CoreTAna: A Trace Analyser for Reverse
Engineering Real-Time Software

Andreas Sailer*, Michael Deubzer**, Gerald Liittgen’ and Jiirgen Mottok*
*Laboratory of Safe and Secure Systems, Ostbayerische Technische Hochschule Regensburg, 93053 Regensburg, Germany
Email: {andreas.sailer, juergen.mottok } @oth-regensburg.de
**Timing-Architects Embedded Systems GmbH, 93055 Regensburg, Germany
Email: michael.deubzer @timing-architects.com
tSoftware Technologies Research Group, Otto-Friedrich-University Bamberg, 96045 Bamberg, Germany
Email: gerald.luettgen@swt-bamberg.de

Abstract—With the availability of the AUTOSAR standard,
model-driven methodologies are becoming established in the
automotive domain. However, the process of creating models of
existing system components is often difficult and time consuming,
especially when legacy code has to be re-used or information
about the exact timing behaviour is needed. In order to tackle
this reverse engineering problem, we present CoreTAna, a novel
tool that derives an AUTOSAR compliant model of a real-time
system from a dynamic analysis of its trace recordings. This
paper gives an overview of CoreTAna’s current features and
discusses its benefits for reverse engineering.

I. INTRODUCTION

Since the release of the Automotive Open System Architec-
ture (AUTOSAR) (http://www.autosar.org) V3.0 in 2007, the
standard has experienced gradual acceptance in the automotive
domain. One of its major goals is to define an open software
architecture for the development of real-time systems, as well
as a corresponding development methodology. Nevertheless,
the process of deriving a model is often difficult and time
consuming, especially when legacy code is involved [7]. The
consideration of timing behaviour is an extra challenge that
requires substantial effort [2], but is essential to the modelling
process. Indeed, due to the current shift towards multi-core
architectures in the automotive industry, OEMs are forced
to gain detailed knowledge about their legacy software, like
stimulation patterns of processes or the internal behaviour of
functions. Besides this, most tools that tackle the challenges
implied by this shift, such as finding an ideal task-to-core
allocation or task priority assignment, work model-based.
This paper presents CoreTAna', a novel prototypic tool that
reversely engineers an AUTOSAR compliant model, including
the exact timing behaviour of a real-time, single- or multi-
core system based on the dynamic analysis of a system’s trace
recordings. Such a model can either be derived automatically
from scratch or by enriching an existing model. The fact that

This work was partially funded by the ITEA2 project AMALTHEA4public
(ITEA2-13017) via the German Ministry of Education and Research (BMBF)
under funding code 011S14029L.

A screeencast of CoreTAna is available at https:/youtu.be/fbWEq90df90o
and a version with limited functionality is included in the open-source tool
chain AMALTHEA (http://amalthea-project.org).

CoreTAna creates a standard compliant artefact, which enables
further processing, e.g., system optimisation, sets our tool apart
from existing solutions.

Technically, CoreTAna processes events that can be traced
during the runtime of a system in a step-by-step manner. Every
event indicates a change in the internal state of that system
due to, e.g., function calls or data accesses. These pieces
of information are taken from trace recordings and used by
CoreTAna to deduce an abstraction of the system’s structure
and timing behaviour.

In combination with the TA Simulator (http://www.timing-
architects.com), a commercial tool for model-based timing
simulation used by many Tier-1’s and OEMs in the automotive
industry, CoreTAna generates an analysis report of how closely
the synthesised model reflects the actual system.

All parts of CoreTAna, including the reverse engineering, are
written in Java as an Eclipse plug-in. The implementation
uses libraries and technologies like EMF (http://www.eclipse.
org/modeling/em{f/) for handling the model, Apache Commons
Math (http://commons.apache.org) for the statistics and Col-
lections for data structures, and the open-source constraint
solver Choco (http://choco-solver.org) for solution finding.

Related Work

Although there are many tools available that analyse the
timing behaviour of a software system, e.g., TraceAlyzer
[5], these provide only a visual representation of the timing
information. Consequently, they lack the possibility to directly
synthesise a model of the actual system from an event trace,
which is essential for further processing including model-
based optimisation.

Kienle et al. [4] provide a good overview of software reverse
engineering in the domain of embedded systems and present
various techniques for obtaining specific artefacts, such as state
machines, architecture models, and simulation models.

Closest to our work is that of Huselius [3], whose goal is to
automatically create a probabilistic state machine model from
observations of an implemented real-time system. However,
the model allows only “a very high-level view of the system”
[3, p. 57]. Consequently, concepts like functions, operating



system events, and semaphores are not supported. Since these
concepts are essential for realising the use cases of interest to
industry (see Sec. III-A), the developed algorithms turn out
to be too limited to synthesise a model that can be used for
system optimisation.

Similar approaches to ours can be found in other domains,
such as that of distributed systems. For example, the Kieker
framework [14] allows one to monitor and analyse the runtime
behaviour of a web service. Although it supports dynamic
architecture discovery and performance measuring, a combi-
nation of both at the same time is not possible.

Another related research area is that of process mining, where
business processes are automatically discovered from event
logs recorded by information systems. There is a large array
of tools available for process mining including the de-facto
standard, open-source framework ProM [13]. However, their
biggest drawback is the missing notion of time.

II. PREREQUISITES

The following presents CoreTAna’s prerequisites: a spec-
ification of the required input, the trace recordings, and a
definition of the resulting model.

A. Trace Recordings

There are many sources from which information about a
system can be acquired [1]. However, working on the basis
of source code is infeasible in our case, because software
functionality might be provided by vendors that do not hand
over source code. Furthermore, static analyses lack the ability
to determine dynamic information like execution times. Since
the timing aspects of a system are of particular importance
for the intended use cases presented in Sec. III-A, CoreTAna
conducts a dynamic analysis based on trace recordings.
“Trace recording implies detection and storage of relevant
events during runtime, for later off-line analysis” [6, p. 1].
It is a commonly used technique in the development of real-
time systems, where the correctness of a system’s behaviour
depends not only on functional correctness but also on tempo-
ral accuracy. As a consequence, traditional debuggers cannot
be used to observe the runtime behaviour of software since
they require halting a system’s execution, which would result
in a significant alteration of timing behaviour [12]. Instead,
the occurring events, which represent changes in the state of
a system, are recorded during runtime. Possible state changes
include, e.g., the start or termination of a task execution, the
entry or return of a function, and the read or write access to
a variable. CoreTAna uses the open-source trace format BTF
and a complete list of events; a detailed specification can be
found in [11].

B. Model Definition

Changes in the internal state of a system are, in general,
caused by the application code under investigation interacting
with the operating system. Let us consider the basis of real-
time software, to which AUTOSAR refers as processes. Both
tasks and interrupt service routines (ISRs) are manifestations

of processes and represent the smallest units managed by a
system’s scheduler. In source code, processes are realised by
dedicated programming language constructs. During compile
time, such constructs become a sequence of instructions in a
system’s memory. Each of these sequences is bounded by a
starting address, by which it can be called for execution, and
a return instruction. Hence, each start and termination of a
process is equivalent to the instant in which the starting address
or, resp., the return instruction of this process is invoked. These
changes can be detected during runtime, and corresponding
events can be stored in a trace.

Since there is a close connection between system behaviour
and recorded trace events, we may also deduce information
the other way round, i.e., the inference of task priorities based
on observed task pre-emptions. CoreTAna uses exactly the
knowledge of this close relationship to describe the temporal
behaviour of a real-time system based on events recorded in
the traces.

The temporal behaviour of a system is influenced by multiple
factors. For example, the execution time of a process depends
not only on the number of instructions that have to be executed
within a process, but also on the scheduling algorithm. If a pro-
cess is pre-empted by another process, then the time between
its start and termination becomes longer, since the instructions
of the pre-empting process are executed in between. Based on
those pieces of information and together with the recurrence of
all processes, a high-level description of the system behaviour
can be synthesised. We call this high-level description the
process level, where processes are considered as black boxes.
A low-level description is possible on the function level, where
processes are considered by their side effects, such as data
accesses, rather than as black boxes. Because functions are
like processes, they have addresses in the system’s memory,
so their start and terminate events can also be recorded. Data
accesses during that time can thus be associated with a specific
function and their exact timings.

The control-flow within processes and functions may be se-
quential or branching. This is because different behaviours of
the same process or function can be observed. In the model
used by our tool, the control-flow is described by a so-called
call graph, where the dynamic behaviour can be expressed
either in a probabilistic or deterministic manner: the former
expresses the likelihood that specific behaviour is performed,
while the latter makes the behaviour dependent on specific
variable values.

III. CORETANA

This section elaborates on CoreTAna’s use cases, which
have been derived from industrial projects, and its internal
workings.

A. Use Cases

The goal of CoreTAna is to automatically synthesise a
model that contains detailed information about the timing
behaviour of the software under investigation, in addition to a
system description. Depending on the case of application, this



can be done from scratch or by enriching an existing model,
e.g., created by static analysis from source code. Starting with
the former, our tool can be used for the following purposes
at process and function level.

e Process Level: CoreTAna takes only the process events
from trace recordings into consideration. This means that each
process is considered as a black box, and thus the details of its
internal behaviour are unspecified. Elements generated in the
model are, e.g., the processes and their priorities, activations,
and execution times. The model can then be used to simulate
the system’s timing behaviour [8], or to optimise the task
priorities or the process-to-core allocation [10].

e Function Level: Here, CoreTAna takes all pieces of in-
formation into consideration so that a detailed description of
the whole system can be extracted. This includes, e.g., the
call graphs, the called functions and their data and semaphore
accesses, and their execution times. In doing so, the results of
a simulation or optimisation conducted on a model typically
become more accurate. Furthermore, additional characteristics
of the system’s performance, e.g., communication overheads
and data dependencies, can be examined and considered for
further system optimisation, like the splitting of tasks or the
sequencing of functions within processes. For the latter, the
generated model is used to rearrange function calls within
processes to achieve better performance and without affecting
the program logic.

CoreTAna can also enrich an existing model by analysing
individual dynamic aspects of the system and make it more
precise. Corresponding use cases, that have arisen from indus-
trial projects, are the following.

o System Overhead: Based on the process events read from a
trace, it is possible to model the scheduling overhead, i.e., the
time that the system takes to switch contexts from one process
to another. At function level, the overhead can be determined
even more precisely by taking the time between the return
of a function and the entry of the succeeding function into
account, which is not consumed by the application itself but
by the underlying system. In this way, a detailed performance
specification of the system can be extracted automatically.

o Stimulation Patterns: Embedded systems react to external
events from the environment. As a consequence, information
on the appearing external events and their frequencies are
needed to make a precise statement about the system’s actual
timing behaviour. For this reason, stimulations of processes
are analysed, and temporal patterns, such as jitters or bursts,
are derived.

o Execution Times: An exact picture of the execution times
for both processes and functions can be derived with the
help of dynamic analysis. These times may be modelled in
a dynamic manner by fitting them to statistical distributions,
e.g., uniform or normal distributions.

o Internal Behaviour: CoreTAna can synthesise a function’s
internal behaviour including the points in time when actions
happen, like data or semaphore accesses, and the assigned
values during those instants.

e Call Graph: The control flows of processes and functions
are extracted by considering the observed behaviour of the
individual instances, and creating a call graph structure with
probabilistic or data-driven conditional branches.

B. Overview of Approach

CoreTAna defines an approach to handle the aforementioned
use cases, which always starts with a system’s captured
hardware traces. Because vendors use their own trace format,
the traces are first transformed into the BTF trace format [11],
which provides a common interface for CoreTAna. Because
reverse engineering individual pieces for the model requires
only a specific subset of trace events, each trace is stored in
a database, which makes selective processing faster.

Next is the reverse engineering: inputs are trace recordings
from the system and already available pieces of information
of the model, e.g., the program structure derived from static
analysis. As a result, a model filled with this information
is obtained. This model is exercised by a timing simulator,
e.g., the TA Simulator (http://www.timing-architects.com), so
that trace recordings that reflect the dynamic behaviour of the
reverse engineered model can be generated.

Finally, to present to the user an indication of the quality
of the resulting model, the original traces and the generated
simulation traces are compared. Based on a multitude of dif-
ferent real-time metrics, such as response times and execution
times, a visual comparison of the different inputs and outputs
is offered to the user. Fig. 1 shows a screen shot of CoreTAna
when plugged into the commercial TA Tool Suite.

An extension of the above approach can also be used to
validate the algorithms of our reverse engineering [9].

g

6

@

=

3

o

o

ud

'Sy

z |
71 7.z 7.3 7.4 7.5 7.6 7.7 7.8 7.9 & &1 8.2 8.3
Response Time [ms]

[ Properties | ] walidation View | 5% RE Frocess Table 52 ]@ RE Runnable Tat:le| E
Search: | Filter settings | Enieble filker: °
Process Entities = I Priarik: I RT min [ms] | RT awg [ms] | RT max ms]I

=25 T_80M3 2 0.08001 0.03z292 0.04921

7.08425
7.00424

7.66518
7.69510

8.27507
8.32725

‘EE 20150222-154440
g 20151104-160342

Fig. 1: CoreTAna’s user interface shows, in its lower part, the metrics
for processes and functions from the used sources, which are the
original trace recordings and the simulation traces of the reverse
engineered model. In the upper part, the values for the determined
metrics are compared using a histogram.

C. Reverse Engineering

At the beginning of our reverse engineering approach and
for each trace recording, all events are processed in chrono-
logical order. This allows us to reason about event sequences,
such as context switches from one process to another. In order
to achieve a fast analysis, only the events that are relevant




to the reverse engineering of a specific part of the model
are considered. For example, only the activation events are
important for the stimulation-pattern use case.

In the next step, the pieces of information collected from
the trace events are processed. For example, each previously
detected pre-emption event results in an integer linear pro-
gramming (ILP) constraint that expresses the relation between
the involved processes. An ILP solver is then employed to
find a solution of the resulting constraint system, so as to
make a statement about the priorities of the processes and of
the scheduling algorithm employed by the system.

Finally, all obtained pieces of information are used to build
the model. In cases where there are multiple ways to model
the observed behaviour, such as the representation of periodic
activations by a sequence of single activations, the alternatives
are assessed in the order of their universality, starting with the
most specific one. A detailed description of the algorithms
employed by our reverse engineering approach can be found
in [9] and [10].

IV. EXEMPLARY INDUSTRIAL STUDIES

The CoreTAna prototype is currently being evaluated within
different industrial projects in the automotive domain. Two
applications are briefly described here.

The scope of the first application is a model-based optimisation
of AUTOSAR-compliant application software. The system
under investigation is a simple braking system consisting of 28
tasks and almost 200 functions. At first, the system’s structural
information, including the tasks, their calling functions, and
their data and semaphore accesses, was taken from AUTOSAR
description templates and corresponding source code. Core-
TAna was then used to refine this structural information with
information about the system’s dynamic behaviour, including
the execution times and call probabilities of functions.
Because all of the system’s tasks are periodic, a single trace
recording spanning at least one hyper-period, consisting of
roughly 500,000 events, was analysed for the refinement of the
static model. A comparison of real-time metrics, e.g., activate-
to-activates and response times of tasks determined from
both simulation traces of the reverse engineered model and
hardware traces, confirmed that the resulting model reflects the
actual system well. The industrial partner has successfully used
an automated design-space exploration tool on the synthesised
model to optimise the system’s task-to-core allocations, so as
to meet the timing constraints demanded of the system.

The scope of the second application is the analysis of a
software system that has been ported to a multi-core archi-
tecture. The system under investigation is a mature engine
management system that consists of 75 processes. A trace
covering 6.5 seconds of the system’s runtime behaviour and
containing roughly one million process events was recorded
for our reverse engineering. CoreTAna was then used to
automatically generate (from scratch) a model of the system’s
timing behaviour on the process level, which includes the
system’s processes and their priorities, activations, and exe-
cution times. In this application, the activations of ISRs were

of special interest, since these depend on the dynamics of
the system’s environment, e.g., the engine speed. CoreTAna,
infers recurring activation patterns for the processes based
on the activations observed during runtime. Because of this,
the industrial partner has been able to replay the recorded
behaviour using a timing simulation and also analyse the
presumed system behaviour.

V. CONCLUSIONS AND FUTURE WORK

While there are many tools available that can acquire
detailed knowledge about real-time software, CoreTAna stands
out in that it reversely engineers an accurate, timed, and
AUTOSAR-compliant model from given hardware traces. This
is of benefit not only for comprehending legacy software, but
in particular in the context of the challenges caused by the
current shift towards multi-core architectures in the automotive
industry. An evaluation of our prototypic tool is ongoing, but
feedback from our industrial partners has so far been positive.
Future research will focus on the detection of hardware-
specific characteristics, such as the duration of data accesses,
S0 as to obtain a more precise representation of the actual
software behaviour.

REFERENCES

[1] J. Andersson et al., “Extracting Simulation Models from Complex
Embedded Real-Time Systems,” in Intl. Conf. on Software Engineering
Advances. 1EEE, 2006.

[2] S. Anssi et al., “Enabling Scheduling Analysis for AUTOSAR Systems,”
in 14th IEEE Intl. Symp. on Object/Component/Service-oriented Real-
time Distributed Computing. 1EEE, 2011, pp. 152-159.

[3] J. Huselius, “Reverse Engineering of Legacy Real-Time Systems: An
Automated Approach Based on Execution-Time Recording,” Ph.D. dis-
sertation, IDT, Miilardalen Univ., 2007.

[4] H. M. Kienle et al., “Software Reverse Engineering in the Domain
of Complex Embedded Systems,” in Reverse Engineering - Recent
Advances and Applications. InTech, 2012.

[51 J. Kraft, “Enabling Timing Analysis of Complex Embedded Software
Systems,” Ph.D. dissertation, IDT, Milardalen Univ., 2010.

[6] J. Kraft et al., “Trace Recording for Embedded Systems: Lessons
Learned from Five Industrial Projects,” in Ist Intl. Conf. on Runtime
Verification, no. 3. Springer, 2010, pp. 315-329.

[71 D. Kum et al., “AUTOSAR Migration from Existing Automotive Soft-

ware,” in Intl. Conf. on Control, Automation and Systems. 1EEE, 2008,
pp- 558-562.

[81 A. Sailer. (2014, August) Timing Simulation of Multi-
Core Systems based on AUTOSAR Models. [Online]. Avail-

able: http://www.timing-architects.com/fileadmin/user_upload/Log-In_

Miscellaneous/Whitepaper_Timing_Simulation_ AUTOSAR.pdf
[9] A. Sailer, “Towards an Automated Reverse Engineering of Design
Models from Trace Recordings,” in 44. Jahrestagung der Gesellschaft
fiir Informatik.  GI, 2014, pp. 2233-2245.
A. Sailer et al., “Optimizing the Task Allocation Step for Multi-Core
Processors within AUTOSAR,” in Intl. Conf. on Applied Electronics.
IEEE, 2013, pp. 247-252.
Timing-Architects Embedded Systems GmbH. (2014, April) BTF-
Specification (Version 2.1.3). [Online]. Available: https://wiki.eclipse.
org/images/e/e6/TA_BTF_Specification_2.1.3_Eclipse_Auto_IWG.pdf
J. Triimper et al., “Maintenance of Embedded Systems: Supporting Pro-
gram Comprehension Using Dynamic Analysis,” in 2nd Intl. Workshop
on Software Engineering for Embedded Systems. 1EEE, 2012, pp. 58—
64.
W. M. P. van der Aalst, Process Mining - Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.
A. van Hoorn et al., “Kieker: A Framework for Application Performance
Monitoring and Dynamic Software Analysis,” in 3rd ACM/SPEC Intl.
Conf. on Performance Engineering. ACM, 2012, pp. 247-248.

[10]

(1]

[12]

[13]

[14]



