
Verifying Compiled File System Code

Jan Tobias Mühlberg and Gerald Lüttgen

Software Engineering and Programming Languages Research Group,
University of Bamberg, 96052 Bamberg, Germany.

{jan-tobias.muehlberg, gerald.luettgen}@swt-bamberg.de

Abstract. This paper presents a case study on retrospective veri�ca-
tion of the Linux Virtual File System (VFS), which is aimed at checking
for violations of API usage rules and memory properties. Since VFS
maintains dynamic data structures and is written in a mixture of C and
inlined assembly, modern software model checkers cannot be applied.
Our case study centres around our novel, veri�cation tool, the SOCA
Veri�er, which symbolically executes and analyses compiled code. We
describe how this veri�er deals with complex program features such as
memory access, pointer aliasing and computed jumps, while reducing
manual modelling to the bare minimum. Our results show that the SOCA
Veri�er is capable of reliably analysing complex operating system com-
ponents such as the Linux VFS, thereby going beyond traditional testing
tools and into niches that current software model checkers do not reach.

1 Introduction

In the context of the grand challenge proposed to the program veri�cation com-
munity by Hoare [16], a mini challenge of building a veri�able �le system (FS)
as a stepping stone was presented by Joshi and Holzmann [17]. As FSs are vital
components of operating system kernels, bugs in their code can have disastrous
consequences. Unhandled failure may render all application-level programs un-
safe and gives way to serious security problems.

This paper applies an analytical approach to verifying an implementation of
the Virtual File System (VFS) layer [5] within the Linux operating system kernel,
using our novel, automated Symbolic Object-Code Analysis (SOCA) technique.
As described in Sec. 2, the VFS layer is of particular interest since it provides
support for implementing concrete FSs such as EXT3 and ReiserFS [5], and
encapsulates the details on top of which C POSIX libraries are de�ned; such
libraries in turn provide functions, e.g., open and remove, that facilitate �le
access. Our case study aims at checking for violations of API usage rules and
memory properties within VFS, and equally at assessing the feasibility of our
SOCA technique to reliably analysing intricate operating system components
such as the Linux VFS implementation. We are particularly interested in �nding



out to what degree the automatic veri�cation of complex properties involving
pointer safety and the correct usage of locking APIs within VFS is possible.1

Since the Linux VFS implementation consists of more than 65k lines of com-
plex C code including inlined assembly and linked dynamic data structures,
its veri�cation is not supported by current software model checkers such as
BLAST [15] and CBMC [8]. Thus, previous work by us focused on the ques-
tion whether and how an appropriate model of the VFS can be reverse engi-
neered from its implementation, and whether meaningful veri�cation results can
be obtained using model checking on the extracted model [13]. This proved to
be a challenging task since automated techniques for extracting models from C
source code do not deal with important aspects of operating system code, includ-
ing macros, dynamic memory allocation, function pointers, architecture-speci�c
and compiler-speci�c code and inlined assembly. Much time was spent in [13] on
extracting a model by hand and validating this model via reviews and simula-
tion runs, before it could be proved to respect data-integrity properties and to
be deadlock-free using the SMART model checker [7]. Our SOCA technique ad-
dresses these shortcomings, providing automated veri�cation support that does
away with manual modelling and ad-hoc pointer analysis.

The contributions of this paper are threefold. In Sec. 3 we summarise our
SOCA technique for automated analysis of compiled programs by means of
bounded symbolic execution, using the SMT solver Yices [11] as execution and
veri�cation engine. Analysing the object code enables us to bypass limitations
of software model checkers with respect to the accepted input language, so that
analysing code sections written in inline assembly does not represent a bar-
rier for us. Our technique is especially designed for programs employing com-
plex heap-allocated data structures and provides full counterexample paths for
each bug found. While generating counterexamples is often impossible for static
analysis techniques due to precision loss in join and widening operations [14],
traditional model checking requires the manual construction of models or the
use of techniques such as predicate abstraction [3] which do not work well in
the presence of heap-allocated data structures. Hence, symbolic execution is our
method of choice over static analysis and model checking. Despite only employ-
ing path-sensitive and heap-aware slicing, the SOCA technique scales well for
the Linux VFS. Moreover, manual modelling e�orts are reduced to a bare mini-
mum, namely to the abstract speci�cation of a program's execution context that
speci�es input and initial heap content.

The paper's second contribution lies in demonstrating how veri�cation prop-
erties can be expressed for symbolic object-code analysis, for which two di�erent
approaches are employed in Sec. 4. Firstly, properties may be presented to the
SMT solver as assertions on the program's register contents at each execution
point. Alternatively, the program may be instrumented during its symbolic exe-
cution, by adding test and branch instructions to its control �ow graph. Verify-

1 Doing so is in the remit of Joshi and Holzmann's mini challenge: "researchers
could choose any of several existing open-source �lesystems and attempt to verify
them" [17].



ing a particular property then involves checking for the reachability of a speci�c
code section. While the �rst approach allows us to express safety properties on
pointers, we use the latter technique for checking preconditions of kernel API
functions re�ecting particular API usage rules.

Our last, but not least, contribution is the formal veri�cation of a group
of commonly used VFS functions, namely those for creating and removing �les
and directories, which we report in Sec. 5. By applying symbolic execution and
leaving the parameters of these functions as unspeci�ed as possible, our analysis
covers low-probability scenarios. In particular, we look for program points where
pointers holding invalid values may be de-referenced or where the violation of
API usage rules may cause the VFS to deadlock. The experimental results show
that the SOCA technique works well on the Linux VFS and that it produces
a relatively low number of false-positive counterexamples while achieving high
code coverage. Therefore, the absence of any �agged errors contributes to raising
con�dence in the correctness of the Linux VFS implementation.

Fig. 1. VFS environment and data structures, where arrows denote pointers.



2 The Linux Virtual File System

This section introduces the Linux FS architecture and, in particular, the Virtual
File System layer; the reader is referred to [5] for a more detailed description.
An overview of the VFS internals and data structures is presented in Fig. 1.

The Linux FS architecture consists of multiple layers. The most abstract is
the application layer which refers to the user programs; this is shown as "process"
in Fig. 1. Its functionality is constructed on top of the �le access mechanisms
o�ered by the C POSIX library, which provides functions facilitating �le access
as de�ned by the POSIX Standard, e.g., open �le open(), delete �le remove(),
make directory mkdir() and remove directory rmdir(). The next lower layer is
the system call interface which propagates requests for system resources from
applications in user space to the kernel, e.g., to the VFS.

The Virtual File System layer is an indirection layer, providing the data
structures and interfaces needed for system calls related to a standard Unix FS.
It de�nes a common interface that allows many kinds of speci�c FSs to coexist,
and enables the default processing needed to maintain the internal representa-
tion of a FS. The VFS runs in a highly concurrent environment as its interface
functions may be invoked by multiple, concurrently executing application pro-
grams. Therefore, mechanisms implementing mutual exclusion are widely used
to prevent inconsistencies in VFS data structures, such as atomic values, mu-
texes, reader-writer semaphores and spinlocks. In addition, several global locks
are employed to protect the global lists of data structures while entries are ap-
pended or removed. To serve a single system call, typically multiple locks have
to be obtained and released in the right order. Failing to do so could drive the
VFS into a deadlock or an unde�ned state, e�ectively crashing the operating
system.

Each speci�c �le system, such as EXT3 and ReiserFS, then implements the
processing supporting the FS and operates on the data structures of the VFS
layer. Its purpose is to provide an interface between the internal view of the FS
and physical media, by translating between the VFS data structures and their
on-disk representations. Finally, the lowest layer contains device drivers which
implement access control for physical media.

The most relevant data structures in the VFS are superblocks, dentries and
inodes. As shown in Fig. 1, all of them are linked by various pointers inside the
structures. In addition, the data structures consist of sets of function pointers
that are used to transparently access functionality provided by the underlying FS
implementation. The most frequently used data objects in the VFS are dentries.
The dentry data structures collectively describe the structure of all currently
mounted FSs. Each dentry contains a �le's name, a link to the dentry's parent,
the list of subdirectories and siblings, hard link information, mount information,
a link to the relevant super block and locking structures. It also carries a reference
to its corresponding inode and a reference count that re�ects the number of
processes currently using the dentry. Dentries are hashed to speed up access; the
hashed dentries are referred to as the Directory Entry Cache, or dcache, which
is frequently consulted when resolving path names.



In our initial veri�cation attempt to the VFS [13], our work was focused
on manually abstracting these data structures and their associated control �ow,
so as to obtain a su�ciently small model for automated veri�cation via model
checking. Hence, much e�ort was put into discovering relations between the
di�erent data structures employed by the VFS [13]. The focus of this paper di�ers
in the sense that no models of data structures, memory layout or control �ow are
derived from the implementation. Instead, each path of the compiled program is
translated automatically into a corresponding constraint system which is then
analysed by an SMT solver, thus fully automating the veri�cation process.

3 The SOCA Technique

One of the disadvantages of today's model checking tools results from their re-
striction to the analysis of source code. They usually ignore powerful program-
ming constructs such as pointer arithmetic, pointer aliasing, function pointers
and computed jumps. Furthermore they su�er from not being able to consider
the e�ects of program components that are not available in the desired form of
source code: functions linked in from libraries and the use of inlined assembly are
common examples for this. In addition, many errors, especially in operating sys-
tem components, arise because of platform-speci�c and compiler-speci�c details
such as the byte-alignment in memory and registers, memory-layout, padding
between structure �elds and o�sets [1]. Thus, software model checkers including
Blast [15] and SLAM/SDV [4] assume either that the program under consid-
eration "does not have wild pointers" [2] or, as we show in [20], perform poorly
when analysing such software.

Analysis outline. In this paper we employ a novel approach to verifying prop-
erties in software components based on bounded path-sensitive symbolic execution
of compiled and linked programs as illustrated in Fig. 2. As shown in the illus-
tration, we automatically translate a program given in its object code into an
intermediate representation (IR), borrowed from the Valgrind binary instrumen-
tation framework [21], by iteratively following each program path and resolving
all target addresses of computed jumps and return statements. From the IR we
generate systems of bit-vector constraints for each execution path, which re�ect
the path-relevant register and heap contents of the program under analysis. We
then employ the Yices SMT solver [11] to check the satis�ability of the resulting
constraint systems and thus the validity of the path. This approach also allows
us to add in a range of pointer safety properties, e.g., whether a pointer points
to an allocated address, as simple assertions over those constraint systems, while
more complex properties such as preconditions for functions can be expressed by
instrumenting the program. These instrumentations are also performed on the
IR, and whence access to the source code is not required.

In contrast to other methods for software veri�cation checking, our technique
does not employ program abstraction but only path-sensitive and heap-aware
program slicing, which means that our slices are not computed over the entire



Fig. 2. Illustration of the SOCA technique.

program but only over a particular path during execution. Furthermore, we do
not consider the heap as one big data object but compute slices in respect of
those heap locations that are data-�ow dependents of a location in a program
path for which a property is being checked. A safe over-approximation is used for
computing these slices. In addition, our technique leaves most of the program's
input (initially) unspeci�ed in order to allow the SMT solver to search for subtle
inputs that will drive the program into an error. Obviously, our analysis by
symbolic execution cannot be complete: the search space has to be bounded
since the total number of execution paths and the number of instructions per
path in a program is potentially in�nite. However, our experimental results on
the Linux VFS reported in Sec. 5 will show that this boundedness is not a
restriction in practice: many programs are relatively "shallow" and may still be
analysed either exhaustively or up to an acceptable depth.

Valgrind's IR language. Valgrind's IR language is a typed assembly language
in static-single-assignment form [9, 19] using temporary registers and some mem-



ory for storing the guest state, i.e., the registers available in the architecture for
which the program under analysis is compiled. The language consists of a set of
basic blocks containing a group of statements such that all transfers of control
to the block are to the �rst statement in the group. Once the block has been
entered, the statements in that block are executed sequentially.

IA32 Assembly IR Instructions

xor %eax,%eax t9 = GET:I32(0) ;; t9 := eax

t8 = GET:I32(0) ;; t8 := eax

t7 = Xor32(t9,t8) ;; t7 := t9 xor t8

PUT(0) = t7 ;; eax := t7

Fig. 3. Intel assembly instruction and its respective IR statements (types omitted).

In Valgrind's IR all arithmetic expressions including address arithmetic are
decomposed into simple expressions with a �xed number of operands using tem-
porary registers for intermediate results. Furthermore, all load and store opera-
tions to memory cells and to the guest state are made explicit. While normalising
a program by transforming it into its IR increases the number of instructions, it
reduces the complexity of the program's representation because IR instructions
are relatively simple and side-e�ect free. An example for an assembly statement
and its respective IR statements is given in Fig. 3. The �gure shows how the xor
statement is decomposed into explicitly loading (GET) the source register 0 into
the temporary registers t8 and t9, and performing the xor operation followed
by storing (PUT) the result back to the guest state.

IR Instruction Constraint Representation

t9 = GET:I32(0) (define t9::(bitvector 32) (bv-concat

(bv-concat r3 r2) (bv-concat r1 r0))

t8 = GET:I32(0) (define t8::(bitvector 32) (bv-concat

(bv-concat r3 r2) (bv-concat r1 r0))

t7 = Xor32(t9,t8) (define t7::(bitvector 32) (bv-xor t9 t8))

PUT(0) = t7 (define r0::(bitvector 8)(bv-extract 31 24 t7))

(define r1::(bitvector 8)(bv-extract 23 16 t7))

(define r2::(bitvector 8)(bv-extract 15 8 t7))

(define r3::(bitvector 8)(bv-extract 7 0 t7))

Fig. 4. IR statements from Fig. 3 and their constraint representation in Yices.

From IR to bit-vector constraints. Having a sequence of instructions de-
coded in the above way makes it relatively easy to generate a bit-vector con-
straint system for that sequence. An example with respect to the above IR



instructions is given in Fig. 4, illustrating how the GET instruction can be imple-
mented in Yices as the concatenation (bv-concat) of byte-aligned CPU registers
(i.e., the parameter of the GET:I32 instruction, which is denoted as r0 to r3 in
the constraint representation) from the guest state to word-aligned temporary
registers. The PUT instruction is handled as bit-vector extraction (bv-extract
<end> <start> <source>), respectively.

Note that CPU registers are assigned in "reverse byte order" to the temporary
registers, i.e. with the least signi�cant 8 bits in r0 and the most signi�cant
bits in r3. This is because the above constraints are generated from a binary
compiled for Intel 32-bit CPUs (IA32), while arithmetic expressions in Yices
are implemented for bit vectors that have the most signi�cant bit at position 0.
Since access operations to the guest state may be 8, 16, 32 or 64 bit aligned, we
have to use two encodings here.

Furthermore, the IR is in static-single-assignment form only for the tempo-
rary registers within a single IR block. Hence, we have to be more precise when
generating variable names for Yices: we simply append the instruction's location
and the invocation number to each variable. Finally, since our analysis handles
loops by unrolling them while exploring a path, a single instruction might appear
multiple times in the path.

Heap-aware program slicing. Most di�culties in program analysis arise from
the need to analyse accesses to a program's heap and stack. Valgrind's IR lan-
guage provides two instructions, LD and ST, for loading and storing values from
and to memory, respectively. While these instructions are in principle as easily
mapped to constraints as the above GET and PUT instructions, handling them
in the analysis phase requires care: including the entire 32-bit address space
of a program into the constraint systems and performing access operation on
pointer variables that hold potentially symbolic address values quickly becomes
infeasible. Our approach tackles this problem by employing heap-aware program
slicing : for each pointer used along a program's execution path we compute its
potential target address range. When checking a property regarding some value
obtained by de-referencing a particular pointer p, we only add those store in-
structions and their dependents to the constraint system that may have updated
the value pointed to by p. The slicing mechanism used here is inspired by the
iterprocedural algorithm presented in [12]; our adaptation focuses on computing
dynamic slices over a given program path.

4 VFS Execution Environment and Properties

This section discusses our model of the VFS execution environment and also
presents the pointer safety properties and locking API usage rules relevant for
the Linux VFS implementation.

Modelling the environment. One problem for program veri�cation arises
when program functions make use of an external data environment, i.e., de-
reference pointers to data structures that are not created by the function under



analysis. This is particularly common in case of the VFS as the majority of the
VFS code operates on dentries that are assigned either when an FS is mounted
or during previous path-lookup operations. The problem becomes particularly
awkward since all these data structures are organised as linked lists which contain
function pointers for accessing the speci�c �le system underlying the VFS layer.
This is because symbolic execution can easily cope with symbolic data objects
of which only a pointer to the beginning of the structure is de�ned, while the
remainder of the structure is left unspeci�ed. However, in the case of linked data
structures, some unspeci�ed component of a given data object may be used as a
pointer to another object. Treating the pointer symbolically will not only result
in many false warnings since the pointer may literally point to any memory
location, but may also dramatically increase the search space.

In our case study we "close" the VFS system to be analysed by de�ning
a small number of dentries and associated data structures as static compo-
nents of the kernel binary. As far as necessary, these data structures are di-
rectly de�ned in the VFS C source code by assigning a static task_struct

(cf. include/linux/sched.h in the Linux source hierarchy) de�ning the logi-
cal context, including the working directory and a list of 15 dentries describing
the FS's mount point and a simple directory hierarchy. The data objects are
partially initialised by a handcrafted function that is used as a preamble in our
analysis process. Note that the actual parameters to the VFS interface functions
and the majority of data �elds in the prede�ned data objects are still treated
as symbolic values. Our modelling of the external environment is conducted by
successively adding details to the initial memory state while carefully avoiding
to be over-restrictive. We only intend to reduce the number of false warnings by
eliminating impossible initial memory states to be considered in our analysis.

Pointer safety properties. We check three basic safety properties for every
pointer that is de-referenced along an execution path:

1. The pointer does not hold value NULL.
2. The pointer only points to allocated data objects.
3. If the pointer is used as a jump target (call, return or computed jump), it

may only point inside the .text section of the kernel binary, which holds the
actual program code. Obviously, the program binary also has other sections
such as the symbol table or static data which are, however, invalid as jump
targets.

A check of the above properties on the IR is performed by computing an over-
approximation of the address range the pointer may point to. That is, we assume
that the pointer may address any memory cell between the maximal and mini-
mal satisfying model determined by the constraint system for that pointer. For
programs involving only statically assigned data we can directly evaluate the
above properties by checking (a) whether the address range is assigned in the
program binary and (b) whether it belongs to appropriate program sections for
the respective use of the pointer. If dynamic memory allocation is involved, we



keep track of objects and their respective locations currently allocated within
the program's constraint representation. Checking the above properties is then
performed as an assertion check within Yices.

Locking API usage rules. Being designed for a range of multiprocessor plat-
forms, the Linux kernel is inherently concurrent. Hence, it employs various mech-
anisms implementing mutual exclusion, and primarily locking, to protect concur-
rently running kernel threads. The locking APIs used within the VFS are mainly
spinlocks and semaphores, and each of the VFS structures contains pointers to
at least one lock. In addition to these per-object locks, there exist global locks
to protect access to lists of objects.

At a high level of abstraction, all locking APIs work in a similar fashion. If
a kernel thread attempts to acquire a particular lock, it waits for this lock to
become available, acquires it and performs its critical actions, and then releases
the lock. As a result of this, a thread will wait forever if it attempts to acquire
the same lock twice without releasing it in-between. Checking for the absence of
this problem in single- and multi-threaded programs has recently attracted a lot
of attention in the automated veri�cation community [4, 15, 24, 23]. For software
systems like the Linux kernel with its �ne grained locking approach, conducting
these checks is non-trivial since locks are passed by reference and due to the vast
number of locks employed. A precise analysis of pointer aliasing relationships
would be required to prove programs to be free of this sort of errors, which is
known to be an undecidable problem in general.

In our approach, locking properties are checked by instrumenting locking
related functions in their IR in such a way that a guarded jump is added to
the control �ow of the program, passing control to a designated "error location"
whenever acquiring an already locked lock structure is attempted or an unlocked
lock is released. Our symbolic analysis is then used to evaluate whether the guard
may possibly be true or not, and an error message for the path is raised if the
error location is reachable.

5 Applying the SOCA Veri�er to the VFS

The current implementation of the SOCA Veri�er is written in C, mainly for
facilitating integration with the Valgrind VEX library [21]. For applying it to
the VFS, we used the VFS implementation of version 2.6.18.8 of the Linux kernel,
compiled with gcc 4.3.3 for the Intel Pentium-Pro architecture. All con�guration
options of the kernel were left as defaults. Our experiments were then carried
out on an Intel Core 2 Quad machine with 2.83 GHz and 4 GBytes of RAM,
typically analysing three VFS functions in parallel.

The bounds for the SOCA Veri�er were set to a maximum of 1000 paths to
be analysed, where a single program location may appear at most 1000 times
per path, thereby e�ectively bounding the number of loop iterations or recur-
sions to that depth. The Yices SMT solver was set to a timeout of 60 seconds
per invocation, which was never reached in our experiments. All these bounds



were chosen so that code coverage is maximised, while execution time is kept
reasonably small.

Statistics and performance. Our experimental results are summarised in
three tables. Table 1 provides a statistical overview of the VFS code. We report
the total number of machine instructions that have been translated into IR by
following each function's control �ow. The lines in source code give an estimate
of the checked implementation's size as the size of the C functions involved (ex-
cluding type de�nitions and header �les, macro de�nitions, etc.). The next values
in the table present the numbers of paths and, respectively, the lengths of the
shortest and longest paths, in instructions explored by our veri�er with respect
to the calling context of the analysed function. The pointer and locking opera-
tions resemble the numbers of pointer de-references and lock/unlock operations
encountered along the analysed paths, respectively.

Table 1. Experimental Results I: Code statistics by VFS function analysed

creat unlink mkdir rmdir rename totals

no. of instructions 3602 3143 3907 3419 4929 19000
lines in source code 1.4k 1.2k 1.6k 1.4k 2k 7.6k
no. of paths 279 149 212 318 431 1389
min. path length 91 41 87 72 72 41
max. path length 4138 3218 5319 3017 5910 5910
pointer operations 2537 2190 2671 2466 4387 14251
concrete 2356 2134 2458 2368 3989 13305
symbolic 181 56 213 98 398 946
locking operations 287 231 391 319 451 1679

Table 2. Experimental Results II: SOCA Veri�er statistics

creat unlink mkdir rmdir rename totals

total time 2h27m 1h22m 2h42m 1h34m 3h45m 11h50m
max. memory (SOCA) 1.03G 752M 1.15G 743M 1.41G 1.41G
max. mem. (SOCA + Yices) 1.79G 800M 1.92G 791M 2.18G 2.18G
exec. bound exhausted X X X X X X
path bound exhausted - - - - - -
paths reaching end 154 112 165 215 182 828
assertions checked 13.4k 12.4k 15.8k 11.8k 21.9k 75.3k
ratio of failed checks 0.043 0.012 0.041 0.019 0.049 0.033



Table 3. Experimental Results III: Yices statistics

creat unlink mkdir rmdir rename totals

total Yices calls 27533 21067 31057 20988 44439 145k
total time spent in Yices 2h22m 1h11m 2h22m 1h24m 3h8m 10h28m
average time 311ms 192ms 271ms 198ms 376ms 248ms
standard deviation 3.7s 0.9s 5.2s 1.4s 5.9s 4.8s
max CS size in vars 450k 97k 450k 95k 450k 450k
average CS size in vars 2844 2871 2871 2862 2939 2877
standard deviation 14619 8948 14618 8898 16052 13521
max. memory consumption 766M 48M 766M 48M 766M 766M

In Table 2 we report the performance of the SOCA Veri�er, showing the
total time needed for analysing the kernel functions and our tool's maximum
memory consumption. The maximum memory consumption of our tool together
with the Yices solver engine is an estimate generated by summing up our tool's
and Yices' maximum memory usage as given in Table 3; however, these may not
necessarily hit their peak memory at the same time. The next two rows denote
whether the analysis bounds were reached. We also report the number of paths
reaching the end of the function analysed, the total number of assertions checked
and the percentage of failed checks. Paths not reaching a return statement in
the target function are terminated either due to bound exhaustion, or due to a
property being violated that does not permit continuation of that path.

Finally, we outline in Table 3 the usage and behaviour of the SMT solver
Yices, by reporting the number of times Yices was called when checking a par-
ticular VFS function and the total and average time spent for SMT solving. We
also give the size of the checked constraint systems (CS) in boolean variables, as
output by Yices and show the maximum amount of memory used by Yices.

Our analyses usually achieve a statement and condition coverage of 60% to
80% in this case study.2 The main reason for this, at-�rst-sight low percentage,
is that VFS functions often implement multiple di�erent behaviours of which
only a few are reachable for the given execution environment. For example, the
implementation of the creat() system call resides mainly in the open_namei()
function alongside di�erent behaviours implementing the open() system call.
Taking this into account, the coverage achieved by the SOCA Veri�er is remark-
ably high when compared to testing-based approaches.

It should be noted that the above tables can only give a glimpse of the total
scale of experiments that we have conducted for this case study.2 Depending on
how detailed or coarse the execution environment is speci�ed, we experienced run
times reaching from a few minutes up to several days, achieving di�erent levels of
statement and condition coverage (ranging from 20% to 80%) and di�erent error

2 A complete account of the experiments will be published in the �rst author's forth-
coming PhD thesis and on the SOCA website located at http://swt-bamberg.de/
soca/.



ratios (ranging from 0 to 0.5). The discriminating value in all these experiments is
the total number of "symbolic" pointers; a symbolic pointer is a pointer where the
exact value cannot be determined at the point at which it is de-referenced. This
usually happens when the entire pointer or some component of it (e.g., its base
or o�set) is retrieved from an incompletely speci�ed component of the execution
environment or directly from the input to the analysed function. While these
symbolic values are generally bad for the performance of the SOCA technique
since slicing is rendered ine�cient and search spaces are increased, they are
important for driving the analysis into paths that may be hard to reach in
testing-based approaches to system validation.

Errors and false positives. As our veri�cation technique does not include
infeasible paths, all errors detected by the SOCA Veri�er can actually be repro-
duced in the code, provided that other kernel components match the behaviour
of our employed execution environment.

In advance of the experiments reported in this paper, we had tested our
implementation of the SOCA technique on a variety of hand-crafted examples
and also on the Verisec suite [18] which provides 280 examples of bu�er over�ow
vulnerabilities taken from application programs. In all these cases we experienced
low false-positive rates of less than 20%. However, as these examples represent
closed systems not using external data objects, they are handled more e�ciently
by the SOCA Veri�er than the VFS which makes heavy use of external data
objects.

Our above result tables show that our analysis approach detects a number of
errors of about 3% of the total number of checked assertions in each VFS func-
tion analysed. We have inspected each reported error in detail and discovered
that all of them are due to an imprecisely speci�ed execution environment. As
explained in the previous section, specifying a valid but non-restrictive environ-
ment is particularly hard as all VFS functions operate on data structures that
are allocated and assigned by other kernel sub-systems before the VFS functions
are executed. As most of these structures form multiple lists, modelling them
manually is tedious and error-prone. Therefore, our strategy was to leave many
�elds of those structures initially unspeci�ed and successively add as much detail
as necessary to eliminate false positives. This proved to be a good way to specify
valid and at the same time non-restrictive execution environments.

Not discovering any real errors in the analysed VFS code contributes to our
high con�dence in the Linux kernel and is to be expected: the VFS consists of a
well established and extensively used and tested code base.

6 Related Work

A survey on automated techniques for formal software veri�cation can be found
in [10]. Veri�cation approaches employing predicate abstraction to model-check
the source code of operating system components are presented in [4, 6, 15]. In
theory, these are able to prove a �le system implementation to be, e.g., free of



deadlock, by checking the proper use of locking mechanisms. However, modern
model checkers such as BLAST [15] require extensive manual preprocessing and
are not able to deal with general pointer operations [20]. Recent work [22] shows
further that, again in contrast to our veri�er, BLAST cannot analyse programs
with multiplicities of locks since its speci�cation language does not permit the
speci�cation of observer automatons for API safety rules with respect to function
parameters.

A bounded model checker for C source code based on symbolic execution
and SAT solving is SATURN [24]. This tool is specialised on checking locking
properties and null-pointer de-references. The authors show that their tool scales
for analysing the entire Linux kernel. Unlike the SOCA Veri�er, the approach
in [24] computes function summaries instead of adding the respective code to
the control �ow, unwinds loops a �xed number of times and does not handle
recursion. Hence, it can be expected to produce more unsound results but scale
better than our SOCA technique.

Actual �le system implementations were studied by Engler et al. in [25, 26].
In [26], model checking is used within the systematic testing of EXT3, JFS and
ReiserFS. The employed veri�cation system consists of an explicit-state model
checker running the Linux kernel, a �le system test driver, a permutation checker
which veri�es that a �le system can always recover, and a recovery checker using
the fsck recovery tool. The veri�cation system starts with an empty �le system
and recursively generates successive states by executing system calls a�ecting the
�le system under analysis. After each step, the veri�cation system is interrupted,
and fsck is used to check whether the �le system can recover to a valid state.
In contrast to this, our work focuses on checking a di�erent class of properties,
namely pointer safety and locking properties. Thanks to our memory model we
can analyse these properties precisely and feed back detailed error traces together
with speci�c initial heap state information leading to the error.

7 Conclusions and Future Work

The initial motivation for our SOCA technique to automated program veri�-
cation was to explore the possibilities of using symbolic execution for analysing
compiled programs. Indeed, object-code analysis is the method of choice for deal-
ing with programs written in a combination of programming languages such as C
and inlined assembly. This is particularly true for operating system code which
is often highly platform speci�c and makes extensive use of programming con-
structs such as function pointers. As we show in this paper, these constructs can
be dealt with e�ciently in path-wise symbolic object-code analysis, while they
are usually ignored by static techniques or by source-code-based approaches.

While the ideas behind the SOCA technique, namely symbolic execution,
path-sensitive slicing and SMT solving, are well-known, the way in which these
are integrated into the SOCA Veri�er is novel. Much engineering e�ort went also
into our SOCA implementation so that it scales to complex real-world operat-
ing system code such as the Linux VFS implementation. The SOCA Veri�er is



expected to scale even better for programs employing fewer external data struc-
tures than the VFS does. For example, the majority of Linux device drivers
including actual �le system implementations satis�es this criterion.

Regarding future work, we wish to extend the SOCA Veri�er so as to be
able to analyse concurrent programs. This would help for checking the VFS
implementation for erroneous behaviour that is only exhibited when multiple
kernel threads interact. In addition, the SOCA veri�er should be integrated into
widely used operating software development environments so that counterexam-
ples found in object code can be presented in source code to the developer.
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