Q′

σ.
For the proof of Claim (i), note that the action transitions of lhs are triv-

ially matched by rhs. The converse is also the case for most action transitions,
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except for transitions rhs
αi−→ Pi | (

∑
j∈J βj .Qj + σ.Qσ), which deserve a closer

look. These transitions can be matched by lhs
αi−→ Pi | (

∑
j∈J βj .Qj + Q′

σ).

Since Qσ
σ

−→
k

Q′
σ we know by Lemma 3.5 that Q′

σ
=
∼mt Qσ

=
∼mt σ.Qσ . Thus,

Pi | (
∑

j∈J βj .Qj + Q′
σ) =

∼mt Pi | (
∑

j∈J βj .Qj + σ.Qσ). Further, consider the clock

transitions of lhs and rhs, i.e., lhs
σ

−→ lhs′ ≡ (
∑

i +P ′′
σ ) | (

∑
j +Q′′

σ) and rhs
σ

−→

rhs′≡
∑

i∈I αi.(Pi|Q)+
∑

j∈J βj .(P |Qj)+
∑

αi=βj
τ.(Pi|Qj)+(

∑
i +P ′′

σ |
∑

j +Q′′
σ),

for P ′′
σ , Q′′

σ satisfying P ′
σ

σ
−→ P ′′

σ and Q′
σ

σ
−→ Q′′

σ . Since Pσ
σ

−→
k

P ′
σ

σ
−→ P ′′

σ and

Qσ
σ

−→
k
Q′

σ

σ
−→ Q′′

σ we have 〈lhs′, rhs′〉 ∈ R.
For the proof of Claim (ii), the following property is essential:

∀P ∈Pfin. ∃n∈N. ∀P ′, P ′′∈Pfin. P
σ

−→
n
P ′, P ′ σ

−→ P ′′ implies P ′ ≡ P ′′ (∗)

This property can be established by induction on the structure of finite processes.
When proving Claim (ii), observe that clock transitions and most action transi-
tions can be dealt with as before. The interesting part of the proof is the matching

of action transitions of the form rhs
αi−→ Pi | (

∑
j∈J βj .Qj + σ.Qσ). We consider

the transition sequence lhs
σ

−→
max+1 αi−→ Pi | (

∑
j∈J βj .Qj + Q̂σ), where max is the

maximal number of clock transitions before process Qσ starts idling, according to

Property (∗), and where Q̂σ is the unique process such that Qσ
σ

−→
max

Q̂σ ac-

cording to time determinacy. Further, rhs
αi−→ Pi | (

∑
j∈J βj .Qj +σ.Qσ)

σ
−→

max+1

P ′
i | (

∑
j∈J βj .Qj + Q̂σ), where P ′

i is the unique process satisfying Pi
σ

−→
max+1

P ′
i .

Thus, P ′
i

=
∼mt

Pi by Lemma 3.5 and P ′
i | (

∑
j∈J βj .Qj +Q̂σ) =

∼mt
Pi | (

∑
j∈J βj .Qj +

Q̂σ) by Thm. 3.2, whence the Expansion Axiom is valid for finite processes. �

The above proof relies on Property (∗) that does not hold, e.g., for the recursive
process D =df µx.(d.0 |σ.x). When applying Axiom (E) to a.0 |σ.D we obtain
a.0 |σ.D = a.(0 |σ.D) + σ.(a.0|D). However, a.(0 |σ.D) +σ.(a.0|D) 6 =∼mt a.0 |σ.D.
Assume otherwise; then, by Def. 3.1, the σ–derivatives of both processes must be
related, i.e., a.(0 |σ.D)+(a.0 |D) =

∼mt
a.0 |D would hold. However, if the allegedly

faster process performs an a–transition to (0 |σ.D), then the slower process should
match this after some delay of, say, k ≥ 1 clock transitions; the case where k = 0
is obvious. According to Def. 3.1 we obtain

(0 |D | d.0 | · · · | d.0︸ ︷︷ ︸
k−1 times

) =
∼mt (0 |D | d.0 | · · · | d.0︸ ︷︷ ︸

k times

) .

This is clearly invalid, as the slower process can engage in k consecutive d–
transitions of which the faster process can only match the first k−1 transitions.
Hence, Axiom (E) is not universally correct, which prohibits a straightforward
extension of our axiomatization to larger classes of processes using standard tech-
niques [20]. Future work shall investigate whether the Expansion Axiom holds for
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sequential processes, or even for processes in which recursion variables appear only
at “sequential” positions.

Correctness of Axiom (P3) for finite processes. Direction “t w t + σ.t” can be de-
rived from Axioms (P5) and (A3) and is thus correct for arbitrary processes. For
establishing the correctness of the reverse direction we show that

R =df {〈P + Q, P 〉 |Q
σ

−→ P and P satisfies Property (∗)}

is an MT–relation. Thus, let 〈P + Q, P 〉 ∈ R, and let max be number n of
Property (∗) for P ; as mentioned earlier, every finite process satisfies this property.

The only interesting case arises when P + Q
α

−→ Q′ due to Q
α

−→ Q′, for some
action α and finite process Q′. Because of the laziness property of TACS

lt, there

exists some Q̂ such that Q′ σ
−→

max+1
Q̂. We may then apply the commutation

lemma, Lemma 3.3(2), to obtain P̂ , P ′ satisfying Q
σ

−→ P
σ

−→
max

P̂ , P̂
α

−→ P ′,

and Q̂ =
∼mt P ′. Further, by the choice of max, we have P̂

σ
−→ P̂ . Hence we have

satisfied Def. 3.1(1): P
σ

−→
max+1

P̂
α

−→ P ′, Q′ σ
−→

max+1
Q̂, and Q̂ =

∼mt P ′. �

To see that direction “w” of Axiom (P3) does not hold for arbitrary processes, it
is sufficient to check that D + σ.D 6 =∼mt D, where process D is defined as above.

Consider the matching of transitions D+σ.D
σ

−→
2

(D | d.0 | d.0)+(D | d.0)
d

−→ D
performed by the left–hand process, which forces the right–hand process to en-

gage in transitions D
σ

−→
2 σ
−→

k d
−→ Dk+1 ≡ D | d.0 | · · · | d.0, with k + 1 compo-

nents d.0. Allowing the left–hand process to perform k further σ–transitions leads

to D
σ

−→
k
Dk. But Dk 6 =∼mt

Dk+1, as the former process cannot match the k + 1
d–transitions of the latter one.

5.2. Completeness

The completeness proof for our axiomatization is based on the following notion
of normal form.

Definition 5.1 (Normal form). A finite process t is in normal form if

t ≡
∑

i∈I

αi.ti [ + σ.tσ ] ,

where (i) I denotes a finite index set, (ii) αi ∈ A for all i ∈ I , (iii) all the ti are in
normal form, and (iv) the subterm in brackets is optional and, if it exists, tσ is in
normal form

∑
j∈J βj .uj [ + σ.uσ ] and ∀i∈I ∃j ∈J. αi.ti ≡ βj .uj .

Observe that the unique clock derivative t′ of a normal form t is again in normal
form; its size is not larger than the size of t, and smaller if summand σ.tσ is present
in t. Further, ` t′ = tσ by Cond. (iv) and a simple induction.

Proposition 5.2 (Rewriting into normal forms). For any finite process t, there
exists some finite process u in normal form such that ` t = u.
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The proof is by induction on the structure of finite processes and is quite straight-
forward. We only note here that Cond. (iv) of Def. 5.1 can be achieved by applying
Axiom (P3). For proving our axiom system complete, the following technical lem-
mas are useful.

Lemma 5.3. Let t ≡
∑

i∈I αi.ti [ + σ.tσ ] be in normal form, and let t′, u ∈ P

and k ∈ N such that t
σ

−→
k
t′ and ` t′ w u. Then ` t w σk.u.

Proof. The proof is by induction on k. For k = 0, i.e., t′ ≡ t, the statement
is trivial. For k = 1 we have t′ ≡

∑
i∈I αi.ti [ + tσ ] by the operational rules

for TACS
lt. Then, by repeated application of Axioms (P5) and (P4), ` t =∑

i∈I αi.ti [ + σ.tσ ] w
∑

i∈I σ.αi.ti [ + σ.tσ ] = σ.t′ w σ.u. For k > 1 we have

t
σ

−→ t′′
σ

−→
k
t′, with k = k′ +1 and t′′ being in normal form. Then, by induction,

` t′′ w σk′

.u. Similar reasoning to the case k = 1 yields ` t w σk′+1.u = σk.u. �

Lemma 5.4. Let t ≡
∑

i∈I αi.ti + σ.tσ be in normal form, γ ∈ A ∪ {σ}, t′ ∈ P

and k ∈ N such that t
σ

−→
k γ
−→ t′. Then, there exists a sub–term γ.t′ of t with

` t = t + σk .γ.t′.

Proof. The statement is trivial for k = 0. If k > 0 we proceed by induction on k.

For the induction base, k = 1, we have t
σ

−→ t′′ for t′′ ≡
∑

i∈I αi.ti + tσ , where
tσ ≡

∑
j∈J βj .uj [ + σ.uσ ] satisfying ∀i∈ I ∃j ∈ J. αi.ti ≡ βj .uj by Def. 5.1(iv).

Hence, γ.t′ ≡ βj .uj , for some j ∈ J . The desired property then holds simply by
applying Axioms (A3) and (P4). Regarding the induction step, recall that the
unique σ–derivative t′′ of t is itself in normal form; a subterm γ.t′ of t′′ is also
a subterm of t, and obviously ` t′′ = tσ. Then, ` t = t + σ.tσ = t + σ.t′′ =
t + σ.(t′′ + σk.γ.t′) = t + σ.t′′ + σk+1.γ.t′ = t + σk+1.γ.t′, as desired, where the
third equality holds by induction hypothesis. �

We are now able to state and prove the main result of this section.

Theorem 5.5 (Correctness & completeness). For finite processes t and u we have:
` t w u if and only if t =

∼mt
u.

Proof. The correctness “ =⇒ ” of our axiom system follows by induction on the
inference length of ` t w u, as usual. We concentrate on proving complete-
ness “⇐= ”. By Prop. 5.2 is suffices to prove this implication for processes t and u
in normal form, i.e., t ≡

∑
i∈I αi.ti [ + σ.tσ ] and u ≡

∑
j∈J βi.ui [ + σ.uσ ].

We proceed by induction on the sum of the process sizes of t and u. If this sum
is zero we have t ≡ u ≡ 0, and we are done. Otherwise, we consider four cases,
depending on whether each of the optional σ–summands σ.tσ and σ.uσ is present.

• Both summands σ.tσ and σ.uσ are absent: Hence, t ≡
∑

i∈I αi.ti and
u ≡

∑
j∈J βj .uj . Due to t =

∼mtu we may derive a couple of important
properties:

(1) ∀i ∈ I. ∃j ∈ J, k ∈ N. αi=βj , ti
σ

−→
k

t′ and t′ =
∼mt uj (cf. Def. 3.1(1)).

The induction hypothesis yields ` t′ w uj ; recall that t′ is in normal
form. Hence by applying Lemma 5.3, ` ti w σk.uj which implies
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` αi.ti w βj .σ
k .uj . With Axiom (P6’) we conclude ` βj .uj + αi.ti w

βj .uj + βj .σ
k .uj = βj .uj .

(2) ∀j ∈ J. ∃i ∈ I. βj=αi and ti =
∼mt uj (cf. Def. 3.1(2)). By induction

hypothesis, ` ti w uj holds, whence ` αi.ti w βj .uj .
We may now conclude this case as follows:

` t =
∑

i∈I αi.ti
(2, A3) w

∑
j∈J βj .uj +

∑
i∈I αi.ti

(1) w
∑

j∈J βj .uj = u

• Summand σ.tσ is present and σ.uσ absent: Because of
∑

i∈I αi.ti+σ.tσ =
∼mt∑

j∈J βj .uj we may derive the following properties similar to the previous
case:
(1) ∀i ∈ I. ∃j ∈ J. ` βj .uj + αi.ti w βj .uj .
(2) ∀j ∈ J. ∃i ∈ I. ` αi.ti w βj .uj .
(3) When considering the initial clock transitions of t and u we obtain

tσ =
∼mt u; note Cond. (iv) of Def. 5.1. Since tσ is in normal form, the

induction hypothesis applies and yields ` tσ w u.
We may now finish the case as follows:

` t =
∑

i∈I αi.ti + σ.tσ
(2, A3) w

∑
j∈J βj .uj + σ.tσ +

∑
i∈I αi.ti

(3) w u + σ.u +
∑

i∈I αi.ti
(P3) = u +

∑
i∈I αi.ti

(1) w u

• Summand σ.tσ is absent and σ.uσ present: Here we have
∑

i∈I αi.ti =
∼mt∑

j∈J βj .uj +σ.uσ . When considering a clock transition of both processes,

Def. 3.1 implies t =

∼mt

∑
j∈J βj .uj + uσ. Because the right–hand side

process is in normal form, having a smaller size than the one of u, we
may apply the induction hypothesis and Axiom (P5) in order to obtain
` t w

∑
j∈J βj .uj + uσ w

∑
j∈J βj .uj + σ.uσ = u.

• Both summands σ.tσ and σ.uσ are present: By the premise
∑

i∈I αi.ti +
σ.tσ =

∼mt

∑
j∈J βj .uj + σ.uσ we may conclude the validity of the following

properties, similar to the previous cases:
(1) By Def. 3.1(1) and by the induction hypothesis we have ∀i∈I. ∃u′, k.

u
σ

−→
k αi−→ u′, ti

σ
−→

k
t′, and ` t′ w u′. Lemma 5.3 yields ` ti w

σk.u′, whence ` αi.ti w αi.σ
k.u′ w σk.αi.σ

k.u′ = σk .αi.u
′ by Ax-

ioms (P5) and (P6’). We may now apply this to ` u = u+σk.αi.σ
k.u′,

which follows from Lemma 5.4, in order to obtain ` u + αi.ti w u.
(2) ∀j ∈ J. ∃i ∈ I. ` αi.ti w βj .uj .
(3) ` tσ w uσ (cf. Def. 3.1, Conds. (3) and (4)).
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We may now finish this case as follows:

(2, A3) ` t w
∑

j∈J βj .uj + t

(3) w u +
∑

i∈I αi.ti
(1) w u

This completes the proof of Thm. 5.5. �

6. Examples

This section applies our faster–than theory to two examples, exercising a clas-
sical bisimulation proof and an axiomatic proof, respectively.

6.1. Two–Place Storage

We first consider two implementations of a two–place storage in terms of two
cells and a buffer, respectively. For simplifying the presentation we specify recur-
sion via recursive process equations in the style of Milner [21], instead of using
our recursion operator. The two–cells system is defined as the parallel compo-

sition of two one–place cells C0
def
= in.C1, where C1

def
= σ.out.C0. The two–place

buffer B0 is given by the process equations B0
def
= in.B1, B1

def
= σ.out.B0 + in.B2

and B2
def
= σ.out.B1. As is reflected by the σ–prefixes in front of the out–actions,

both cells C0 and the two–place buffer B0 have to delay at least one time unit
before they can offer a communication on port out. Intuitively, one would expect
the two cell system to be strictly faster, since if both cells are full, then both of
the stored data items may be output after a delay of only one time unit, while the
buffer requires a delay of at least two time units until it may release the second
data item.

As desired, our semantic theory for TACS
lt relates C0 |C0 and B0. Formally,

this may be witnessed by the following MT–relation, in which we employ the
abbreviations C ′

1 =df out.C0, B′
1 =df out.B0 + in.B2, and B′

2 =df out.B1.

{ 〈C0 |C0 , B0 〉 , 〈C1 |C0 , B1 〉 , 〈C0 |C1 , B1 〉 , 〈C ′
1 |C0 , B′

1 〉 ,
〈C0 |C ′

1 , B′
1 〉 , 〈C1 |C1 , B2 〉 , 〈C ′

1 |C1 , B2 〉 , 〈C1 |C ′
1 , B2 〉 ,

〈C ′
1 |C

′
1 , B′

2 〉 , 〈C ′
1 |C0 , B1 〉 , 〈C0 |C ′

1 , B1 〉 }

It is easy to check, by referring to Def. 3.1, that this relation is indeed an MT–
relation, whence C0 |C0

=
∼mt B0. Vice versa, B0

=
∼mt C0 |C0 does not hold accord-

ing to Def. 3.1, since C0 |C0 can engage in the transition sequence C0 |C0
in
−→

in
−→

σ
−→

out
−→

out
−→ which cannot be matched by B0. Thus, the two–cells system is strictly

faster than the two–place buffer in all contexts, although functionally equivalent,
which matches our intuition.
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6.2. Mail Delivery

The second example compares the speed of different forms of mail delivery and
is adapted from [23]. Consider a fortunate nephew who has three uncles living
overseas, all of whom send the nephew a selection of local newspapers at best
every 14 days, once they got a nicely sized package of newspapers together. There
are two kinds of delivery possible: the expensive air mail AM which takes at
least 2 days to deliver and the cheap surface mail SM which takes a minimum of
10 days. Moreover, all three uncles come from different strata: the rich uncle RU
can always afford the air–mail postage, while the middle–class uncle MU only
sometimes can and the poor uncle PU never can. In TACS

lt, this situation can
be modeled as follows:

AM =df mail.σ2.deliver.0 “air mail”

SM =df mail.σ10.deliver.0 “surface mail”

RU =df µx.(AM |σ14.x) “rich uncle”
MU =df µx.((AM + SM) |σ14.x) “middle–class uncle”
PU =df µx.(SM |σ14.x) “poor uncle”

Intuitively, our faster–than theory is concerned with best–case timing behavior,
one would expect the process RU to be equally fast to MU, but MU to be strictly
faster than PU.

To show this axiomatically we first note that ` AM w SM which can be
obtained by applying Axiom (P5) eight times and that ` AM = AM + SM by
Axiom (P6’). Hence, AM =

∼mt SM, AM =

∼mt AM+SM, and AM +SM =

∼mt AM due
to the correctness of the axioms (cf. Thm. 5.5). Because of the compositionality
of =

∼mt with respect to parallel composition and recursion we may thus derive
RU =

∼mt MU =
∼mt PU and MU =

∼mt RU. In addition, PU 6 =∼mt MU since the trace

mail.σ2.deliver of MU cannot be matched by PU according to Def. 3.1.4

7. Abstracting from Internal Computation

As usual in process algebra, one wishes to coarsen a semantic theory by abstract-
ing from internal computation, i.e., the unobservable action τ which is supposed
to be hidden from an external observer. While doing so is usually quite straight-
forward for CCS–based calculi [21], it turns out to be highly non–trivial here; this
may be the reason why it has not been attempted by Moller and Tofts in [23].

We start off by defining a weak version of our reference preorder, the amor-
tized faster–than preorder, which requires us to introduce the following auxiliary
notations. For any action α we define α̂ =df ε, if α = τ , and α̂ =df α, otherwise.

4Moller and Tofts incorrectly claim in their example that AM + SM 6 =∼mt
AM [23]. This

contradicts the correctness of Axiom (P6); AM+SM =
∼mt

AM can be seen directly using Def. 3.1

when matching the only problematic transition AM + SM
mail
−→ σ10 .deliver.0 by the transition

sequence AM
σ

−→
8mail
−→ σ2 .deliver.0 and by σ10 .deliver.0

σ

−→
8

σ2 .deliver.0.
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Further, we let
ε

=⇒ =df
τ

−→
∗

and write P
γ

=⇒ Q, where γ ∈ A ∪ {σ}, if there

exist R and S such that P
ε

=⇒ R
γ

−→ S
ε

=⇒ Q. We also let
σ

=⇒
0

stand for
ε

=⇒.

Definition 7.1 (Weak amortized faster–than preorder). A family (Ri)i∈N of rela-
tions over P is a family of weak faster–than relations if, for all i ∈ N, 〈P, Q〉 ∈ Ri,
and α ∈ A:

(1) P
α

−→ P ′ implies ∃Q′, k, k′. Q
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

Q′ and 〈P ′, Q′〉 ∈ Ri+k+k′ .

(2) Q
α

−→ Q′ implies ∃P ′, k, k′. k+k′ ≤ i, P
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

P ′ and

〈P ′, Q′〉 ∈ Ri−k−k′ .

(3) P
σ

−→ P ′ implies ∃Q′, k≥0. k ≥ 1−i, Q
σ

=⇒
k
Q′, and 〈P ′, Q′〉 ∈ Ri−1+k .

(4) Q
σ

−→ Q′ implies ∃P ′, k≥0. k ≤ i+1, P
σ

=⇒
k
P ′, and 〈P ′, Q′〉 ∈ Ri+1−k .

We write P =

≈i
Q if 〈P, Q〉 ∈ Ri for a family of weak faster–than relations (Ri)i∈N,

and call =

≈0
the weak amortized faster–than preorder.

One can easily check that (=

≈i
)i∈N is the (componentwise) largest family of weak

faster–than relations. Moreover, relation =

≈0
is indeed a preorder; while reflexivity

is obvious, establishing transitivity is simple but not trivial. The best way of
proving transitivity is by showing that Rk =df {

=

≈i
◦ =

≈j
| i+j = k }, for k ∈ N,

is a family of weak faster–than relations. This can be done most elegantly by
“diagram chasing” as in Fig. 1, drawing one diagram per condition of Def. 7.1. In
each case, we take P, Q, R with P =

≈i
Q =

≈j
R (dashed lines) and k = i + j, and we

derive 〈P, R〉 ∈ Rk′ for some suitable k′ (dotted line).
Our weakening of the amortized faster–than preorder might appear surprising

at first sight, due to the presence of
σ

=⇒
k′

trailing weak action transitions on the
right–hand side of the definition. As usual for weak bisimilarity, one may have a
number of internal transitions before and after a matching action transition, and
to get to these trailing internal transitions one may need to pass further clock
transitions.

As in the strong case, it is easy to see that =

≈0 is not a precongruence, even not for

parallel composition. To identify the largest precongruence contained in =

≈0, one
may be tempted to first define a straightforward weak variant of the MT–preorder
(with Cond. (3’) as on page 14) and hope that this preorder is compositional for all
operators except summation. The according definition would impose the following
conditions on the notion of a weak MT–relation R ⊆ P × P , for 〈P, Q〉 ∈ R and
α ∈ A:

(1) P
α

−→ P ′ implies ∃Q′, k, P ′′, k′. Q
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

Q′, P ′ σ
=⇒

k+k′

P ′′, and

〈P ′′, Q′〉 ∈ R.

(2) Q
α

−→ Q′ implies ∃P ′. P
α̂

=⇒ P ′ and 〈P ′, Q′〉 ∈ R.

(3) P
σ

−→ P ′ implies ∃Q′, P ′′, k. Q
σ

=⇒
k
Q′, P ′ σ

=⇒
k−1

P ′′, and 〈P ′′, Q′〉 ∈ R.

(4) Q
σ

−→ Q′ implies ∃P ′. P
σ

=⇒ P ′ and 〈P ′, Q′〉 ∈ R.

Unfortunately, this preorder is not even included in =

≈0, nor is it included in
any other desirable weak faster–than preorder. The reason for this is that, e.g.,
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τ * τ *

m*(τ   σ)

τ *
(τ   σ)* l’

τ *

α̂

τ *
(τ   σ)* l’

(τ   σ)* l

τ *

(τ   σ)* l

τ *

τ *

m*(τ   σ)
(τ   σ)* l

τ *

τ *

m*(τ   σ)

P Q Ri j

l’

α

α̂

j−l−l’

(2)P Q Ri j

i+l+l’

α

αα̂ ^

(1)

P Q Ri j

σ

(3)

i−1+l

P Q Ri j(4)

σ

j+1−l

i+l−m

k+1−m

i−m+l+l’−n

k−m−n

(τ   σ)* l

n*(τ   σ)

k+m+n

j−l+m+n−l’

(τ   σ)* m

τ *

(τ   σ)* n

τ *

k−1+m

j−l+m

Figure 1. Diagrammatic transitivity proof.

τ.(τ.a.0 + τ.b.0) would be deemed faster than a.0; in particular, the first τ–

transition of the allegedly faster process to τ.a.0+τ.b.0 can be matched by a.0
σ

−→
a.0 and choosing τ.a.0 + τ.b.0

τ
−→ a.0

σ
−→ a.0. However, τ.(τ.a.0 + τ.b.0)6 =≈0 a.0,

as the transition sequence τ.(τ.a.0 + τ.b.0)
τ

−→ τ.a.0 + τ.b.0
τ

−→ b.0
b

−→ 0 cannot
be matched by process a.0. This example suggests one to demand, in Cond. (1),

P ′ σ
−→

k+k′

P ′′. Similarly, the example σ.(τ.a.0 + τ.b.0) and σ.τ.a.0 shows that

Cond. (3) should be modified to demand P ′ σ
−→

k−1
P ′′. Furthermore, explor-

ing compositionality for parallel composition implies also in Cond. (4) P
σ

−→ P ′

(cf. proof of Prop. 7.6), which means that we may simply write Q
σ

−→ Q′ and
〈P ′, Q′〉 ∈ R in Cond. (3) as well. This leads to the following definition of the
weak Moller–Tofts preorder.

Definition 7.2 (Weak MT–preorder). A relation R ⊆ P × P is a weak MT–
relation if, for all 〈P, Q〉 ∈ R and α ∈ A:

(1) P
α

−→ P ′ implies ∃Q′, k, P ′′, k′. Q
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

Q′, P ′ σ
−→

k+k′

P ′′, and

〈P ′′, Q′〉 ∈ R.

(2) Q
α

−→ Q′ implies ∃P ′. P
α̂

=⇒ P ′ and 〈P ′, Q′〉 ∈ R.

(3) P
σ

−→ P ′ implies ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

(4) Q
σ

−→ Q′ implies ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ R.
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We write P =

≈mtQ if 〈P, Q〉 ∈ R for some weak MT–relation R, and call =

≈mt the
weak MT–preorder.

We first show that =

≈mt is a preorder. While reflexivity is obvious, it is difficult to

see whether =

≈mt is transitive, i.e., whether =

≈mt ◦
=

≈mt ⊆ =

≈mt holds. In order to

prove transitivity, we first note that =

≈mt satisfies a property to which we refer as
quasi–transitivity.

Lemma 7.3 (Quasi–Transitivity). =
∼mt

◦ =

≈mt
⊆ =

≈mt
.

Proof. We show that =
∼mt

◦ =

≈mt
is a weak MT–relation and restrict ourselves to the

most interesting case of establishing Cond. (1) of Def. 7.2. Let P, Q, R such that

P =
∼mtQ and Q =

≈mtR, and let P
α

−→ P ′ for some α ∈ A and P ′ ∈ P. Because of

P =
∼mtQ we may infer the existence of Q′, Q′′, k, P ′′ such that Q

σ
−→

k
Q′ α

−→ Q′′,

P ′ σ
−→

k
P ′′, and P ′′ =

∼mtQ
′′. Consequently, and by assumption Q =

≈mtR, there

exists process R′ such that R
σ

−→
k

R′ and Q′ =

≈mtR
′. According to Def. 7.2(1)

we may further derive the existence of R′′, l, l′, Q′′′ satisfying R′ σ
=⇒

l α̂
=⇒

σ
=⇒

l′

R′′,

Q′′ σ
−→

l+l′

Q′′′, and Q′′′ =

≈mtR
′′. Def. 3.1(4) then yields P ′′ σ

−→
l+l′

P ′′′ for some P ′′′

with P ′′′ =
∼mtQ

′′′. Hence we have R
σ

=⇒
k+l α̂

=⇒
σ

=⇒
l′

R′′, P ′ σ
−→

k+l+l′

P ′′′, and

〈P ′′′, R′′〉 ∈ =
∼mt◦

=

≈mt, as required. �

Next we establish an important technical lemma for which we need to introduce
some notation. For w, w′ ∈ (A ∪ {σ})∗ we write w ≡v w′ if w

�Λ∪Λ = w′
�Λ∪Λ

.

Intuitively, w ≡v w′ if the words w, w′ are visibly equivalent, i.e., if they are
identical up to occurrences of σ and τ . We also let |w|σ denote the number of
occurrences of σ in w.

Lemma 7.4. Let Q, Q′, R ∈ P and w ∈ (A ∪ {σ})∗ with Q =

≈mt
R and Q

w
−→ Q′.

Then there exists some Q′′, R′ ∈ P, l ∈ N, and w′′ ∈ (A∪{σ})∗ such that w ≡v w′′,

|w′′|σ = |w|σ+ l, Q′ σ
−→

l
Q′′, R

w′′

−→ R′, and Q′′ =

≈mt
R′.

Proof. The proof is by induction on the structure of word w. If w = ε, then the
statement holds trivially. If w = σv for some v ∈ (A ∪ {σ})∗, then one may
easily prove the statement by referring to the induction hypothesis. Hence, we
are left with the case w = αv for some α ∈ A. Thus, let process Q̂ be such

that Q
α

−→ Q̂
v

−→ Q′. By Cond. (1) of Def. 7.2, there are processes R′′, Q̂′, a

number l̂, and a word wα with wα ≡v α, |wα|σ = l̂, R
wα−→ R′′, Q̂

σ
−→

l̂
Q̂′, and

Q̂′=
≈mtR

′′. Due to the laziness property in TACS
lt, there exists some Q′′′ with

Q′ σ
−→

l̂
Q′′′. We may now apply Lemma 3.3(2) to obtain a process Q̂′′′ satisfying

Q̂
σ

−→
l̂
Q̂′ v

−→ Q̂′′′ and Q′′′=
∼mtQ̂

′′′. Applying the induction hypothesis to Q̂′, v, R′′

yields processes Q̂′′, R′, a number l′, and a word v′ fulfilling the conditions v ≡v v′,

|v′|σ = |v|σ + l′, Q̂′′′ σ
−→

l′

Q̂′′, R′′ v′

−→ R′, and Q̂′′=
≈mtR

′. Since Q′′′=
∼mtQ̂

′′′ and
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Q̂′′′ σ
−→

l′

Q̂′′ we know by Cond. (4) of Def. 3.1 of the existence of some process Q′′

such that Q′′′ σ
−→

l′

Q′′ and Q′′=
∼mtQ̂

′′. Thus, Q′′ =
∼mt Q̂′′ =

≈mt R′ and, by quasi–

transitivity, Q′′ =

≈mt R′. By setting w′′ =df wαv′ and l =df l̂ + l′ we are done. �

Using this lemma we can now prove the transitivity of the weak MT–preorder.

Proof. (of property =

≈mt
◦ =

≈mt
⊆ =

≈mt
) It is sufficient to show that =

≈mt ◦
=

≈mt

is a weak MT–relation. Let P =

≈mt Q =

≈mt R for some processes P, Q, R. We fo-
cus only on Cond. (1) of Def. 7.2, since all other conditions are trivial to es-

tablish. Let P
α

−→ P ′, for which the premise P =

≈mt Q implies the existence of

some Q′, k, P ′′, k′ such that Q
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

Q′, P ′ σ
−→

k+k′

P ′′, and P ′′ =

≈mt
Q′.

Further, we apply Lemma 7.4 to obtain w′′∈(A ∪ {σ})∗, l∈N, Q′′∈P , and R′∈P

such that w′′ ≡v α̂, |w′′|σ = k+k′+l, Q′ σ
−→

l
Q′′, R

w′′

−→ R′, and Q′′ =

≈mt R′.
Finally, Cond. (4) of Def. 7.2 guarantees the existence of some P ′′′ such that

P ′′ σ
−→

l
P ′′′ and P ′′′ =

≈mt Q′′. Hence, R
σ

=⇒
l′ α̂
=⇒

σ
=⇒

l′′

R′ for some l′, l′′∈N with

l′+l′′ = k+k′+l, and P ′′′ =

≈mt Q′′ =

≈mt R′. �

It is obvious from Defs. 3.1 and 7.2 that the MT–preorder =
∼mt is a weak MT–

relation and thus included in the weak MT–preorder =

≈mt.

Lemma 7.5. =

≈mt
is included in the weak amortized faster–than preorder =

≈0
.

Proof. We prove that Ri =df {〈P, Q〉 |P
σ

−→
i
P ′=

≈mtQ}, where i ∈ N, is a family of

weak faster–than relations. Let 〈P, Q〉 ∈ R, i.e., P
σ

−→
i
P ′ and P ′=

≈mtQ for some
i ∈ N and P ′ ∈ P. The only interesting part of the proof concerns establishing
Cond. 1 of Def. 7.2.

Accordingly, assume P
α

−→ P ′′ for some α ∈ A and P ′′ ∈ P . Because of

the laziness property of TACS
lt, there exists some P1 such that P ′′ σ

−→
i

P1.

Applying Commutation Lemma 3.3(2) yields a process P2 satisfying P ′ α
−→ P2 and

P1
=
∼mtP2. Further, because of P ′=

≈mtQ we know of the existence of Q′, k, k′, P3

such that Q
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

Q′, P2
σ

−→
k+k′

P3, and P3
=

≈mtQ
′. Moreover, Def. 3.1(4)

implies P1
σ

−→
k+k′

P4 for some P4 ∈ P with P4
=
∼mt

P3. Hence, P ′′ σ
−→

i+k+k′

P4

and P4
=
∼mt

P3
=

≈mt
Q′. By quasi–transitivity (cf. Lemma 7.3) and the definition

of R we may now conclude 〈P ′′, Q′〉 ∈ Ri+k+k′ , as desired. �

The weak MT–preorder is not only a preorder but also a precongruence.

Proposition 7.6. The weak MT–preorder =

≈mt
is compositional for all TACS

lt

operators except for the summation operator.

Proof. We restrict ourselves to the most interesting case of verifying composi-
tionality of =

≈mt
with respect to parallel composition. To do so we show that

R =df {〈P1|P2, Q1|Q2〉 |P1
=

≈mtP2, Q1
=

≈mtQ2} is a weak MT–relation.
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Let 〈P1|P2, Q1|Q2〉 ∈ R be arbitrary. The only difficult part of the proof
concerns establishing Cond. (1) of Def. 7.2 in the case of synchronization. Let

P1|P2
τ

−→ P ′
1|P

′
2 for processes P ′

1, P
′
2, due to P1

a
−→ P ′

1 and P2
a

−→ P ′
2 for some

visible action a. Since P1
=

≈mtQ1 we know of the existence of some Q′
1, k, P ′′

1 , k′

such that Q1
σ

=⇒
k a
=⇒

σ
=⇒

k′

Q′
1, P ′

1
σ

−→
k+k′

P ′′
1 , and P ′′

1
=

≈mt Q′
1. Similarly, since

P2
=

≈mt Q2 we know of the existence of some Q′
2, l, P

′′
2 , l′ such that Q2

σ
=⇒

l a
=⇒

σ
=⇒

l′

Q′
2, P ′

2
σ

−→
l+l′

P ′′
2 , and P ′′

2
=

≈mt
Q′

2. We distinguish the following cases:

• k = l: W.l.o.g. we further assume k′ ≥ l′. Due to the laziness property

in TACS
lt there exists some Q′′

2 with Q′
2

σ
−→

k′−l′

Q′′
2 and, because of

P ′′
2

=

≈mtQ
′
2, there exists some P̂ ′′

2 such that P ′′
2

σ
−→

k′−l′

P̂ ′′
2 and P̂ ′′

2
=

≈mtQ
′′
2 .

Then, Q1|Q2
σ

=⇒
k τ
=⇒

σ
=⇒

k′

Q′
1|Q

′′
2 and P ′

1|P
′
2

σ
−→

k+k′

P ′′
1 |P̂

′′
2 by our oper-

ational rules, and 〈P ′′
1 |P̂

′′
2 , Q′

1|Q
′′
2〉 ∈ R by the definition of R.

• k 6= l: W.l.o.g. we assume k > l. We refer to the process between
the weak clock transitions and the weak action transition on the path

Q2
σ

=⇒
l a
=⇒

σ
=⇒

l′

Q′
2 as Q̂2. Because of the laziness property in TACS

lt

and since P ′′
2

=

≈mt Q′
2, there exist processes P̂ ′′

2 , Q̂′
2 satisfying P ′′

2
σ

−→
k−l

P̂ ′′
2 ,

Q′
2

σ
−→

k−l
Q̂′

2, and P̂ ′′
2

=

≈mt Q̂′
2. (This is the place in this proof we re-

ferred to in the last few lines before Definition 7.2.) We may now apply

Lemma 3.3(2) and Def. 3.1(3) to obtain some Q̂′′
2 such that Q̂2

σ
−→

k−l a
=⇒

σ
=⇒

l′

Q̂′′
2 and Q̂′

2
=
∼mt Q̂′′

2 . Now, P̂ ′′
2

=

≈mt Q̂′
2

=
∼mt Q̂′′

2 , whence P̂ ′′
2

=

≈mt Q̂′′
2

because of =
∼mt ⊆ =

≈mt and the transitivity of =

≈mt. Now we are in the
case k = l.

This concludes the compositionality proof of =

≈mt
. �

As expected for a CCS–based process calculus, =

≈mt is not a precongruence for
the summation operator, but the summation fix used for other bisimulation–based
timed process algebras [9] proves effective for TACS

lt, too.

Definition 7.7 (Weak MT–precongruence). A relation R ⊆ P × P is a weak
MT–precongruence relation if, for all 〈P, Q〉 ∈ R and α ∈ A:

(1) P
α

−→ P ′ implies ∃Q′, k, P ′′, k′. Q
σ

=⇒
k α
=⇒

σ
=⇒

k′

Q′, P ′ σ
−→

k+k′

P ′′, and

P ′′ =

≈mt Q′.

(2) Q
α

−→ Q′ implies ∃P ′. P
α

=⇒ P ′ and P ′ =

≈mt Q′.

(3) P
σ

−→ P ′ implies ∃Q′. Q
σ

−→ Q′ and 〈P ′, Q′〉 ∈ R.

(4) Q
σ

−→ Q′ implies ∃P ′. P
σ

−→ P ′ and 〈P ′, Q′〉 ∈ R.

We write P =

umt
Q if 〈P, Q〉 ∈ R for some weak MT–precongruence relation R, and

call =

umt
the weak MT–precongruence.

Again, =

umt
is a preorder and the largest weak MT–precongruence relation. It is

worth pointing out that the strong faster–than precongruence =
∼mt is contained in
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the weak faster–than precongruence =

umt
, which follows by inspecting the respec-

tive definitions. The recursive definition of the weak MT–precongruence employed
in Conds. (3) and (4) above reflects the fact that clock transitions do not resolve
choices [9].

Theorem 7.8.
=

umt
is the largest precongruence contained in =

≈mt
.

Proof. The proof of compositionality of this preorder regarding the TACS
lt oper-

ators is quite standard, except for the parallel composition operator that needs to
be treated as for the weak MT–preorder before. Containment is proved by showing

that =

umt
∪ =

≈mt is a weak MT–relation.
We are left with establishing the “largest” claim. From universal algebra we

know that the largest precongruence =

≈
+

mt in =

≈mt exists and also that =

≈
+

mt =

{〈P, Q〉 | ∀C[x]. C[P ] =

≈mt C[Q]}. Since =

umt
is a precongruence that is contained

in =

≈mt, the inclusion =

umt
⊆ =

≈
+

mt holds. Thus, it remains to show =

≈
+

mt ⊆ =

umt
.

Consider the relation =

u

aux

mt
=df {〈P, Q〉 |P +c.0 =

≈mt Q+c.0 , where c is not in the

sorts of P, Q}. By definition of =

u

aux

mt
we have =

≈
+

mt ⊆
=

u

aux

mt
. We establish the other

inclusion =

u

aux

mt
⊆ =

umt
by proving that =

u

aux

mt
is a weak MT–precongruence relation.

Let P =

u

aux

mt
Q, i.e., P + c.0 =

≈mt Q + c.0, and distinguish the following cases.

• Action transitions: Let P
α

−→ P ′, i.e., α 6= c and P + c.0
α

−→ P ′ by

Rule (Sum1). Since P =

u

aux

mt
Q we know of the existence of some pro-

cesses R, P ′′ and k, k′ ∈ N satisfying Q+c.0
σ

=⇒
k α̂
=⇒

σ
=⇒

k′

R, P ′ σ
−→

k+k′

P ′′

and P ′′ =

≈mt R. Since P ′′ cannot perform a c–transition, Q+c.0 must have

performed some action from Q to become R; we conclude Q
σ

=⇒
l α
=⇒

σ
=⇒

l′

R
with l+l′ = k+k′. The reverse case, where process Q engages in an action
transition, is straightforward, as Cond. (2) of Defs. 7.2 and 7.7 coincides
with the one for observation equivalence and observation congruence in
CCS [21].

• Clock transitions: Let P
σ

−→ P ′. By Rules (tAct) and (tSum), P +c.0
σ

−→

P ′ + c.0 holds. Since P =

u

aux

mt
Q we know of the existence of some process R

such that Q + c.0
σ

−→ R and P ′ + c.0 =

≈mt
R. As clock derivatives are

unique we have R ≡ Q′ + c.0 for some Q′ satisfying Q
σ

−→ Q′. Because c
is a distinguished action not in the sorts of P ′ and Q′ we may further

conclude P ′ =

u

aux

mt
Q′, as desired. The other case, where process Q engages

in a clock transition, is analogous.

This shows that =

u

aux

mt
is a weak MT–precongruence relation. Hence, =

u

aux

mt
⊆ =

umt
,

as desired. �

It remains an open question whether the weak MT–precongruence is also the
largest precongruence contained in the weak amortized faster–than preorder.
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8. Related Work

Although there is a wealth of literature on timed process algebras [7], little work
has been done in developing theories for relating processes with respect to speed.
The approaches closest to ours are obviously the one by Moller and Tofts regard-
ing processes equipped with lower time bounds [23], and our own one regarding
processes equipped with upper time bounds [19]. As these have been referred to
and discussed throughout, we refrain from repetitions here.

The probably best–known related work focuses on comparing process efficiency
rather than process speed. Arun–Kumar and Hennessy [4, 5] have developed a
bisimulation–based theory for untimed processes that is based on counting in-
ternal actions, which was later carried over to De Nicola and Hennessy’s test-
ing framework [13] by Natarajan and Cleaveland [24]. In these theories, runs of
parallel processes are seen to be interleaved runs of their component processes.
Consequently, e.g., (τ.a.0 | τ.a.b.0) \ {a} is as efficient as τ.τ.τ.b.0, whereas, in our
setting, (σ.a.0 |σ.a.b.0) \ {a} is strictly faster than σ.σ.τ.b.0.

The sparse work on comparing process speeds largely concentrated on worst–
case timing behavior on the basis of upper time bounds. Research by Vogler et
al. [18, 26] originally employed the concurrency–theoretic framework of Petri nets
and testing semantics [13]; it has only recently been carried over to a Theoretical–
CSP–style [25] process algebra, called PAFAS [12,17]. The justification for adopt-
ing a testing approach is reflected in a fundamental result stating that the con-
sidered faster–than testing preorder based on continuous–time semantics coincides
with the analogous testing preorder based on discrete–time semantics [12]. This
result depends very much on the testing setting and is different from the sort of
discretization obtained for timed automata [3].

Independently, Corradini et al. [11] pursued a different idea for relating pro-
cesses with respect to speed, which is known as the ill–timed–but–well–caused
approach [2, 14]. This approach allows system components to attach local time
stamps to actions. Since actions may occur as in an untimed process algebra,
local time stamps may decrease within a sequence of actions that is exhibited
by several processes running in parallel. The presence of these “ill–timed” runs
makes it difficult to technically relate the faster–than preorder of Corradini et al.
to the one of Moller and Tofts. Note that simply restricting the setting of [11]
to “well–timed” behavior does not suffice since, e.g., this setting neither permits
communication between processes, nor restriction and relabeling operators. Re-
stricting a comparison to communication–free processes would be unsatisfactory
due to the importance of the interplay between timing and communication for any
approach to timed systems.

However, we believe that the fundamental idea of faster–than is the same in
both approaches, Corradini et al. and ours, which consider absolute time and
relative time, respectively. The present article makes this technically precise via
the full–abstraction result (Thm. 4.4) which relates the amortized preorder that
explicitly measures absolute time, with the MT–preorder that implicitly measures
relative time.
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9. Conclusions and Future Work

In previous work [19], the authors investigated bisimulation–based preorders
that relate the speeds of asynchronous processes relative to upper time bounds,
specifying when actions have to be executed at the latest. The present article con-
sidered the case of lower time bounds, specifying when actions may be executed at
the earliest, by revisiting the seminal approach of Moller and Tofts [23]. Although
Moller and Tofts’ work was published more than a decade ago and the first one to
introduce a faster–than relation in timed process algebra, it was never followed up
in the literature — except for [1] where characteristic formulae for this preorder are
provided. One reason for this might be the absence of strong theoretical results,
including the absence of (i) a compositionality result for arbitrary processes, (ii) a
full–abstraction result, and (iii) a complete axiomatization for finite processes, as
well as the bleak picture drawn in [23] for achieving such results elegantly.

This article established these missing results by introducing a novel process–
algebraic commutation lemma between action and clock transitions, as well as the
idea of amortized faster–than relations. In particular, a full–abstraction theorem
with respect to an intuitive amortized preorder that uses bookkeeping for deciding
whether one process is faster than another was proved. In addition, an expansion
law was established for finite processes, which paved the way for a sound and
complete axiomatization of the Moller–Tofts preorder. This not only testifies to
the nature of the MT–preorder but also highlights its importance among the sparse
related work in the field. Last, but not least, a variant of the MT–preorder that
abstracts from internal, unobservable computations was studied.

Future work should proceed along three directions. Firstly, we wish to complete
the theory for our weak MT–precongruence by establishing the conjectured full–
abstraction result. Secondly, the developed preorders should be implemented in
a formal verification tool, such as the Concurrency Workbench NC [10]. Thirdly,
we intend to integrate our theory for lower time bounds with our earlier work on
upper time bounds [19], thereby exploring the appropriateness of our faster–than
approaches for settings exhibiting restricted asynchrony.

We would like to thank the anonymous reviewers for their constructive comments and

suggestions.
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