Book Review for the STVR Journal

Review of Modeling and Verification Using UML Statecharts
by Doron Drusinsky, Newnes Publishers, 2006.

Reactive controller programming is a difficult and
significant task within embedded systems engineer-
ing, and is a multi-billion pound business. Despite
its importance, surprisingly few books are available
on this topic. So seeing this new book by Doron
Drusinsky gave me a burst of excitement and hope,
both for academics who are looking for a good text-
book for their students, and for engineers who need to
get to grips with modern tools for embedded software
development.

Drusinsky has worked in industry for many years,
mostly on designing statechart-based development
tools. A few years ago, he took up an academic post
and now teaches computer science and software engi-
neering at the Naval Postgraduate School in Califor-
nia. This mix of industrial and academic experience
should give Drusinsky just the right background for
writing a book on reactive controller programming
and verification.

However, first things first. The title of the book
is somewhat misleading, showing foot stamps of the
publisher’s marketing department. Drusinsky’s book
is not about modelling and verification using UML
Statecharts, but about programming and verifica-
tion wusing StateRover™. StateRover is a graphi-
cal programming tool developed by Drusinsky at his
Time-Rover company. It supports statecharts and
flowcharts for the high-level programming of complex
real-time software, automatic Java code generation
and run-time verification of temporal assertions. As
such, the book employs a new statechart dialect based
on UML Statecharts, which has several unique syn-
tactical and semantical features.

Drusinsky’s book also advocates Statechart Asser-
tions. These allow for writing programs and their de-
sired temporal properties within the same language,

although nondeterminism is only permitted in the
latter. The concept of Statechart Assertions is close
to the one of observer automata which is deployed in
competing design tools, such as Esterel Technologies’
SCADE™ or Reactive System’s REACTIS® valida-
tor for The MathWorks’ Simulink/Stateflow® tool.
In contrast to these tools, however, StateRover does
not support model checking of temporal properties
at compile-time, but instead execution-based model
checking at run-time or simulation-time.

The book is structured in six chapters:

e Chapter 1 summarises selected topics of au-
tomata and formal language theory, including
variants of finite automata and finite state ma-
chines, conversions between different kinds of au-
tomata, and succinctness. Drusinsky attempts
to convey these basics to practitioners by adopt-
ing some of their language. But is “domain of
discourse” really a more comprehensible term for
“alphabet”?

e Chapter 2 introduces the statechart dialect im-
plemented in StateRover, illustrates Java code
generation from such statecharts, and discusses
some non-standard statechart features such as
flowchart elements and critical regions. Partic-
ular attention is paid to practicality and code
generation, rather than to proposing a statechart
dialect with a clean semantics.

e Chapter 3 discusses some “academic” languages
for specifying reactive systems. The focus is
on temporal logics and their abilities to express
real-time constraints in general, and on Linear-
time Temporal Logic (LTL) and Metric Tempo-
ral Logic (MTL) in particular. The chapter also



discusses run-time monitoring and glances at the
TemporalRover™ and DBRover™ sister tools of
StateRover.

e Chapter 4 presents Statechart Assertions and il-
lustrates how they can be used to specify a vari-
ety of temporal properties related to the traffic-
light-controller example that is used throughout
the book. Drusinsky also shows how Statechart
Assertions can be simulated and tested using the
JUnit testing framework.

e Chapter 5 justifies Drusinsky’s adoption of Stat-
echart Assertions and run-time model checking
for verification. It also gives advice on the pro-
cess of devising, writing and applying assertions
and, equally important, on how to reuse asser-
tions via assertion libraries.

e Chapter 6 describes a case study of applying
StateRover in the context of the U.S. Ballistic
Missile Defense Project. This chapter is con-
tributed by Nick Sklavounos who is a key devel-
oper within this project. No details of the case
study are presented, although there is a useful
discussion on the wider project management is-
sues when employing modern software tools such
as StateRover.

Overall, this book is a brave attempt at addressing
a difficult topic, adopting a fresh, pragmatic and il-
lustrative approach. Nevertheless, I am disappointed.
Firstly, the book’s presentation could easily be much
improved by eliminating the many forward and back-
ward references. Secondly, a short introduction to the
JUnit testing framework and a good discussion of the
literature and related languages and tools would have
rounded this book off. Thirdly, spelling out who the
intended audience is, might have helped the author
to write a more focused book.

On the one hand, this book is not what I am look-
ing for in an academic textbook. Its technical con-
tent is too shallow, often imprecise and there are too
many loose ends. This is because most aspects of
reactive controller programming and verification are
explained from a tool implementor’s point of view.

There is no formal treatment of StateRover’s seman-
tics, its code-generation facility and its run-time ver-
ification engine. All these aspects are introduced in a
rather ad-hoc manner and refer to “implementation
semantics.” Without basic knowledge in statecharts
and program verification, I feel that parts of the book
are difficult to digest.

On the other hand, the book does also not give
sufficient details for engineers who intend to deploy
StateRover in their future projects. They would
likely have wished for step-to-step guides on the use
of StateRover’s features and an in-depth case study.
I also had expected a trial version of StateRover on
the accompanying CD.

Despite its shortcomings, I can recommend this
book to students as a supplementary textbook, so
as to help them relate the theory taught in comput-
ing degree courses to software-engineering practise.
Some engineers may also find this book a good source
for gaining an understanding of run-time verification
and of the philosophy behind the StateRover tool.

GERALD LUTTGEN

Department of Computer Science
University of York

Heslington

York YO10 5DD, U.K.

E-mail: gerald.luettgen@cs.york.ac.uk



