(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

Decision-diagram-based Techniques for Bounded Reachability
Checking of Asynchronous Systems.*

Andy Jinging Yu', Gianfranco Ciardo!, Gerald Liittgen?®

! Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA

e-mail: {jqyu, ciardo}@cs.ucr.edu

2 Department of Computer Science, University of York, York YO10 5DD, U.K. e-mail: luettgen@cs.york.ac.uk

The date of receipt and acceptance will be inserted by the editor

Abstract Bounded reachability analysis and bounded
model checking are widely believed to perform poorly
when using decision diagrams instead of SAT procedures.
Recent research suggests this to be untrue with regards
to synchronous systems and, in particular, digital cir-
cuits. This article shows that the belief is also a myth
for asynchronous systems, such as models specified by
Petri nets. We propose several Bounded Saturation ap-
proaches to compute bounded state spaces using deci-
sion diagrams. These approaches are based on the es-
tablished Saturation algorithm, which benefits from a
non-standard search strategy that is very different from
breadth-first search, but employ different flavors of de-
cision diagrams: Multi-valued Decision Diagrams, Edge-
valued Decision Diagrams, and Algebraic Decision Dia-
grams. We apply our approaches to studying deadlock
as a safety property. Our extensive benchmarking shows
that our algorithms often, but not always, compare fa-
vorably against two SAT-based approaches that are ad-
vocated in the literature.

1 Introduction

Bounded model checking (BMC) is a well-established
technique for reasoning about reactive systems [3]. Un-
like conventional model checking based on explicit or
symbolic representations of state spaces [17], bounded
model checking takes a system, a bound B, and a safety
property ¢, unwinds the system’s transition relation B

* Research supported by the NSF under grants CNS-0501747
and CNS-0501748 and by the EPSRC under grant GR/S86211/01.
An extended abstract of this article appeared in the proceedings of
the 13th Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS 4424, pp. 648-663, 2007.
Springer.

times, and derives a propositional formula that is satisfi-
able if and only if there exists a path through the system
of length at most B that demonstrates the violation of ¢.
Due to the impressive technology advances in SAT solv-
ing (see, e.g., [30]), such satisfiability problems can often
be decided efficiently.

BDDs vs. SAT. BMC is an incomplete verification tech-
nique unless the bound exceeds the state-space diameter,
or unless it is combined with additional checks [27,29,
34]. However, as faults involve relatively short counterex-
amples in practice, BMC has proved itself an efficient
debugging aid and verification method: bounded model
checkers are nowadays used to debug and verify digi-
tal circuits [16], Petri nets [21,31], and software [24,32].
Several studies have found such model checkers benefi-
cial in industrial settings, especially when compared to
symbolic model checkers using decision diagrams [18].

It is widely believed that SAT methods are key to
the performance of bounded model checkers. Recent re-
search by Cabodi et al. [6], however, counters this sug-
gestion. Their work proposes enhancements to standard
techniques based on Binary Decision Diagrams (BDDs),
making BDD-based BMC competitive with SAT-based
approaches. Their results were obtained in the context of
debugging synchronous systems and digital circuits, for
which BDDs are known to work well. It has remained an
open question whether the aforementioned belief is also
a myth with regards to asynchronous systems that are
governed by interleaving semantics, such as distributed
algorithms expressed in Petri nets.

Contribution. Our aim is to prove that decision dia-
grams are competitive with SAT solvers for the bounded
model checking of asynchronous systems. To this end, we
propose several new approaches for bounded reachabil-
ity checking using decision diagrams based on Satura-
tion [9], an established symbolic algorithm for generat-
ing the state spaces defined by asynchronous systems.

2 A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems

By taking into account event locality and interleaving
semantics and by using a different iteration strategy for
computing fixpoints, Saturation is often orders of mag-
nitude more efficient than advanced breadth-first search
(BFS) algorithms implemented in popular model check-
ers [14]. In particular, Saturation’s search strategy is de-
signed to compute “sub-fixpoints” on decision-diagram
nodes while traversing the decision diagram in a bottom-
up fashion, thereby exploring states at greater distances
earlier than standard BFS-based approaches do.

The difficulty in adapting our Saturation algorithm
to bounded reachability checking lies in its non-standard
search strategy which is completely different from BFS.
We present several solutions using Multi-valued Decision
Diagrams (MDDs) [25], Edge-valued Decision Diagrams
(EDDs, called EVTMDDs in [12]), and Algebraic Deci-
sion Diagrams (ADDs [2], also called MTBDDs [15]).

In the EDD- and ADD-based approaches, we store
not only the reachable states but also the distance of
each state from the initial state(s). EDDs extend EV-
BDDs [26] just as MDDs extend BDDs. Each state stored
in such a decision diagram corresponds to a path from
the diagram’s root to its terminal node, whereas the dis-
tance of the state from the initial state(s) is the sum of
the weights of the edges along that path. The resulting
EDD-based Bounded Saturation algorithm comes in two
variants. The first one computes all reachable states at
distance no more than a user-provided bound B. The
second one finds additional states at distance greater
than B but at most K-B, where K is the number of the
levels in the EDD. Just as ordinary BFS, both can find
minimal-length counterexamples. However, the second
variant is usually more efficient in terms of runtime and
memory, even though it discovers more states. Such be-
havior, while counterintuitive at first, is not uncommon
for decision diagrams.

The ADD-based Bounded Saturation approach stores
the distance explicitly in terminal nodes and bounds the
forward traversal when the distance stored reaches B.
It therefore finds exactly all the states at distance up
to the bound B. We also consider MDD-based Bounded
Saturation, presenting approaches that remove the need
to store distance information within decision diagrams.
We employ BFS-style iterations in each Saturation step
and bound forward traversal by limiting the number of
iterations. The MDD-based algorithm also comes in two
variants; they differ in the way the symbolic forward
traversal is bounded.

Experiments and results. We evaluate our Bounded Satu-
ration algorithms against two SAT-based algorithms for
bounded reachability checking which have been devised,
respectively, by Heljanko [21] and by Ogata, Tsuchiya,
and Kikuno [31]. Both are aimed at finding deadlocks in
asynchronous systems specified by Petri nets. We imple-
mented our algorithms in the Petri-net verification tool
SMART [8], and ran them on the suite of examples used in

both [21] and [31], which was first proposed by Corbett
in [19], as well as on models taken from the SMART re-
lease. The static variable ordering used in our algorithms
was computed via a heuristic [33].

Our experiments show that Bounded Saturation per-
forms better or on par with competing SAT-based al-
gorithms, and is less efficient in only few cases. Thus,
it is a myth that decision diagrams are uncompetitive
with respect to SAT solvers for BMC. Just as the roles
of bounded and unbounded model checking are comple-
mentary, so is the use of SAT solvers and decision dia-
grams.

Organization. The next section provides background on
decision-diagram-based reachability analysis, including
the different flavors of decision diagrams we employ, and
on our Saturation algorithm. It also introduces a running
example that is used throughout this article to illustrate
different concepts and algorithms. Sec. 3 presents our
various Saturation-based approaches to bounded reach-
ability checking, which are then carefully analyzed and
compared to established SAT-based approaches via ex-
tensive benchmarking in Sec. 4. Finally, Sec. 5 discusses
related work, while our conclusions and suggestions for
future work are presented in Sec. 6.

2 Background

We consider a discrete-state model M = (S, 8™t R),
where 8 is a (finite) set of states, S C § are the initial
states, and R C S x & is a transition relation. We assume
the global model state to be a tuple (zk, ..., z1) of K local
state variables, where z; € §; = {0,1,...,n;—1}, for K >
I>1and n; > 0, is the I*h local state variable. Thus, S =
Sk x -+ x 81, and we write R(i[K], ..., 1[1], j[K], ..., §[1])
or simply R(i,j) if the model can move from current
state i to next state j in one step.

Most symbolic approaches encode z; in b; boolean
variables, where b; is either n; or [logn,| (called one-hot
and binary encoding, respectively), and a set of states via
a BDD with }° ,+,~ b levels. Ordered Multi-valued De-
cision Diagrams (MDDs) [25] instead map z; to level [,
whose nodes have n; outgoing edges. MDDs can be im-
plemented directly, as is done in our tool SMART' [8], or
as an interface to BDDs [20].

The computation of a model’s reachable state space
consists of building the smallest set of states S C S
satisfying S D S™# and S O I'mage(S,R), where the
image computation function

Image(X,R)={j:Jie X,R(4,j)}

describes the successors to the set X of states. In BMC,
only a portion of this state space must be examined,
namely the set of states within some given distance bound
B from Sinit,

A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems 3

Petri net model

max{l, #(wait)} |_| #(wait)

g|31|f o in-service

pool @
%

serve

Guarded command language model
Initial state: p=2Aw=0A17=0;

Dy :p>1—={p=p—-1Aw'=w+1Ai =i}
Ds:i>1 > {p=p+lAvw'=wAi=i-1}
Dg:w>1—{p=pAw =0Ai=i+w};

Figure 1: A limited-arrival gated-service model is described using a Petri net with marking-dependent arc cardinalities (left)

and guarded command language (right), respectively.

2.1 Symbolic techniques for asynchronous models

A BFS-based approach, as used for example by NuSMV
[14], computes the bounded state space with a simple im-
age computation iteration. Set X[is initialized to S
and, after d iterations, set X4 contains the states at dis-
tance up to d from S**. With MDDs, X4 is encoded
as a K-level MDD and R as a 2K-level MDD whose cur-
rent and next state variables are normally interleaved for
efficiency. The transition relation is often conjunctively
partitioned into a set of conjuncts or disjunctively into
a set of disjuncts [5], and is stored as a set of MDDs
with shared nodes, instead of a single monolithic MDD.
Heuristically, such partitions are known to be effective
for synchronous and asynchronous systems, respectively.

2.2 Disjunctive-conjunctive partitioning and chaining

Our work focuses on the important class of systems ex-
hibiting globally-asynchronous locally-synchronous beha-
vior, and assumes that a given high-level model specifies
a set £ of asynchronous events, where each event a € £
is further specified as a set of small synchronous com-
ponents D,. We then write the transition relation as
R =V ,ce Da, and conjunctively partition each disjunct
D, into conjuncts C,, that represent the synchronous
components of «, thus expressing R as

R=\ Da=\ (ACar)

a€cfl acE 7T

These high-level models may be specified using Petri
nets or a guarded command language. Such a language
consists of a set of commands of the form

guard — assignment, || assignment,|| - - - || assignment,,,

whose meaning is that m parallel atomic assignments
are executed concurrently, whenever the boolean predi-
cate guard evaluates to true. The assignments are asyn-
chronous events and, for each command, the correspond-
ing parallel assignments are its synchronous components.
Similarly, for a Petri net, the transitions are the asyn-
chronous events, and the firing of a transition synchron-
ously updates all input and output places connected to
it. We use extended Petri nets as the input formalism in
SMART' | which augment ordinary nets by inhibitor arcs
and marking-dependent arc cardinalities [7,37].

2.3 Running example

Fig. 1 shows a Petri net and its equivalent guarded com-
mand language expression, which models a gated-service
queue with a limited pool of customers. New arrivals wait
at the gate until it is opened, and then all waiting cus-
tomers enter the service queue. Customers return to the
pool after service. Each state of the model corresponds
to a possible value of the integer variable vector (p,w,i),
where p stands for pool (the number of customers in
the pool), w for wait (the number of customers waiting
at the gate), and i for in-service (the number of cus-
tomers in the service queue). Assuming a pool of two cus-
tomers, the model has an initial state of (2,0,0), one im-
mediate successor state (1,1,0), and six reachable states:
S = {(27070)7 (17170)7 (07270)7 (17071)7 (07072)7 (07171)}'

2.4 FEvent locality

In asynchronous models, the execution of each event usu-
ally modifies or depends on just a small subset of state
variables. In the running example, event gate Dy depends
only on variable w, and modifies only variables w and i.
Given an event «, we define the sets of variables V()
and Vp(a) that can be modified by « or can disable «,
respectively:

Var(a) = {z; : 3, € 8, Da(i,3) Aill] # 51} ;
Vp(a) = {z; : 3i,i' €8, Vk £1,i[k] =i'k] A
38, Da(i,i)A A €5, Da (i, i)} -

Further defining

Top(a) = max{l: z; € Vpr(a) UVp(a)} and
Bot(a) = min{l : z; € Vyr(a) UVp(a)},

we can then partition the event set £ according to the
value of Top into the subsets & = {a : Top(a) = 1},
for K > 1 > 1. In [10] we observed that a chaining or-
der [35], where these subsets are applied to an MDD in
bottom-up fashion, results in good speed-ups with re-
spect to a strict BFS symbolic state-space generation.
The bounded version of this chaining heuristic is shown
in Fig. 3 and discussed in Sec. 3.

By exploiting event locality, we can store D, in an
MDD over just the current and next state variables with

4 A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems

index k, for Top(a)) > k > Bot(a); variables outside this
range undergo an identity transformation when comput-
ing the result of firing «, i.e., remain unchanged.

2.5 Saturation-based fixpoint computation

The Saturation algorithm to compute the reachable state
space of an asynchronous system was originally proposed
in [9] for models in Kronecker-product form; it has since
been extended to general models [13] and applied to
shortest path computations and CTL model checking
[12]. Saturation has been shown to reduce runtime and
memory requirements by several orders of magnitude
with respect to BFS-based algorithms, when applied to
asynchronous systems [9,13].

Saturation may best be understood as a dynamic pro-
gramming approach to the symbolic reachability prob-
lem of asynchronous systems. It recursively computes
“sub-fixpoints” on decision-diagram nodes in a bottom-
up fashion, i.e., from level 1 of a decision diagram up
to the root node at level K, by firing events a with
Top(a) = 1 on nodes at level I. A node at level [is
called saturated, once the “sub-fixpoint” on it is reached,
i.e., no more firings of events a with Top(a) = [leads to
the discovery of new (sub-)states. The entire reachable
state space is explored when the root node is saturated.
Hence, Saturation is unique in that it does not perform
a monolithic fixpoint computation over a global decision
diagram, as standard breadth-first iteration strategies
do. Instead, it divides the monolithic fixpoint compu-
tation into light-weight computations on each decision-
diagram node. This exploits event locality and respects
the underlying semantic concept of interleaving. We refer
the reader to [9,10,11] for details.

To adapt Saturation to bounded reachability check-
ing, it is important to note that, in symbolic algorithms,
transition relation and state set can be described by dif-
ferent DD types; e.g., one may use MDDs to represent
the transition relation and ADDs to represent state sets.
Moreover, in order to bound the state space exploration,
one may encode not just the reachable states but also
their distance from S within decision diagrams. This
can be achieved by using either ADDs or EDDs, where
EDDs can be exponentially more compact than ADDs.
In Sec. 3, also another way of accomplishing Bounded
Saturation is proposed, which eliminates the need to
store distances and uses plain MDDs instead. This may
reduce the sizes of decision diagrams substantially when
compared to ADD or EDD encodings. Our formal algo-
rithms of Saturation for bounded state-space exploration
using MDDs, EDDs, and ADDs are described in Sec. 3.
In the following, we first define ADDs and EDDs.

2.6 Algebraic Decision Diagrams

ADDs [2] are a well-known variant of BDDs that can
represent non-boolean functions by allowing an arbitrary

finite set of terminal nodes instead of just the two ter-
minal nodes corresponding to the boolean values true
and false. Here, ADDs are used to encode bounded state
spaces as well as the state distances from the set of
initial states, and are thus defined over the semi-ring
(N U {00}, min, 4+, 00,0), where N U {o0} is the under-
lying carrier; min and + are the two binary arithmetic
operators minimum and plus, respectively; infinity oo is
the identity for operator min and the annihilator for op-
erator +; and 0 is the identity for +. We extend the
original definition of ADDs presented in [2] and allow
each variable z;, for | € {K, ..., 1}, to take n; > 2 differ-
ent values.

Definition 1 (ADD [2]). An ADD on the domain S =
Sk X --- x & is a directed, acyclic multi-graph, where:

— Each node p belongs to a level in {K, ...,
noted by p.lvl.

— There is a single root node 7* at level K.

— Level 0 contains a finite set of terminal nodes, which
are all distinct and where one terminal node is la-
beled with oo, and the other terminal nodes are la-
beled with natural numbers.

— A node p at level | > 0 has n; outgoing edges, labeled
from 0 to n; — 1. The edge labeled by ¢; points to a
node ¢, which is either a node at level p.lvl —1 or the
terminal node oo. We write p[ij] = g, if the i*" edge
of p points to node gq.

— There are no duplicate nodes, i.e., if YO < i < ny.
p[i] = q[i], then p = q.

1,0}, de-

The function f, : §;x--- xS = NU {o0} encoded by
ADD node p, with plvl =1 > 0, is fp(i1,...,01) =
Jorin(it—1,--.,41). For terminal nodes, we let f;, = i,
for i € N, and fo, = oo. The function encoded by the
entire ADD is f.«. m|

Figs. 2(a) and (b) show two ADDs storing a total func-
tion f; and a partial function fs, respectively. Here, “par-
tial” means that some of its values are co; for better read-
ability, we omit the terminal node oo and the edges and
nodes that lead to it from the graphical representation.

2.7 Edge-valued Decision Diagrams

EDDs [12] are an alternative to ADDs for encoding func-
tions of the form Sk x---xS8; — N U {oc}. They store
function values in their edges instead of the terminal
nodes, and often result in a more compact encoding than
ADDs in our application.

Definition 2 (EDD [12]). An EDD on the domain
S = Sk x --- x & is a directed, acyclic graph with
labeled and weighted edges, where:

— Each node p belongs to a level in {K, ...,
noted p.lvl.

1,0}, de-

A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems 5

z3| 0 0001111 (a)

fil0 2322410

z3| 00001111

z2| 00110011

2|01 010101

£2]/0 2 3 cocod 1 0

Figure 2: The ADD (a) or EDD (c) to store total function fi, and the ADD (a) or EDD (c) to store partial function fs.

— There is a single root node r* at level K, with an
incoming “dangling” edge having weight p* € N. We
write such an edge as {p*,r*).

— Level 0 contains a single terminal node, L.

— A non-terminal node p at level | > 0 has n; > 2
outgoing edges, labeled 0 to n; — 1. We write p[i] =
(v,g) if the i*® edge has weight v € N U {oco0} and
points to node ¢. In addition, we write p[i].val = v
and p[i].node = q.

— If p[é].val=00, then p[i].node =L
is at level p.lvl—1.

— Each non-terminal node has at least one outgoing
edge labeled 0.

— There are no duplicate nodes, i.e., if VO < i < n;.
pli]-node = ¢[i].-node and p[il.val = g[i].val, then
p=gq

; otherwise, pli].node

The function f(,) : S x---x 81 = NU{oo} encoded by
edge (v,p), with p.lvl = 1> 0,1is fyp)(it,...,01) = v+
f(p[iz].val,p[il].node) (il—la o 7i1): where f(z,J_) = . Thus,
the function encoded by the entire EDD is f(,« ,~y, where
p* is the minimum value assumed by this function. O

As defined, EDDs can canonically represent any func-
tion of the form & — NU {00}, except the constant oo,
for which we use an EDD with »* =1 (at level 0, not K),
and p* = oo. Figs. 2 (¢) and (d) show two EDDs storing
the total function f; and the partial function f, respec-
tively. Whenever partial function fa has value oo, we
omit the EDD edges from its graphical representation.
We point out that EDDs allow for the efficient implemen-
tation of many standard operations on the functions they
encode, including the pointwise minimum of two func-
tions [12] which is needed in our bounded reachability
algorithms.

3 Bounded reachability checking

Given a model M and a state property ¢, a generic
breadth-first bounded reachability checking algorithm
starts with some initial guess for the bound B, computes
the set SP of states within distance B of the initial states
Sinit and, if any state in SP violates ¢, returns Error.
If no such state exists, B is increased and these steps are
repeated until some given bound is reached or until the
entire state space has been explored. In the latter case,
¢ is declared valid.

Our goal is to develop bounded state-space explo-
ration algorithms that are guaranteed to terminate even
when the state space S is infinite, as long as any state
can reach only a finite number of states within one step.
This last condition is guaranteed to hold if, as we as-
sume, the following is true:

1. The set £ of model events is finite; and
2. The effect of firing an event a has only a finite num-
ber of possible outcomes, i.e., |[Image(i, Dy)| < oo for

any i€ S.

Let the distance of a global state j € S from a global
state i € S or from a set 7 C S of states, be defined as:

565,§) = min{d - j € Image ({3}, R)}
0(Z,j) = min{d(i,j) : i € Z}.

Then, we seek algorithms that, given a discrete-state
model (S St R) and a bound B, build a set S? of
states satisfying:

1L Vie8. §Smtj)<B = jeSP
2. 3B’ > B.Vj € 8. §(S™ j) > B' = j¢ SB.
The first condition guarantees that all states within dis-

tance B are in SP, while the second condition gives an
upper bound B’ for the states’ distance in set SP. In

6 A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems

MDD BoundedBfsChain()
1 S« Snit,
2 ford=1to B do
3 forl=1to K do
4 foreach a € & do
5
6

return S;

S « Union(S, Image(S,Da));

Figure 3: Symbolic bounded BFS state-space generation with chaining.

our proposed bounded approaches, the upper bound B’
varies due to the trade-off between accuracy and effi-
ciency. Some methods, e.g., the ADD-based method of
Fig. 6, have exact bounds (i.e., B’ = B), while other
methods have approximate bounds. For example, our
MDD-based globally-bounded method of Fig. 8 satisfies
B'=BX where K is the number of MDD levels.

3.1 MDDs with BFS-style chaining

Before presenting our main contribution of Bounded Sat-
uration algorithms, we first show how the standard BFS-
search algorithm can be improved when dealing with
MDD-encoded state spaces of event-based asynchronous
systems, using ideas from both event locality and for-
ward chaining [35]. The improved BFS algorithm serves
as one of the reference algorithms in our experimental
studies of Sec. 4 and is shown in Fig. 3.

Exploiting event locality for an event a, we can ignore
MDD levels above Top(a) and modify in-place MDD
nodes at level Top(a). Indeed, the call to Image in Fig. 3
does not even access nodes below Bot(a), only Union
does. This has been shown experimentally to signifi-
cantly reduce the peak number of MDD nodes during
state-space generation [10].

Chaining [35] compounds the effect of multiple events
within a single iteration. For example, if (i) the set of
reachable states known at iteration B is XB, (ii) j ¢ X2
can be reached from i € XP by firing the sequence of
distinct events («, 3,7), and (iii) one happens to explore
events in that exact order, then j will be included in
XB+1, Thus, XB D SP since some states in SI¢I'F \ SB
might be present in XZ. Reducing the number of itera-
tions does not in principle imply greater efficiency, as the
MDD for X2 could be much larger than the one for SZ;
however, it has been shown experimentally that chaining
often reduces both time and memory requirements [35].

It is well known that the chosen variable order is
essential in decision-diagram-based algorithms [4]. Fur-
thermore, in our setting, the variable order affects the
values Top and Bot, as well as the order of firing events.
Therefore, we employ the heuristic introduced in [33] to
automatically generate good static variable orders; this
heuristic aims to minimize the sum of the values Top
over all events.

3.2 Bounded Saturation using EDDs

In several studies, Saturation has been shown superior to
BFS-style iterations when symbolically computing the
state space (as a least fixpoint) of asynchronous mod-
els [10,11]. The challenge in adapting Saturation to bou-
nded model checking arises from the need to bound the
symbolic traversal in its nested fixpoint computations.
This section explores algorithms that use EDDs to en-
code both the bounded state space and the distance
information within the same symbolic data structure.
Thus, we bound the traversal during the EDD symbolic
operations by using the distance information, instead of
limiting the number of outermost iterations performed
in a traditional BFS-style approach.

Fig. 4 shows two EDD approaches that differ in how
they bound the symbolic traversal. They are obtained by
replacing the Truncate call (line 5 in procedure Bounded-
Saturate and line 7 in procedure BoundedEDDImage)
with either TruncateEzract or TruncateApprox. The for-
mer computes the exact bounded state space SP; the
latter computes a superset of SZ that may contain reach-
able states with distance at most K -B, where K is the
number of state variables, i.e., EDD levels. Recall that
transition relations are stored using MDDs, with 0 and
1 denoting an MDD’s terminal nodes.

Both approaches start from an EDD where states in
St have distance 0 and states in S\ S™% have distance
oo (line 1 in BoundedEDDSaturation); thus, p* = 0.
Then, procedure BoundedEDDSaturate is called on all
EDD nodes, starting from those at level 1, to compute
the bounded state space. Each EDD node p at level [
represents a set of (sub-)states and distance information
consisting of variables at level [and below. When call-
ing procedure BoundedEDDSaturate on an EDD node
p at level I, a least fixpoint encoding the (sub-)state
space and distance with respect to the set & of events
with top level [is computed. During the computation of
BoundedEDDSaturate on node p at level [, each event
in & is exhaustively fired to perform bounded forward
traversal, until no new reachable (sub-)states are found.

BoundedEDDImage performs a bounded forward tra-
versal by first computing the forward image, followed by
either an exact truncation to prune all (sub-)states ex-
ceeding bound B (procedure TruncateFEzact), or a faster
but approximate truncation to prune only (sub-)states
whose edge value in the current EDD node exceeds B

A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems 7

void BoundedEDDSaturation ()
0 ifies™mt

1 r* + root of EDD encoding f(i) = {oo otherwise

2 for k=1to K do
3 foreach node p at level k do
4 BoundedEDDSaturate (p);

node BoundedEDDSaturate(node p)

I« p.lul;
repeat
choose a € &,1,j € S s.t. p[i].val < B;
{v,q) < BoundedEDDImage(p[i], Da[i][5]);
{w,s) « Truncate(v+1,q); eexact or approximate
plj] « Minimum(plj], (w,s));
until p does not change;
return p;

WO~NOOCT A WN -

edge Minimum(edge (v,p), edge (w,q))
if v = oo then return (w,q);
if w = oo then return (v,p);
k < p.lvl; egiven our quasi-reduced form, q.lvl = k
if £ =0 then ereached terminal node
return (min{v, w},L);
s < NewNode(k);
v < min{v, w};
foreach 7 € S do
z + v—y+p[i]val;
10 y « w—y+q[i].val;
11 s[i] « Minimum({z,p[i].node), (y,q[i]-node));
12 return (v,s);

eempty node at level k

OCOO~NOOCTA,WN -

edge BoundedEDDImage(edge (v,q), MDD f)

if £ =0 then return {(c0,Ll);
if f =1 or g =L then return (v,q);
k < q.lvl; egiven our quasi-reduced form, f.lvl =k
s < NewNode(k); eedges initialized to {co, L)
foreach 7 € Si, j € Sk s.t. g[i].val < B do
{v,u) < BoundedEDDImage(q[i], fl{][5]);
(w,0) « Truncate({v,u)); eexact or approximate
s[j] < Minimum(s[j], (w,0));
s < BoundedEDDSaturate(s);
(v,8) Normalize(s);
return {(y+uv,s);

HFOWoo~NOOTES WN

—

edge Normalize(node p)
1 v « min{p[i].val : i € Sp.ui};
2 foreach i € Sp.1v; do
3 plil.val « pli].val — v;
4 return (v,p);

edge TruncateEzact(edge (v,p))
1 if v > bound then return {(co,L);
2 foreach i € Sy 141 do
3 pli] « TruncateEzact({v+p[i].val,p[i].node));
4 return (v,p);

edge TruncateApproz(edge (v,p))

1 if v > bound then return (0o, L);
2 else return {v,p);

Figure 4: Bounded Saturation using EDDs.

(procedure TruncateApproz). Procedures Bounded EDD-
Saturate and BoundedEDDImage are mutually recur-
sive, as Bounded EDDImage performs a bounded forward
traversal of the reachable state space, while all the cre-
ated nodes in the new image are saturated by Bounded-
EDDSaturate (line 9 in procedure BoundedEDD Image).
Procedure Minimum computes the pointwise minimum
of the functions encoded by its two argument EDDs. Fi-
nally, procedure Normalize takes a node p, ensures that
it has at least one outgoing edge with value 0, and re-
turns the excess in the edge value v.

We now examine the manipulation of the edge val-
ues in more detail. When an event « is fired, the distance
of the image states is the distance of the corresponding
“from” states incremented by 1. BoundedEDDSaturate
fires a by calling BoundedEDDImage (line 4), which re-
turns the root of the image, so that the “dangling” edge
value must be incremented by 1 in order to account for
the firing of a (line 6). Procedure BoundedEDDImage
performs the symbolic image computation of the same
event « fired by BoundedEDDSaturate, and the distance
of the new image is incremented by the distance of the
“from” states at the return statement (line 11). The dis-
tance of the image states can be greater than the dis-
tance of their “from” states by more than one, due to sat-
uration of the image states. Observe that Bounded EDD-
Saturate uses the test p[i].val < B (line 3), but Bounded-
EDDImage uses instead the test g[i].val < B, since the

increment of the edge value by 1 is performed in the
former, but not in the latter.

Compared to BFS-style MDD approaches, our two
new EDD approaches use Saturation, i.e., a more ad-
vanced iteration order, but at the cost of a more expen-
sive symbolic data structure, i.e., EDDs. The experimen-
tal results of Sec. 4 show that this trade-off is effective
in both time and memory, as the new algorithms often
outperform BFS in our benchmarks.

3.3 EDD approach on our running example

Fig. 5 illustrates the execution of Bounded Saturation
using TruncateApprox as the truncation procedure, on
the running example of Fig. 1 with bound B = 1. Snap-
shot (a) shows the 2K-level MDDs for the disjunctively
partitioned transition relation. D, and D, have iden-
tity transformations for variables ¢ and p, respectively;
thus, the corresponding levels in the decision diagram
are skipped to exploit event locality. Snapshots (b)—(f)
show the evolution of the bounded state space encoded
by the EDD, from the initial state to the final bounded
state space, listing the key procedure calls. We denote
the nodes of the EDD encoding the state space with cap-
ital letters (A to E), highlight two specific MDD nodes
in the transition relation encoding by f and h, and color
a node black once it is saturated. The algorithm starts
by saturating nodes A and B, which are saturated im-

8 A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems

(a) Transition relation

fDa[2][1].

(b) EDD encoding for

the initial states h<«Dy[1][0].

BoundedEDDImage(DI[1], h]):

(¢) BoundedEDDSaturate(C):

BoundedEDDImage(C[2], f):
B[0] - BoundedEDDImage(B[0], f[0][1])-

(d) BoundedEDDSaturate(D):

(e) E is saturated.
D[0] + Minimum/(DI[0], (1,E)).
D is saturated.

(f) BoundedEDDSaturate(C):
C[1]+ Minimum(C[1], (1,D}).
C is saturated.

E[1]« BoundedEDDImage(A[0], h[0][1]).

0
P C[3
0
w B(0]
0
i A[0
0

Figure 5: Bounded Saturation using EDDs, when applied to our running example. Snapshot (a) shows the partitioned
transition relation, while snapshots (b)—(f) show the evolution of the bounded state space encoded by the EDD.

mediately since no events are enabled in them (Snap-
shot (¢)). Nodes E, D, and C are saturated in that order.
The procedure stops when root node C becomes satu-
rated. Not all procedure calls are shown; for example,
procedure BoundedEDDImage(C[1], Ds[1][2]) is called in
Snapshot (f) before node C' becomes saturated, but does
not generate any new node.

3.4 Bounded Saturation using ADDs

In this section, we propose a Bounded Saturation algo-
rithm that uses ADDs to store both the state space and
the distances. For a bound B, the ADD has B + 2 ter-
minal nodes corresponding to the distances of interest,
{0,1,...,B,00}, where oo is used to denote any state
distance greater than B.

The Bounded Saturation algorithm using ADDs is
shown in Fig. 6, where the standard ADD procedure
Minimum computes the pointwise minimum of the func-
tions encoded by its two argument ADDs. Similar to the
EDD-based approaches, the ADD approach starts from
an ADD where states in S have distance 0 and states
in §\ 8" have distance oo (line 1 in BoundedADDSat-
uration). Then procedure Bounded A DDSaturate is called
on all ADD nodes, starting from those at level 1. Each
ADD node p at level | encodes a set of (sub-)states and
distance information. Calling BoundedA DDSaturate on

a node p at level [computes a least fixpoint encoding
the (sub-)state space and distance with respect to event
set &, where each event in & is exhaustively fired to
perform a bounded forward traversal.

Unlike EDD-based approaches, however, the ADD
approach keeps the distance information and bounds the
forward traversal at the terminal nodes. This is done at
lines 4-6 of procedure BoundedADDImage, which han-
dles the cases when the terminal ADD nodes are reached.
In particular, when calling the BoundedADDImage pro-
cedure on a terminal node ¢ # oo, the value of ¢ de-
notes the distance of the “from” states, and the distance
of the new image states is obtained by incrementing ¢
by 1 if the result is still less than distance bound B
(line 5 of BoundedADDImage); otherwise, the new im-
age states have distance greater than B and are there-
fore truncated by returning terminal node oo (line 6
of BoundedADDImage). This truncation mechanism for
ADD is an “exact-distance” method, since all states with
distance greater than B are truncated, and only the
states within distance B are kept. Thus, the ADD ap-
proach of Fig. 6 computes exactly the state space SP,
without using a BFS-style iteration.

3.5 Bounded Saturation using MDDs

In the above EDD and ADD approaches, decision dia-
grams are used to store both the bounded state space

A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems 9

void BoundedADD Saturation()
0 ifies™mit

1 r* « root of ADD encoding f(i) = {oo otherwise

2 fork=1to K do
3 foreach node p at level k do
4 BoundedADDSaturate (p);

ADD BoundedADDImage(ADD g, MDD f)

if £ =0 then return oc;

else if f =1 or ¢ = co then return g;

k « q.lvl; egiven our quasi-reduced form, f.lvl =k

if K = 0 then ereach terminal nodes
if ¢ < bound return ¢+ 1; eincrement the distance
else return oo; etruncated

s < NewNode(k); eempty ADD node at level k

foreach i € Sk, j € Sk s.t. f[i][j] # 0 do
0 < BoundedADDImage(q[i], fl¢][5]);

10 s[j] < Minimum(s[j], 0);

11 s « BoundedADDSaturate(s);

12 return s;

Co~NOCGa WO

ADD BoundedADDSaturate(ADD p)

1 1+ p.lvl;

2 repeat

3 choose a € &,1 € §;,j € S; s.t. Dyfi][j] # 05
4 q < BoundedADDImage(p[i], Da[i][4]);

5 plj] < Minimum(p[j], q);

6 until p does not change;

7 return p;

ADD Minimum(ADD p, ADD q)

1 if p = oo then return g;

2 if g = oo then return p;

3k« p.lul; egiven our quasi-reduced form, q.lvl = k
4 if k =0 then

5 return min(p, q);
6 s < NewNode(k);
7 foreach i € Sy, do
8 s[i] « Minimum(pli],q[i]);
9 return s;

eempty ADD node at level k

Figure 6: Bounded Saturation using ADDs. The distance encoded at the ADD terminal node is used to bound the state space

exploration.

void BoundedMDDSaturation()
1 return BoundedMDDSaturate(root);

elocally-bounded

void BoundedMDDSaturation() eglobally-bounded
1 return BoundedMDDSaturate (0, root);

node BoundedMDDSaturate(MDD p)

1 1+ p.lvl;

2 r<p;

3 if 1> 1 then

4 r[i] « BoundedMDDSaturate(r[i]);

5 ford=1to B do e BFS-style bounded iteration
6 s+« CopyNode(r);
7
8

eupdate in place

foreach o € &;,1 € 81,7 € 8§ st. Da[i][j] # 0 do
t + BoundedMDDImage(r[i], Da[i][5]));
s[j] < Union(s[j],t); FreeNode(t);
10 if s = r then break; enew image is empty
11 elser « s
12 return r;

o

node BoundedMDDSaturate(int p, MDD p)

1 1+ p.l;

2 r < CopyNode(p); ework on a copy
3 ifl > 1 then

4 r[i] « BoundedMDDSaturate (r[i]);

5 ford =1to B—p do e BFS-style bounded iteration
6 s« CopyNode(r);

7 foreach a € &;,i € §1,j € Si s.t. Dali][j] # 0 do

8 t + BoundedMDDImage(p + d — 1, r[3], Da[i][5]));
9 s[j] < Union(s[j],t); FreeNode(t);

10 if s = r then break;
11 else r « s;
12 return r;

enew image is empty

MDD BoundedMDDImage(MDD ¢, MDD T')

if T = 0 then return 0; if T =1 then return g;

k < q.lvl;

s + NewNode(k);

foreach 4, j € Sk such that g[i] # 0 and T'[i][j] # 0 do
t < BoundedMDDImage(q[i], T[3][5]);
s[j] < Union(s[j],t); FreeNode(t);

s < BoundedMDDSaturate(s);

return s;

CO~NOOCThWN

Figure 7: Locally-bounded Saturation using MDDs. The
state-space exploration is bounded using the “for”-loop in
BoundedMDDSaturate.

and the distance information. However, storing the dis-
tance information can sometimes increase the sizes of
EDDs or ADDs substantially, when compared to the
sizes of the MDDs encoding only state spaces. For exam-
ple, EDD nodes p and ¢ in Fig. 2(d) would be merged,
if no distance information were stored. Similarly, ADD
nodes r and s in Fig. 2(b) would be merged.

MDD BoundedMDDImage(int p, MDD g, MDD T)

1 if T = 0 then return 0; if T = 1 then return g;

2 k <+ q.lvl;

3 s+ NewNode(k);

4 foreach i, j € Sk such that ¢[7] # 0 and T'[i][j] # O do
5 t < BoundedMDDImage(p,q[i], T[#][4]);

6 s[j] « Union(s[j],t); FreeNode(t);

7 s + BoundedMDDSaturate(p, s);

8 return s;

Figure 8: Globally-bounded Saturation using MDDs. The
state-space exploration is bounded using the “for"-loop in
BoundedMDDSaturate and a global counter.

In this section, we explore Bounded Saturation al-
gorithms based on MDDs instead of EDDs or ADDs.
The challenge is to bound the symbolic traversal in the
Saturation-based fixpoint iteration, so that termination
is guaranteed even if the distance information is not en-
coded by the decision diagram.

Two Bounded Saturation algorithms using MDDs are
presented in Figs. 7 and 8. Both start from procedure

10 A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems

BoundedMDDSaturation, where the root MDD node en-
coding the initial states S is saturated by calling the
recursive procedure BoundedMDDSaturate, which then
saturates all the MDD nodes reachable from the root
node at lower levels, in a bottom-up fashion. The proce-
dure terminates when the root node is saturated. As for
other Saturation-style algorithms, Bounded MDDSatura-
te and BoundedMDDImage are mutually recursive, i.e.,
all newly created MDD nodes in procedure BoundedM -
DDImage are immediately saturated by BoundedMDD-
Saturate.

To perform bounded forward traversal instead of full
state-space exploration, procedure BoundedMDDSatur-
ate of Figs. 7 and 8 uses BFS-style bounded forward
traversals, where MDD nodes r and s are used to denote
the reachable (sub-)states of the previous and new iter-
ations, respectively. Thus, the BFS-style iterations are
stopped when s is the same as r. In the BFS-style itera-
tions, instead of exploring state spaces from all the reach-
able (sub-)states, we could have chosen to explore them
from the frontier (sub-)states only, computed with an
MDD SetDifference operation between the newly reach-
able states with the previously reachable states. How-
ever, our experiments showed that this is less efficient,
since computing the frontier tends to create many MDD
nodes at lower levels.

The two approaches to BoundedMDDSaturate differ
in the way they bound the BFS-style iteration. The ap-
proach of Fig. 7 uses the value B to bound the BFS itera-
tion. The approach of Fig. 8 refines the first approach by
utilizing an additional parameter p to recursively count
the number of event firings that occurred along the path
through which the recursion reached MDD node p. The
counter p is initialized to 0 in procedure BoundedMDD-
Saturation, and then incremented with the iteration
number d at line 8 of procedure BoundedMDDSaturate.
To bound the forward traversal, the number of BFS-
style iterations that can be performed when saturat-
ing MDD node p is then reduced to B—p in procedure
BoundedMDDSaturate.

We call the approach of Fig. 7 locally-bounded and
the one of Fig. 8 globally-bounded. This is because, in
the latter case, the bound of the BFS-style iteration does
not only take into account the event firings that have oc-
curred locally when saturating an MDD node p, but also
those along the path reaching node p. Given a bound B,
both approaches compute a superset of the bounded
state space SP. The locally-bounded approach may con-
tain reachable states with distance at most BX, whereas
the globally-bounded approach may contain reachable
states with distance at most (°*X~1), where K is the
number of state variables, i.e., MDD levels. We prove
these bounds by induction. Let D be the maximum state
distance to S in the current state space during the
bounded symbolic forward traversal, initially set to 0.

In the locally-bounded approach, each call to recur-
sive procedure BoundedMDDSaturate on an MDD node

at level 1 can increase D by at most B, due to the bound
enforced in line 8 of BoundedMDDSaturate. This proves
the base case. Now assume that procedure Bounded-
MDD Saturate, on any node at level [—1, increases D by
at most B, Then, for a node p at level [and each BFS-
style iteration of Bounded MDDSaturate on p, procedure
BoundedMDDImage calls on the child nodes of p at level
[-1 and generates a new node at level [— 1, which is also
saturated by BoundedMDDSaturate and thus increases
D by at most B!, Because there are at most B such it-
erations, BoundedMDDSaturate on node p at level [can
therefore increment D by at most B x B'~! = B!, Our
upper-distance bound then follows since [= K for the
root node.

For the globally-bounded approach, we prove that a
call to recursive procedure BoundedMDDSaturate with
counter p on some MDD node p at level [can incre-
ment D by at most (° #"), for B > p > 0. Our
upper-distance bound can then be proved to hold since
p = 0 and I = K for the root node. Regarding the
base case, for a node at level 1, it is easy to see that
D can be incremented by at most B — p. Now assume
that the bound formula is true for level [—1. Regard-
ing level [, the number of BFS-style iterations in pro-
cedure BoundedMDDSaturate is B —p, and at the d'"
iteration, the result of BoundedMDDImage is saturated
by BoundedMDDSaturate at level [— 1, which can incre-
ment D by at most (77 %"~"). The total increment

. Bp (B—p—d+i—
is therefore Y77 (P7¢ 41

to (P~PH=1), as desired.

Compared to the locally-bounded approach, the new
counter p restricts the explored state space more, since
its distance bound (P*X~") is o(BK), ie., asymptot-
ically smaller than for the locally-bounded approach.
However, both BoundedMDDSaturate and BoundedM -
DDImage have to compute new results for different val-
ues of p, whence p becomes part of the search key in the
operation caches for these procedures. This results in
fewer cache hits and higher memory usage.

), which can be simplified

4 Experimental results

We implemented our Bounded Saturation algorithms in
the verification tool SMART [8], which supports Petri nets
as front-end. This section reports our experimental re-
sults for a suite of asynchronous Petri-net benchmarks
when checking for deadlock-freedom, as an example of
bounded reachability checking. For our symbolic algo-
rithms, the deadlock check simply requires us, for each
event a, to remove the set of states enabling «, i.e.,
Image™ (S, Dy), from the final bounded state space; any
remaining state corresponds to a deadlock. In the fol-
lowing, we compare the performance of several decision-
diagram-based methods and the SAT-based methods of
Heljanko et al. [22,23] and Ogata et al. [31], when ap-
plied to this task.

Approximate distance methods
EVMDD-Approx | EVBDD-Approx MDD-SatL MDD-SatG MDD-Chain SAT-S SAT-C
Model | #£P | #E B|Time| Mem| B[Time| Mem | B[Time|[Mem | B[Time| Mem | B][Time| Mem | B] Time]| B | Time
byzagrd(2a) | 579 | 473 || 49 | 2.23 241 | 49| 9.14 | 343 2| 2.15| 147 2| 3.24 4.18 6 73| 9.24 8| 0.79| 2| 2.07
mmgt(3) | 122 | 172 9| 0.11 0.2 8| 1.28 0.34 2| 006 | 0.11 3 0.2 0.46 5| 0.07| 0.16 71 009 3| 1.04
mmgt(4) | 158 | 232 17| 1.22 1.15 17| 2.15 1.67 2 0.4 | 0.56 2 0.6 1.41 3| 0.11 0.2 8| 0.23| 4| 5.52
dac(5) | 105 | 73 4| 0.01 0.0 4] 0.03| 0.01 2| 0.01| 0.01 2| 0.01 0.01 2| 001 0.01 3| 001] 2| 0.04
hs(75) | 302 | 152 || 1561 | 0.01 0.03 | 151 | 0.36 | 0.05 3| 0.03| 0.03 41 0.03 0.07| 93| 0.08| 053|151 | 584 | 1| 0.07
hs(100) | 402 | 202 || 201 | 0.03 0.04 | 201 | 0.78 | 0.07 2| 0.05| 0.03 3| 0.05 0.09 | 116 | 0.14 | 0.78 | 201 | 14.85| 1| 0.13
sentest(75) | 252 | 102 || 45 0.0 0.02 | 45| 0.21 0.03 2| 0.02| 0.01 3| 0.03 0.03| 32| 0.03| 021 | 83| 4.27| 3| 0.13
sentest(100) | 327 | 127 || 61 | 0.01 0.03| 61| 034 | 0.05 2| 0.03| 0.02 3| 0.03 0.04| 73| 0.07| 047|108 |10.71| 4| 0.29
speed(1) | 29| 31 4| 0.01 0.02 2| 024 o0.01 3 0.0 | 0.01 41 0.01 0.04 3| 0.01] 0.04 41 0.01] 2| 0.03
dp(12) 72 48 2| 0.01 0.02 2| 0.02 0.03 1| 0.01| 0.02 1| 0.01 0.01 1 0.0 0.01 1 00| 1| 0.02
q(l) | 163 | 194 91 0.01 0.03 8| 145 0.04 2| 0.03| 0.04 3| 0.05 0.11 7| 0.06| 0.14 9| 013] 1| 0.07
elevator(3) | 326 | 782 8 | 15.07 9.46 7| 285 9.83 3| 594 2.1 412344 | 14.33 6| 087 | 0.58 8| 042 2| 3.77
key(2) | 94| 92| 13| 0.06 0.14| 18| 0.16 | 0.19 3| 0.07| 0.12 41| 0.06 0.19| 14| 0.07 02| 36| 2.88| 2| 0.05
key(3) | 129 | 133 || 17 0.2 048 | 17| 0.55 0.71 2| 0.26 | 0.38 2] 0.18 042 | 14| 0.21| 052 | 37| 439 2 0.1
key(4) | 164 | 174 17| 0.69 148 | 15 24 1.39 2| 1.35| 1.56 3| 3.43 575 | 17| 0.67 | 154 | 38| 421 | 2| 0.18
key(5) | 199 | 215 || 17| 2.04 415 | 17| 597 | 6.66 2| 2.88| 3.38 312674 | 23.72| 15| 1.73| 3.37| 39| 807 | 2| 0.25
fms(3) | 22| 16 9| 0.06 0.02 5| 074 | 0.02 6 0.0 | 0.02 8 0.0 0.06 7| 001 008| 10| 0.75| 3| 1.25
fms(7) 22 16 19| 0.07 0.26 | 11 4.4 069 | 14| 0.04| 0.28| 16| 0.12 129 | 15| 0.24 | 258 | 18 | >600 | 6 | >600
fms(10) | 22| 16| 28| 0.12 0.99 6 | >600 -1 20| 0.15| 1.14| 22| 0.51 569 | 21| 1.35|14.75 | 16 | >600 | 7 | >600
kanban(1) | 17| 16| 28 | 0.04 00| 27| 0.33| 0.01] 10 0.0 0.0 12 0.0 0.01 | 13 00| 0.01| 19| 0.056| 5| 0.09
kanban(3) | 17| 16| 82| 0.05 006 | 79| 534 | 034| 30| 0.01| 0.05| 32| 0.12 064 | 19| 0.03| 023 | 12| >600| 3| >600
kanban(10) | 17| 16| 271 | 0.84 | 10.43 1| >600 - 1100 | 1.69 | 848 | 102 | 46.96 | 317.48 | 54 | 2.83 | 29.29 1|>600| 1| >600
Table 1: Experimental results (Time in sec, Mem in MB). “>600" means runtime exceeds 600sec or memory exceeds 1GB, and “~’ means the memory usage is not

available due to time out.

suIsAG snouoIyoufsy jo Suroey)) ANIqeyordy popunog :waSnr ‘) pue opIer) ‘Y ‘nx 'y

1T

12 A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems

We ran our experiments on a 3GHz Pentium ma-
chine with 1GB RAM. Benchmarks byzagr4, mmgt, dac,
hs(hartstone), sentest, speed, dp, q, elevator, and key are
taken from Corbett [19] and were translated into safe
Petri nets by Heljanko [21]." Benchmarks fms and kan-
ban are deadlocked versions of non-safe Petri-net manu-
facturing system models which are included in the SMART
distribution; these are automatically translated into safe
Petri nets by SMART. All benchmarks have deadlocks.

BDDs and EVBDDs are natural candidates for our
decision-diagram-based approaches when models have
binary variables, as is the case for safe Petri nets. How-
ever, thanks to a heuristic to merge binary variables
and exploit Petri net invariants [38], we can instead use
MDDs and EDDs, thereby achieving time and memory
savings. In the following, we thus present the multi-
valued version of our algorithms and, for comparison,
consider only one EVBDD-based approach (EVBDD-
Approx), applied to safe Petri net models. The MDD-
and EDD-based approaches employ the merging heuris-
tic for the safe nets of Corbett’s benchmarks, while they
use the non-safe Petri nets fms and kanban as-is. More-
over, variable orders for our experiments were automat-
ically obtained using the heuristic in [33].

4.1 Result tables

Tables 1 and 2 show the results for our “approximate”
methods and “exact” methods, respectively. The “ap-
proximate” methods are:

— MDD-Chain, the BFS-style, event-locality-based
chaining technique of Fig. 3;

— SAT-S, the circuit SAT-based method with step se-
mantics of [23];

— SAT-C, the CNF SAT-based method with forward
chaining of [31];

as well as those methods that compute a superset of the
states SP within distance B:

— EDD-Approx and EVBDD-Approx, our EDD-
based Bounded Saturation (TruncateApproz);

— MDD-SatL, our MDD-based Locally-bounded
Saturation;

— MDD-SatG, our MDD-based Globally-bounded
Saturation.

The “exact” methods, which limit their search to exactly
SB are:

— SAT-I, the circuit SAT-based method with inter-
leaving semantics of [23];

— EDD-Exact and ADD-Exact, our EDD or ADD-
based Bounded Saturation (TruncateEzact).

1 A Petri net is safe if any place can contain at most one token,
and it is non-safe but N-bounded, if any place can contain at most
N (N > 1) tokens. A non-safe Petri net can be translated into a
safe one by binary encoding (bit-blasting) of its non-safe places
with safe places.

The first three columns of both tables are identical, and
display the model name and parameters, as well as the
number of places (#P) and events (#E). For each ap-
proximate method of Table 1, we report the smallest
bound B at which either a deadlock is found or the
runtime exceeds 10 minutes. For the exact methods of
Table 2, we state the exact distance bound B of the
deadlock, except for the case marked “?”, where none of
the exact methods could find a deadlock within 10 min-
utes. All the decision-diagram-based methods are imple-
mented in SMART| and their runtime and memory con-
sumptions are included in the table, while only the run-
times are available for the SAT-based tools.

Corbett’s benchmarks and the SAT-I and SAT-C tools
are taken from [22]. In our experiments, SAT-S performs
at least as well as the analogous approach using pro-
cess semantics [21] (this is also confirmed by the results
in Heljanko and Junttila’s recent tutorial [22]). There-
fore, we report only results for the former approach in
Table 1. With Corbett’s benchmarks, we show different
bounds for SAT-C than those reported in [31]; this is
due to choosing a different initial state, the same as the
one considered in [22]. For SAT-I and SAT-C, both the
encoding time and the bczchaff circuit SAT-solver run-
time are displayed in Table 1. For a fair comparison, the
runtime of SAT-C includes the preprocessing steps for
scheduling events, the encoding of the safe Petri nets
into boolean formulas and then into CNF formulas, and
the querying of the zchaff SAT-solver for deadlocks.

4.2 Discussion

From Tables 1 and 2, we can roughly classify bench-
marks byzagr, hs, sentest, fms, and kanban as models
with “deep” deadlocks, where the minimum bounds re-
quired to detect deadlocks range from 30 to 500, and all
other benchmarks as models with “shallow” deadlocks,
where the minimum bounds are less than 30. For bench-
marks with “deep” deadlocks, the newly proposed EDD-
Approx and MDD-SatL methods achieve the best per-
formance. For models with “shallow” deadlocks, it seems
that almost all methods perform reasonably well, includ-
ing our MDD-Chain method. When comparing EDD-
Approx with EVBDD-Approx, we observe that the for-
mer always performs better than the latter. Further,
MDD-SatL always performs better than MDD-SatG in
terms of both time and memory, and the latter always
finds deadlock states at a deeper bound. The compar-
ison between EDD-Exact and ADD-Exact shows that
they complement each other. EDD-Approx and MDD-
SatL are arguably the two methods with the best over-
all performance, except for the elevator model, where
they perform worse than the MDD-Chain method and
the SAT-S method. This might be because a very large
superset of SP is computed; we also suspect that our
variable order heuristic is not performing well on this
model.

A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems

Exact distance methods
SAT-I | EDD-Exact | ADD-Exact
Model | #P | #E B Time | Time | Mem | Time | Mem
byzagrd(2a) | 579 | 473 ? >600 | >600 - | >600 -
mmgt(3) | 122 | 172 10 1.37 0.32 0.55 0.41 0.33
mmgt(4) | 158 | 232 20 1.24 4.36 3.12 | 12.87 3.61
dac(15) | 105 73 20 0.01 0.03 0.05 0.06 0.04
hs(75) | 302 | 152 || 151 7.94 0.15 0.03 0.13 0.34
hs(100) | 402 | 202 || 201 20.31 0.3 0.04 0.23 0.58
sentest(75) | 252 | 102 88 8.51 0.06 0.02 0.08 0.14
sentest(100) | 327 | 127 113 21.85 0.12 0.03 0.22 0.25
speed(1) 29 31 7 0.02 0.1 0.04 0.02 0.01
dp(12) 72 48 12 0.06 0.96 1.77 0.33 0.12
q(l) | 163 | 194 21 0.83 0.08 0.15 0.19 0.13
elevator(3) | 326 | 782 20 2.74 | >600 - 7.54 1.83
key(2) | 94 | 92| 50 | >600 | 015 | 02| 022 034
key(3) | 129 | 133 50 >600 0.62 0.67 2.8 1.64
key(4) | 164 | 174 50 >600 2.02 2.11 9.71 3.15
key(5) | 199 | 215 50 >600 | 16.87 | 10.52 | 33.65 | 10.03
fms(3) 22 16 30 >600 0.07 0.06 0.05 0.14
fms(7) 22 16 70 >600 0.8 2.2 1.12 4.7
fms(10) 22 16 100 >600 5.37 | 14.37 5.24 | 24.11
kanban(1) 17 16 40 16.56 0.08 0.0 0.01 0.01
kanban(3) 17 16 || 120 >600 0.1 0.07 0.27 0.64
kanban(10) 17 16 || 400 >600 14.4 | 10.46 | 51.76 | 187.9

13

Table 2: Experimental results (Time in sec, Mem in MB). “>600” means runtime exceeds 600sec or memory exceeds 1GB,

and 4~

In addition, we observe that the well-known poor per-
formance of SAT-solvers for unsatisfiable boolean formu-
las makes it hard to guess bound B. If the guess is too
large, the resulting boolean formula is huge; if it is too
small, the formula is unsatisfiable. Both cases have se-
vere performance penalties. For example, SAT-I finds a
deadlock in benchmark ¢(1) in less than 1 second when
B = 21 but, when B = 20, the formula is unsatisfiable
and the runtime exceeds 600 seconds. Decision-diagram-
based methods tend instead to have “well-behaved” run-
times, monotonically increasing in B.

5 Related work

This section discusses our approaches to bounded reach-
ability checking in light of related work.

5.1 SAT-solving for Petri nets

We first add some details to the two SAT-based ap-
proaches to deadlock checking of safe Petri nets [21,31],
against which we compared ourselves in the previous sec-
tion regarding runtime efficiency.

Heljanko’s work [21] established the so-called pro-
cess semantics of Petri nets as the ‘best’ net semantics
for translating bounded reachability into a propositional
satisfiability problem, in the sense that the resulting SAT

means the memory usage is not available due to time out.

problem can be solved more efficiently than for step or
interleaving semantics. However, this technique can only
be safely applied to safe Petri nets, as otherwise these
semantics may not coincide. In contrast, our technique
is applicable to general Petri nets, even to Petri nets
exhibiting infinite state spaces.

Ogata, Tsuchiya, and Kikuno’s approach [31] focuses
on the translation of Petri nets, which must again be
safe, into propositional formulas. The ordinary encod-
ing of safe nets into propositional formulas results in
large formulas, thereby degrading the performance of
SAT solvers and hampering scalability. The authors sug-
gest a more succinct encoding, albeit at the price of ex-
ploring not only states with a distance up to the con-
sidered bound but also some states with larger distance.
This is similar to our Bounded Saturation, for which it
is also more efficient to collect some additional states.
The authors leave a comparison to Heljanko’s approach
as future work; this comparison has now been conducted
by us, and the results reported in the previous section
show that neither method is superior in all cases.

5.2 BDD vs. SAT on synchronous systems

As mentioned above, the common belief that SAT-based
model checkers outperform model checkers based on de-
cision diagrams was already proved wrong by Cabodi,
Nocco, and Quer [6], for a class of digital circuits that

14 A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems

exhibit largely synchronous behavior. The advocated ap-
proach relies on improving standard BDD-based tech-
niques by mixing forward and backward traversals, dove-
tailing approximate and exact methods, adopting guided
and partitioned searches, and using conjunctive decom-
positions and generalized cofactor-based BDD simplifi-
cations.

Our research complements their findings, regarding
asynchronous systems. In a nutshell, our improvement
over standard techniques lies in the local manipulation
of decision diagrams by exploiting the event locality in-
herent in asynchronous systems, interleaving semantics,
and disjunctive partitioning. These are the central ideas
behind Saturation [9], on which our Bounded Saturation
algorithms are based. Similar to the algorithm proposed
in [6], we also achieve efficiency by including some states
with a distance larger than the given bound B; such
states have a distance of up to K -B in our EDD-based
approach and up to E-B in [6], where K and E are the
number of components and events, respectively, in the
studied Petri net.

Together, the results of Cabodi et al. and ours, and
also further recent research [36], revise some of the claims
made in the literature, especially regarding the perfor-
mance of decision-diagram-based bounded model check-
ing. It must be noted here that our results have been
obtained with static variable orders that have been com-
puted using a simple heuristic [33]. Thus, unlike in [18§],
no fine-tuning of models by hand was necessary.

5.8 Petri net unfoldings

Both SAT-based and decision-diagram-based techniques
are established approaches to addressing the state-space
explosion problem. The Petri net community has devel-
oped another successful approach to this problem, which
was first suggested in a seminal paper by McMillan [28].
The idea is to finitely unfold a Petri net until the result-
ing prefix has exactly the same reachable markings as
the original net. For certain Petri nets such finite pre-
fixes exist and often prove to be small in practice. In
contrast to bounded reachability checking, analysis tech-
niques based on unfoldings are thus complete, as they
capture a net’s entire behavior. However, unfoldings are
limited to finite-state Petri nets, although recent work
suggests an extension to some infinite-state systems [1].

6 Conclusions and future work

This article explored the utility of decision diagrams for
the bounded reachability checking of asynchronous sys-
tems. To this end, we reconsidered Saturation, a state-
space generation algorithm that is based on Multi-valued
Decision Diagrams (MDDs) and exploits the event local-
ity and interleaving semantics inherent in asynchronous

systems. As the search strategy of Saturation is unlike
breadth-first search, bounding searches required us to
either employ EDDs or ADDs, which allow for storing
states together with their distances from the set of initial
states, or use altogether new variants of Saturation.

An extensive experimental analysis of the resulting
Bounded Saturation algorithms showed that they often
compare favorably to the competing SAT-based approa-
ches introduced in [21,22,31]. In many cases, Bounded
Saturation could build bounded state spaces and check
for deadlocks at least as fast and frequently faster, while
using acceptable amounts of memory. Thus, decision-
diagram-based techniques can well compete with SAT-
based techniques for the bounded reachability checking
of asynchronous systems, and the widespread perception
that decision diagrams are not suited for bounded model
checking [18] is unfunded.

Future work should investigate whether the Bounded
Saturation algorithms proposed in this article can be
efficiently applied beyond reachability checking. We also
intend to investigate whether the event locality inherent
in asynchronous systems can be exploited in SAT-based
reachability checking.

Acknowledgments

We thank K. Heljanko, T. Jussila, and T. Tsuchiya for
providing us with benchmarks and software tools that we
used in our study. We especially thank M. Y. Vardi for
inspiring comments and suggestions after we presented
an earlier version of this paper at the TACAS 2007 con-
ference. In particular, his suggestion to look into ways
to avoid having to store distance information explicitly,
prompted us to derive the MDD-based Bounded Satu-
ration algorithms of Sec. 3.5.

References

1. P. Abdulla, S.Iyer, A.Nylén. SAT-solving the coverabil-
ity problem for Petri nets. FMSD, 24(1):25-43, 2004.

2. R.I. Bahar, E. A. Frohm, C. M. Gaona, G.D. Hachtel,
E. Macii, A. Pardo, F. Somenzi. Algebraic decision di-
agrams and their applications. FMSD, 10(2/3):171-206,
1997.

3. A.Biere, A.Cimatti, E. M. Clarke, Y.Zhu. Symbolic
model checking without BDDs. TACAS, LNCS 1579,
pp- 193207, 1999. Springer.

4. R.E. Bryant. Symbolic boolean manipulation with or-
dered binary decision diagrams. ACM Comp. Surv.,
24(3):293-318, 1992.

5. J.R. Burch, E. M. Clarke, D.E. Long. Symbolic model
checking with partitioned transition relations. VLSI,
pp- 49-58, 1991.

6. G.Cabodi, S. Nocco, S. Quer. Are BDDs still alive within
sequential verification? STTT, 7(2):129-142, 2005.

7. G. Ciardo. Petri nets with marking-dependent arc mul-
tiplicity: properties and analysis. ICATPN, LNCS 815,
pp- 179-198, 1994. Springer.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A.J. Yu, G. Ciardo and G. Liittgen: Bounded Reachability Checking of Asynchronous Systems 15

G. Ciardo, R.L. Jones, A.S. Miner, R. Siminiceanu. Log-
ical and stochastic modeling with SMART. Perf. Eval.,
63:578-608, 2006.

G. Ciardo, G. Liittgen, R.Siminiceanu. Saturation: An
efficient iteration strategy for symbolic state-space gener-
ation. TACAS, LNCS 2031, pp. 328-342, 2001. Springer.
G. Ciardo, R.Marmorstein, R.Siminiceanu. The Satu-
ration algorithm for symbolic state space exploration.
STTT, 8(1):4-25, 2006.

G. Ciardo, A.S. Miner, G. Liittgen. Exploiting interleav-
ing semantics in symbolic state-space generation. FMSD,
31(1):63-100, 2007.

G. Ciardo, R.Siminiceanu. Using edge-valued decision
diagrams for symbolic generation of shortest paths. FM-
CAD, LNCS 2517, pp.256—273, 2002. Springer.

G. Ciardo, A. J. Yu. Saturation-based symbolic reachabil-
ity analysis using conjunctive and disjunctive partition-
ing. CHARME, LNCS 3725, pp. 146-161, 2005. Springer.
A.Cimatti, E.M.Clarke, F.Giunchiglia, M.Roveri.
NuSMV: A new symbolic model verifier. CAV, LNCS
1633, pp. 495499, 1999. Springer.

E. M. Clarke, M. Fujita, X.Zhao. Application of multi-
terminal binary decision diagrams. IFIP WG 10.5 Work-
shop on Applications of the Reed-Muller Ezpansion in
Clircuit Design, 1995

E. M. Clarke, A. Biere, R. Raimi, Y. Zhu. Bounded model
checking using satisfiability solving. FMSD, 19(1):7-34,
2001.

E. M. Clarke, O.Grumberg, D.Peled. Model Checking.
MIT Press, 1999.

F.Copty, L.Fix, R.Fraer, E.Giunchiglia, G.Kambhi,
A.Tacchella, M.Y.Vardi. Benefits of bounded model
checking at an industrial setting. CAV, LNCS 2102,
pp- 436-453, 2001. Springer.

J.C. Corbett. Evaluating deadlock detection meth-
ods for concurrent software. IEEE Trans. Softw. Eng.,
22(3):161-180, 1996.

The VIS Group. VIS: A system for verification and syn-
thesis. CAV, LNCS 1102, pp.428-432, 1996. Springer.
K. Heljanko. Bounded reachability checking with process

semantics. CONCUR, LNCS 2154, pp.218-232, 2001.
Springer.
K.Heljanko, T. Junttila. Advanced tutorial on

bounded model checking. ACSD/ICATPN, 2006.
http://www.tcs.hut.fi/~kepa/bmc-tutorial.html.

K. Heljanko, I.Niemeld. Answer set programming and
bounded model checking. Answer Set Programming,
2001.

F.Ivanci¢, Z.Yang, M. Ganai, A.Gupta, P. Ashar. F-
Soft: Software Verification Platform. CAV, LNCS 3576,
2005. Springer.

T.Kam, T. Villa, R. Brayton, A. Sangiovanni-Vincentelli.
Multi-valued decision diagrams: Theory and applica-
tions. Multiple- Valued Logic, 4(1-2):9-62, 1998.

Y.-T. Lai, S.Sastry. Edge-valued binary decision di-
agrams for multi-level hierarchical verification. DAC,
pp- 608613, 1992. IEEE Press.

B.Li, C. Wang, F.Somenzi. Abstraction refinement in
symbolic model checking using satisfiability as the only
decision procedure. STTT, 7(2):143-155, 2005.
K.McMillan. A technique of state space search based on
unfolding. FMSD, 6(1):45-65, 1995.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

K.McMillan. Interpolation and SAT-Based Model
Checking. CAV, LNCS 2725, pp. 1-13, 2003. Springer.
M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik.
Chaff: Engineering an efficient SAT solver. DAC,
pp. 530-535, 2001. ACM Press.

S. Ogata, T. Tsuchiya, T. Kikuno. SAT-based verification
of safe Petri nets. ATVA, LNCS 3299, pp. 79-92, 2004.
Springer.

I. Rabinovitz, O. Grumberg. Bounded model checking of
concurrent programs. CAV, LNCS 3576, pp. 82-97, 2005.
Springer.

R. Siminiceanu, G. Ciardo. New metrics for static vari-
able ordering in decision diagrams. TACAS, LNCS 3920,
pp. 90-104, 2006. Springer.

M. Sheeran, S.Singh, G.Stélmarck. Checking safety
properties using induction and a SAT-solver. FMCAD,
LNCS 1954, pp. 108-125, 2000. Springer.

M. Solé, E.Pastor. Traversal techniques for concur-
rent systems. FMCAD, LNCS 2517, pp.220-237, 2002.
Springer.

R. Tzoref, M. Matusevich, E.Berger, I.Beer. An op-
timized symbolic bounded model checking engine.
CHARME, LNCS 2860, pp. 141-149, 2003. Springer.
Riidiger Valk. Generalizations of Petri nets. In Math-
ematical foundations of computer science, LNCS 118,
pp- 140-155, 1981. Springer.

A.J.Yu, G.Ciardo, G.Liittgen. Improving static vari-
able orders via invariants. ICATPN, LNCS 4546, pp. 83—
103, 2007. Springer.

