
On Parallel Software Verification using
Boolean Equation Systems

Alexander Ditter1, Milan Češka2, and Gerald Lüttgen1

1 University of Bamberg, 96045 Bamberg, Germany,
{alexander.ditter,gerald.luettgen}@swt-bamberg.de,

2 Masaryk University, 602 00 Brno, Czech Republic
xceska@fi.muni.cz

Abstract. Multi- and many-core hardware platforms are today widely
accessible and used to significantly accelerate many computationally de-
manding tasks. In this paper we describe a parallel approach to solve
Boolean Equation Systems (BESs) in the context of model checking.
We focus on the applicability of state-of-the-art, shared-memory par-
allel hardware – multi-core CPUs and many-core GPUs – to speed up
the resolution procedure for BESs. In this setting, we experimentally
show the scalability and competitiveness of our approach, compared to
an optimized sequential implementation, based on a large benchmark
suite containing models of software systems and protocols from industry
and academia.

Keywords: formal verification, parallel model checking, boolean equa-
tion systems.

1 Introduction

In this paper we propose and evaluate a parallel approach to the resolution
of Boolean Equation Systems (BESs) on parallel, shared memory systems, i.e.,
utilizing state-of-the-art multi-core and many-core processors – though not in
a hybrid setting. Our goals are to (i) evaluate the scalability of our parallel
approach with respect to an increasing number of parallel processing units (PUs),
and (ii) prove its competitiveness in comparison with an optimized sequential
algorithm, which we implemented as described in [1].

Motivation. Today, hardware manufacturers no longer increase clock rates but
the number of available PUs of processors. Along with the evolving massively
parallel, throughput oriented hardware architectures [13], this has led to an in-
creasing interest in the parallelization of software. Indeed, this trend has already
found its way into the field of software verification and model checking years
ago [5, 16, 17] and must be considered further in order to push the limits of veri-
fication techniques further towards industrial strength, allowing one to deal with
larger state spaces and providing rapid feedback to developers.

Modern processors can be divided into two main branches: (i) CPU-based
multi-core processors with up to tens of cores and (ii) GPU-based many-core

processors with up to several hundreds of cores. The key differences are (i) the
ability to efficiently deal with control flow at the expense of lower data through-
put and, respectively, (ii) the ability to provide high data throughput rates at
the expense of a lack of efficient, control-flow guided execution. We assume the
trend to continue – see e.g., Intel’s “Terra Scale Computing”3 project – suggest-
ing future hardware to consist of more, yet simpler PUs. With respect to parallel
algorithms, current hardware development favors approaches that are geared to-
wards the single instruction multiple data (SIMD) paradigm, since they can most
easily take advantage of this type of parallel hardware. Therefore, it is inevitable
to consider the applicability of massively parallel, SIMD-based (i.e., many-core)
systems in our experiments.

Background. The standard model checking problem [9], M |= ϕ, can be en-
coded by a BES [23], where the solution of the BES is equivalent to the solution
of the underlying model checking problem. The BES is obtained by the syn-
chronous composition of a Labeled Transition System (LTS), corresponding to
M , and a property ϕ (e.g., deadlock freedom) that is to be checked for this
LTS. Consequently, the data dependencies within the resulting BES are closely
related to the structure of the LTS from which it was generated. For our evalua-
tion we rely on the well established VLTS benchmark,4 which provides 40 LTSs
– originating from academia and industry – that can be checked for deadlocks
and livelocks, i.e., our resulting benchmark suite consists of a total of 80 BESs.

The average branching factor, i.e., the average number of outgoing edges per
vertex, over all 40 LTSs in the benchmark is 5.73. With respect to parallelization,
this number can be interpreted as an upper bound for the potential parallelism
that is inherent to an LTS, as in our setting information needs to be propagated
along edges. For workset based (i.e., bag of tasks) producer-consumer paralleliza-
tions [2] this means that (i) for each work item processed only few new work
items are expected to be added to the workset, and (ii) synchronization is needed
for concurrent operations on the dynamic data structure used to store the work
items.

Due to this, our approach is not based on the producer-consumer paradigm
that propagates only essential information, but on a more naive fixed point it-
eration. This promises a much higher potential for the utilization of parallel
hardware as it does not require dynamic data structures. In our particular set-
ting, data operations can even be implemented lock-free. Furthermore we do not
have to populate a workset since we propagate all possible changes during a
fixed point iteration, at the price of computational overhead, which is negligible
considering the ever growing number of parallel PUs.

Cilk Plus and CUDA. Our approach is based on data-parallelization, which
is commonly referred to as fine-grained parallelization (in contrast to task-
parallelization, i.e., “coarse grained” parallelization). To efficiently parallelize
this type of problem the choice of framework is very important, because it most

3 http://techresearch.intel.com/ResearchAreaDetails.aspx?Id=27
4 http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html

significantly influences the overhead connected to context switches. In case of our
multi-core parallelization the overhead of manual thread maintenance is not neg-
ligible since the amount of productive work per thread invocation is very limited.
Therefore, the naive use of multi-threading environments, such as PThreads [26],
is very likely to nullify the gain we expect from the parallelization itself. For this
reason we chose Intel’s Cilk Plus framework5 which offers a work stealing based
thread-pool and internally employs efficient scheduling and load balancing mech-
anisms. The scheduling of workers is not explicit and more lightweight than the
manual management of threads.

For general purpose programming on GPUs, NVIDIA’s Compute Unified De-
vice Architecture (CUDA)6 is the de facto standard framework for parallel com-
putation. It provides an Application Programming Interface (API), allowing the
utilization of NVIDIA’s GPUs for massively parallel, throughput oriented ap-
plications beyond the scope of rendering graphics. Since the CUDA framework
is tailored to applications with many data-parallel threads, light-weight compu-
tations per thread and frequent context switches [13], it is well suited for our
application.

Contributions and Related Work. In the area of software model check-
ing [9], the sizes of input problems become exceptionally large. For this reason,
much research has been put into the development of techniques that can reduce
the problem sizes by, e.g., applying abstractions, using efficient data structures
such as Binary Decision Diagrams (BDDs) [8], or limiting the exploration of the
problem domain to relevant parts only.

The approach advocated by us in this paper does not aim at reducing the
problem size, but instead at exploiting modern parallel hardware for speeding-up
the model checking of large problems. We parallelize a simple fixed point algo-
rithm for BES solving on multi-core (CPU) and many-core (GPU) architectures.
While our parallel approach is largely straightforward and its correctness is easy
to understand, it gives rise to algorithms that – in the GPU case but not the
CPU case – outperform an optimized sequential algorithm [1]. This standard
algorithm for solving BESs is based on a workset data structure that propagates
information during fixed point computation; however, in a parallel setting, syn-
chronizations on this workset would lead to unacceptable overheads. In contrast,
our approach does not require this workset; its higher computational costs are
met by the higher number of PUs and their efficient utilization by us.

We extensively evaluate the performance of our workset-less multi-core and
many-core algorithms when model checking deadlock and livelock properties on
the large examples of the VLTS benchmark. More precisely, we used the tool
“evaluator” distributed with the CADP toolset [24] to generate the BESs for
our benchmark suite from the VLTS examples and the desired deadlock and
liveness properties expressed as temporal logic formulae in the alternation-free
µ-calculus [19]. For convenience, we restrict ourselves to the evaluation of the

5 http://software.intel.com/en-us/articles/intel-cilk-plus/
6 http://developer.download.nvidia.com/compute/cuda/4 0/toolkit/docs/

CUDA C Programming Guide.pdf

solution step in the model checking process, since there exist several efficient and
even parallel approaches for the construction of compact data representations in
our setting [4, 5, 20], which can be used for preprocessing of input data.

Regarding closely related work, only two approaches on the parallel resolution
of BESs are known to us. The first one [28] is based on a multi-core parallelization
of the “Gaussian Elimination” as proposed in [23], which turns out not to be
viable in practice due to its exponential space complexity. The second one [18]
is tailored to distributed systems and aims at the resolution of extremely large
BES instances. There exist further distributed implementations [7, 14, 16, 22] but
their general goal is, in contrast to our approach, to increase the total amount of
memory in order to deal with larger problem instances, rather than to improve
on their run-time performance, as network latency typically degrades the overall
performance significantly.

The experimental evaluation of the parity-game based approach presented
in [27], which performs a parallel resolution of µ-formulae on shared-memory
multi-core systems, provides scalability results for up to eight workers. Yet, the
range of examples is restricted to three Sliding Window Protocol (SWP) and
two randomly generated instances, and their run-times are not related to ex-
isting sequential algorithms. In contrast, we present a parallel, shared-memory
model checking approach that is based on a fixed point iteration used for the
parallel resolution of BESs (cf. Sec. 3). Even though this approach is targeted
at large BES instances, we are not only concerned about the capability to check
large models, but also the improvement of run-time performance. The evalua-
tion of our multi-core implementation confirms the scalability results presented
in [27], extends them to a much larger set of different benchmark examples and,
most importantly, puts them in relation to an optimized sequential BES solver
(cf. Sec. 2). In addition, we show that our approach also scales on many-core
architectures, boosting the run-time performance by one order of magnitude and
outperforming the optimized sequential baseline significantly (cf. Sec. 4).

2 Fixed Points and Boolean Equation Systems

Fixed Points and the µ-Calculus. The µ-calculus [19] is a powerful formal-
ism, e.g., subsuming the temporal logics LTL, CTL and CTL* [11], for expressing
temporal properties. It features fixed point operators to express temporal prop-
erties such as liveness (i.e., something good will eventually happen) and safety
(i.e., something bad will never happen). The following intuition describes the
meaning of the least (µ) and greatest (ν) fixed point operators in the context
of temporal-logic based model checking: µ is used to express liveness properties
with the initial assumption that every state violates this property, and ν is used
to express safety properties with the initial assumption that every state satisfies
this property.

The syntax of the µ-calculus is defined by the following grammar:

ϕ ::= >|⊥|x|¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|[a]ϕ|〈a〉ϕ|νx.ϕ|µx.ϕ

Property – deadlock freedom: νx.([−]x ∧ 〈−〉true)

LTSunsat

x1 x2 x3

Resulting BES

νx1 = x2 ∧ > = x2

νx2 = x1 ∧ x3 ∧ > = x1 ∧ x3

νx3 = > ∧ ⊥ = ⊥

LTSsat

x1 x2 x3

Resulting BES

νx1 = x2 ∧ > = x2

νx2 = x1 ∧ x3 ∧ > = x1 ∧ x3

νx3 = x1 ∧ > = x1

Fig. 1. Interpretation of µ-formula over LTSs.

where V ar is a set of propositional variables with x ∈ V ar, and Act is a set of
actions with a ∈ Act. In our setting, µ-formulae are used to express properties
over LTSs as exemplary depicted in Fig. 1.

Boolean Equation Systems. BESs are sets of equations, resembling mono-
tonic functions over the Boolean lattice {false < true}, of the form σx = ϕ. Here,
the left hand side (LHS) x is a Boolean variable from the set of propositional
variables, σ ∈ {µ, ν} is the least or the greatest fixed point operator, and the
right hand side (RHS) is of the form ϕ ::= >|⊥|x|ϕ ∧ ϕ|ϕ ∨ ϕ.

In the context of model checking, BESs are the result of the interpretation
of a µ-formula over an LTS. Since the formula has to be verified for every state
of the LTS, the resulting BES is of size |LTS| x |ϕ|k, i.e., the size of the BES
is proportional to the size of the LTS and exponential in the complexity of the
µ-formula, where k is the alternation depth of φ which, roughly speaking, is the
number of alternations of different fixed point operator types binding the same
variables. Each fixed point operator of the formula is resembled by a so called
block in the resulting BES, containing the set of equations associated with this
operator. As is illustrated in Fig. 1, the resulting BESs for the deadlock freedom
property with respect to the two displayed LTSs only contain one block, with
three equations. This is because the corresponding formula only consists of one
fixed point operator and each LTS comprises three states.

While equations may be reordered arbitrarily within a block, this is not the
case for the ordering of blocks corresponding to alternating fixed point operators,
as it may lead to the computation of a wrong fixed point. The order in which
blocks have to be processed is defined by their nesting within the µ-formula.
In this paper, we consider only alternation-free µ-formulae where the nesting of
different fixed point operators binding the same variables is not allowed. Thus,
dependencies between blocks form a tree [7] that can easily be constructed and
yields the order (from leaves to root) in which the blocks have to be solved.

Optimized Sequential Resolution of BESs. To be able to conduct a fair
evaluation of our parallel implementations for BES solving in terms of run-
time competitiveness, we have implemented an optimized, sequential CPU-based
algorithm in the style of the “chasing ones” as proposed in [1]. This approach
is workset based and uses a queue to store work items, where a work item
is equivalent to one equation of the BES. The computation in this algorithm
starts at those equations where the LHS is directly assigned value true (>) or
false (⊥), and propagates this information to all equations relying on the value
of these particular LHSs. For this purpose, equations must be enriched with
information about such backward dependencies. As space and time complexity
of this approach are linear in the size of the BES, it is well suited as a baseline
for comparison with our parallel implementations.

3 Basic Fixed Point Algorithm and Parallelization

While a lot of effort has been put into the development and optimization of se-
quential model checking algorithms so as to fight computational complexity and
state space explosion, our aim is to investigate whether a parallel approach can
be more efficient and provide scalability not only on multi-core (CPU) architec-
tures but also on many-core (GPU) architectures. For this purpose, we chose a
fixed point iteration based algorithm, which we show to be well suited for such
a parallelization. In this section we first present the algorithmic background of
our approach, followed by the concepts of our parallel implementations.

Basic Fixed Point Algorithm. The listing of Algorithm 1 illustrates the fun-
damental idea of the fixed point computation that we employ for the resolution
of BESs in our multi-core and many-core implementations.

Algorithm 1: FixedPoint algorithm

Input : BES
Output: Solution of BES

Initialization of LHSs // true for σ = ν; false for σ = µ1

foreach block B do // block order matters2

do3

variablesChanged← false4

foreach equation E ∈ B do // equation order does not matter5

LHS← evalRHS(E)6

if LHSChanged then7

variablesChanged← true8

while variablesChanged9

This algorithm consists of two nested loops, the outer one over the BES-
blocks (line 2) and the inner one over all equations within a block (line 5). The
outer loop processes blocks in a sensible order, corresponding to the dependencies
within the µ-formula (cf. Sec. 2). The inner loop computes the value of the LHS
of an equation according to the evaluation of its respective RHS, where the RHS
either consists of a terminal value (i.e., true or false) or LHS variables connected
by Boolean operators. In the beginning, all LHSs are initialized depending on
their associated fixed point operator σ, i.e., false in case σ = µ and true in
case σ = ν (line 1). This initial approximation is derived from the Knaster-
Tarksi fixed point theorem [29], where µf =

⊔
{f i(false) : i ∈ N} and νf =d

{f i(true) : i ∈ N}. The termination of the fixed point computation is detected
by a marker variable, indicating whether one or more LHSs have changed during
an iteration (line 9).

The time complexity of Algorithm 1 is quadratic with respect to the size of
the BES since, in the worst case, only one LHS is changed per iteration (one
execution of the inner loop), whence the maximum number of iterations is equal
to the total number of equations, where each iteration performs a linear amount
of work.

Parallel Fixed Point Computation. The core idea for the parallelization of
the basic fixed point algorithm is based on the parallel resolution of individual
blocks by executing the inner loop of Algorithm 1 (line 5), computing the LHS
value of an equation, in parallel. It is important to note that the order in which
equations are evaluated does not matter within the loop, as our parallel frame-
works are not aimed at the explicit scheduling of threads. Considering the fact
that this operation needs to be executed for all equations during each iteration
step, this approach exposes much potential for parallel computation, even within
one iteration step, as we expect the number of equations to be very large, e.g., the
largest LTS in the benchmark contains 33,949,609 states. The soundness of the
approach is guaranteed by the fact that BESs resemble monotonic functions, i.e.,
even if the evaluation of a RHS depends on several other LHS variables – which
in a parallel setting are potentially modified concurrently – the updated value of
each LHS is available and thus can be propagated in the subsequent iteration.
For complex µ-formulas the tree structure of BES-blocks can be exploited to
increase the level of parallelization even further by processing all “leave blocks”
in parallel.

Multi-Core Data Structure. Data structures for multi-core systems have to
follow two main objectives. On the one hand, they have to provide good data
locality, i.e., data necessary for a computation should be closely grouped so that
it can, ideally, be stored in the same cache line of a CPU. On the other hand,
unrelated data should be separated in such a way that it does not interfere with
each other in order to avoid harmful effects, such as cache thrashing, where
independent data sets depend on and thus compete for the same cache lines.
Due to these two factors and the structure of our input data (variable(s) ∈
equation(s) ∈ block(s) ∈ BES) we have decided to use a nested data structure,
where each aforementioned component is modeled by a structured type. In this

layout, all data needed to evaluate one equation – the most frequent operation
in our algorithm – is stored in a single structure resembling an equation, thus,
accounting for good data locality. Clearly, this also provides good separation,
and any further improvement would require machine dependent optimizations.

Multi-Core Parallelization. For the parallelization of Algorithm 1 on CPUs
we employ the Cilk Plus framework provided by the Intel C/C++ compiler.7

We chose Cilk Plus because it is well suited for problems with fine-grained data-
parallelism and irregular structure, as shown in [12], which also is the case in
our setting. Cilk Plus maintains a pool of workers, each of which is mapped to a
thread during execution, and supports work stealing, i.e., taking over work that
was initially assigned to another worker. This is in contrast to having to create,
manage and delete threads manually, inducing a much higher overhead.

The key idea of our multi-core implementation is the parallelization of the
inner for-loop, iterating over the equations, by employing Cilk Plus’ parallel
version of a for-loop, cilk for. The reasons why we do not require any locking
and further modifications are (i) the monotonicity of the Boolean function, as
mentioned before, and (ii) the fact that the variable variablesChanged indicating
a change of LHSs is only reset outside the parallel loop (Algorithm 1, line 4) and
set uniformly (only to true) inside the parallel loop (Algorithm 1, line 8), i.e.,
any worker that has observed a changing variable assigns this value and, thus,
the value cannot become inconsistent.

Many-Core Data Structure. Data structures used for CUDA accelerated
computation must be specially designed for this purpose. They must support
independent thread-local data processing and, at the same time, they must also
be compact enough to enable good data locality. This is to avoid high latency
device-memory access and generally to reduce the usage of device-memory band-
width that may otherwise become a performance bottleneck [21].

BES

x0 = x1 ∧ x3

x1 = x3 ∨ x2

x2 = false

x3 = x4 ∧ x1

x4 = x1 ∨ x2

Adjacency Matrix0BBBB@
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0
1 0 0 0 1
0 1 1 0 0

1CCCCA

CSR Vector

Ai

Ae

0 2 4 4 6 8

1 3 3 2 4 0 1 2

Fig. 2. Generation of adjacency list representation from BES.

A BES may be interpreted as a directed graph where the LHSs are vertices
and the dependencies on the RHSs are edges. Such a graph can be encoded as an
adjacency matrix and stored using two vectors in compressed sparse row (CSR)

7 http://software.intel.com/en-us/articles/intel-compilers/

format, as depicted in Fig. 2. Since this data structure has been demonstrated
to be efficient for graph based algorithms in the context of CUDA accelerated
computation [3, 6, 15] we employ it to store BESs. Each vertex stores the follow-
ing information: a unique index, its value along with a flag indicating whether
the Boolean value is already computed, and the type of Boolean operator (con-
junction or disjunction).

In more detail, our representation uses two one-dimensional arrays Ai and
Ae to encode the directed graph. For all vertices v0 to vn, the sum of outgoing
edges is stored in Ai, such that the number of outgoing edges from a particular
vertex vj can be computed by Ai[j+ 1]−Ai[j]. The idea of this encoding is that
the value of an element Ai[j] serves as an index to the second array Ae. The
array Ae is a concatenation of ordered lists of target vertices of outgoing edges
from individual graph vertices.

The sizes of the arrays Ai and Ae correspond to the sizes of the vertex set
and the edge set of the graph, respectively. The array Ai does not only store the
indices to the array Ae but also the aforementioned information (index, Boolean
value, flag and type). Since the on-board memory of GPUs is very limited, we
store this additional information in unused bits of Ai, thereby reducing the space
requirement to 4 bytes per vertex.

Many-Core Parallelization. For our many-core parallelization we employ the
CUDA framework, in which programs consist of two parts (i) host code that runs
on the CPU and (ii) device code that runs on the GPU, the so called kernels.
A kernel is executed concurrently in many independent data-parallel threads,
where a group of threads, called a warp, executes on the same processor in a
lock-step manner. When several warps are scheduled on a processor, memory
latencies and pipeline stalls are hidden by switching to the execution of another
warp. The CUDA framework is optimized for large numbers of simple parallel
computations without explicit scheduling of threads.

For this reason the work-flow of our CUDA-accelerated fixed-point computa-
tion is divided into two parts. The host code, executing on the CPU, iterates over
the outer loop, i.e., the loop over all BES-blocks, and calls the CUDA kernels
executing on the GPU from within this loop. Each of the kernels is computing
the solution for one LHS, i.e., evaluating one RHS. The CUDA kernel is invoked
as long as LHSs change. Its pseudo code is provided in Algorithm 2.

This approach exposes fine-grained data-parallelism, requiring a dedicated
thread to be executed for each vertex (LHS) of the graph (each item of Array
Ai). Each thread first loads the data of a vertex from Array Ai (stored in global
memory) into a local copy (line 1) and checks if the corresponding LHS has
already been solved (line 2). Then, it processes all immediate successors (loop
on line 6), representing the RHS of the corresponding equation. The algorithm
employs a lazy evaluation of the equations. In case that a value within a RHS
immediately determines the value of the LHS (i.e., the RHS is a purely disjunc-
tive term where at least one variable is true, or a purely conjunctive term where
at least one variable is false), the loop is broken (line 10). Finally, the Boolean
value of the evaluation of the RHS (stored in mySucc.value) is compared to the

Algorithm 2: FixedPoint kernel – run in parallel for each LHS variable

Input : g(lobal)Ae, g(lobal)Ai, fixedPointFound

myVertex← gAi[tid] // tid ∈ [0, 1, ..., n] where n = sizeof(BES-block)1

if myVertex.solved then2

return3

first← myVertex.index4

last← gAi[tid + 1].index5

foreach index ∈ first, . . . , last do6

targetVertex← gAe[index]7

mySucc← gAi[targetVertex]8

if mySucc.value 6= myVertex.type then // type ∨ ≡ 0 and type ∧ ≡ 19

break10

if myVertex.value 6= mySucc.value then11

myVertex.solved← true12

myVertex.value← mySucc.value13

gAi[tid]← myVertex14

fixedPointFound← false15

Boolean value stored in the corresponding LHS (line 11). If the two values differ,
the result of the evaluation is assigned to the respective LHS, written back to
Array Ai (line 14), and the fixed point flag is set to false indicating that the
fixed point is not yet reached.

Many-Core Optimizations. For the GPU-based implementation we have ex-
perimented with two optimizations.

The first one is the so called “intra-warp fixed point iteration.” It is based
on the observation that all threads within a warp have to load the required data
from global memory into local copies. All operations are performed on the local
copies, which are written back to global memory at the end of the execution
of the warp. This means that updated LHSs do not become visible to other
threads until the next iteration step and, thus, changes can only be propagated
one step per iteration. The intra-warp fixed point iteration is intended to increase
the number of propagations by performing multiple iterations on the equations
bundled in a warp and thereby propagating changes of LHSs within this warp.

The second optimization is an extension to the intra-warp fixed point itera-
tion. It utilizes the GPU’s shared memory, which provides a fast local memory
for single threads or warps, allowing the intermediate storage of data. We use
this shared memory to optimize the execution of the kernel by copying the LHS
variables contained in a RHS from global memory to shared memory. When the
data of a LHS is required by the kernel, the copy in shared memory is utilized
instead of the one in global memory. When the kernel returns, the copy is written
back from shared to global memory. However, the indirection on line 8 poten-
tially requires further LHSs; this data can either be read from global memory as

before or also be copied to shared memory. This reduces access to global memory
but requires additional load and store operations before and after each thread
invocation.

4 Experimental Evaluation

In this section we experimentally evaluate the scalability of our parallel approach
in its CPU and GPU variants and demonstrate the competitiveness of the GPU
version when compared to the optimized sequential algorithm, using the VLTS
benchmark suite.8 We double-check the correctness of our implementations by
observing that the results obtained from our sequential and parallel algorithms
match those computed by CADP’s sequential “bes solve” tool [24].

To provide an outlook on the generality of our results, we also extend our
evaluation using randomly generated BESs, thus analyzing the influence of the
specific way in which BESs are derived from model checking problems. Fur-
thermore, we evaluate the structure and density of the BESs generated from the
benchmark suite. Besides the run-time based comparison we provide insights into
the specifics of BESs in the context of model checking, i.e., we present heuristics
for the order in which equations are to be solved, which may yield significant
speed-ups for BES resolution in this context.

Benchmark Suite. Our experiments were conducted using the VLTS bench-
mark suite that was compiled within a joint project of CWI9 and INRIA10.
It consists of 40 examples from academia and industry, provided as LTSs with
numbers of states ranging from 289 up to 33,949,609. The four largest examples
of the benchmark were solved for the first time in 2005 [16].

Table 1. µ-Formulae of Properties

Property µ-formula

Deadlock freedom νX.([−]X ∧ 〈−〉true)
Livelock µX.(〈−〉X ∨ νY.(〈τ〉Y))

The backgrounds of the benchmark examples vary greatly; thus, different
properties may be checked for individual examples. For our evaluation we use
two representative properties, namely deadlock freedom and livelock, which can
be checked for all examples of the benchmark suite (cf. Table 1 for their for-
malization). For these properties, results are also provided by the authors of the
benchmark, thus allowing a direct verification of the correctness of the results
obtained by our implementations.

8 http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html
9 http://www.cwi.nl/

10 http://vasy.inria.fr/

(a) Example 10 (b) Example 22 (c) Example 34 (d) Rnd2

Fig. 3. Visualization of benchmark examples as adjacency matrices.

The images of some exemplary BESs, as depicted in Fig. 3, show the signifi-
cant variance in structure and density of the LTSs provided in the benchmark.
The images are visualizations of the adjacency matrices of the respective BESs,
with their origins, i.e., the LTSs’ initial states, displayed on the top left.

In contrast to intuition, our experiments suggest that this information about
structure and density does not usefully correlate with the scalability and/or run-
time performance of our approach. This is the case for the following reasons:
(i) the run-time generally depends on the question whether the property, for
which the LTS is checked, is fulfilled or violated; (ii) our approach does not
favor local propagation of changing variables, but globally propagates all possible
changes during an iteration; (iii) our algorithms perform best in cases that expose
large numbers of concurrent changes rather than sequential chains of changes,
which in addition to a BES’s structure depends on the initial distribution of
terminal values. Unfortunately, none of these factors can be estimated sensibly
nor be extracted from a BES in reasonable time, i.e., when compared to the time
it takes to solve the BES.

Hardware. Our experiments were carried out on different hardware platforms
for (i) the CPU and (ii) the GPU version of the implementation: (i) two intercon-
nected Intel XEON E7-4830 processors @ 2,13 GHz, each with 8 physical cores
and Hyper-Threading enabled (i.e., a total of 32 logical PUs) and 64 GB DDR3
RAM @ 1333 MHz, running Windows 7 64-bit, and (ii) one AMD Phenom II X4
940 processor @ 3,0 GHz, 8 GB DDR2 RAM @ 1066 MHz along with (a) one
NVIDIA GeForce GTX 280 GPU with 1 GB of global memory, 16KB of shared
memory per multiprocessor, providing 240 CUDA cores, and (b) one NVIDIA
GeForce GTX 480 GPU with 1.5 GB of global memory, 48KB of shared memory
per multiprocessor, providing 480 CUDA cores, running Debian 6.0 64-bit on
kernel 2.6.39. Although the systems use different CPU types this fact does not
affect our results since we did not evaluate a hybrid approach but only pure
CPU and GPU versions of the respective algorithms.

Overview. Table 2 provides an overview of the run-times of the following al-
gorithms: (i) the optimized sequential workset-based CPU implementation (the
baseline for our comparison), (ii) the parallel Cilk Plus based CPU implementa-
tion, (iii) the unoptimized GPU implementation without any optimization, (iv)

Table 2. Overview of Run-Times for CPU and GPU Implementations [ms]

Algorithm
Benchmark Example Random

10 21 22 31 32 33 34 35 39 Rnd1 Rnd2

CPU
(i) sequential 1 19 18 573 475 737 1 704 901 3891 7801

(ii) parallel 2538 77 611 1564 1786 2764 279 4325 8170 7966 40576

GPU (iii) unoptimized 1336 17 68 217 113 359 51 242 290 350 1840

GTX 280 (iv) intra-warp 104 22 69 320 149 528 52 404 344 493 2594

GPU
GTX 480

(iii) unoptimized 703 6 33 75 46 105 6 98 125 178 992

(iv) intra-warp 40 7 28 109 63 157 6 152 158 248 1391

(v) shared mem 38 40 59 659 341 862 48 190 227 315 1800

the GPU implementation with intra-warp iteration, and (v) the GPU implemen-
tation utilizing shared memory. In case of the GTX 280 GPU, we omitted the
results for (iv), the shared memory implementation, since this GPU does not
provide a sufficient amount of shared memory for this optimization. Note that
in the case of parallel CPU implementation we list the best runtimes available
among the numbers of cores that have been utilized.

Because of layouting limitations, we restrict our selection of benchmark ex-
amples in Table 2 to those for which the run-time of the GPU implementation
is sensibly measurable, i.e., larger than 5 [ms]; nonetheless we conducted our
experiments for the entire benchmark suite. The numbering of the benchmark
examples refers to their position in the table provided on the VLTS website,11

which is sorted in ascending order relative to the number of states of the LTS;
thus, Example 10 is vasy 25 25, Example 21 is vasy 166 651, Example 22 is
cwi 214 684, Example 31 is vasy 2581 11442, Example 32 is vasy 4220 13944,
Example 33 is vasy 4338 15666, Example 34 is vasy 6020 19353, Example 35 is
vasy 6120 11031 and Example 39 is vasy 12323 27667. In this naming scheme,
the first number is the number of states divided by 1000, and the second number
is the number of transitions divided by 1000.

Furthermore, all examples in Table 2 are checked for the deadlock freedom
property since only eight of the 40 LTSs contain livelocks. Nonetheless, our
general statements about scalability and competitiveness have been evaluated
and are valid for the entire benchmark suite. To check whether the specific ways
in which BESs were generated for and included in the VLTS benchmark have
an influence on our performance results, we extend our evaluation to randomly
generated BESs. We evaluate a total of five random examples with the number
of states ranging from 1 to 10 million; Rnd1 and Rnd2 are two representatives
illustrating our observations for this class of BESs.

We omit memory consumptions of our implementations in the table, since (i)
our parallel versions operate on a static data structure that is linear in the size
of the input BES (ranging from approximately 90 KB up to 4.5 GB) and (ii) it

11 http://cadp.inria.fr/resources/benchmark bcg.html#section-5

is not our aim to evaluate or optimize memory efficiency within the scope of this
paper, especially since all benchmark examples easily fit our systems’ memory.

Multi-Core Performance. The results in Table 2 clearly show that our multi-
core implementation is outperformed significantly by the optimized sequential
baseline. The reason for this is the low total number of parallel PUs (32 log-
ical cores) and, thus, the computational overhead of the fixed point iteration
is too large when compared to the amount of productive work and cannot be
compensated by parallel processing power. This observation is supported by the
two graphs in Fig. 4, which show the overall scalability of our CPU-based ap-
proach for an increasing number of parallel workers. This result is in accordance
with [27] and extends their results to our much larger benchmark suite.

 0.5

 1

 2

 4

 8

 16

 32

 2 4 8 16 32

sp
ee

d-
up

number of workers

avg
max
min

linear

 0.5

 1

 2

 4

 8

 16

 32

 2 4 8 16 32

sp
ee

d-
up

number of workers

avg
max
min

linear

(a) Deadlock freedom (b) Livelock

Fig. 4. Scalability of our multi-core implementation.

The data for the two graphs in Fig. 4 is based on the median values of 10 runs
for each of the 40 benchmark examples. It is evaluated separately for the two
properties: deadlock freedom (Fig. 4(a)) and livelock (Fig. 4(b)). The average
scalability (avg) is compiled from all 40 benchmark examples and is below linear
for both properties. However the scalability is observable for up to eight workers,
which corresponds to the number of physical cores of one CPU in our system. For
the sake of completeness we also include the standard deviation for the average
scalability, along with maximum (max) and minimum (min) scalability.

It is important that the shape of the two graphs, which suggests better scal-
ability for LTSs that have been checked for the no deadlock property, is affected
by the fact that there are 20 examples containing deadlocks, while only 8 exam-
ples contain livelocks. In the case of the trivial examples, i.e., those that do not
contain deadlocks/livelocks, our algorithm needs to perform only one iteration,
which has significant impact on scalability.

The super-linear speed-up in Fig. 4(a) can be explained by the parallel ex-
ecution of workers. As the Cilk Plus framework may schedule the evaluation
order of equations differently from the order in the BES, this may lead to a
faster propagation of updated LHSs, requiring less iterations and thus result in
the seemingly above linear boost in performance.

Many-Core Performance. The evaluation of our many-core implementation
is aimed more at the competitiveness of our approach when compared to the op-
timized sequential baseline than at its scalability. Indeed, the scalability analysis
is more difficult than for the multi-core implementation because we had to use
different GPU devices that are not comparable with respect to some important
specifications. Not only did the number of CUDA cores double from the GTX
280 to the GTX 480, but also the clock rate and the available amount of memory
increased significantly. For this reason we did not evaluate the scalability aspect
beyond the scope provided in Table 2, which shows a significant boost in per-
formance for the GTX 480. Further evaluations of scalability, e.g., on clusters of
GPUs, are subject to future work.

The main limitation of the GPU parallelization is the length of the chain
of propagations of LHS values. Example 10 in the benchmark suite contains
an artificially long chain of dependencies from the initial state to the last state
(cf. Fig. 3(a)). For this example, the number of iterations for the unoptimized
version of our many-core implementation is equal to the number of states , yet
the example is a prime candidate to benefit from the intra-warp iteration as
the changes can be propagated ideally within the equations of a warp. However,
the remaining benchmark examples do not have such an extreme structure and,
therefore, the intra-warp iteration, on average, does not provide any advantage
but rather induces overhead as the comparison of run-times in Table 2 shows.

Since the efficiency of our shared memory optimization is tightly coupled to
the intra-warp iteration, it can only improve the performance of the many-core
implementation in those cases in which the intra-warp iteration actually works.
Due to this reason, the results for this optimization in Table 2 are, not surpris-
ingly, even worse than for the intra-warp iteration because the transfer times
from and to shared memory degrade the run-time performance even further.
Moreover, in order to use the shared memory, the required data (i.e., the part of
a BES corresponding to a block) has to fit the limited size of the GPUs shared
memory. The size of the data that has to be stored in the shared memory is
given by the block size, the number of vertices in one block and the number of
their successors. In case the average out-degree (i.e., the average number of RHS
variables per equations) is high, we have to decrease the group size. This can
lead to underutilization or low occupancy of the individual multiprocessors and,
thus, significantly reduces the performance of our algorithm.

As documented in Table 2, our GPU implementation of BES resolution pro-
vides significant speed-ups for most cases of the benchmark examples and espe-
cially for the randomly generated BESs. Surprisingly, the GPU implementation
with no optimizations yields the best results, since in most cases the structure
of the inspected BESs does not allow one to benefit from our optimizations.

Table 3. Impact of Heuristics [Total Number of Iterations]

Heuristic
Benchmark Example

4 5 7 10 15 16 18 19 21 22 25 27 30 31 32 33 35 37 38 39

Original 64 19 7 25219 19 33 23 18 33 208 24 7 56 32 23 34 33 20 29 29

Vectorized 64 19 7 25219 23 37 23 19 37 213 24 7 56 37 25 37 34 20 29 29

Reverse 2 4 3 2 7 8 8 5 8 8 10 2 3 7 4 6 4 5 5 5

Random 20 9 5 25219 10 12 6 11 11 63 7 3 6 8 5 8 16 10 9 9

Ordering Heuristics. Table 3 provides a comprehensive overview of the total
number of iterations for those examples of the benchmark, which have been
checked for deadlocks and for which the initial approximation is not equal to the
final solution, i.e., the total number of iterations is larger than one. Even though
the available number of PUs increases with each hardware generation, it is still
far from the point where a full iteration step can be computed fully in parallel.
Thus, the processing order of equations within a block has a significant influence
on the total number of iterations needed to compute the fixed point. Yet, our
evaluation yields an interesting insight for an ideal “vectorized” parallelization,
assuming that a fully parallel iteration step is possible; we model this by delaying
the visibility of a changed LHSs until the next iteration step. Note that the lack
of a suitable hardware architecture allowing such fully-parallel processing is the
reason why we list the number of iterations instead of run-times in Table 3.
Naturally the number of iterations is proportional to the run-times.

Our evaluation shows that this “Vectorized” approach does not increase the
total number of iterations significantly, when compared to the “original” order-
ing, where equations are evaluated in their given order and changes of LHSs are
directly visible in the following computations of the iteration (cf. Table 3). This
result demonstrates that the penalty for a fully parallel computation is negligible
regarding the total number of iterations needed to reach the fixed point.

As the application of advanced heuristics would require preprocessing of the
data – causing a potentially high computational overhead – we restrict our evalu-
ation to two simple cases that do not introduce any overhead. The first heuristics
is called “Reverse” in Table 3 and takes the reverse order of equations within a
BES-block, as proposed in [27]. It yields a significant improvement with respect
to the total number of iteration needed to compute the fixed point (cf. Table 3).
Yet, according to our observations, this heuristics only works for the examples
generated from the benchmark’s LTSs, but not for randomly generated BESs.
This could be due to the way in which state spaces are enumerated in the CADP
toolset, which in turn determines the order of equations in the VLTS examples.

The second heuristics, called “Random” in Table 3, is the randomized evalu-
ation of equations within a BES-block. In our observations, this heuristics leads
to a decrease in the number of iterations needed to solve a BESs when com-
pared to the given (“Original”) ordering. This result is of practical relevance as
our parallel implementations rely on parallelizations in which the order of RHS

evaluations is not under our control, but is determined by the runtime environ-
ment of CUDA and Cilk Plus. Thus, we expect an additional performance boost
rather than a degradation, due to the parallelization frameworks.

5 Conclusions and Future Work

We implemented an approach to the parallel resolution of BESs on multi- and
many-core systems, and evaluated them with respect to scalability and run-time
performance in comparison to an optimized sequential algorithm. Our measure-
ments confirm the scalability results of [27] for our multi-core implementation,
yet this implementation’s overall performance is not competitive when com-
pared to our optimized sequential implementation. In contrast, the utilization
of many-core hardware, not considered in [27], yields a significant speed-up and
outperforms the optimized sequential implementation for most instances of the
benchmark by almost one order of magnitude. Furthermore, the scalability of
our many-core approach with respect to increasing numbers of PUs was demon-
strated by us by (i) comparing the multi-core and many-core implementations
and (ii) evaluating the many-core implementation for two GPU cards with 240
and 480 CUDA cores, respectively.

Future work will include further evaluation of the scalability results of the
many-core implementation, e.g., by its distribution over a cluster of GPUs. Since
BESs are not restricted to model checking, it is also promising to evaluate input
BESs from other applications, such as data-flow analyzes in optimizing compil-
ers [10]. Furthermore, the recently proposed many-core parallelization of graph
algorithms [25] should be evaluated with respect to its suitability and potential
impact on our work.

Acknowledgments. The second author has been partially supported by the Czech
Grant Agency grants No. 102/09/H042 and GAP202/11/0312. We thank the
anonymous reviewers for their valuable comments.

References

1. H. R. Andersen. Model Checking and Boolean Graphs. Theoret. Comp. Sc.,
126(1):3–30, 1994.

2. G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley, 2000.

3. J. Barnat, P. Bauch, L. Brim, and M. Češka. Computing Strongly Connected
Components in Parallel on CUDA. In IPDPS, pages 544–555. IEEE, 2011.

4. J. Barnat, P. Bauch, L. Brim, and M. Češka. Designing Fast LTL Model Checking
Algorithms for Many-Core GPUs. To app. in J. of Par. and Distrib. Comp., 2012.

5. J. Barnat, L. Brim, and P. Ročkai. Scalable Multi-core LTL Model-Checking. In
SPIN, volume 4595 of LNCS, pages 187–203. Springer, 2007.

6. J. Barnat, L. Brim, M. Češka, and T. Lamr. CUDA Accelerated LTL Model
Checking. In ICPADS, pages 34–41. IEEE, 2009.

7. B. Bollig, M. Leucker, and M. Weber. Local Parallel Model Checking for the
Alternation-Free µ-Calculus. In SPIN, volume 2318 of LNCS, pages 128–147.
Springer, 2002.

8. R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Di-
agrams. ACM Comput. Surv., 24(3):293–318, 1992.

9. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
10. M. d. M. Gallardo, C. Joubert, and P. Merino. On-the-Fly Data Flow Analysis

Based on Verification Technology. In COCV, volume 190 of ENTCS, pages 33–48,
2007.

11. E. A. Emerson. Temporal and Modal Logic. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 16, pages 995–1072. Elsevier,
1990.

12. J. Ezekiel, G. Lüttgen, and R. Siminiceanu. To Parallelize or to Optimize? J.of
Log. and Comput., 21:85–120, 2011.

13. M. Garland and D. B. Kirk. Understanding Throughput-Oriented Architectures.
Commun. ACM, 53:58–66, 2010.

14. O. Grumberg, T. Heyman, and A. Schuster. Distributed Symbolic Model Checking
for µ-Calculus. Form. Methods Syst. Des., 26:197–219, 2005.

15. P. Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on the GPU
Using CUDA. In HiPC, volume 4873 of LNCS, pages 197–208. Springer, 2007.

16. F. Holmén, M. Leucker, and M. Lindström. UppDMC: A Distributed Model
Checker for Fragments of the mu-Calculus. In PDMC, volume 128 of ENTCS,
pages 91–105. Elsevier, 2005.

17. G. J. Holzmann and D. Bosnacki. Multi-Core Model Checking with SPIN. In
IPDPS, pages 1–8. IEEE, 2007.

18. C. Joubert and R. Mateescu. Distributed Local Resolution of Boolean Equation
Systems. In PDP, pages 264–271. IEEE, 2005.

19. D. Kozen. Results on the Propositional mu-Calculus. Theoret. Comp. Sc., 27:333–
354, 1983.

20. A. Laarman, J. van de Pol, and M. Weber. Boosting Multi-Core Reachability
Performance with Shared Hash Tables. In FMCAD, pages 247–255. IEEE, 2010.

21. A. Lefohn, J. M. Kniss, and J. D. Owens. Implementing Efficient Parallel Data
Structures on GPUs. In GPU Gems 2, pages 521–545. Addison-Wesley, 2005.

22. M. Leucker, R. Somla, and M. Weber. Parallel Model Checking for LTL, CTL*,
and L2

µ. In PDMC, volume 89 of ENTCS, pages 4–16, 2003.
23. A. H. Mader. Verification of Modal Properties Using Boolean Equation Systems.

PhD thesis, Technische Universität München, Germany, 1997.
24. R. Mateescu. CAESAR SOLVE: A Generic Library for On-the-Fly Resolution of

Alternation-free Boolean Equation Systems. STTT, 8(1):37–56, 2006.
25. D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU Graph Traversal. In

PPoPP, pages 117–128. ACM, 2012.
26. B. Nichols and D. Buttlar J. P. Farrell. PThreads Programming. O’Reilly, 1996.
27. J. van de Pol and M. Weber. A Multi-Core Solver for Parity Games. In PDMC,

volume 220 of ENTCS, pages 19–34. Elsevier, 2008.
28. A. Sailer. Utilizing And-Inverter Graphs in the Gaussian Elimination for Boolean

Equation Systems. Master’s thesis, Hochschule Regensburg, Germany, 2011.
29. A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific

J. of Math, 5(2):285–309, 1955.

