Symbolic Object Code Analysis

Jan Tobias Miihlberg and Gerald Liittgen

Software Technologies Research Group
University of Bamberg, 96045 Bamberg, Germany.
{jan-tobias.muehlberg, gerald.luettgen}@swt-bamberg.de

Abstract Current software model checkers quickly reach their limits
when being applied to verifying pointer safety properties in source code
that includes function pointers and inlined assembly. This paper intro-
duces an alternative technique for checking pointer safety violations,
called Symbolic Object Code Analysis (SOCA), which is based on bounded
symbolic execution, incorporates path-sensitive slicing, and employs the
SMT solver Yices as its execution and verification engine. Experimental
results of a prototypic SOCA Verifier, using the Verisec suite and almost
10,000 Linux device driver functions as benchmarks, show that SOCA
performs competitively to source-code model checkers and scales well
when applied to real operating systems code and pointer safety issues.

1 Imntroduction

One challenge when verifying complex software is the proper analysis of pointer
operations. A recent study shows that most errors found in device drivers involve
memory safety [6]. Writing software that is free of memory safety concerns,
e.g., free of errors caused by pointers to invalid memory cells, is difficult since
many such issues result in program crashes at later points in execution. Hence,
a statement causing a memory corruption may not be easily identifiable using
conventional validation and testing tools, e.g., Purify [31] and Valgrind [27].
Today’s static verification tools, including software model checkers such as
[4,7,8,13], are also not of much help: they either assume that programs do “not
have wild pointers” [3], perform poorly in the presence of pointers [25], or simply
cannot handle certain software. A particular challenging kind of software are
operating system (OS) components such as device drivers, which are usually
written in C code involving function pointers, pointer arithmetic and inlined
assembly. Further issues arise because of platform-specific and compiler-specific
details concerning memory layout, padding and offsets [2]. In addition, several
approaches to model checking compiled programs given in assembly or bytecode
[5,23,33,35] and also to integrating symbolic execution [17] with model checking
[12,11,16,29,34] have recently been presented. However, these are tailored to
exploit specific characteristics of certain programming paradigms such as object-
oriented programming, or lack support for data structures, function pointers and
computed jumps, or require substantial manual modelling effort (cf. Sec. 5).
This paper introduces and evaluates a novel, automated technique to identi-
fying memory safety violations, called Symbolic Object Code Analysis (SOCA).

This technique is based on the symbolic execution [17] of compiled and linked
programs (cf. Sec. 2). In contrast to other verification techniques, SOCA requires
only a minimum of manual modelling effort, namely the abstract, symbolic spec-
ification of a program’s execution context in terms of function inputs and initial
heap content. Our extensive evaluation of a prototypic SOCA implementation,
also reported in this paper, shows that SOCA performs competitively to state-of-
the-art model checkers such as [4,8,13] on programs with “well-behaved” pointers,
and that it scales well when applied to “dirty” programs such as device drivers
which cannot be properly analysed with source-code model checkers.

Technically, the SOCA technique traverses a program’s object code in a sys-
tematic fashion up to a certain depth and width, and calculates at each assembly
instruction a slice [36] required for checking the relevant pointer safety proper-
ties. It translates such a slice and properties into a bit-vector constraint problem
and executes the property checks by invoking the Yices SMT solver [10] (cf.
Sec. 3). To the best of our knowledge, SOCA is the only program verification
technique reported in the literature, that features full support for pointer arith-
metics, function pointers and computed jumps. While SOCA is based on existing
and well-known techniques, combining and implementing these for object code
analysis is challenging. Much engineering effort went into our SOCA implemen-
tation, so that it scales to complex real-world OS code.

The particular combination of techniques in SOCA is well suited for checking
memory safety. Analysing object code is beneficial in that it inherently considers
compiler specifics such as code optimisations, makes memory layout obvious,
and does away with the challenge of handling mixed input languages involving
assembly code. Symbolic execution, rather than the concrete execution adopted
in testing, can handle software functions with many input parameters, whose
values are typically not known at compile time. It is the existence of efficient
SMT solvers that makes the symbolic approach feasible. Symbolic execution also
implies a path-wise exploration, thus reducing the aliasing problem and allowing
us to handle even complex pointer operations and computed jumps. In addition,
slicing can now be conducted at path-level instead of at program-level, resulting
in drastically smaller slices to the extent that abstraction is not necessary for
achieving scalability. However, the price of symbolic execution is that it must be
bounded and can thus only analyse code up to a finite depth and width.

To evaluate our technique, we have implemented a prototypic SOCA tool, the
SOCA Verifier, for programs compiled for the 32-bit Intel Architecture (IA32)
and performed extensive experiments (cf. Sec. 4). Using the Verisec bench-
mark [21] we show that the SOCA Verifier performs on par with the model check-
ers LoopFrog [19] and SatAbs [8] with regards to performance, error detection and
false-positive rates. We have also applied the SOCA Verifier to 9296 functions
taken from 250 Linux device drivers. Our tool is able to successfully analyse 95%
of these functions and, despite the fact that SOCA performs a bounded analysis,
28% of the functions are analysed exhaustively. Therefore, SOCA proves itself
to be a capable technique when being confronted with checking pointer-complex
software such as OS components.

2 Pointers, Aliasing & Intermediate Representation

The verification technique developed in this paper aims at ensuring that every
pointer in a given program is valid in the sense that it (i) never references a
memory location outside the address space allocated by or for that program,
and (i) respects the usage rules of the Application Programming Interfaces
(APIs) employed by the program. There exist several categories of memory safety
properties — (1) dereferencing invalid pointers: a pointer may not be NULL,
shall be initialised, and shall not point to a memory location outside the address
space allocated by or for the program; (2) uninitialised reads: memory cells shall
be initialised before they are read; (8) violation of memory permissions: when
the program is loaded into memory, its segments are assigned with permissions
that determine whether a segment can be read, written or executed; (4) buffer
overflows: out-of-bounds read and write operations to objects on the heap and
stack, which may lead to memory corruption and give way to various security
problems; (5) memory leaks: when a program dynamically allocates memory but
loses the handle to it, the memory cannot be deallocated anymore; (6) proper
handling of allocation and deallocation: OSs usually provide several APIs for
the dynamic (de)allocation of memory, whose documentation specifies precisely
what pairs of functions are to be employed, and how.

Aliasing in source € object code. A major issue for analysing pointer
programs is aliasing. Aliasing means that a data location in memory may be ac-
cessed through different symbolic names. Since aliasing relations between sym-
bolic names and data locations often arise unexpectedly during program exe-
cution, they may result in erroneous program behaviours that are particularly
hard to trace and debug. To illustrate this, the following C program shows a
complicated way of implementing an infinite loop:

01 #include <stdio.h> 08 for (*p1=0; *p1<10; (*pl)++)

02 #include <sys/types.h> 09 { *p2=0; }

03 10

04 int main (void) { 11 printf ("408x: %d\n", pl, *pl);
05 int32_t i, *p2=&i; 12 printf ("%08x: %d\n", p2, *p2);
06 int16_t *pl=&((intl16_t*) &i) [0]; 13 printf ("%08x: %d\n", &i, i);
07 14 return (0); }

At least three different outcomes of the program’s execution can occur as
a result of varying assumptions made about pointer aliasing by the developer
and the compiler, as well as compiler optimisations applied to the code. In the
following listing we give the output of the program when compiled with gcc
version 4.1.2 (left) and gece version 4.3.1 (middle and right).

$ gcc -02 e_loop.c $ gcc -02 e_loop.c $ gcc -01 e_loop.c

$./a.out $./a.out $./a.out

bfc76f2c: 10 bfc7428c: 10 -> does not terminate
bfc76f2c: 0O bfc7428c: 10

bfc76f2c: 0 bfc7428c: 10

More surprises are revealed when disassembling the program that produced
the output shown in the middle of the above listing:

80483ba: xor heax,heax ;; eax := 0;

80483c4: lea -0xc (%ebp) ,%ebx ;3 ebx := ebp - Oxc

80483c8: add $0x1, %eax ;3 eax := eax + Ox1

80483cb: cmp $0x9, hax ;3 (ax = 9)7

80483cf: movl $0x0,-0xc (%ebp) ;3 *p2 (= ebp - Oxc) =0
80483d6: mov %ax, (hebx) ;3 *pl (= ebx = ebp - Oxc) := ax
80483d9: jle 80483c8 ;3 if (ax <= 9) goto 80483c8

One can see at instructions 80483cf and 80483d6 that p! and p2 are pointing
to the same location in memory, and that *p2 is actually written before *p1.
This is unexpected when looking at the program’s source code but valid from
the compiler’s point of view since it assumes that the two pointers are pointing
to different data objects. As another consequence of this assumption, register
eaz is never reloaded from the memory location to which p1 and p2 point.
This example shows that source-code-based analysis has to decide for a par-
ticular semantics of the source language, which may not be the one that is used
by a compiler. Hence, results obtained by analysing the source code may not
meet a program’s runtime behaviour. While this motivates the analysis of com-
piled programs, doing so does not provide a generic solution for dealing with
pointer aliasing, as aliasing relationships may depend on runtime conditions.

Intermediate representation. A program is stored by us in an intermedi-
ate representation (IR) borrowed from Valgrind [27], a framework for dynamic
binary instrumentation. The IR consists of a set of basic blocks containing a
group of statements such that all transfers of control to the block are to the first
statement in the group. Once the block is entered, its statements are executed
sequentially until an ezxit statement is reached. An exit is always denoted as
goto <t>, where <t> is either a constant or a temporary register that deter-
mines the next program location to be executed. Guarded jumps are written as
if () goto <t>, where is a temporary register of type boolean, which
has previously been assigned within the block.

The listing below depicts an example for assembly statements and their cor-
responding IR statements. It shows how, e.g., the xor statement is decomposed
into explicitly loading (GET) the source register 0 into the temporary registers t8
and t9, performing the xor operation into the temporary register t7, followed by
storing (PUT) the result back. All operands used in the first block of the example
are 4 bytes, or 32 bits, in size.

IA32 Assembly IR Instructions

xor ‘heax,heax t9 = GET:I32(0) ;3 t9 = eax
t8 = GET:I32(0) ;3 t8 = eax
t7 = Xor32(t9,t8) ;; t7 := t9 xor t8
PUT(0) = t7 ;3 eax := t7

lea -0xc(Yebp),%ebx t42 = GET:I32(20)
t41 = Add32(t42,0xFFFFFFF4:132)
PUT(12) = t41

As can be seen, the IR is essentially a typed assembly language in static-
single-assignment form [22], and employs temporary registers, which are denoted
as t<n>, and the guest state. The guest state consists of the contents of the
registers that are available in the architecture for which the program under
analysis is compiled. While machine registers are always 8 bits long, temporary
registers may be 1, 8, 16, 32 or 64 bits in length. As a result of this, statement t9
= GET:I132(0) means that t9 is generated by concatenating machine registers
0 to 3. Since each IR block is in static-single-assignment form with respect to
the temporary registers, t9 is assigned only once within a single IR block. As a
valuable feature for analysing pointer safety, Valgrind’s IR makes all load and
store operations to memory cells explicit.

3 SOCA — Symbolic Object Code Analysis

This section introduces our new approach to verifying memory safety in com-
piled and linked programs, to which we refer as Symbolic Object Code Analysis
(SOCA). The basic idea behind our approach employs well-known techniques
including symbolic execution [17], SMT solving [20] and program slicing [36].
However, combining these ideas and implementing them in a way that scales
to real applications, such as Linux device drivers, is challenging and the main
contribution of this paper.

Starting from a program’s given entry point, we automatically translate each
instruction of the program’s object code into Valgrind’s IR language. This is done
lazily, i.e., as needed, by iteratively following each program path in a depth-first
fashion and resolving target addresses of computed jumps and return statements.
We then generate systems of bit-vector constraints for the path under analysis,
which reflect the path-relevant register content and heap content of the program.
In this process we employ a form of program slicing, called path-sensitive and
heap-aware program slicing, which is key to SOCA’s scalability and makes pro-
gram abstraction unnecessary. Finally, we invoke the SMT solver Yices [10] to
check the satisfiability of the resulting constraint systems and thus the validity
of the path. This approach allows us to instrument the constraint systems on-
the-fly as necessary, by adding constraints that express, e.g., whether a pointer
points to an allocated address.

SOCA leaves most of a program’s input and initial heap content unspecified
in order to allow the SMT solver to search for inputs that may reveal pointer
errors. Obviously, our analysis by symbolic execution cannot be complete: the
search space has to be bounded since the total number of execution paths and
the number of instructions per path may be infinite. Our experimental results
(cf. Sec 4) show that this boundedness is not a restriction in practice: many inter-
esting programs, such as Linux device driver functions, are relatively “shallow”
and may still be analysed either exhaustively or to an acceptable extent.

Translating IR into Yices constraints. To translate IR statements into
bit-vector constraint systems for Yices, we have defined a simple operational
semantics for Valgrind’s IR language. Due to space constraints we cannot present

this semantics here and refer the reader to [24] instead. Instead, we focus directly
on examples illustrating this translation.

As a first example we consider the PUT(0) = t7 statement from the example
above. Intuitively, the semantics of PUT is to store the value held by t7 to the
guest state, in registers 0 to 3 (i.e., 70 to r8 below):

IR Instruction Constraint Representation

PUT(0) = t7 (define r0Q::(bitvector 8) (bv-extract 31 24 t7))
(define rl::(bitvector 8) (bv-extract 23 16 t7))
(define r2::(bitvector 8) (bv-extract 15 8 t7))
(define r3::(bitvector 8) (bv-extract 7 0 t7))

Here, the bv-extract operation denotes bit-vector extraction. Note that the
TA32 CPU registers are assigned in reverse byte order, while arithmetic expres-
sions in Yices are implemented for bit-vectors that have their most significant
bit at position 0. Since access operations to the guest state may be 8, 16, 32
or 64 bit aligned, we have to translate the content of temporary registers when
accessing the guest state.

Similar to the PUT instruction, we can express GET, i.e., loading a value
from the guest state, as the concatenation of bit-vectors, and the Xor and Add
instructions in terms of bit-vector arithmetic:

IR Instruction Constraint Representation

t9 = GET:132(0) (define t9::(bitvector 32) (bv-concat
(bv-concat r3 r2) (bv-concat ril r0))

t7 = Xor32(t9,t8) (define t7::(bitvector 32) (bv-xor t9 t8))

t41 = Add32(t42, (define t88::(bitvector 32)

O0xFFFFFFF4:132) (bv-add t87 (mk-bv 32 4294967284)

More challenging to implement are the IR instructions ST (store) and LD
(load) which facilitate memory access. The main difference of these instructions
to PUT and GET is that the target of ST and the source of LD are variable and
may only be computed at runtime. To include these statements in our framework
we have to express them in a flexible way, so that the SMT solver can identify
cases in which safety properties are violated. In Yices we declare a function heap
as our representation of the program’s memory. An exemplary ST statement
ST(t5) = t32 can be expressed in terms of updates of that function:

IR Instruction Constraint Representation
ST(t5) = t32 (define heap.0::(-> (bitvector 32) (bitvector 8))
(update heap ((bv-add t5 (mk-bv 32 3)))
(bv-extract 7 0 t32)))
(define heap.1::(-> (bitvector 32) (bitvector 8))
(update heap.0 ((bv-add t5 (mk-bv 32 2)))
(bv-extract 15 8 t32)))
(define heap.2::(-> (bitvector 32) (bitvector 8))
(update heap.1l ((bv-add t5 (mk-bv 32 1)))
(bv-extract 23 16 t32)))
(define heap.3::(-> (bitvector 32) (bitvector 8))
(update heap.2 ((bv-add t5 (mk-bv 32 0)))
(bv-extract 31 24 t32)))

Since the above ST instruction stores the content of a 32-bit variable in four
separate 8-bit memory cells, we have to perform four updates of heap. Byte-
ordering conventions apply in the same way as explained for PUT. Constraints
for the LD instruction are generated analogous to GET.

Encoding pointer safety assertions. Being able to translate each object
code instruction into constraints allows us to express the safety pointer prop-
erties given in Sec. 2 in terms of assertions within the constraint systems. The
simplest case of such an assertion is a null-pointer check. For the ST instruc-
tion in the above example, we state this assertion as (assert (= t5 (mk-bv 32
0))). If the resulting constraint system is satisfiable, Yices will return a possible
assignment to the constraint system variables representing the program’s input.
This input is constructed such that it will drive the program into a state in which
t5 holds the value NULL at the above program point.

However, many memory safety properties demand additional information to
be collected about a program’s current execution context. In particular, answer-
ing the question whether a pointer may point to an “invalid” memory area re-
quires knowledge which cells are currently allocated. We retain this information
by adding a function named heaploc to our memory representation:

(define heaploc::(-> (bitvector 32) (record alloc::bool init::bool
start:: (bitvector 32) size::(bitvector 32))))

This allows us to express assertions stating that, e.g., pointer t5 has to point to

an allocated address at the program location where it is dereferenced, as:

(assert (= (select (heaploc t5) alloc) false))

All other pointer safety properties mentioned in Sec. 2 may be encoded along
the lines of those two examples. Most of them require further additional infor-
mation to be added to the heaploc function. To reduce the size and search space
of the resulting constraint systems we check assertions one-by-one with a spe-
cialised heaploc function for each property. The full details of our generation of
constraint systems can be found in [24].

Path-sensitive slicing. To ensure scalability of our SOCA technique, we do
not run Yices on an entire path’s constraint system. Instead we compute a slice
[36] of the constraint system containing only those constraints that are relevant
to the property to be checked at a particular program location.

The approach to path-sensitive program slicing in SOCA employs an algo-
rithm based on system dependence graphs as introduced in [14]. Our slices are
extracted using conventional slicing criteria (L, var) denoting a variable var that
is used at program location L but, in contrast to [14], over the single path cur-
rently being analysed instead of the program’s entire control flow. The slice is
then computed by collecting all statements on which var is data dependent by
tracing the path backwards, starting from L up to the program’s entry point.
While collecting flow dependencies is relatively easy for programs that do only
use CPU registers and temporary registers, it becomes difficult when dependen-
cies to the heap and stack are involved.

Handling memory access in slicing. Consider the following two IR state-
ments: 01 ST(t5) = t32; 02 t31 = LD:I32(t7). To compute a slice for the
slicing criterion (02,¢31) we have to know whether the store statement ST may
affect the value of t31, i.e., whether t5 and ¢7 may alias. We obtain this informa-
tion by using Yices to iteratively explore the potential address range that can
be accessed via t5. This is done by making Yices find a satisfying model e for ¢5,
as described below. When reading a model, which is represented by Yices as a
bit-vector, we compute its integer representation and further satisfying models
¢’ such that e > ¢’ or e < ¢’ holds, until the range is explored.

To use Yices as efficiently as possible when searching for satisfying models,
we employ stepwise adding or retracting of constraints. Since we remember only
the maximal and minimal satisfying models for a given pointer, this is an over-
approximation because not the entire address range may be addressable by that
pointer. However, using this abstraction presents a trade-off concerning only the
size of the computed slices and not their correctness, and helps us to keep the
number of Yices runs and the amount of data to be stored small.

By computing the potential address range accessed by a pointer used in a
load statement, ¢7 in our example, and looking for memory intervals overlapping
with the range of t7, we can now determine which store operations may affect the
result of the load operation above. Despite being conservative when computing
address ranges, our experience shows that most memory access operations end
up having few dependencies; this is because most pointers evaluate to a concrete
value, i.e., the constraint system has exactly one satisfying model, rather than a
symbolic value which represents potentially many concrete values.

Handling computed jumps. A major challenge when analysing compiled
programs arises from the extensive use of function pointers, jump tables and
jump target computations. While most source-code-based approaches simply
ignore function pointers [4,8,13], this cannot be done when analysing object
code since jump computations are too widely deployed here. The most common
example for a computed jump is the return statement in a subroutine. To perform
a return, the bottom element of the stack is loaded into a temporary register,
e.g., t1, followed by a goto t1 statement, which effectively sets the value of the
program counter to t1. In our approach, jump target addresses are determined
in the same way as addresses for load and store operations, i.e., by computing a
slice for each jump target and then using Yices to determine satisfying models
for the target register.

Optimising GET & PUT statements. A potential problem with respect
to the scalability of our approach arises from the vast number of GET and
PUT statements in IR code. In particular, the frequent de-/re-composing of
word-aligned temporary registers into guest registers and back into temporary
registers introduces lots of additional variables in the SMT solver. These GET
and PUT statements are introduced into our IR in order to make the IR block
generated for a single CPU instruction reentrant with respect to the guest state.
Thereby the need to repeat the translation from object code to IR whenever an

instruction is used in a different execution context is avoided, at the expense of
having to deal with larger constraint systems.

An efficient way around this issue is to optimise unnecessary GET and PUT
operations away, based on a reaching definition analysis for a given register and
path. Practical results show that this simple optimisation greatly reduces the
memory consumption of Yices for large constraint systems. We can apply the
same optimisations to memory accesses in cases where the address arguments
to LD and ST evaluate to constant values. From our experience, dealing with
unnecessary GET, PUT, LD and ST statements, by performing the above op-
timisations on IR level for an entire execution path, results in more efficient
constraint systems and shorter runtimes of SOCA and Yices than when allowing
Valgrind to perform similar optimisations at basic-block level.

Determining a valid initial memory state. Another challenge when im-
plementing symbolic execution as an SMT problem is given by the enormous
search space that may result from leaving the program’s initial memory state
undefined. OS components, including functions taken from device drivers, make
regular use of an external data environment consisting of heap objects allocated
and initialised by other OS modules. Hence, this data environment cannot be
inferred from the information available in the program binary. In practice, data
environments can often be embedded into our analysis without much effort, by
adding a few lines of C code as a preamble, as is shown in [26].

4 Experimental Results

To evaluate our SOCA technique regarding its ability to identify pointer safety
issues and to judge its performance when analysing OS components, we have
implemented SOCA in a prototypic tool, the SOCA Verifier. The tool comprises
15,000 lines of C code and took about one person-year to build; details of its
architecture can be found in [24]. This section reports on extensive experiments
we conducted in applying the SOCA Verifier to a benchmark suite for software
model checkers and to a large set of Linux device drivers. All experiments were
carried out on a 16-core PC with 2.3 GHz clock speed and 256 GB of RAM,
running 16 instances of the SOCA Verifier in parallel. However, an off-the-shelf
PC with 4 GB of RAM is sufficient for everyday use, when one must not verify
thousands of programs concurrently to meet a paper submission deadline.

4.1 Experiments I: The Verisec Benchmark

To enable a qualitative comparison of the SOCA Verifier to other tools, we
applied it to the Verisec benchmark [21]. Verisec consists of 298 test programs
(149 faulty programs — positive test programs — and 149 corresponding fixed
programs — negative test programs) for buffer overflow vulnerabilities, taken
from various open source programs. These test cases are given in terms of C
source code which we compiled into object code using gcc, and are provided
with a configurable buffer size which we set to 4. The bounds for the SOCA

Verifier were set to a maximum of 100 paths to be analysed, where a single
instruction may appear at most 500 times per path. Yices was configured to a
timeout of 300 seconds per invocation. Of these bounds, only the timeout for
Yices was ever reached.

Table 1. Comparison of SatAbs, LoopFrog and SOCA

R(d)|R(f) | R(~f]d)
SatAbs (from [21]) |0.36]/0.08| n/a
LoopFrog (from [19])| 1.0 |0.26 | 0.74
SOCA 0.66(0.23| 0.81

In previous work [19,21], Verisec was used to evaluate the C-code model
checkers SatAbs [8] and LoopFrog [19]. To enable a transparent comparison,
we adopted the metrics proposed in [38]: in Table 1 we report the detection
rate R(d), the false-positive rate R(f), and the discrimination rate R(—f]|d).
The latter is defined as the ratio of positive test cases for which an error is
correctly reported, plus the negative test case for which the error is correctly
not reported, to all test cases; hence, tools are penalised for not finding bugs
and for not reporting a sound program as safe.

As Table 1 testifies, the SOCA Verifier reliably detects the majority of buffer
overflow errors in the benchmark, and has a competitive false-positive rate and
a better discrimination rate than the other tools. Remarkable is also that the
SOCA Verifier failed for only four cases of the Verisec suite: once due to memory
exhaustion and three times due to missing support for certain IR instructions in
our tool. Only our detection rate is lower than the one reported for LoopFrog.
An explanation for this is the nature of Verisec’s test cases where static arrays
are declared globally. This program setup renders Verisec easily comprehensible
for source-code verification tools since the bounds of data objects are clearly
identifiable in source code. In object code, however, the boundaries of data ob-
jects are not visible anymore. This makes the SOCA Verifier less effective when
analysing programs with small, statically declared buffers.

Hence, despite having used a benchmark providing examples that are in
favour of source code analysis, our results show that object code analysis, as im-
plemented in the SOCA Verifier, can compete with state-of-the-art source-code
model checkers. However, as our tool analyses object code, it can be employed in
a much wider application domain. Unfortunately, benchmarks that include dy-
namic allocation and provide examples of pointer safety errors other than buffer
overflows are, to the best of our knowledge, not publicly available.

Fig. 1(a) displays the CPU times consumed for analysing each test case in
the Verisec benchmark. The vast majority of test cases is analysed by the SOCA
Verifier within less than three mins per case. As shown in Table 2, the average
computation time consumed per test case is 18.5 mins. In total, about 92 CPU
hours were used. The memory consumption of both, the SOCA Verifier and Yices

Functions analysed after #s (Verisec Suite)

Constraint Systems solved after #ms (Verisec Suite)
1000 T T T T 1e+07 T T T T T
MNumber of functions finished at time m— Number of CS solved attime +
Total number analysed + Total number solved =
1e+06 bl
o P S
\‘V F
i
N <
+ 100000 % 9
. x
100 | N 1 4 A
+ AT
o . @ o
8 5 "
= T 10000 | b B
c @ ¥
< = % +
5 5 :
2 5 +
g E v
3 3 1
[5] i
4 5 1000 - % B
o 5 ¥
z 2 b
3
10 B +
H
b
100 + -
1 solver timeouts
r
I
10 | + 1
+
- ——
O —
1 . L 1 L .
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 1e+06
Time (s)

Time (ms)

Figure 1. Performance results for the Verisec benchmark. (a) Numbers of test cases
verified by time (left). () Numbers of constraint systems solved by time (right).

together, amounts to an average of only 140 MBytes and a maximum of about
3 GBytes, which is a memory capacity that is typically available in today’s PCs.
Notably, Ku reported in [21] that the SatAbs tool crashed in 73 cases and timed

Table 2. Performance statistics for the Verisec suite

average standard min max total
deviation

per test case
total runtime 18m30s 1h33m 162ms 15h21m 91h54m
slicing time 28s150ms 41s808ms 28ms 5m1bs 2h19m
Yices time 17mb59s 1h33m 110ms 15h20m 89h19m
no. of CS 4025.11 173.76 11 8609 11994834
pointer operations| 8.73 37.74 4 242 2603
per Yices invocation
runtime 267ms 4s986ms 1ms 5m 88h59m
CS size 891.64 7707.95 0 368087
memory usage 6.82MB 46.54MB 3.81MB 2504.36MB

out in another 87 cases with a timeout of 30 mins. The runtime of the SOCA
Verifier exceeds this time in only 7 cases.

In Fig. 1(b) we show the behaviour of Yices for solving the constraint systems
generated by the SOCA Verifier. For the Verisec suite, a total of 11,994,834 con-
straint systems were solved in 89 hours. 2,250,878 (19%) of these systems express
verification properties, while the others were required for computing control flow,
e.g., for deciding branching conditions and resolving computed jumps. With the
timeout for Yices set to 5 mins, the solver timed out on 34 constraint systems,
and 96% of the constraint systems were solved in less than one second. Thus,
the SOCA Verifier’s qualitative performance is competitive with state-of-the-art
software model checkers. In addition, it is sufficiently efficient to be used as an
automated debugging tool by software developers, both regarding time efficiency
and space efficiency.

4.2 Experiments II: Linux Device Drivers

To evaluate the scalability of the SOCA Verifier, a large set of 9296 functions
originating from 250 Linux device drivers of version 2.6.26 of the Linux kernel
compiled for TA32 was analysed by us. Our experiments employed the Linux
utility nm to obtain a list of function symbols present in a device driver. By
statically linking the driver to the Linux kernel we resolved undefined symbols
in the driver, i.e., functions provided by the OS kernel that are called by the
driver’s functions. The SOCA technique was then applied on the resulting binary
file to analyse each of the driver’s functions separately. The bounds for the
SOCA Verifier were set to a maximum of 1000 paths to be analysed, where a
single instruction may appear at most 1000 times per path, thereby effectively
bounding the number of loop iterations or recursions to that depth. Moreover,
Yices was configured to a timeout of 300 seconds per invocation.

Table 3. Performance statistics for the Linux device drivers

average standard min max total
deviation

per test case
total runtime 58m28s 7h56m 21ms 280h48m 9058h32m
slicing time 8m35s 2h13m 0 95h39m 1329h46m
Yices time 48m36s 7h28m 0 280h30m 7531h51m
no. of CS 3591.14 9253.73 0 53449 33383239
pointer operations| 99.53 312.64 0 4436 925277
no. of paths 67.50 221.17 1 1000 627524
max path lengths | 727.22 1819.28 1 22577
per Yices invocation
runtime 845ms 8s765ms 1lms 5m2s 8295h56m
CS size 4860.20 20256.77 0 7583410
Memory usage 5.75MB 14.76MB 3.81MB 3690.00MB

Functions analysed after #s (total) Constraint Systems solved after #ms (total)

1e+08
' NUmber of functions finished at time s ‘ "Number of CS solved at time. +
Total number analysed ~ + Totaln x
10000 -
| ——
1e+07 |
X
1e+06 | *
.
1000 B ¥y
3 2 100000 |
H g
< £
S £ 10000 |
S 100 b 1 £
2 3
s 5
S]
z = 1000 |
L solver timequts |
w0l 100
10 | B
-
I
-+
1 1 L L . .
1 10 100 1000 10000 100000 1e+06 1e+07 1 10 100 1000 10000 100000 1e+06
Time (s) Time (ms)

Figure 2. Performance results for the Linux device drivers. (a) Numbers of test cases
verified by time (left). () Numbers of constraint systems solved by time (right).

Our results in Table 3 show that 94.4% of the functions in our sample could
be analysed by the SOCA Verifier. In 67.5% of the functions the exhaustion
of execution bounds led to an early termination of the analysis. However, the
analysis reached a considerable depth even in those cases, analysing paths of
lengths of up to 22,577 CPU instructions. Interestingly, 27.8% of the functions
could be analysed exhaustively, where none of the bounds regarding the number
of paths, the path lengths, or the SMT solver’s timeout were reached. As depicted
in Fig. 2(a), the SOCA Verifier returned a result in less than 10 mins in the
majority of cases, while the generated constraint systems were usually solved in
less than 500 ms. The timeout for Yices was hardly ever reached (cf. Fig. 2(b)).

As an aside, it should be mentioned that in 0.98% (91 functions) of the sample
Linux driver functions, the SOCA Verifier may have produced unsound results
due to non-linear arithmetic within the generated constraint systems, which
is not decidable by Yices. In addition, our verifier failed in 5.6% of the cases
(522 functions) due to either memory exhaustion, missing support for particular
assembly instructions in our tool or Valgrind, or crashes of Yices.

Our evaluation shows that the SOCA Verifier scales up to real-world OS
software while delivering very good performance. Being automatic and not re-
stricted to analysing programs available in source code only, the SOCA Verifier
is an efficient tool that is capable of aiding a practitioner in debugging pointer-

complex software such as OS components. The application of the SOCA Verifier
is, however, not restricted to verifying memory safety. In [26] we presented a case
study on retrospective verification of the Linux Virtual File System (VFS) using
the SOCA Verifier for checking violations of API usage rules such as deadlocks
caused by misuse of the Linux kernel’s spinlock APIL

5 Related Work

There exists a wealth of related work on automated techniques for formal soft-
ware verification, a survey of which can be found in [9]. We focus here on more
closely related work, namely on (i) model checking bytecode and assembly lan-
guages, (i) approaches combining model checking with symbolic execution, and
(i#i) program slicing,.

Model checking bytecode € assembly languages. In recent years, several
approaches to model checking compiled programs by analysing bytecode and
assembly code have been presented. In [32,35], Java PathFinder (JPF') for model
checking Java bytecode was introduced. JPF generates the state space of a
program by monitoring a virtual machine. Model checking is then conducted
on the states explored by the virtual machine, employing collapsing techniques
and symmetry reduction for efficiently storing states and reducing the size of the
state space. These techniques are effective because of the high complexity of JPF
states and the specific characteristics of the Java memory model. In contrast, the
SOCA technique to verifying object code involves relatively simple states and, in
difference to Java, the order of data within memory is important in TA32 object
code. Similar to JPF, StEAM [23] model checks compiled C++ programs by
using a modified Internet Virtual Machine to generate a program’s state space.
In addition, StEAM implements heuristics to accelerate error detection.

BTOR [5] and [mc/square [28,33] are tools for model checking assembly code
for micro-controllers. They accept assembly code as their input, which may either
be obtained during compilation or, as suggested in [33], by disassembling a binary
program. Since the problem of disassembling a binary program is undecidable
in general, the SOCA technique focuses on the verification of binary programs
without the requirement of disassembling a program at once.

All the above tools are explicit model checkers that require a program’s
entire control flow to be known in advance of the analysis. As we have explained
in Sec. 3, this is not feasible in the presence of computed jumps. The SOCA
technique has been especially designed to deal with OS components that make
extensive use of jump computations.

Combining model checking with symbolic execution. Symbolic execution
was introduced by King [17] as a means of improving program testing by cover-
ing a large class of normal executions with a single execution, in which symbols
representing arbitrary values are used as input to the program. This is exactly
what our SOCA technique does, albeit not for testing but for systematic, pow-
erful memory safety analysis. A survey on recent trends in symbolic execution
with an emphasis on program analysis and test generation is given in [30].

Several frameworks for integrating symbolic execution with model checking
have been developed, including Symbolic JPF [29] and DART [11]. Symbolic JPF
is a successor of the previously mentioned JPF. DART implements directed and
automated random testing to generate test drivers and harness code to simulate
a program’s environment. The tool accepts C programs and automatically ex-
tracts function interfaces from source code. Such an interface is used to seed the
analysis with a well-formed random input, which is then mutated by collecting
and negating path constraints while symbolically executing the program under
analysis. Unlike the SOCA Verifier, DART handles constraints on integer types
only and does not support pointers and data structures.

A language agnostic tool in the spirit of DART is SAGE [12], which is used
internally at Microsoft. SAGE works at TA32 instruction level, tracks integer
constraints as bit-vectors, and employs machine-code instrumentation in a sim-
ilar fashion as we do in [26]. SAGE is seeded with a well-formed program input
and explores the program space with respect to that input. Branches in the con-
trol flow are explored by negating path constraints collected during the initial
execution. This differs from our approach since SOCA does not require seed-
ing but explores the program space automatically from a given starting point.
The SOCA technique effectively computes program inputs for all paths explored
during symbolic execution.

DART-like techniques, also known as concolic testing, are described in [16,34].
These techniques rely on performing concrete executions on random inputs while
collecting path constraints along executed paths. These constraints are then used
to compute new inputs that drive the program along alternative paths. In differ-
ence to this approach, SOCA uses symbolic execution to explore all paths and
concretises only for resolving computed jumps.

Another bounded model checker for C source code based on symbolic exe-
cution and SAT solving is SATURN [37]. This tool is specialised on checking
locking properties and null-pointer de-references and is thus not as general as
SOCA. The authors of [37] show that their tool scales to analysing the entire
Linux kernel. Unlike the SOCA Verifier, their approach computes function sum-
maries instead of adding the respective code to the control flow, unwinds loops
a fixed number of times and does not handle recursion.

Program slicing. An important SOCA ingredient other than symbolic execu-
tion is path-sensitive slicing. Program slicing was introduced by Weiser [36] as
a technique for automatically selecting only those parts of a program that may
affect the values of interest computed at some point of interest. Different to con-
ventional slicing, our slices are computed over a single path instead of an entire
program, similar to what has been introduced as dynamic slicing in [18] and path
slicing in [15]. In contrast to those approaches, we use conventional slicing crite-
ria and leave a program’s input initially unspecified. In addition, while collecting
program dependencies is relatively easy at source code level, it becomes difficult
at object code level when dependencies to the heap and stack are involved. The
technique employed by SOCA for dealing with the program’s heap and stack is
a variation of the recency abstraction described in [1].

6 Conclusions and Future Work

This paper presented the novel SOCA technique for automatically checking mem-
ory safety of pointer-complex software. Analysing object code allows us to handle
software, e.g., OS software, which is written in a mix of C and inlined assembly.
Together with SOCA’s symbolic execution, this simplifies pointer analysis when
being confronted with function pointers, computed jumps and pointer aliasing.
SOCA achieves scalability by adopting path-sensitive slicing and the efficient
SMT solver Yices. While the SOCA ingredients are well-known, the way in which
we integrated these for automated object code analysis is novel. Much effort
went into engineering our SOCA Verifier, and extensive benchmarking showed
that it performs on par with state-of-the-art software model checkers and scales
well when applied to Linux device driver functions. Our verifier explores seman-
tic niches of software, especially OS software, which currently available model
checkers and testing tools do not reach. Obviously, the lack of abstraction makes
SOCA less useful for programs manipulating unbounded data structures.
Future work shall be pursued along several orthogonal lines. Firstly, since
device driver functions may be invoked concurrently, we plan to extend SOCA
to handle concurrency. To the best of our knowledge, the verification of concur-
rent programs with full pointer arithmetic and computed jumps is currently not
supported by any automated verification tool. Secondly, we intend to evaluate
different search strategies for exploring the paths of a program, employing heuris-
tics based on, e.g., coverage criteria. Thirdly, as some inputs of device drivers
functions involve pointered data structures, we wish to explore whether shape
analysis can inform SOCA in a way that reduces the number of false positives
raised. Fourthly, the SOCA Verifier shall be interfaced to the gnu debugger so
that error traces can be played back in a user-friendly form, at source code level.

Acknowledgements. We thank the anonymous reviewers for their valuable
comments, especially for pointing out some recent related work.

References

1. Balakrishnan, G. and Reps, T. Recency-abstraction for heap-allocated storage. In
SAS *06, vol. 4134 of LNCS, pp. 221-239. Springer, 2006.

2. Balakrishnan, G., Reps, T., Melski, D., and Teitelbaum, T. WYSINWYX: What
You See Is Not What You eXecute. In VSTTE ’08, vol. 4171 of LNCS, pp. 202-213.
Springer, 2008.

3. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S. K., and Ustuner, A. Thorough static analysis of device
drivers. SIGOPS Oper. Syst. Rev., 40(4):73-85, 2006.

4. Ball, T. and Rajamani, S. Automatically validating temporal safety properties of
interfaces. In SPIN 01, vol. 2057 of LNCS, pp. 103-122. Springer, 2001.

5. Brummayer, R., Biere, A., and Lonsing, F. BTOR: Bit-precise modelling of word-
level problems for model checking. In SMT ’08, pp. 33-38. ACM, 2008.

6. Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. An empirical study of
operating system errors. In SOSP 01, pp. 73-88. ACM, 2001.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Clarke, E., Kroening, D., and Lerda, F. A tool for checking ANSI-C programs. In
TACAS 04, vol. 2988 of LNCS, pp. 168-176. Springer, 2004.

Clarke, E., Kroening, D., Sharygina, N.,; and Yorav, K. SATABS: SAT-based
predicate abstraction for ANSI-C. In TACAS ’05, vol. 3440 of LNCS, pp. 570-574.
Springer, 2005.

D’Silva, V., Kroening, D., and Weissenbacher, G. A survey of automated techniques
for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(7):1165-1178, 2008.

Dutertre, B. and de Moura, L. The Yices SMT solver. Technical Report 01/2006,
SRI, 2006. http://yices.csl.sri.com/tool-paper.pdf.

Godefroid, P., Klarlund, N., and Sen, K. DART: Directed automated random
testing. In PLDI ’05, pp. 213-223. ACM, 2005.

Godefroid, P., Levin, M. Y., and Molnar, D. Automated whitebox fuzz testing. In
NDSS ’08. Internet Society, 2008.

Henzinger, T., Jhala, R., Majumdar, R., Necula, G., Sutre, G., and Weimer, W.
Temporal-safety proofs for systems code. In CAV ’02, vol. 2402 of LNCS, pp.
526-538. Springer, 2002.

Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence
graphs. ACM TOPLAS, 12(1):26-60, 1990.

Jhala, R. and Majumdar, R. Path slicing. SIGPLAN Not., 40(6):38-47, 2005.
Kim, M. and Kim, Y. Concolic testing of the multi-sector read operation for flash
memory file system. In SBMF ’09, vol. 5902 of LNCS, pp. 251-265. Springer, 2009.
King, J. Symbolic execution and program testing. Commun. ACM, 19(7):385-394,
1976.

Korel, B. and Laski, J. Dynamic slicing of computer programs. J. Syst. Softw.,
13(3):187-195, 1990.

Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., and Wintersteiger, C. Loop
summarization using abstract transformers. In ATVA 08, vol. 5311 of LNCS, pp.
111-125. Springer, 2008.

Kroening, D. and Strichman, O. Decision Procedures. Springer, 2008.

Ku, K. Software model-checking: Benchmarking and techniques for buffer overflow
analysis. Master’s thesis, University of Toronto, 2008.

Leung, A. and George, L. Static single assignment form for machine code. In PLDI
99, pp. 204-214. ACM, 1999.

Leven, P., Mehler, T., and Edelkamp, S. Directed error detection in C++ with
the assembly-level model checker StEAM. In Model Checking Software, vol. 2989
of LNCS, pp. 39-56. Springer, 2004.

Miihlberg, J. T. Model Checking Pointer Safety in Compiled Programs. PhD thesis,
Department of Computer Science, University of York, 2009.

Miihlberg, J. T. and Liittgen, G. BLASTing Linux code. In FMICS ’06, vol. 4346
of LNCS, pp. 211-226. Springer, 2006.

Miihlberg, J. T. and Liittgen, G. Verifying compiled file system code. In SBMF
09, vol. 5902 of LNCS, pp. 306-320. Springer, 2009.

Nethercote, N. and Seward, J. Valgrind: A framework for heavyweight dynamic
binary instrumentation. SIGPLAN Not., 42(6):89-100, 2007.

Noll, T. and Schlich, B. Delayed nondeterminism in model checking embedded
systems assembly code. In Hardware and Software: Verification and Testing, vol.
4899 of LNCS, pp. 185-201. Springer, 2008.

P&sdreanu, C., Mehlitz, P., Bushnell, D., Gundy-Burlet, K., Lowry, M., Person, S.,
and Pape, M. Combining unit-level symbolic execution and system-level concrete
execution for testing NASA software. In ISSTA 08, pp. 15-26. ACM, 2008.

30.

31.

32.

33.

34.

35.

36.
37.

38.

Pésareanu, C. and Visser, W. A survey of new trends in symbolic execution for
software testing and analysis. Software Tools for Technology Transfer, 11(4):339—
353, 2009.

Rational Purify. IBM Corp., http://wuw.ibm.com/software/awdtools/purify/.
Rungta, N., Mercer, E., and Visser, W. Efficient testing of concurrent programs
with abstraction-guided symbolic execution. In SPIN ’09, vol. 5578 of LNCS, pp.
174-191. Springer, 2009.

Schlich, B. and Kowalewski, S. [mc|square: A model checker for microcontroller
code. In ISOLA 06, pp. 466-473. IEEE, 2006.

Sen, K., Marinov, D., and Agha, G. CUTE: A concolic unit testing engine for C.
In ESEC/FSE-13, pp. 263-272. ACM, 2005.

Visser, W., Havelund, K., Brat, G., Joon, S.; and Lerda, F. Model checking pro-
grams. Formal Methods in System Design, 10(2):203-232, 2003.

Weiser, M. Program slicing. In ICSE ’81, pp. 439-449. IEEE, 1981.

Xie, Y. and Aiken, A. SATURN: A scalable framework for error detection using
boolean satisfiability. ACM TOPLAS, 29(3):16, 2007.

Zitser, M., Lippmann, R., and Leek, T. Testing static analysis tools using ex-
ploitable buffer overflows from open source code. SIGSOFT Softw. Eng. Notes,
29(6):97-106, 2004.

