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Abstract

Esterel is a synchronous language for reactive—systems design and builds the core of
the commercial tool Esterel Studio. This paper shows how the constructive seman-
tics of a combinational fragment of Esterel, as presented by Berry, can be derived in
a model-theoretic fashion, thus complementing the existing behavioral, operational,
and circuit-based approaches to Esterel semantics. Technically, Esterel programs
are read as formulas in propositional intuitionistic logic, which are interpreted over
simple linear Kripke structures, referred to as Godel valuations. Esterel reactions
are then characterized as specific Godel valuations, called response models, and it
is shown that the approach is compositional in the structure of Esterel programs.

The obtained results are an important step towards explaining the logic behind
Esterel semantics. In addition, the intuitionistic setting advocated in this paper
nicely links to Pnueli and Shalev’s semantics of Harel’s Statecharts, another syn-
chronous language for reactive-system design. This offers interesting insights into
the similarities of and the differences between Esterel and Statecharts languages.

1 Introduction

Esterel is a textual imperative language for specifying the behavior of reactive
systems, developed by Berry since the 1980s [1,2,3]. The language provides
primitives for decomposing reactions sequentially and concurrently, where con-
current reactions might involve a complex exchange of signals. The semantics
of Esterel is based on the idea of cycle—based reaction where first the statuses
of the input signals, as defined by a system’s environment, are sampled at the
beginning of each cycle, then the system’s reaction in the form of the emis-
sion of further signals is determined, and finally the new signal statuses are
output to the environment. The semantics of Esterel has significantly evolved
over the years, and is designed around the key principles of synchrony, reac-
tivity, determinism, and causality [1,2]. The synchrony requirement reflects
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the mechanism behind cycle-based reaction and is mathematically modeled
via the perfect synchrony hypothesis. This hypothesis ensures that reactions
and the propagations of signals are instantaneous, which is an idealized sys-
tem behavior that is nevertheless often reflected in practice: reactive systems
usually perform much faster than their environments. Determinism demands
reactions to be uniquely determined by the system environment’s inputs. This
is a property very much desired, since nondeterministic systems are often dif-
ficult to understand; sometimes encountered system bugs might even not be
reproducible. Causality refers to the requirement that the reason for a signal
being emitted or not emitted in a system reaction must be traced back to
the input signals provided by the environment. While this property is very
natural, it is quite hard to enforce in a simple mathematical way. In earlier
approaches to Esterel semantics, causality was dealt with in a preprocess-
ing step: only Esterel programs were considered which could be shown to be
causal by means of a static analysis [2]. Such static checks, however, com-
pute approximations of causality which sometimes reject programs that are
perfectly causal from a semantic point of view. In his recent draft book [1],
Berry describes a much improved version of Esterel semantics that is founded
on the idea of constructiveness and that encodes the principle of causality in
a precise, not an approximative way. Berry also established the coincidence of
three constructive styles of Esterel semantics, a behavioral or fixed—point se-
mantics, an operational semantics, and a circuit semantics, thereby testifying
to the mathematical elegance and robustness of the latest version of Esterel
semantics. Today, this constructive semantics builds the core of the commer-
cial design tool Esterel Studio which is employed by major companies in the
avionics and communications industry (www.esterel-technologies.com).

In this paper we present a novel model-theoretic account of Esterel seman-
tics, for a fragment of the language concerned with instantaneous reactions.
Our approach reads Esterel programs as simple propositional formulas in intu-
itionistic logic, which correspond to the must and cannot functions as defined
in Berry’s behavioral semantics [1]. These functions determine which sig-
nals must and, respectively, cannot be emitted relative to some given statuses
—present or absent— of the input signal. Our propositional formulas are in-
terpreted in an intuitionistic way over two—world linear Kripke structures [9],
to which we refer to as Godel valuations. In this setting we obtain our two
main results: We first characterize valid Esterel reactions as specific Godel
valuations that respect the principle of causality. In addition we show that
our approach is compositional in the structure of Esterel programs, which is
one of the virtues of Berry’s behavioral semantics.

The motivations for the suggested model-theoretic approach to Esterel
semantics are threefold. To begin with, our results provide a first step towards
explaining the logic behind Esterel’s constructive semantics. Although Berry
considers a semantics based on the three-valued Scott domain in his book,
that approach leads to an algebraic rather than a logical semantics. Secondly,
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our intuitionistic model-theoretic approach links Esterel’s semantics to the
original variant of Statecharts semantics [7,6], as conceived by Pnueli and
Shalev [8]. Like Esterel, Statecharts [4] is a popular language for reactive-
systems design that obeys the perfect synchrony hypothesis and causality.
However, Statecharts permits nondeterminism and non-reactivity, and signal
statuses might be inferred by speculation. In this light, our results suggest a
way for extending Esterel by a concept of nondeterminism. This is of particular
importance when interfacing Esterel with design or verification methodologies,
many of which are based on abstraction or refinement techniques. Third, our
setting might be used for establishing full-abstractness results for Esterel,
similar to the ones obtained for Statecharts [6].

2 Esterel and its Behavioral Semantics

We first present the simple but nontrivial combinational fragment of Esterel
that will be considered in the remainder, and recall its constructive behavioral
semantics as defined in [1]. This semantics is essentially a fixed—point seman-
tics which we will then characterize in terms of separability, a notion that is
adapted from Statecharts where it is employed for encoding causality [8].

Syntax and behavioral semantics. The fragment of Esterel we are in-
terested in deals with instantaneous reactions, i.e., single reaction cycles. Its
syntax is defined by the following BNF, where s stands for a signal name taken
from some finite universe S.

P =0 nothing
| s emit s
| s=17(P) present s then P
| s=07(P) present s else P
| P|P PIIP

In analogy to digital circuits we refer to programs in this fragment as combina-
tional programs. Esterel’s more general choice statement “present s then P
else Q7 can be recovered in our syntax by the term s=17(P) | s=0?(Q).
Treating the then— and else-branches separately will prove to be notationally
convenient later—on. In this paper we omit the combinational operators for
sequential composition and signal definition. A consequence of this omission
is that the completion codes needed in the behavioral semantics’ definition for
the full language [1] become obsolete.

The constructive behavioral semantics uses a fixed—point construction on
so—called partial events. A partial event is simply a consistent set E of signal
statuses of the form s=1 and s=0; in particular, for any signal s, set F is
not allowed to contain both s=1 and s=0. Status s=1 represents the fact
that s is positively known to be present, while status s=0 means that s is
positively known to be absent. Signals not in £ have an unknown status. A
partial event E is called complete if it contains either s=1 or s=0, for every
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signal s. One can consider partial events as intuitionistic valuations of signals
and complete events as their classical two—valued completion.

The behavior of an Esterel program P is usually studied with respect to an
event F; determining the status of all input signals i € I = {iy,...,i,} C S.
In this paper we do away with distinguished input signals, thereby simplifying
our presentation. This is possible since the behavior of P under [ is equivalent
to the behavior of P|i;, |---|%;,., where the indexes ji, ..., j, € {1,...,n} are
exactly those for which 7;, =1 € E;. The standard Esterel semantics, as well
as the model-theoretic semantics developed here, are fully compatible with
this point of view. We now reproduce the definition of the Must and Cannot
functions over partial events [1], which are in the center of Berry’s constructive
behavioral semantics and are inductively defined as follows, where Sy denotes
the set {s=0|s € S}.

Must(P,E) ifs=1€FE

Must(0, E
( ) 0 otherwise

Il
=

Must(s=17(P),E) := {

Must(1s, ) ={s=1}  Must(s=07(P), E} ::{Must(P,E) if s=0 € B

0 otherwise
Must(P|Q, E) = Must(P, E) U Must(Q, E)
S if s=0€ F
Cannot(0, E) :=8p Cannot(s=17(P), E) := 0 ne E
Cannot(P,E) otherwise
S if s=1€FE
Cannot(!s, E):=8p\{s=0} Cannot(s=0?(P),E) = 0 0 E
Cannot(P,E) otherwise
Cannot(P|Q, E) := Cannot(P, E) N Cannot(Q, F)

Intuitively, Must(P, E) and Cannot(P, E), where P is a combinational Esterel
program and F is a partial event, denote the partial events including all sig-
nals that P must and cannot emit, respectively, relative to E. As expected,
the Must and Cannot functions satisfy the property As.s=1 € Must(P, E)
and s=0 € Cannot(P, E), for any P and E. Moreover, both functions are
monotonic in E. With these auxiliary definitions we can now state Esterel’s
constructive behavioral semantics. Every program P defines a monotonic
function [P] on partial events: [P](O) := Must(P,0) U Cannot(P,O). We
say that [P] is the response function of P. If O is the least fized—point of [P],
then O is called the response of P, written P |} O. Moreover, program P is
called constructive, if O is complete. Observe that the response P |} O is on
partial events O. The constructive behavioral semantics of Esterel, however,
is only that subrelation of || where O is complete, written P | O.

Let us illustrate this semantics by means of an example. Consider the
program P := a=17(a=07(!b)) | a=07(!¢) | b=07(!d). Although in this
example none of the signals a,b,c,d has an unguarded emit, it still pro-
duces the constructive response P | {a=0,b=0,c¢=1,d=1}. Here and else-
where we omit from the response all absent signals that do not syntacti-
cally occur in the program at hand. The first iteration of the fixed—point
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construction gives [P]() = {a=0} since P does not contain an emit state-
ment for signal a, i.e., Cannot(P,)) = {a=0}. Then, the second iteration
decides the two left most signal guards and identifies P with lc | b=07(!d)
which produces [P]({a=0}) = {a=0,0=0,c=1}. Finally, a third iteration
yields [P]({a=0,b=0,c=1}) = {a=0,b=0,c=1,d=1}, and the fixed-point is
reached.

The example demonstrates two salient features of the constructive seman-
tics that deserve to be highlighted. Firstly, the fixed—point construction cor-
responds to the derivation of logical consequences regarding the presence and
absence of signals. This deductive closure implements a causality chain of ab-
stract signal propagations. Only those facts that can positively be determined
from the specification of the system in finitely many steps are considered in
the final response. Secondly, there is an asymmetry in the treatment of posi-
tive and negative signal facts. While the presence of signals is always derived
from emit statements explicitly contained in the program text, the absence of
a signal is inferred indirectly from the absence of emits. This amounts to a
form of default assumption which is also known from Statecharts, namely that
signals are assumed to be absent whenever it is “safe” to do so [4,8]. Both lan-
guages, however, differ in what they consider “safe”; more will be said about
this in Sec. 4. In the above example, a is considered absent outright since
it positively cannot be emitted by the program. Moreover, b is absent since
a=0, and thus the emit !b in a=17?(a=07(10)) is positively not reachable.

Inseparability and admissibility. In analogy to Pnueli and Shalev’s declar-
ative semantics for Statecharts [8] we define a notion of inseparability. It pro-
vides for an alternative characterization of the minimality condition of the
least fixed—point of [P], which will be useful for our model-theoretical anal-
ysis. A fixed—point O is called inseparable for P if [P](O") N (O \ O") # 0,
for all O' € O. Hence, O is inseparable if it does not contain any proper
subset O’ that is closed under [P]. Informally, this requires O to be internally
causal with respect to the response function, i.e., every signal status in O has
a causal justification in terms of iterated applications of [P] (cf. [6]).

Proposition 2.1 Let O be a fized—point of [P], for some Esterel program P.
Then, O is inseparable for P if and only if O is the least fized—point of [P].

Proof. For direction (=), suppose that O is an inseparable fixed—point and
that O' is another fixed—point. Assume further O € O’,i.e., ONO" C O. Then,
because of the inseparability of O, there exists some s € O\ (ONO") =0\ 0O’
with s € [P](O N O'). Since [P] is monotonic, [P](O N O") C [P](O") = O'.
Hence we derive (O \ O') N O" # (), which is a contradiction.

For direction (<=), suppose that O is the least fixed point and that O' C O
is a proper subset. Assume further that O is obtained by the approximation
chain [P]°(0) € [P]'(0) € [PI?(0) € --- < [P]"(0) = O, where [P]°(0) = 0
and [P]*1(0) = [P]([P]*(0)). Let k be the largest index with [P]*(0) C O'.
Then, 0 < k < n and [P]**1(0)N(O\O") # 0. By monotonicity, [P]*()) C O’
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implies [P]¥*1(9) C [P](O’). Thus, there exists some s € O \ O’ such that
s € [P](O"). But this implies that O is inseparable, as desired. O

Following Pnueli and Shalev’s terminology we call a partial event O admissible
for P, if O is an inseparable fixed—point of [P]. Hence, by Prop. 2.1, admissi-
bility for Esterel coincides with the least fixed—point property. The notion of
admissibility can also be used for non-monotonic response functions such as
those involved in Statecharts, where least fixed-points do not always exist [8].

3 A Model-theoretic Semantics for Esterel

In this section we give a model-theoretic characterization of the behavioral
semantics of combinational Esterel programs. First, such programs are read
as formulas in propositional logic, essentially by translating the Must and
Cannot functions into predicates. These formulas are then interpreted in the
style of intuitionistic logics, over simple linear Kripke structures to which we
refer as Godel valuations.

Intuitionistic logic translation. We associate with each combinational
program P and each signal s two predicates Must(P, s) and Cannot(P,s),
whose intuitionistic model-theoretic semantics precisely captures the Must
and Cannot functions. The atomic propositions employed in these predicates,
besides true and false, are the signal statuses s=1 and s=0, with the obvious
interpretations. We start off with the Must (P, s) predicate, for a signal s, which
is defined along the structure of P. Intuitively, Must (P, s) should hold exactly
if P must emit signal s, i.e., s is driven 1 in P and hence the statement s=1
becomes true.

Must(0,s) := false Must(a=17(P), s) :=a=1 A Must(P,s)

true ifa =s Must(a=07(P),s) := a=0 A Must(P,s)
Must(la,s) := i

false otherwise  Myst(P|Q,s)  :=Must(P,s) V Must(Q,s)

Obviously, Must (P, s) does not say anything about when s is driven 0, i.e.,
when s=0 should be true. Because of the asymmetry between 1 and 0 in
Esterel, this needs some care. In contrast to 1, the signal value 0 is a weak
kind of value, in the sense that s is held at 0 only in so far as neither P nor
its environment emits s. In other words, 0 is a default value only. For this
reason we cannot use the validity of s=0 directly in order to express that s is
kept at 0. For if our logical specification of P would allow us to infer s=0 in
some situation, then value 0 could no longer be overridden by some emit, since
s=0 A s=1 is logically inconsistent. However, we can define a weaker “default
pull-down” of s by the formula s~0 := —s=1 D s=0, where D stands for
logical implication. It states that if —s=1 is true, i.e., we are positively sure
that s will never be emitted, then s=0 is true. Otherwise, nothing is known
about the status of s. Note that while s=0 A s=1 is inconsistent, s~0 A s=1
is equivalent to s=1, as desired. Thus, a weak 0 still permits s to be emitted.
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We now turn our attention to the Cannot (P, s) predicate whose definition
requires us to decide in which situations one may specify a default pull-down
of s. If we simply specified sx0 for any signal s, then s=0 is equivalent to
—s=1, i.e., a signal is absent iff it will never become present, which would
essentially give us a Statecharts—like semantics. Such an approach, however,
rules out the possibility that a signal value is truly undefined, i.e., neither s=1
nor s=0 is valid. Yet, the eminent truth—value gap is an essential feature of
Esterel which reflects its circuit semantics [1] where one needs to account for
subtle electrical phenomena, such as meta—stability and signal oscillations,
which can occur in synchronous circuits with asynchronous feedback. In Es-
terel semantics, one may only conclude that signal s is 0 when P cannot
emit s, which is stronger than saying that P just happens not to emit s. The
predicate Cannot(P,s) is the formalization of this stronger statement; it is
defined along the structure of P.

Cannot(0,s) := true Cannot(a=17?(P),s) := a=0 V Cannot(P,s)

c (la, 5) {true if a #s Cannot(a=07?(P),s) :=a=1 V Cannot(P,s)
annot(la, s) := i
false otherwise cannot(P|Q, s) := Cannot(P, s) A Cannot(Q, s)

Then, the translation Spec(P) of a combinational Esterel program P into
propositional logic simply is

spec(P):= [\ (Must(P,s) D s=1) A (Cannot(P,s) D s0).,
s€S
Before formally defining our model-theoretic semantics we consider a simple
example: P* := $;=07(!sy) | lss. According to the above definitions we
derive the following propositional formula for Spec(P*), considering only those
signals which actually occur in P*:

Spec(P*) = (((s1=0 A false) V false) D s1=1) A (((s1=1 V true) A true) D s1~0)
A (((s1=0 A true) V true) D so=1) A (((s1=1 V false) A false) D s9~0)

In the spirit of model-theoretic semantics, one would first consider the mod-
els of Spec(P*) according to classical propositional logic. In this case one
would obtain the classical models {s;=0, ss=1} and {s;=1, ss=1}. However,
only the former describes a valid response in Esterel. The latter model’s con-
clusion s;=1 is not causally justified; it seems to come from nowhere. Note
that the classical model {s;=1, s,=1} is also minimal since no proper subset
is a classical model. Hence, the classical logical semantics of our specifica-
tion Spec(P*) is not expressive enough for explaining the Esterel semantics
of P*. In the remainder we show that intuitionistic logic, with its richer model
structure, is suited to identify those classical models of Spec(P*) that indeed
correspond to valid Esterel responses.

Intuitionistic semantics and Godel valuations. The structures we con-
sider for evaluating our propositional formulas intuitionistically are linear
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Kripke structures, of length two, over partial events. We refer to these struc-
tures as Gaodel valuations, since Godel was the first to study this class of
structures as possible truth values for intuitionistic logic. More precisely, a
Godel valuation is a pair (E}, E») of partial events such that E; C Fy. Intu-
itively, (E;, E») validates s=1 if and only if s=1 € E}, and it validates s=0 if
and only if s=0 € F;. The second component FEj is used for interpreting nega-
tion: (F4, Fy) validates ~s=1 if and only if s=1 ¢ E,, and (F1, F») validates
—s=0 if and only if s=0 ¢ E,. Then, (E;, E5) is a model of Spec(P), written
(Ey, E) = Spec(P), if (Ey, E») validates formula Spec(P) in the intuitionistic
sense [9]. Formally, for a monotonically increasing sequence of partial events
K = (E1, Es, ..., E,) and index 1 < i < n, we define the intuitionistic validity
of some formula ¢ in K at index ¢ along the structure of ¢ as follows:

K,i = true  always KiiE=—-¢ iff KnH ¢

K,i = false  never KilE=¢oANy ff KjilE=¢and K,i =1
Kils=1iffs=1eE K,il¢Vy iff K,il=dor K,il=1

K,ils=0 iff s=0€ B; K,il=¢Oviff Vj>i. K,jE ¢ implies K, j |= 9.

Then, K | ¢ if K,1 | ¢. This definition implies that all Goédel valuations
satisfy =(s=1As=0), for any signal s. An important special case is when both
components are identical, i.e., E; = E5. Then (E, E») also satisfies the classi-
cal axioms of the Excluded Middle, s=1V —s=1 and s=0V —s=0. Therefore,
we call such valuations classical. Another special case of a Gddel valuation
occurs if the second component FE, is a complete event, i.e., if for all signals s,
either s=1 € F, or s=0 € E,. Then, we have (Fi, Fy) E ——(s=1V s=0)
which means that s is eventually driven to either 1 or 0. When (Ey, Es) = ¢
we call (E4, Ey) a Gédel model of ¢. Having formally defined the semantics we
may simplify the propositional formula Spec(P*) of our example program P*.
Using = to denote semantical equivalence we find Spec(P*) = 5,20 A sy=1.
It is easy to check that the Godel valuations ({s1=0, so=1}, {51=0, s5=1}),
({se=1}, {s1=1, s9=1}), and ({s1=1, so=1}, {s1=1, s5=1}) are precisely the
two-world models (sequences of length 2) of Spec(P*). Both {s;=0, so=1}
and {s;=1,s,=1} are classical models (sequences of length 1) of Spec(P*),
but only one of them, {s;=0, s,=1}, is an actual response of P.

We conclude this section by considering some of the illuminating examples
given in Berry’s book [1]; for each example we state its corresponding simplified
propositional formula as well as the formula’s Godel models, relative to the
domain of signal names occurring in the example program.

o Py :=s=17(!s)|s=07(!s):

Spec(Py) =((s=1 V s=0) D s=1) A ((s=0 A s=1) D sx0)
= ((s=1 V s=0) D s=1) A (false D s=0)
=s=0Ds=1 = —s=0

Models : (0,0), (0,{s=1}), ({s=1},{s=1})
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o Py := s=07(!s):
Spec(P3) =(s=0 D s=1) A (s=1 D sx0) = —s=0 A true = —s=0
Models : (0,0), (0,{s=1}), ({s=1},{s=1})
o P, = s=17(!s):
Spec(Py) =(s=1D s=1) A (s=0 D s=0) = true A true = true
Models : (0,0), (0,{s=1}), (0,{s=0}), ({s=1},{s=1}), ({s=0},{s=0})

o Ps = 51=17(!s9) | 59=17(!s1):

—_~~ o~

Spec(Ps) = (s1=1 D s9=1) A (51=0 D s9%0) A
(82:1 D 81:1) A (82:0 D 81%0)
Models : (0,0), (0,{s1=1,s2=1}), ({s1=1,52=1}, {s1=1, s9=1}),

(@, {81:0, 82:0}), ({81:0, 82:0}, {81:0, 82:0})

We now formally state that the Must and Cannot predicates correctly encode
the Must and Cannot functions, as suggested in the previous section.

Proposition 3.1 Let (E', E) be a Gédel valuation, P a combinational pro-
gram, and s € S.

(i) (E',E) EMust(P,s) if and only if s=1 € Must(P, E').
(ii) (E', E) = Cannot(P,s) if and only if s=0 € Cannot(P, E').

The proofs of both statements of this proposition are not difficult and proceed
by induction on the structure of P.

Model-theoretic characterization. As demonstrated earlier, not every
(minimal) classical model of the propositional formula Spec(P) corresponds to
a valid response of P according to Esterel’s behavioral semantics. This is due
to the fact that Spec(P) implicitly contains negations in the propositions sx0.
The right notion is that of a response model which turns out to characterize
exactly the desired Esterel responses.

Definition 3.2 Let P be a combinational Esterel program and E be a partial
event. Then, F is a response model of Spec(P) if (1) (E, E) | Spec(P), i.e.,
E is a classical model of Spec(P), and if (2) E' = E, for all Gédel valuations
(E', E) with (E', E) |= Spec(P).

Note that this definition heavily borrows from our intuitionistic interpreta-
tion of Spec(P) and is adapted from an earlier paper by the authors on the
semantics of Statecharts. It guarantees that the considered models are not
only classical models but also respect the principle of causality. In order to
see this, consider a Godel evaluation (E', E') such that (E', E) = Spec(P).
Intuitively, if £’ # FE, then the proper inclusion £’ C E corresponds to a
non—causal reaction in the construction of E, implying that some of the ad-
ditional signal statuses in E'\ E’ have been introduced due to some external
effect and are not solely causally dependent on the ones in E’. On the other
hand, if there is no Gédel valuation ending in E other than (E, E) itself, then
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all signal statuses in £/ must be causally justified. We should point out again
that without negations in Spec(P) the notions of response model and minimal
classical model would actually coincide. The importance of of stating signal
absence as s~0 will be further highlighted in Sec. 4.

For example, the Gddel valuation ({se=1}, {s1=1, s9=1}) is an intuition-
istic model of Spec(P*), for our program P* = s;=07(!sy) | !so, which is a
witness to the fact that {s;=1, s,=1}, although a minimal classical model, is
not a response model. Indeed, Esterel’s declarative semantics rejects the emis-
sion of s; since it is not causally justified. The assertion of signal s; cannot be
inferred from the partial event {ss=1}. On the other hand, {s;=0, so=1} is
a response model for Spec(P*), and it is as well a valid response in Esterel.
Similarly, one can check that only the empty set is a response model of P,
P;, P, and Ps. Since the response () is not complete, these programs are
rejected by Esterel’s semantics. We may now formally state and prove our
main theorem.

Theorem 3.3 (Characterization) Let P be a combinational program and
O be a partial event. Then, P 1} O iff O is a response model of Spec(P).

Thus, O is a constructive Esterel response for P, i.e., P | O, if and only if
O is complete and a response model of Spec(P).

Proof. By Prop. 2.1, it is sufficient to prove that O is a response model of
Spec(P) if and only if O is admissible for P. We start off with the direction
“response model = admissible”. Given a response model O of Spec(P) we
prove that O is admissible by showing the following:

(i) s=1 € O implies s=1 € Must(p,O) (iii) [P](O) C O
(ii) s=0 € O implies s=0 € Cannot(p,O) (iv) O is inseparable for P

From Statements (i) and (ii) we get O C [P](O), which together with State-
ment (iii) shows that O is a fixed—point of [P]. Note that Statements (i)—(iv)
are equivalent to O being admissible for P, which in turn is equivalent, by
Prop. 2.1, to O being the least fixed—point of [P].

(i) Let s=1 € O and O := O\ {s=1}. Since O is a response model we know
(0,0) | Spec(P) and (O',0) t~ Spec(P). It is not difficult to show that the
assumption (O, O) = Spec(P), and thus (O,0) = A, Cannot(P,a) D a~0,
implies (O, 0) = A\, Cannot (P, a) D a~0 as well. This is due to the fact that
the difference between O’ and O is a positive signal s=1 and that this difference
does not change validity of any a~0 predicate, and that Cannot (P, a) can only
become false, so the implication Cannot(P, a) D aa0 can only become “more
true.” Hence we must have (O, O) = Must(P, a) D a=1 for some signal a, and
this can only be @ = s. This means (0',0) = Must (P, s). From Prop. 3.1(i)
we conclude s=1 € Must(P,0") C Must(P,O).

(ii) Here we are looking at a negative signal s=0 € O, which we remove in
O':= 0\ {s=0}. Since O is a response model, (O, O) [~ Spec(P). The only
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possibility for this to be the case is if (O’,0) = Cannot(P,s) and (O, 0)
s20. This is due to the fact that none of the implications Must(P, a) D a=1,
for any signal a, and none of the implications Cannot(P,a) D a0, for any
signal a # s, can become false in reducing O to O' by removing the negative
signal status s=0 from O. But (0, O) |= Cannot (P, s) implies by Prop. 3.1(ii)
s=0 € Cannot(P,0") C Cannot(P,O).

(iii) Let s=1 € [P](O), i.e., s=1 € Must(P,O). Apply Prop. 3.1(i) with
E' = E = O to derive (O,0) |= Must(P,s). Since (O,0) = A\, Must(P,a) D
a=1, this implies (O, O) = s=1, whence s=1 € O. Further, let s=0 € [P](O
i.e., s=0 € Cannot(P,O). From Prop. 3.1(ii) we get (O, O) = Cannot(P, s
Since by assumption (O, 0O) = A, Cannot (P, a) D a0, this implies (O, 0) =
sx0. Hence, s = b € O, for some b € {0,1}. Now consider O" := O\ {s = b}.
Then, (0',0) F~ Spec(P) as O is a response model. But this must be because
(0',0) £ Cannot(P,s) D sx0 since we must have (O',0) = Must(P,s) D
s=1. For otherwise, by Prop. 3.1(i), s=1 € Must(P,O) which contradicts
s=0 € Cannot(P,0). Now, (O, 0) [~ Cannot(P, s) D sx~0 implies (O, O) F
s~0 which can only be if b = 0. Thus, s=0 € O as desired.

(iv) To show that O is inseparable, let O" C O be given. Because O is a re-
sponse model, (O, 0) ¥~ Spec(P). Suppose then, (O',0) ¥ A\, Must(P,a) D
a=1. Since (0,0) = A\, Must(P,a) D a=1, Prop. 3.1(i) implies there exists
some s=1 ¢ O such that s=1 € Must(P,0’) C [P](O"). Furthermore, by
monotonicity of Must, we have s=1 € Must(P, O). By another application of
Prop. 3.1(i) then, we infer s=1 € O. This shows that s=1 € [P](O")N(O\0O").
It remains to consider the case (O',0) }~ Cannot(P,s) D s~0 for some s.
Since (0,0) k= Cannot(P,s) D s~0 this can only be because (0',0) E
Cannot (P, s) and s=0 € O \ O'; this follows from the intuitionistic semantics.
The former implies s=0 € Cannot(P,0") C [P](O") by Prop. 3.1(ii). So, in
the second case, too, we find that [P](O") N (O \ O) # 0.

We now prove direction “admissible = response model”. Let O be ad-
missible for P, i.e. O = [P](O) and [P](O") N (O"\ O) # 0, for all O' C O.
We claim that O is a response model of Spec(P), i.e., (O, 0) = Spec(P) and
(0", 0) £ Spec(P), for all O' C O.

First, let us check that (O, O) |= Spec(P). It is easy to show that (O, 0) =
Cannot(P,s) D s=x0, for all signals s. For if (O,0) = Cannot(P,s), then
s=0 € Cannot(P,0) by Prop. 3.1(ii). Thus, s=0 € [P](O) = O, whence
(0,0) k= sx0. Similarly, (O,0) = Must(P,s) D s~0, for all signals s: by
Prop. 3.1(ii), the premise (O, 0) = Must(P,s) implies s=1 € Must(P,0) C
[P](O). Since O = [P](O), we have s=1 € O and thus (O, O) = s=1.

Next, let O" C O be given. Because of the property of admissibility,
[P](O") N (O \ O') is nonempty. Suppose there is some s=1 € [P](O") N (O \
O'"). Then, s=1 € Must(P,0') and s=1 € (O \ O'), whence by Prop. 3.1(i),
(0',0) | Must(P,s). Since s=1 ¢ O', we have (O',0) }£ s=1 and thus
(0", 0) B~ Spec(P). On the other hand, suppose there is some s=0 € [P](O")N
(O\ 0", i.e., s=0 € Cannot(P,0"), and s=0 € O\ O'. The former implies

);
)
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(0',0) = Cannot(P, s) by Prop. 3.1(ii). The latter implies (O, 0) F= sx0.
Hence, (O, O) = Spec(P), and O is a response model of Spec(P). O

A note on compositionality. Above we showed how to derive a propo-
sitional formula Spec(P) for a given combinational program P. This was
done with the help of the predicates Must and Cannot, both of which are
defined via structural induction on P, which lead to the logical specification
Spec(P, s) := Must(P, s) D s=1 A Cannot (P, s) D sx0, for every signal s. The
formula Spec(P, s) itself, however, is not declared directly along the structure
of P, yet. Here, we show that Spec(P, s) can indeed be defined structurally for
the constructive responses, under the additional assumption that every signal
stabilizes eventually, i.e., ==(s=0 V s=1), for all signals s.

Theorem 3.4 Let P, () be combinational programs and s be a signal. Then,
Spec(P|Q,s) = (M} D s=1) A (C; D s=0)
Spec(a=17(P),s) = (M D s=1) A (Cy D s=0)
Spec(a=07(Q),s) = (M3 D s=1) A (C3 D s=0)
are valid semantic equivalences, where
M; :=(Spec(P,s) D s=1) V (Spec(Q,s) D s=1)
Cy:=(Spec(P,s) D s~0) A (Spec(Q,s) D sx0)
My:=a=1 A (Spec(P,s) D s=1)
Co:=a=0 V ((Spec(P,s) V —=Spec(P,s)) D sx0)
M3:=a=0 A (Spec(Q,s) D s=1)
C3:=a=1 V ((Spec(Q,s) V —Spec(Q,s)) D s=0).

Proof (Sketch) The observation underlying the inductive characterization
is that Must (P, s) can be recovered from Spec(P,s) as Spec(P, s) D s=1 and
that Cannot(P,s) can be recovered as (Spec(P,s) V —Spec(P,s)) D s~O0.
Using case analysis, one verifies the equivalences
Must(P,s) A =—s=1= (Spec(P,s) D s=1) A =—s=1
Must(P,s) A =—s=0= (Spec(P,s) D s=1) A =—s=0
from which Must (P, s) = Spec(P,s) D s=1 follows. To show Cannot(P,s) =
(Spec(P, s) V —Spec(P,s)) D sx~0 we use a fourfold case analysis:
Cannot(P,s) A =—s=1 A —Must(P,s) =
((Spec(P, s) V —=Spec(P,s)) D sx~0) A —=—s=1 A —Must(P,s)
Cannot(P,s) A =—s=1 A —-—Must(P,s) =
((Spec(P, s) V —Spec(P,s)) D sx0) A =—s=1 A =—Must(P,s)
Cannot(P,s) A =—s=0 A —Must(P,s) =
((Spec(P,s) V =Spec(P,s)) D s~0) A =—s=0 A —Must(P, s)
Cannot(P,s) A =—s=0 A —=—Must(P,s) =
((Spec(P, s) V —Spec(P,s)) D sx0) A =—s=0 A =—Must(P,s)
The details of these proofs are not too difficult but tedious. For the last of these
equivalences one also needs the fact that =—Must (P, s) = —Cannot(P,s). O

12
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4 Discussion and Related Work

This section discusses our model-theoretic approach to Esterel semantics in
the light of related work, with a focus on the semantic relation between Esterel
and Statecharts. The intuitionistic semantics presented in this paper has been
used previously by the authors to characterize Pnueli and Shalev’s step seman-
tics for the parallel, combinational fragment of Statecharts [8], which is not
equipped with an explicit nondeterministic—choice construct. More precisely,
it is shown in [6] that if every Statecharts transition ai,...,a;bi,...,bn/
C1,...,Cqisread as an implication (a; A - -AqA=by A+ - -A=bp,) D (e A=+ -Acy,)
and parallel composition as conjunction, then the Godel models of the result-
ing Statecharts formula provide a compositional and fully-abstract semantics
for Pnueli and Shalev’s macro steps. This semantic interpretation is general-
ized to the full Statecharts language in [7].

In the present paper we use the same model-theoretic principles to char-
acterize the reactive semantics of combinational Esterel programs in terms
of propositional logic formulas. From the point of view of our model the-
ory, Esterel can now be seen as a refinement of Statecharts and Statecharts
as a specialization of Esterel. To be precise, the parallel fragment of State-
charts coincides with the special Esterel theory for combinational programs
in which, for all signals s, the axiom s~0 is assumed. Indeed, if we add
the axiom sa0 to our logic, then the implications Cannot(P,s) D s&0 in
Spec(P) all collapse to true and s=0 becomes equivalent to ~s=1. We may
then simply identify a=1 with the name a and consider a as a propositional
atom. For example, the program a=1?(b=07(!c)) would thus translate, up
to logical equivalence, into the formula (a=1 A =b=1) D ¢=1, which has the
same semantics as the Statecharts transition a,b/c. Similarly, one can show
that under the axiom s=0, parallel composition reduces to conjunction, i.e.,
Spec(P; | P;) = Spec(P;)ASpec(P,) so that Esterel “collapses” to Statecharts.

Another interesting way to look at the relationship between Esterel and
Statecharts is to observe that the translation Spec(P) essentially offers a
faithful embedding of Esterel into Statecharts. Consider the program P =
a=1?(b=07(la) |!b). Its translation yields, modulo some trivial simplifications:

Spec(P)=((a=1 Ab=0) D a=1) A ((b=1A—-a=1) D a=0) A
(a=1 D b=1) A ((a=0 A —b=1) D b=0)

which corresponds to the Statecharts program
a=1,b=0/a=1 | b=1,a=1/a=0 | a=1/b=1 | a=0,b=1/b=0.

Our results now imply that the execution of this program in Statecharts, un-
der arbitrary external inputs, yields exactly the same responses as if P was
executed under the fixed—point semantics of Esterel. Note that in this execu-
tion of Spec(P) under the operational semantics of Statecharts, any additional
assumption of the form sa0, which translates into the Statecharts transition
s=1/s=0, effectively allows us to speculate on the absence of s at any time
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in the construction of a Statecharts response. As pointed out above, it is the
omission of these assumptions that makes Esterel a refinement of Statecharts.
Moreover, our framework offers the possibility to mix Esterel and Statecharts
consistently: we can introduce sx0 selectively for those signals that we wish
to subject to a “speculative” Statecharts regime, while for all other signals
we keep the strict rule of Esterel that forces the absence of a signal to be
justified in a constructive, non—speculative way. In this context it is worth
noting that the nondeterminism in Statecharts’ parallel fragment is solely due
to negations; without negative triggers, parallel Statecharts programs would
be deterministic like Esterel programs.

Note that the smooth integration of Esterel and Statecharts outlined above
seems to depend crucially on the use of weak signal absence, sa~0, and hence
the use of negation. It is because of negations that the intuitionistic viewpoint
comes into play.

A quite different way of giving a logical account of Esterel is to encode
or axiomatize Esterel’s semantics directly in a suitable predicate logic. For
instance, in [5] the semantics is formalized in the constructive higher-order
logic of the Calculus of Constructions, and its implementation in Coq was used
to verify the correctness of Berry’s circuit translation [1] for a large fragment
of Esterel. To achieve these results, the approach taken in [5] uses a deep
embedding in the Calculus of Constructions. Our translation corresponds to
a shallow embedding, and it is an embedding in propositional rather than in
higher-order logic. Our approach is also distinct from Berry’s logical seman-
tics of “constructive value propagation” (Chap. 10.3 in [1]). This semantics
for Esterel circuits is presented in terms of a predicate I, R+ e < b with the
interpretation “for input I and (register) state R, the propositional expres-
sion e (built from wires and constant values) constructively evaluates to the
Boolean value b.” The predicate I, R e < b is an inductive relation defined
by a set of derivation rules similar to a logic calculus. The relationship of this
calculus with our logic translation still needs to be investigated.

Let us finally mention a couple of other open problems that we hope to
address in future work. Firstly, while we have shown compositionality of our
model-theoretic semantics for Esterel, the full-abstractness question is still
open. We conjecture that two Esterel programs P and () have the same
partial responses in all contexts if and only if Spec(P) and Spec(Q) have the
same Godel models. Secondly, note that we have verified the compositionality
of Spec(P) in the structure of P only relative to a fixed signal, i.e., we have
shown how to construct the models of Spec(P|Q, s) from those of Spec(P, s)
and Spec(Q,s), for any fixed signal s. One might also try to obtain the
models of Spec(P | Q) from those of Spec(P) and Spec(®). Thirdly, our
model-theoretic semantics needs to be extended to cover other combinational
operators of Esterel, in particular local signal declarations.
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5 Conclusions and Future Work

This paper presented a novel, model-theoretic account of the semantics of a
combinational fragment of Esterel, which complements the declarative, oper-
ational, and circuit-based approaches in [1]. Our technical setting is based on
propositional intuitionistic logic where formulas are interpreted over Godel val-
uations. The obtained characterization of Esterel semantics via Godel models
suggests that the simple approach of explaining signal statuses in a three—
valued Scott domain, which leads to a Kleene-style algebraic semantics as
detailed in [1], may not be sufficiently expressive: it is too coarse since it only
provides an algebra of signal values but not of truth values. In this light, our
results promise to be a significant step forward in finding a native logic for
Esterel, thereby explaining what kind of constructive logic Esterel is based on.
Regarding future work we plan to extend our results to a richer Esterel
fragment. Moreover, it needs to be checked whether a full-abstraction theorem
for our semantics based on Godel valuations, similar to the one we established
for Statecharts [6], will hold. Finally, our approach is expected to yield an
axiomatization of Esterel semantics on the basis of a lattice-theoretic charac-
terization of those Godel valuations that arise in Esterel semantics.
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