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ABSTRACT
The process of engineering models of existing real-time system
components is often difficult and time consuming, especially when
legacy code has to be re-used or information about the exact timing
behaviour is needed. In order to tackle this reverse engineering
problem, we have developed the tool CoreTAna. CoreTAna derives
an AUTOSAR compliant model of a real-time system by conducting
dynamic analysis using trace recordings.
Motivated by the challenge of assessing the quality of reverse en-
gineered models of real-time software, we present a novel mathe-
matical measure for comparing trace recordings from embedded
real-time systems regarding their temporal behaviour.We also intro-
duce a benchmark framework based on this measure, for evaluating
reverse engineering tools such as CoreTAna. This considers com-
mon system architectures and also includes randomly generated
systems and three systems of industrial automotive projects. Fi-
nally, an industrial case study demonstrates other use cases of our
measure, such as impact analysis.

KEYWORDS
Real-time systems, tracing, profiling, timing model, reverse engi-
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1 INTRODUCTION
Since the release of the AUTomotive Open System ARchitecture
(AUTOSAR) (http://www.autosar.org) standard V3.0 in 2007, AU-
TOSAR has experienced gradual acceptance. One of its major goals
is the definition of a software architecture for the development of
real-time systems and a corresponding development methodology.
For this purpose, a model containing an abstract description of a
system is created on which standard software, such as the operating
system or runtime environment, is then configured. However, the
process of deriving a model is often difficult, error-prone, and time
consuming, especially when legacy code is reused [11]. The con-
sideration of timing behaviour is an extra challenge that requires
substantial effort [2], but is essential to the modelling process. Over
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the past years, a variety of tools have been developed to address
these difficulties by automatically analysing different aspects of a
real-time system, including its exact timing behaviour, based on
the system’s trace recordings [16].
This paper discusses the assessment of tools such as CoreTAna
(Sec. 2), which tackle this reverse engineering problem. The crucial
task of the assessment is to determine how closely a synthesised
model reflects the actual system. To meet this challenge, we intro-
duce a novelmeasure (Sec. 3), which compares trace recordings from
embedded real-time systems regarding their temporal behaviour.
We also introduce a synthetic benchmark (Sec. 4), which consists
of different system descriptions that cover common system archi-
tectures in the real-time software domain, for assessing the quality
of reverse engineering tools. To highlight the applicability of our
measure and to show the validity of this benchmark, we provide
trace recordings of these system descriptions to CoreTAna. Core-
TAna deduces an abstraction of the underlying real-time system
and synthesises a model in order to enable simulations of the sys-
tem’s timing behaviour. We then use such a model and our measure
to assess the quality and performance of the reverse engineering
offered by CoreTAna. For evaluating our benchmark (Sec. 5), trace
recordings of randomly generated systems are applied to CoreTAna,
which also demonstrate CoreTAna’s capabilities and performance
for actual automotive projects. Additionally, we conduct an in-
dustrial case study (Sec. 6), in which our measure is employed to
highlight the differences between products of the same product
family. This shows that our measure can also be applied to other
use cases.

2 CONTEXT
The current shift towardsmulti-core architectures in the automotive
industry is forcing OEMs and Tier-1’s to gain detailed knowledge
about their legacy software. Most tools that tackle the challenges
implied by this shift, such as finding an ideal task-to-core allo-
cation or task priority assignment, are model-based and work in
compliance with the AUTOSAR standard. Deriving, or reverse en-
gineering, such a standard compliant model is often difficult and
time consuming.



2.1 Reverse Engineering Real-Time Software
In order to tackle the challenge of reverse engineering anAUTOSAR
compliant model of a real-time, single- or multi-core system, in-
cluding its exact timing behaviour, via a dynamic analysis based on
the system’s trace recordings, we have developed CoreTAna [16].
This tool derives such a model either automatically from scratch
or by enriching an existing model. The fact that CoreTAna creates
a standard compliant artefact, which not only allows one to anal-
yse the system’s behaviour via timing simulation but also enables
further processing such as system optimisation [17], sets this tool
apart from existing solutions [7, 9, 14].
Technically, CoreTAna processes events that can be observed and
recorded during the runtime of a system in a step-by-step manner.
Every event indicates a change in the internal state of the system
due to, e.g., function calls or data accesses. These pieces of infor-
mation are taken from trace recordings of the real-time system
under study and used by CoreTAna to deduce an abstraction of the
system’s structure and timing behaviour. Due to space constraints,
we refer the reader to [16] for a detailed description of CoreTAna.

2.2 Problem Definition
Because CoreTAna performs a dynamic analysis, the only artefact
that can be used for the evaluation of CoreTAna’s quality of re-
verse engineering are the specific moments in time at which certain
events are observed during system execution. As the synthesised
model ideally reflects the same temporal behaviour, the most obvi-
ous evaluation approach is to compare the trace recordings of the
actual system with those generated by simulating the synthesised
model [15]. As depicted in Fig. 1, CoreTAna employs the Timing-
Architects (TA) Simulator [20] for this purpose. This commercial
model-based tool is used by many Tier-1 suppliers and OEMs in
the automotive industry and allows one to simulate the timing
behaviour of AUTOSAR compliant real-time systems.
As presented in the next section, a lot of research has been con-
ducted regarding the comparison of trace recordings. Most, how-
ever, focuses on statistical methods, yielding results that suggest
an insufficient correspondence. This is due to the fact that a model
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Figure 1: Schematic approach for analysing how closely an AU-
TOSAR model synthesized by CoreTAna reflects the actual system.

represents just an abstraction of a real system, where characteris-
tics are summarised at the available level of detail. Thus, a model
describes rather a similar system than the same exact system that
underlies the model.

2.3 Related Work
The problem of comparing trace recordings from embedded real-
time systems regarding their temporal behaviour is similar to the
problem of validating simulation models [13]. Many different tech-
niques are available that tackle the problem of simulation model
validation [4, 12, 18]: some are based on statistical methods such
as goodness-of-fit tests [9, 13], while others use mathematical pro-
cedures. Because of the aforementioned shortcoming of statistical
methods, only mathematical procedures are considered in the fol-
lowing.
Anderson discusses in [1, p.108ff] the equivalence of observable
attributes such as response times, patterns and resource utiliza-
tions in trace recordings. Nevertheless, no explicit tolerances are
suggested for comparing these attributes.
Huselius introduces in [7, p.122ff] an objective measure called “Sum
of Divergence” which establishes a bijective mapping between two
response time samples in order to summarise the differences in
their distributions. Disadvantages of this solution are that the Least
Common Multiple (LCM) is used to obtain equally-sized sampled
distributions and also that the measure is normalised by the max-
imum difference between samples in the distributions. A single
scattered outlier can thus have a big impact on the quality of the
result, because the outlier can, e.g., be multiplied by the LCM or
yield an improper difference for normalisation.
Nemati et al. describe in [14] an algorithm that first divides trace
recordings into equally sized time windows and then calculates the
differences in resource-consumption attributes, such as the execu-
tion times of tasks, between correlating time windows. However,
not only is it difficult to determine in advance a leeway for differ-
ence, but the traces also have to start from exactly the same state
and have to contain the same sequences of states. Especially, the
latter cannot be guaranteed for probabilistic models.
Due to the absence of a suitable assessment in the quality of reverse
engineered real-time software, we have developed a new measure.

3 OUR MEASURE
Before we present details of our measure for comparing the tempo-
ral behaviour of real-time systems, the foundations of trace record-
ings and their representation of system behaviour are discussed.

3.1 Foundations
The temporal behaviour of a real-time system is primarily deter-
mined by the employed scheduling policy, by which the operating
system decides which task can run on what processing unit. Conse-
quently, tasks evolve through the following states during a system’s
execution according to the BTF trace specification [19]:
ACTIVE The task is ready to be executed and waits for allocation

of a processing unit for the first time.
NOT INITIALIZED The task is passive and can be activated.
PARKING The task has requested a resource that is not available

and has been preempted while waiting for its release.
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Figure 2: AUTOSAR task state model, extended by states for active
(POLLING) and passive (PARKING) waiting for a resource.

POLLING The task has requested a resource that is not available
and waits actively for its release.

READY The task fulfils all functional prerequisites for execution
and waits to be allocated a processing unit.

RUNNING The task has been assigned to a processing unit, and
its instructions are being executed.

TERMINATED The task has finished executing its instructions
and is passive.

These states and their transitions to each other are depicted in Fig. 2.
In this figure, the basic task state model used in AUTOSAR [3],
which is adopted from the OSEK standard, is refined in order to
distinguish some task states more precisely. Originally, the OSEK
basic task state model specifies the following three states [8, p. 18]:
running, ready and suspended. This means that the states NOT
INITIALIZED and TERMINATED in Fig. 2 are equal to the OSEK state
suspended, the states ACTIVE, PARKING and READY all correspond
to the OSEK state ready, and the state RUNNING together with the
state POLLING describe the OSEK state running. State WAITING,
which represents another state in AUTOSAR and BTF, is omitted
here because no example in Sec. 4 and Sec. 5 requires this state. The
states PARKING and POLLING matter mainly in multi-core systems
and, thus, they are only relevant for the examples in Sec. 5.
The transitions of a task from one state to another during a system
execution can be observed and logged. This process of detecting and
storing relevant events during runtime for later off-line analysis
is called trace recording or, for short, tracing [10, p. 1]. Possible
sequences of observed state transitions for a task T are shown by
the traces in Listings 1 and 2.

Listing 1: Trace sample 1

0 , T , a c t i v a t e
0 , T , s t a r t
5 , T , t e rm in a t e

10 , T , a c t i v a t e
10 , T , s t a r t
16 , T , t e rm in a t e

Listing 2: Trace sample 2

1 , T , a c t i v a t e
1 , T , s t a r t
5 , T , t e rm in a t e

12 , T , a c t i v a t e
12 , T , s t a r t
17 , T , t e rm in a t e

Both traces respect the BTF trace format [19], where each line rep-
resents an observed event. An event is defined by three attributes,
all separated by comma. The first attribute indicates the moment
in time when the event occurred. The next attribute identifies the
entity that caused the event, in this case a task calledT . Finally, the

t0 5 15 20 25 30 35 45 55 65 75

Figure 3: Visualisation of a trace example in a Gantt chart showing
(via colours) a task in different states over time.

action that triggered the event is stated, which is, in this example,
a state transition of task T . These pieces of information can then
be used to visualise system execution in a Gantt chart, as shown in
Fig. 3.
Another way to objectively analyse a system’s temporal behaviour
is to calculate metrics from a trace recording [5]:

A2A Activation-To-Activation: The distance between two succes-
sive activations of a task. In Fig. 3, this is indicated by the
horizontal black arrow.

NET Net Execution Time: The actual execution time of a task, which
spans from the starting point to the termination point and
excludes the time during which the task is interfered. In Fig. 3,
this is indicated by the sum of the lengths of all dark green
arrows.

Parking Parking Time: The timespan of a preempted task waiting
for a requested resource. In Fig. 3, this is indicated by the length
of the orange arrow.

Polling Polling Time: The timespan of a task actively polling for a
requested resource. In Fig. 3, this is indicated by the length of
the red arrow.

Ready Ready Time: The timespan of a task between its start and
termination in which it is not executed on any processing unit.
In Fig. 3, this is indicated by the sum of the lengths of all light
green arrows.

SD Start Delay: The time from the activation moment of the task to
the moment of its start. In Fig. 3, this is indicated by the length
of the grey arrow.

Because these metrics comprehend the temporal behaviour of a
real-time system, we apply them to compare trace recordings. So
far, only a trace recording at task level has been considered by us,
which means that only the state transitions of tasks are detected
and stored. Besides tasks, also other entities, e.g., functions, which
are called runnable in automotive terminology, and data signals, as
well as their corresponding events, such as function calls and data
accesses, can be observed during a system’s runtime. Thereby, it is
possible to get a more detailed insight into the system’s behaviour,
which not only allows to assess its real-time performance, but also
to compare different behaviour by defining a distance measure for
trace recordings.

3.2 Definition of our Measure
To use the aforementioned metrics for comparing the temporal
behaviour of real-time systems, we initially determine the exis-
tence of corresponding entities in the comparative trace recordings.
A correspondence between individual entities can be established
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based on similarities, such as unique identifiers, identical memory
locations or similar behaviour.

Definition 3.1. Amount Distance ∆A: Let P(si ) be the task entities
within a trace sample si , and let |X | denote the cardinality of a set
X . The Amount Distance ∆A is defined by

∆A(s1, s2) = 1 − |P(s1) ∩ P(s2)|
|P(s1) ∪ P(s2)|

. (1)

To compare the amount of same entities in two trace samples, Eq. 1
considers only task entities and not all observable entities. This is
because technical limitations rule out the recording of all entities at
once, whereas a reversely engineered model can contain additional
entities to reproduce correct behaviour. Nevertheless, the temporal
behaviours of tasks in both samples have to match, which then also
indirectly reflects a correct representation of other entities, e.g.,
functions.

Definition 3.2. Entity Distance ∆E : Let E(si ) be all task and function
entities within a trace sample si , and letwm be the balanced weight
for a metricm. The Entity Distance ∆E is defined by

∆E (s1, s2) =
∑

e ∈E(s1)∩E(s2)

√∑
m∈M wm ·(ms1−ms2 )

2

|E(s1)∩E(s2) |
, (2)

where
• P(si ) ⊆ E(si ) and |E(s1) ∩ E(s2)| > 0
• wm =

1
|M |

• M = {mint ,maxt , x̄t ,Q1,t ,Q2,t ,Q3,t , IQMt | ∀t ∈ {NET ,A2A,
SD,Ready, Parkinд, Pollinд}}; here,mint is the minimum,maxt
is the maximum, x̄t is the mean,Q1,t is the lower quartile,Q2,t
is the median, Q3,t is the upper quartile, and IQMt is the inter-
quartile mean of a time metric t .

The Entity Distance ∆E determines the differences between all
entities, including functions and tasks, that are available in both
samples. These entities are compared by calculating the weighted
Euclidean distance between the temporal behaviours recorded in
the one sample and in the other sample. Due to the fact that each
trace recording usually contains multiple observations of the same
entity and, thus, also a variety of temporal characteristics, measures
of descriptive statistics are used to quantitatively summarise the
general behaviour for each entity. Measures of spread or shape are
not considered because they would lead to inconsistent results, e.g.,
if the variances of two comparable entities are exactly the same
but their individual times are far apart. In this case, the temporal
behaviour is completely different, but an alignment in the variance
would presume otherwise. Instead, multiple measures of location
(minimum, maximum, mean, etc.) are used to capture differences in
variability. The weight of the Euclidean distance is chosen in such
a way that each metric measure contributes to the same extent,
because none outranks the others in importance.
To achieve a distance measure within the range [0,1], each metric
value is scaled to the maximum value for the metric in all samples:
x ′t =

xt
maxt (s1,s2, ...,sn )

. As an example, Table 1 lists two metrics
including their scaling, which comprehend the temporal behaviour
of the trace samples s1 and s2 in Listing 1 and, resp., Listing 2.
Applying the scaled metrics to Eq. 2 then yields a distance of taskT

Table 1: Exemplary real-time metrics t and their scaled means x̄ ′t ,
determined for task T in trace samples s1 (Listing 1) and s2 (List-
ing 2).

t
s1 s2

Xt X ′
t x̄ ′t Xt X ′

t x̄ ′t

A2A {10} { 10
11 } 0.90 {11} { 11

11 } 1
NET {5,6} { 5

6 ,
6
6 } 0.916 {4,5} { 4

6 ,
5
6 } 0.75

between the two trace samples of approximately 7.7 %:

∆E (s1, s2) =

√
1
6 ·(0.90−1)2+ 1

6 ·(0.916−0.75)2+ 0
1 ≈ 0.077.

Finally, the equality in the amount of same entities in both samples
and the differences of each individual entity are combined in our
Distance Measure ∆, to obtain the distance between two sample
trace recordings.

Definition 3.3. Distance Measure ∆: Let s1, s2 be two sample trace
recordings, let ∆A denote the Amount Distance, and let ∆E be the
Entity Distance. Then, the Distance Measure ∆ is defined by

∆(s1, s2) = 1 − [1 − ∆A(s1, s2)] · [1 − ∆E (s1, s2)]. (3)

4 SYNTHETIC BENCHMARK
One motivation for us to propose a novel measure is to assess the
quality of our reverse engineering tool, CoreTAna, with the help
of a benchmark. The goal of this benchmark is to provoke realistic
challenges of the real-time development process, e.g., blocking
situations, which then have to be managed by a reverse engineering
tool under evaluation. The basic idea for our synthetic benchmark
is inherited from the work of Huselius [7, p. 111ff], where so-called
Archetypes, which represent common architectural patterns in the
real-time software domain, and feasible variations for each pattern,
so-called PICs, are described. Unfortunately, Huselius only gives a
general description of each Archetype, which makes it impossible
for us to reproduce them precisely.
Because reproducibility constitutes the foundation of any scientific
benchmark, we have made all systems that are described in this
section public, as example models in the Eclipse APP4MC Release
Version 0.7.2 (https://www.eclipse.org/app4mc/), which is an open-
source platform for engineering embedded multi- and many-core
software systems. Our models cover all Archetypes originally intro-
duced by Huselius, but have been extended by additional variations
to consider AUTOSAR-specific aspects and to cover the increased
functionality provided by CoreTAna. The benchmark is designed in
a consecutive way such that each variation within a pattern alters
the previous one by a single aspect. To highlight the impact of the
changes made by each variation and to show the expressiveness
of our measure, we state in brackets how traces of each variation
differ from traces of the previous one using our distance measure
∆ and Huselius’ Sum of Divergence (SoD).
To be able to conduct an exemplary evaluation on measuring the
performance and the quality of CoreTAna’s reverse engineering, we
generate a simulation trace that covers a specified number of time
units for each system using the TA Simulator [20]. If not indicated
otherwise, the generated trace recordings are not limited to specific
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BTF events [19], so as to provide a detailed insight into a system’s
behaviour. The traces are then analysed by CoreTAna, which is
included in the TA Tool Suite Release 16.3 [20]. This analysis is
performed on a workstation containing an Intel Core i7-4930K hexa-
core CPU, where each core is clocked at a frequency of 3.4 GHz,
with 32 GB of RAM and running the 64-bit version of Windows
Server 2012.
Tomanifest a high quality of the performed reverse engineering, our
measure has to yield results close to zero percent when comparing
the trace recordings of the actual system with those generated
when simulating the synthesisedmodel. Mismatches in the recorded
behaviour are revealed by our measure due to the fact that the
system’s scheduling propagates each disparity on and on, and due
to the quadratic characteristic of the used Euclidean distance. We
determine Huselius’ Sum of Divergence not only to compare it with
our measure but also to substantiate its shortcomings mentioned
in Sec. 2.3.

4.1 Purely Periodic without Communication
This system architecture pattern consists of a task set of seven tasks,
in which each task is activated periodically and no data accesses
are performed. The execution time for each task is determined
by so-called runnable entities. All tasks contain just one runnable,
except forT7 that calls at first R7,1 and after that R7,2. The variations
applied to this system pattern are:
1) Initial Task Set: The tasks T4, T5, T6 and T7 are active and

scheduled according to fixed-priority preemptive scheduling.
2) Increase of Task Set Size I (∆1,2 ≈ 28.6 %, SoD1,2 ≈ 32.1%):

The tasksT3,T4,T5,T6 andT7 are active. Thereby, the utilisation
of the system is increased.

3) Increase of Task Set Size II (∆2,3 ≈ 27.3 %, SoD2,3 ≈ 65.5 %):
The tasks T1, T3, T4, T5, T6 and T7 are active, i.e., the utilisation
of the system is further increased.

4) Increase of Task Set Size III (∆3,4 ≈ 22.7 %, SoD3,4 ≈ 41.5 %):
From this variation through to variation 9, all tasks (T1 -T7) are
active. This increases the utilisation of the system again.

5) Accuracy in Logging (∆4,5 ≈ 0.0 %, SoD4,5 ≈ 0.0 %): A trace
containing just task events is used (see [19]). Thereby, only a
limited insight into the system’s runtime behaviour is available
for reverse engineering.

6) Schedule (∆5,6 ≈ 15.4 %, SoD5,6 ≈ 22.6 %): From this variation
through to variation 9, T7 is set to non-preemptive. Hence, the
system’s timing behaviour is changed, which results in inef-
fective activations, because the maximum number of queued
activation requests is exceeded.

7) Activation (∆6,7 ≈ 0.6 %, SoD6,7 ≈ 9.4 %): From this variation
through to variation 9, the maximum number of queued activa-
tion requests is set to 2 for all tasks. This solves the problem of
queue overflows for activation requests in the previous varia-
tion.

8) Schedule Point (∆7,8 ≈ 5.2 %, SoD7,8 ≈ 18.0 %): A scheduler
call is added to T7 between the calls of R7,1 and R7,2. This
changes the timing behaviour.

9) Scheduling Algorithm (∆8,9 ≈ 11.2 %, SoD8,9 ≈ 24.0 %): The
scheduling algorithm is set to Earliest Deadline First, so that the
timing behaviour is changed completely.
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Sum of Divergence Trace Length:
Distance Measure ∆ 1 · 1011 time units
CoreTAna’s Computation Time 1 · 1013 time units

Figure 4: Results of CoreTAna for the variations of system archi-
tecture pattern ‘Purely Periodic without Communication’. Each red
marker, resp., green marker denotes the result of our measure ∆,
resp., Huselius’ Sum of Divergence for comparing a trace from
a variation of this pattern with one generated when simulating
CoreTAna’s reversely engineered model. A blue marker indicates
the time it took CoreTAna to synthesise the model from the trace.
The meaning of markers and coloured lines defined in the legend
is identical throughout all further result visualisations shown in
Figs. 6, 8, 10& 12. The reduced opacity in the lines isolates variations
that feature characteristics that are not supported by CoreTAna (i.e.,
Schedule Points and EDF Scheduling).

For each of these systems, a trace recording is applied to Core-
TAna and the difference to those generated when simulating the
synthesised model is determined using our measure ∆. The re-
sults are shown in Fig. 4 and turn out to be twofold. If all system
characteristics are supported by CoreTAna’s underlying reverse
engineering approach, the synthesised model reflects the actual
system behaviour very well. This is demonstrated by the high simi-
larity between the trace recordings of Variations 1 to 7 in the figure.
However, if at least one system characteristic, such as the schedul-
ing algorithm, is not considered in CoreTAna, then the difference
rises rapidly. This is due to the fact that, even if only one task is
affected by a variation, this change can have an impact on all tasks
because of the scheduling. Moreover, the Euclidean distance used
in our measure has a quadratic characteristic.
As shown by the blue dotted line in Fig. 4, the time it takes CoreTAna
to generate a model grows linearly with the trace length, resp., with
the amount of events contained within the trace.

4.2 Client-Server without Reply
This system architecture pattern extends the previous one by adding
one-way communication between tasks. The implemented task set
is depicted in Fig. 5. The variations applied to this system pattern
are:
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Figure 5: State diagram implemented by the system architecture pat-
tern ‘Client-Server without Reply’.

1) Initial Task Set: All tasks as defined above are scheduled ac-
cording to fixed-priority preemptive scheduling.

2) Exclusive Area (∆1,2 ≈ 32.3 %, SoD1,2 ≈ 9.4 %): For this vari-
ation, all data accesses are protected by a mutex and the priority
ceiling protocol is applied. Hence, blocking situations appear.

3) Inter-Process Activation (∆2,3 ≈ 34.7 %, SoD2,3 ≈ 21.0 %):
From this variation onwards, task T2 gets activated by an inter-
process activation from task T1, so that a direct connection
between T1 and T2 is established.

4) Priority Ordering (∆3,4 ≈ 14.2 %, SoD3,4 ≈ 57.71 %): From
this variation onwards, the priority relation between tasks T1
and T2 is reversed. Thereby, a switch from asynchronous to
synchronous communication is realised.

5) Event Frequency Increase (∆4,5 ≈ 3.0 %, SoD4,5 ≈ 0.1 %):
From this variation onwards, the periodicity of T1 is shortened
so that system utilisation is increased.

6) Execution Time Fluctuation (∆5,6 ≈ 0.6 %, SoD5,6 ≈ 0.2 %):
From this variation onwards, the execution time distribution
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Figure 6: Results of CoreTAna for the variations of system architec-
ture pattern ‘Client-Serverwithout Reply’. Themeaning ofmarkers
and coloured lines is according to the legend defined in Fig. 4. The re-
duced opacity in the lines distinguishes variations that do not vary
within the system but instead limit the level of detail available for
reverse engineering.

is widened for both tasks. Hence, the system utilisation is in-
creased further, which results in ineffective activations, be-
cause the maximum number of queued activation requests is
exceeded.

7) Activation (∆6,7 ≈ 4.5 %, SoD6,7 ≈ 0.1 %): From this variation
onwards, the maximum number of queued activation requests
(see [3, p.227]) for both tasks is set to 2. Thereby, the problem
with activation requests resulting from the previous variation
is solved.

8) Accuracy in Logging I (∆7,8 ≈ 0.0 %, SoD7,8 ≈ 0.0 %): For
this variation, a trace containing just task and runnable events
is used. Hence, only a limited insight into the system’s runtime
behaviour is available for reverse engineering.

9) Accuracy in Logging II (∆8,9 ≈ 0.0 %, SoD8,9 ≈ 0.0 %): For
this variation, a trace containing just task events is used. This
means, again, that only a limited insight into the system’s run-
time behaviour is available for reverse engineering.

On closer examination of the results visualised in Fig. 6, the conse-
quences of the increased complexity of this system pattern when
compared to the previous one stand out. This manifests itself in the
fact that the values resulting from our distance measure ∆ differ
by a factor of 100 (see the red markers around 10−1 % in Fig. 6
vs. those around 10−3 % in Fig. 4). In addition, a rise of the red
lines towards Variations 8 and 9 is clearly visible. This is due to the
reduced amount of information contained within the trace, which
is caused, e.g., by undersampling or a decrease of detail.

4.3 State Machine
In this system architecture pattern, the previous one is extended in
such a way that task T2 that receives messages varies its dynamic
behaviour and, consequently, its execution time not only according
to the transmitted content but also according to its current internal
state, i.e., the previously transmitted contents. The implemented
state machine is depicted in Fig. 7.
The variations applied to this system pattern are equal to those
described in Sec. 4.2. Only the sequence in which the underlying
system is modified by each variation is slightly changed, in order
to provoke realistic challenges such as exceeding the maximum
number of queued activation requests.
The results for this pattern, which are visualised in Fig. 8, show a
noticeable similarity to those for the previous pattern. In particular,
the differences between the peaks and valleys of the results for the
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Figure 7: State diagram implemented by the system architecture pat-
tern ‘State Machine’.
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Figure 8: Results of CoreTAna for the variations of system architec-
ture pattern ‘State Machine’. Coloured markers and lines are used
as in Fig. 6.

shorter trace recordings become greater. This is due to the charac-
teristics of the probabilistic model used in this system architecture
pattern. Recording the system’s runtime behaviour for a longer pe-
riod and employing it to CoreTAna yields steadier results, because
shorter trace recordings have a smaller chance to cover all possible
behaviour of the probabilistic model.

4.4 Feedback Loop
The task set of the previous system architecture pattern is expanded
further, so that messages are exchanged in a loop instead of just in
one way. In addition to the feedback loop as depicted in Fig. 9, other
system architecture patterns are added to be executed concurrently,
in order to increase complexity. Tasks T5 and T6 represent a client-
server without reply, and task T7 is a periodically activated task
without any communication.
The variations for this system pattern are equal to those applied
to the previous patterns described in Secs. 4.2 & 7. However, the
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Figure 9: State diagram implemented by the system architecture pat-
tern ‘Feedback Loop’.

1 2 3 4 5 6 7 8 9
Model Variation

10−1

100

101

102

2.4

8.6
1.2 1.4

1.0
1.4

1.1

4.6

1.5

7.8
1.2 1.0

7.0

3.2
1.8

5.7

4.0

1.5

D
ist
an
ce

[%
]

101

102

103

Co
m
pu

ta
tio

n
Ti
m
e
[s
]

Figure 10: Results of CoreTAna for the variations of system architec-
ture pattern ‘Feedback Loop’. Coloured markers and lines are used
as in Figs. 6 & 8.

changed characteristics of this task set in comparison to the pre-
vious ones required us again to slightly change the sequence in
which the variations are applied.
Fig. 10 visualises the resulting quality of the performed reverse
engineering. This time also the results of the longer trace recordings
show significant spread, which can once again be explained by
the underlying probabilistic model. Because the complexity of the
system increased in comparison to the previous system architecture,
the chance to cover all possible behaviour decreased to such an
extent that even large trace recordings do not cover everything.

4.5 State Machine Feedback Loop
Finally, the previous system architecture pattern is expanded by
combining the ideas behind patterns State Machine and Feedback
Loop. This means that messages are exchanged in a loop, and each
sender/receiver is also a state machine. In addition to the state ma-
chine feedback loop as depicted in Fig. 11, other system architecture
patterns are added to be executed concurrently: tasks T3 and T4
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M1 = 1 /M2 := 0M1 = 0 /M2 := 0

M1 = 1 /M2 := 0M1 = 0 /M2 := 0

M1 = 1 /M2 := 1

T2

Figure 11: State diagram implemented by the system architecture
pattern ‘State Machine Feedback Loop’.
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Figure 12: Results of CoreTAna for the variation of system architec-
ture pattern ‘State Machine Feedback Loop’. Coloured marks and
lines are used as in Figs. 6, 8 & 10.

represent a client-server without reply, and taskT5 is a periodically
activated task without any communication.
The variations and the sequence in which these are applied to this
system pattern are identical to those used for pattern ‘Feedback
Loop’ in Sec. 4.4, which allows a comparison of results.
The results for this pattern, which are visualised in Fig. 12, show
once again a significant spread. Noticeable is, furthermore, the fact
that, for both trace lengths, the gap between the results is smaller
than before. Moreover, omitting the data accesses from the logging
(Variation 8) has only a small impact on the results. All this indicates
a high amount of probability in this pattern.

5 BENCHMARK EVALUATION
So far, only isolated system architectures have been applied for
evaluating CoreTAna. Because actual industrial systems are more
diverse, we validate the scope and practical significance of the
proposed benchmark by assessing CoreTAna’s capabilities in pro-
cessing trace recordings of randomly generated systems and traces
from actual automotive projects.

5.1 Randomly Generated Systems
The randomly generated systems are not totally random, but their
generation follows configurable settings. This allows us to influence
the possible design space such that a desired mixture of system
architectures can be ensured. The configuration used for this evalu-
ation is designed in such a way that a total of 1000 different systems
are generated. The number of tasks in each system is chosen ran-
domly between 9 and 20. All tasks are activated harmonically by
periodic alarms, with an offset between 0 and 50 ms and a period be-
tween 1 and 1000ms. Their execution times are determined based on
both their load, which can be between 1 and 20 %, and the number of
called runnables, which each cover between 30,000 and 100,000 in-
structions. This results in roughly 5 to 100 runnables per task, which
are bundled in 6 to 13 subsequent call sequences (a list of calls that
are executed by a process; definition see ‘https://www.eclipse.org/

0 20 40 60 80 100

Runnables

Processes

Systems

Percentage of Entities [%]

0 % ≤ ∆ ≤ 1 % 1 % < ∆ ≤ 2 % 2 % < ∆ ≤ 3 %
3 % < ∆ ≤ 5 % 5 % < ∆ ≤ 8 % 8 % < ∆ ≤ 13 %
13 % < ∆ ≤ 21 % 21 % < ∆ ≤ 34 %

Figure 13: Stacked bar chart of CoreTAna’s results for reversely en-
gineering the randomly generated models, based on a trace record-
ing that covers 1 second of a system’s execution. The coloured bars
mark the percentage of systems, processes, and runnables in which
their reversely engineered behaviour differs from the original one
by a certain distance value ∆.

app4mc/help/app4mc-0.8.1/index.html#section3.12.10.3’). Condi-
tional statements are added to each task in such a way that the
execution of any number of these call sequences depends on ran-
dom values within the domain of one of the 1 to 20 generated data
signals. This is repeated again with the budgeted call sequences, so
as to enable nested control flows. Data dependency is then estab-
lished by adding, with a probability of 50 %, a signal access to each
runnable, which writes a random value within the domain of that
data signal.
A purely periodic task, which is roughly defined as a task without
any conditional statements, is consequently generated with an
approximate probability of at least 1

9 or 11.1̄ %. This emerges from
the fact that roughly 5 to 100 runnables per task are bundled into 6
to 13 coherent call sequences, which yields 1 to 9 call sequences per
task. Therefore, the probability that a task representing a server in
a ‘Client-server without Reply’ architecture is generated, is equal
to the probability that one conditional statement is present, which
is at least 1

9 , and assumes that there is no write access to that data
signal within the task. Because 11 data signals are generated on
average per system, this results in a probability of at best 1

99 or
1.01 %. In contrast to this, a task representing a state machine has
to modify the data signal on which it depends. Because a runnable
has write access to each signal in 50 % of the cases, the resulting
probability is roughly 5 %.
Fig. 13 visualises how capable CoreTAna is to reverse engineer our
randomly generated models. The stacked bar chart depicts that
96 % of the runnables differ by less than 3 % (sum of yellow, blue
and red bars). However, there are also scattered outliers, which
indicate differences in the runnable behaviour as high as 57 %. Due
to the fact that multiple runnables are mapped to a single task, the
task’s difference is added up by the difference of each runnable
called, which consequently yields worse results. Nevertheless, the
fact that all resulting differences for the overall systems are lower
than 10 % (shown in the stacked bar chart by the absence of accord-
ingly coloured bars) demonstrates that CoreTAna performs well in
capturing the systems’ dynamic behaviour.
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5.2 Industrial Case Studies
To also establish a connection to real-life problems, we describe
our experiences with using CoreTAna in actual projects within the
automotive domain.

5.2.1 EngineManagement System (EMS). In this industrial project,
an engine management system (EMS) consisting of 75 tasks is anal-
ysed. To do this, a trace covering 6.5 seconds of the system’s execu-
tion was provided in a 40 MB file with 90 · 103 events. Because of
the high complexity of the system under investigation and techni-
cal limitations, it is only possible to observe and record task state
transitions. Thus, no detailed insight into the system’s behaviour
is available.
The visualisation in Fig. 14 of the differences between each task
shows that the quality of the reverse engineering is inconsistent.
Some tasks contain only a small amount of variability, which is why
their behaviour is reflected quite well with a difference of only 4 %.
Other tasks, however, show a difference of 35 %, which indicates a
lack of detail in the synthesised model. Nevertheless, the overall
difference of 19.88 % is in line with the results of the synthetic mod-
els in Sec. 4, where evaluations of CoreTAna’s capability to handle
the limited accuracy in logged data yielded differences between
13 % and 52 %.

5.2.2 Steering System. For this industrial case study a model of a
steering system software is generated. The system under investiga-
tion consists of 18 tasks and interrupt service routines. Altogether,
they call 130 different runnables. The used hardware platform is a
dual core processor with a frequency of 120 MHz for each process-
ing unit.
The starting point for our reverse engineering is a trace recording
that covers 30 seconds and contains all task and runnable calls
performed during that time. This resulted in roughly 27 · 106 events
and a file of 1.7 GB, i.e., the system produces roughly one million
events per second. This example shows that it is currently not
technically possible to observe the system behaviour in detail, e.g.,
all data accesses.
We evaluate CoreTAna’s performance and the achieved quality of
the reverse engineering by us using our proposed measure; the
results are visualised in Fig. 14. In contrast to the previous indus-
trial case study, where only task events have been recorded, the
details added by also observing function calls lead to less spread.
The difference for each task lies just between 14.93 % and 26.23 %.
However, the overall difference of 15.54 % is slightly lower than in
the previous case study, which is probably due to the trace contain-
ing more information. Nevertheless, the trace is missing knowledge
about data accesses, so that the varying internal behaviour due to
data dependencies still cannot be determined in full detail.

5.2.3 FMTV Challenge 2016. This industrial case study is in-
spired by the Formal Methods for Timing Verification (FMTV) Chal-
lenge 2016 [6], where a model of an industrial real-time system
has been published in order to discuss solutions to concrete timing
verification problems. Although no trace recordings from the actual
system are provided, we have used this model and the TA Simula-
tor [20] to generate a simulation trace. Because this model-based
timing simulation is a commercial tool that is employed by many
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Figure 14: Box plots with whiskers from minimum to maximum,
summarising the differences between each task/ISR in the individ-
ual industrial case studies. The crosses mark the result of the differ-
ence measure for the overall system. The dashed box plot visualises
the results of the FMTV Challenge with the given hardware model.

Tier-1s and OEMs in the automotive industry and because the pro-
vided model is very detailed, it is reasonable to assume that the
generated trace recording corresponds very closely to the actual
system behaviour.
The model describes a full-blown engine management software
that consists of 10 periodic tasks and 11 interrupt service routines
(ISRs) that interact with the system sporadically. The functionality
is provided by 1250 runnables, and roughly 10000 different data
signals are accessed for communication. On the hardware side, a
micro-controller architecture with four symmetric cores is available
for processing. Each core has access to its local RAM and to the
shared global RAM via a crossbar. Based on this model, the system’s
execution has been simulated for 30 seconds. During that time,
roughly 341 · 106 events occurred and were recorded in a trace,
which resulted in a file size of roughly 17 GB.
Fig. 14 visualises the differences between each task and ISR. Al-
though the trace contains all details of the system’s behaviour, the
results are still around 20 %. Motivated by this rather disappointing
outcome, a closer examination showed that the hardware limita-
tions of the crossbar together with cumulative data accesses caused
tasks to wait. Because the correct modelling of the hardware prop-
erties are not subject of the reverse engineering, the reconstruction
was repeated with the hardware model as given input, so as to eval-
uate CoreTAna’s performance regarding how closely the software
model reflects the actual behaviour. The results are shown in Fig. 14
as a dashed box plot. With the differences mainly being around 1 %,
these results correspond more to the expected outcome by being in
line with the synthetic benchmark.

6 IMPACT ANALYSIS
Although our measure was developed to assess how closely a syn-
thesised model reflects the timing behaviour of the underlying
system, it is beneficial in multiple applications. For example, it as-
sists with hardware tracing, in particular, with the evaluation of
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the products of the product family that are compared.

the error-prone process of configuring the on-chip debug units by
highlighting inconsistencies in the recorded system behaviour.
Another use case for which we have successfully applied our mea-
sure is determining effects on timing behaviour due to system
changes. For example, the software of the steering system described
in Sec. 5.2.2 represents not a single product but a whole product
family. This means that it is possible to create software for the three
distinct products ‘Consumer’, ‘Sport’ and ‘Luxury’, which all have
the same architecture but different functionalities. To analyse the
impact of the varying functionalities to the timing behaviour of the
system’s processes (tasks and ISRs), we have compared, in pairs,
trace recordings of the products using our measure. The results of
this comparison are depicted in Fig. 15 and show that not all pro-
cesses are affected to the same extent. For example, process P10 has
exactly the same timing behaviour in all three products, whereas
the timing behaviour of processes P1, P3 and P13 −P17 differ widely,
with differences partially over 10 %.

7 CONCLUSIONS AND FUTUREWORK
Making a justified statement about the quality of reversely engi-
neered models of real-time system components is often difficult.
With our novel measure it is now possible to determine differences
between the temporal behaviour of the actual system and that of
its synthesised model by comparing corresponding trace record-
ings. In particular, CoreTAna’s evaluation results via the proposed
benchmark and the industrial projects confirm that our measure
is capable of assessing reverse engineering tools. Our experience
with using the measure for impact analysis also shows that it can
be applied to other use cases in a very helpful way.

It is now possible to gradually extend CoreTAna with the help of
our measure, e.g., by considering hardware-specific characteristics
such as the duration of data accesses, and to continuously obtain
feedback on how well the actual software behaviour is reflected in
a reverse engineered model.
Currently, we are also gaining more practical experience by apply-
ing both CoreTAna and our measure within an industrial environ-
ment.
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