Priorities for Modeling and
Verifying Distributed Systems

Rance Cleaveland*
Gerald Luttgen*
V. Natarajan*
Steve Sims*

ABSTRACT This paper illustrates the use of priorities in process algebras
by a real-world example dealing with the design of a safety-critical network
which is part of a railway signaling system. Priorities in process algebras
support an intuitive modeling of distributed systems since undesired inter-
leavings can be suppressed. This fact also leads to a substantial reduction
of the sizes of models. We have implemented a CCS-based process algebra
with priorities as a new front-end for the NCSU Concurrency Workbench,
and we use model checking for verifying properties of the signaling system.

1 Introduction

Process algebras, e.g. CCS [13], provide a formal framework for model-
ing and verifying distributed systems. In the past decade, a number of
automatic verification tools for finite state systems expressed in process
algebras have been developed [10], and their utility has been demonstrated
by several case studies [1, 7]. Most of these case studies are based on pro-
cess algebras that provide simple mechanisms for modeling nondeterminism
and concurrency. Many extensions to these plain languages have been pro-
posed, including priorities [2, 6, 8, 14]. Priorities in particular are needed
to model the often used concept of interrupts, especially in hardware and
communication protocols.

This paper presents a case study of a real-world system which shows
the benefits of priorities for modeling and verifying distributed systems.
Our example is based on a case study by Glenn Bruns [5] dealing with

*Department of Computer Science, North Carolina State University, Raleigh NC
27695-8206 USA, e-mail: {rance, luettgen, nvaidhy, stsims} @eos.ncsu.edu.
Research supported by NSF/DARPA grant CCR-9014775, NSF grant CCR-9120995,
ONR Young Investigator Award N00014-92-J-1582, NSF Young Investigator Award
CCR-9257963, NSF grant CCR-9402807, and AFOSR grant F49620-95-1-0508.
Research support for the second author provided by the German Academic Exchange
Service under grant D/95/09026 (Doktorandenstipendium HSP II / AUFE).



112 R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

the design of a safety-critical part of a network used in British Rail’s Solid
State Interlocking (SST) [11], a system which controls railway signals and
points. Bruns modeled and verified a high-level design of the system that
abstracted from low-level implementation details. He used plain CCS for
modeling the system, a temporal logic for specifying properties of the sys-
tem, and the Edinburgh Concurrency Workbench [10] for verifying that
these properties hold for the model.

We investigate an elaboration of Bruns’ case study using a process al-
gebra with priorities [8]. We augment his model in two ways based on key
concepts of the SST system described in the original design document [11].
First we add an error-recovery scheme that is invoked when a communi-
cation link fails, and second we add a backup line in order to make the
system fault-tolerant. In both cases the use of priorities enables the devel-
opment of elegant and intuitive models. We also show that, by eliminating
invalid interleavings, priorities can dramatically cut the number of states
and transitions in our systems. This i1s particularly significant since the
large complexity of practical problems often prevents their automatic ver-
ification. We verify our models by showing that several safety properties
hold using the NCSU Concurrency Workbench. This verification tool is a
re-implementation of the Edinburgh Concurrency Workbench that offers
similar functionality, but is faster, able to handle larger systems, and gives
diagnostic information when a verification routine returns false.

The remainder of the paper is structured as follows. In Section 2 we
present the process algebra with priorities that we use in this paper. Sec-
tion 3 gives an introduction to the railway signaling system and presents
our models. Section 4 discusses our verification results. Finally, we give our
conclusions and directions for future work in Section 5.

2 A Process Algebra with Priorities

The process algebra with priorities we consider in this paper is based on
the language proposed in [8]. We extend this language with a multilevel pri-
ority scheme but disallow the prioritization and deprioritization operator.
Therefore, our process algebra is basically CCS [13] where priorities, mod-
eled by natural numbers, are assigned to actions. We use the convention
that smaller numbers mean higher priorities; so 0 is the highest priority. In-
tuitively, visible actions represent potential synchronizations that a process
may be willing to engage in with its environment. Given a choice between
a synchronization on a high priority and one on a low priority, a process
should choose the former.

Formally, let { Ay | k € N} denote a family of pairwise-disjoint, count-
ably infinite sets of labels. Intuitively, A contains the “ports” with priority
k that processes may synchronize over. Then the set of actions Ay with pri-



Priorities for Modeling and Verifying Distributed Systems 113

ority k may be defined by Ay, =4t AyUALU{7.}, where Ay =qr { A\ | A € Ay }
and 7, € Ag. The set of all ports A and the set of all actions A are defined
by U{ Ax | k € N} and |J{ Ai | & € N}, respectively. For better readabil-
ity we write a:k if a € Ay and 7:k for 7. An action A:k € A; may be thought
of as representing the receipt of an input on port A which has priority %,
while Ak € Ap constitutes the deposit of an output on A. The invisible
actions 7:k represent internal computation steps with priority k. In what
follows, we use a:k, B:k, ... to range over A and ak, bk, ... to range over
A. We also use Ak to represent elements in Ap \ {7k} and extend ~ to all
visible actions Ak by Ak =gr A:k. Finally, if L C A\ { 7tk | k €N} then
L ={ Xk | Xk € L}. For the sake of simplicity, we also write 7 € M where
M C Aif mk € M for some k € N.
The syntaz of our language is defined by the following BNF.

P = nil | ak.P | P+P | P|P

Plf] | P\L | c¥p | PP

Here f is a relabeling, a mapping on A which satisfies f(m:k) = 7k for all k €
Nand f(@k) = f(a:k) for all a:k € A\{ 7:k | k € N }. Moreover, a relabeling
preserves priority values, i.e. for all a:k € A\{ 7k | k € N} we have f(a:k) =
b:k for some b:k € Ag. Further, L C A\ { 7k | k € N}, and C is a constant
whose meaning is given by a defining equation. Additionally, we include the
disabling operator |} which is closely related to the corresponding operator
in LOTOS [4].

We adopt the usual definitions for closed terms and guarded recursion.
We call the closed guarded terms processes. P represents the set of all
processes and is ranged over by P, @, .... Note that our framework allows
an infinite number of priority levels although there is a maximum priority.

The semantics of our language is given by a labeled transition system
(P, A,—) where P is the set of processes, and — C P x A x P defined

in Table 1 is the transition relation. We will write P 2% P’ instead of
(P, ack, P’y € —, and we say that P may engage in action o with priority
k and thereafter behaves like process P’.

The presentation of the operational rules requires initial action sets
which are inductively defined on the syntax of processes, as usual. Intu-
itively, I(P) denotes the set of all initial actions of P with priority k,
T« (P) the set of all initial actions of P with a higher priority than &, and
I(P) the set of all initial actions of P. Moreover, we define I.o(P) =q4r 0.
Note that the initial action sets are independently defined from the transi-
tion relation — ; so the transition relation is well-defined.

Intuitively, a:k. P may engage in action « with priority k. The summation
operator + denotes nondeterministic choice. The process P+() may behave
like process P (@) if @ (P) does not preempt it by performing a higher
prioritized 7-action. The restriction operator \ L prohibits the execution of
actions in L UL and may be seen as permitting the scoping of actions. P[f]




114 R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

TABLE 1. Operational semantics

ak P 2 p
P2k pr r¢1cn(Q)  implies P+Q 2% pr
Q ok Q', T ¢ 1. (P) implies P+ Q ok Q'
p Xk pr r ¢ 1cx(PlQ) implies P|Q 25 P/|Q
Q= o, 7 ¢ 1cn(PQ) implies PlQ 25 Pl
PP Q@ ¢l (PIQ) implies PlQ T PQ
Pk pr Fok) = B implies  P[f] 25 P[]
P2k pr ok ¢ (LUT) implies P\L 2% p\L
P2k pr ¢ 1cn(Q)  implies P)Q 25 PpQ
Q ok Q', T ¢ 1. (P) implies P [Q ok Q'
p 2k pr, c¥'p implies ¢ 2% p/

behaves exactly as process P where the actions are renamed according
to f. The process P|Q stands for the parallel composition of P and @
according to an interleaving semantics with synchronized communication
on complementary actions on some priority level k resulting in the internal
action T:k. However, if Q) (P) is capable of engaging in a higher prioritized
internal action or in a synchronization, then lower prioritized actions of P
(@) are preempted. The process P @ behaves like P and, additionally, it is
capable of disabling P by engaging in (). The side conditions ensure that its
semantics 1s consistent with that of the summation operator. In practice, @

is often an interrupt handler. Finally, C 4T b denotes a constant definition,
i.e. C'1s a recursively defined process that is a distinguished solution to the
equation C' = P. The side conditions of the operational semantic rules
guarantee that high-priority 7-actions have preemptive power over low-
priority actions. The reason that high-priority visible actions do not have
priority over low-priority actions is that visible actions only indicate the
potential of a synchronization, i.e. the potential of progress, whereas -
actions describe complete synchronizations, i.e. real progress, in our model.

The usual definition of strong bisimulation — as introduced in [13] —is a
congruence relation over P [8]. In the context of our process algebra with
priorities we will refer to it as prioritized strong bisimulation.

In the following case study, it is sometimes useful to have visible actions
that have preemptive power over lower prioritized actions. More precisely,
such an action, e.g. a:k, 1s signaling that certain events have occurred, i.e.
it plays the role of an atomic proposition. We give a:k preemptive power
by inserting a 7:k-loop at the origin states of transitions which are labeled

by a:k. For example the process a:0.P is rewritten to C' e o.p + r0.C.
For the sake of simplicity, we write #a:0.P as a shorthand for C'.



Priorities for Modeling and Verifying Distributed Systems 115

3 Modeling a Railway System

In this section we model a network used in a safety-critical ratlway signaling
system. The basic design is adapted from [5]. However, instead of CCS we
use the process algebra of Section 2 as it allows a more intuitive modeling
of the system. Further, we extend the model by an error-recovery scheme
and a fault-tolerant network link in order to reflect the underlying design
document [11] more precisely. Since in both cases interrupt mechanisms
come into play, the use of a process algebra with priorities is needed for
reflecting the design correctly.

3.1  Solid State Interlocking

Our example is embedded in British Rail’s Solid State Interlocking (SSI)
system [b, 11], which adjusts and controls signals and points along rail
routes. Its aim is to prevent situations which may lead to a collision or
derailment of trains. Therefore, a formal verification of the design of the
SSI and its environment is of particular importance.

SSi

I high-speed link

1 |

TFM TFM

FIGURE 1. The SSI environment — overview

Figure 1 shows the basic design of the interlocking system. It consists of
three different components: the SSI, several trackside functional modules
(TFM), and a high-speed link which connects the TFMs with the SSI. The
SSI is the main logical unit of the system. It is connected to a control panel
to which a signal operator can input her/his commands. The SSI checks
the validity of those commands and sends them to the TFMs along the
track via the high-speed link. A TFM connects a signal or a point to the
network. Its task 1s to listen to the network in order to receive messages
for adjusting its signal or point and to send status information about the
signal or point to the SSI.

The pattern of communication between the SSI and the TFMs is as
follows. The SSI sends cyclically a message to each TFM. The message
includes the TFM’s address and the status for the corresponding signal or



116 R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

point (e.g. signal on/off). After sending a message the SSI waits a short
time for the addressed TFM to respond with the current state of its signal
or point. This polling scheme reflects the safety-critical design of the system
since it leads to a quick detection of failures. For example, if the addressed
TFM does not respond then either the TFM or the connection between the
SSI and the TFM is broken. Moreover, if the corresponding signal or point
has autonomously changed its state, it is forced to return to its proper
state. The disadvantage of the polling scheme is its communication over-
head, which necessitates an expensive high-speed network. This expense is
even worse if the distance between some TFMs and the SSI is very large.
Therefore, the question arises as to whether distant high-speed links can be
connected via a low-grade link without violating safety requirements. Our
case study will concentrate on this aspect of the SSI system since the use
of a high-speed link is known to satisfy the requirements on the error-free
delivery of commands and timely detection of failures [5].

high-speed link high-speed link

FIGURE 2. The slow-scan system — overview

The integration of a low-grade link (LGL) is illustrated in Figure 2. Tt is
connected to the SSI-side high-speed link via a SSI-side protocol converter
(SPC) and to the TFM-side high-speed link via a TFM-side protocol con-
verter (TPC). Intuitively, the SPC is expected to behave like the TFMs on
the other side of the LGL, i.e. to accept commands for those TFMs and
to respond to the SSI with their current states, but the SPC occasionally
sends these commands along the LGL and receives new status information
about those TFMs. On the other side, the TPC should mimic a SSI. We
refer to the part of the system which consists of SPC, LGL, and TPC as
the slow-scan system. In order not to violate safety conditions of the over-
all system, the slow-scan system is expected to satisfy properties of the
following kind. If the low-grade link fails, then the TPC (SPC) will detect
the problem and stop sending messages to the TPC-side TFMs (SST). The
TFMs are also expected to change signals to red and to lock points in their
current setting if they stop receiving messages.



Priorities for Modeling and Verifying Distributed Systems 117

3.2 The Slow-scan Model

In the following, we formally model the slow-scan system in three steps.
First, we present the system as in [5] and discuss the advantages of priorities
for modeling. In the second step, we augment our model with an error-
recovery scheme and remodel the low-grade link in a full-duplez fashion.
Finally, we show how the required fault-tolerance of the system [11] can be
reflected in our design.

comm_in cl 2 comm_out
[ sc) (LeL) [ PC)
stat_out s2 sl stat_in
mcs Clock mct

FIGURE 3. The LGL model

Tables 2 and 3 contain the model of the slow-scan system as it is accepted
by the NCSU Concurrency Workbench where the symbol * introduces com-
ments. The front end of the workbench for the process algebra with pri-
orities was generated by the process algebra compiler PAC [9] and uses
the following syntactical notations for expressions: bi C P for the process

algebra term C' wf P, and ’a:k for the action @:k.

Figure 3 shows the channels between the three parallel components of
the slow-scan system; it also includes an additional clock. Since the correct
behavior of our system depends on time constraints, which cannot be mod-
eled in our process algebra directly (cf. [15]), we use the clock in our model
to signal the progression of time to the SPC and TPC via the channels mcs
and mct, respectively.

The low-grade link is modeled by two parallel unidirectional links. Since
we are concerned with the design of a system we choose a poor capacity
(or bandwidth) link, capacity one for each direction, and we abstract from
message headers and contents. Moreover, the SPC and TPC should be able
to deliver a message to and get a message from the medium at any time.
If no capacity in a link is left, a new message overwrites a message which
is already in the medium, and an overfull error occurs. Therefore, a link
behaves for each direction as an input-enabled one-place buffer. Addition-
ally, it offers the action ’outu to its environment if the buffer is empty.
With respect to its reliability, we assume that a link can fail because of
a broken wire (action *fail wire) or if its buffering capacity is exceeded
(action *fail_overfull). If an error has occurred, the medium enters the
error state CommF in which it only accepts messages but never delivers
any messages.



118 R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

TABLE 2. The slow-scan model (Part 1)

level 0: fail_overfull, det, mcs, mct

level 1: -

level 2: out (c2, s2), fail_wire, comm_in, comm_out, stat_in, stat_out
level 3: in (c1, s1)

level 4: outu (c2u, s2u), tick

* ¥ ¥ ¥ K

* Slow-scan system

bi 8S (SPC | LGL | TPC | Clock)\{c1:3,c2:2,c2u:4,s1:3,s2:2,s2u:4,
mcs:0,mct 0}

* SSI-side protocol converter (SPC)

bi SPC SPCO

bi SPCO comm_in:2.’stat_out:2.SPCO + ’c1:3.SPCO + s2:2.SPCO + s2u:4.SPCO +
mcs:0.’¢c1:3.5PC1

bi SPC1 comm_in:2.’stat_out:2.SPC1 + ’c1:3.SPC1 + s2:2.SPCO + s2u:4.SPC1 +
mcs:0.%¢c1:3.5PC2

bi SPC2 comm_in:2.’stat_out:2.SPC2 + ’c1:3.SPC2 + s2:2.SPCO + s2u:4.SPC2 +
mcs:0.#’det :0.SPCF

bi SPCF comm_in:2.SPCF + s2:2.8SPCF + s2u:4.SPCF + mcs:0.SPCF

The states of the SPC are parameterized by a time mark. In each state
the SPC is able to accept a message from the SSI (action comm_in) and,
subsequently, of responding with the appropriate status information of the
requested TFM (action ’stat_out). At least once every clock cycle (action
'mcs) the SPC sends a message over the LGL to the TPC (action ’c1)
and increases its internal time-counter by changing its state from SPCO to
SPCI1 or from SPC1 to SPC2. If the SPC receives a message (action s2)
from the TPC within two time units, it resets its internal time-counter to
0 by changing its state to SPC0. Otherwise, the SPC times out (action
*det) and enters the failure state SPCF. In this state the SPC never sends
messages to the SSI or TPC again, but it remains input-enabled.

Up to now, we have not discussed how priorities can be used in modeling
the system. However, one has probably already noticed that various parts
of the model without priorities would be counterintuitive. For example, if a
link has no capacity for an additional message, it should favor outputting
a message over accepting a new one, as the latter immediately leads to the
failure of the link. Similarly, a link should favor accepting a new message in-
stead of signaling that the buffer is empty. If the clock gives a new time pulse
by performing the action ’tick, it should immediately inform the SPC and
TPC by performing the (interrupt) actions *mes and ’met. In other words,
no action should interfere between the actions ’tick and ’mcs and the
actions ’mcs and ’mct. Moreover, the actions *det and ’fail_overfull



Priorities for Modeling and Verifying Distributed Systems 119

TABLE 3. The slow-scan model (Part 2)

* Track-side protocol converter (TPC)

bi TPC TPCO

bi TPCO ’comm_out:2.stat_in:2.TPCO + ’s1:3.TPCO + c2:2.TPCO + c2u:4.TPCO +
mct:0.’s1:3.TPC1

bi TPC1 ’comm_out:2.stat_in:2.TPC1 + ’s1:3.TPC1 + c2:2.TPCO + c2u:4.TPC1 +
mct:0.’s1:3.TPC2

bi TPC2 ’comm_out:2.stat_in:2.TPC2 + ’s1:3.TPC2 + c2:2.TPCO + c2u:4.TPC2 +

mct:0.#’det:0.TPCF
bi TPCF stat_in:2.TPCF + c2:2.TPCF + c2u:4.TPCF + mct:0.TPCF

* Low grade link (LGL)

bi LGL Comm[c1:3/in:3,c2:2/0ut:2,c2u:4/outu:4]
Comm[s1:3/in:3,s82:2/0ut:2,s2u:4/outu:4]

bi Comm CommO

bi CommO in:3.Comml + ’outu:4.CommO + ’fail_wire:2.CommF

bi Comml in:3.#’fail_overfull:0.CommF + ’out:2.CommO + ’fail_wire:2.CommF
bi CommF in:3.CommF + ’outu:4.CommF

* Clock

bi Clock ’tick:4.’mcs:0.’mct:0.Clock

are signaling failures which have already occurred, i.e. they should not be
delayed. Finally, the failing of the LGL is always possible, i.e. no action of
the LGL should be able to preempt the action ’fail wire.

Based on these observations, we give the actions >fail_overfull and
’det — which can be viewed as atomic propositions — overall preemptive
power in our model, i.e. they are translated to #’fail overfull:0 and
to #’det:0, respectively. The actions *mcs and ’mct are also assigned the
highest priority. Thus, they cannot be prevented by any action in the sys-
tem, and the atomicity of the above mentioned action sequences is guar-
anteed. Moreover, in the LGL, ’out should have a higher priority than in,
and in a higher one than ’outu. The action ’*tick is assigned to the lowest
priority level, reflecting our design decision to adopt the mazimal progress
assumplion of real-time process algebra [15]. This assumption states that
time may only proceed if the system cannot engage in a communication.
Finally, *fail wire is assigned the highest priority-level with respect to
the actions of the LGL. These observations lead to the priority scheme of
actions for the slow-scan model which is summarized in the beginning of

Table 2.



120 R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

3.3  The Recovery Model

The slow-scan model represents a substantial abstraction from reality since
it is not capable of recovering from a failure. Therefore, we augment the
slow-scan model by an error-recovery scheme. Moreover, we change the
design of the medium to a more realistic full-duplez version.

TABLE 4. The recovery model (Part 1)

* Low grade link (LGL)

bi LGL CommOO[c1:3/in:3,s1:3/in’:3,c2:2/0ut:2,s2:2/0ut’:2,
c2u:4/outu:4,s2u:4/outu’:4,0k:1/online:1]

bi CommOO in:3.Comm10 + ’outu:4.CommOO0 + in’:3.CommOl1 + ’outu’:4.CommO0 +
’fail_wire:2.CommF + ’online:1.CommOO

bi Comm10 in:3.#’fail_overfull:0.CommF + ’out:2.Comm0O0 + in’:3.Commll +
’outu’:4.Comml10 + ’fail_wire:2.CommF + ’online:1.Comml0O

bi CommO1 in:3.Commil + ’outu:4.CommO1 + in’:3.#’fail_overfull:0.CommF +
’out’:2.Comm00 + ’fail_wire:2.CommF + ’online:1.CommO1

bi Commil in:3.#’fail_overfull:0.CommF + ’out:2.CommO1 +
in’:3.#’fail_overfull:0.CommF + ’out’:2.Comml0 +
’fail_wire:2.CommF + ’online:1.Commil

bi CommF in:3.CommF + ’outu:4.CommF + in’:3.CommF + ’outu’:4.CommF +
’repaired:2.CommO0

Full-duplex media have the property that if one direction fails then the
other should also be considered as unreliable. In the remainder of this
section, the action names of both directions of the link will only differ by
a trailing prime. As long as the full-duplex medium which is modeled in
Table 4 provides service, i.e. it is in one of the states Comm00, Comm10,
Comm01, or Commll, an ’online (’ok) is signaled to the environment.
In contrast to the slow-scan model, a broken medium can be repaired in
the recovery model. This is modeled by the action ’repaired which is
enabled in the failure state CommF and allows the LGL to reset to its
initial state CommO0. The recovery of the system as modeled in Table 5
works as follows. If the SPC (TPC) is in its failure state SPCF (TPCF)
and detects that the medium has been repaired by receiving the action ok
(online), it sends one interrupt (action ’reset) to the clock and another
(action ’init) to the TPC (SPC). The invoked interrupt handler of the
clock resets the clock. The handler of the TPC (SPC) agrees to that request
by sending an acknowledgment (action ’ack_init) back to the SPC (TPC),
signaling its reinitialization (action ’recovered), and resetting itself to its
initial state. Since we are dealing with abstract models, we leave it open to
an implementation how to send interrupt signals between SPC, TPC, and
the clock; e.g. one could use the already repaired line.



Priorities for Modeling and Verifying Distributed Systems 121

TABLE 5. The recovery model (Part 2)

level 0: fail_overfull, det, recovered, mcs, mct

level 1: online (ok), init, ack_init, reset

level 2: out (c2, s2), fail_wire, repaired,
comm_in, comm_out, stat_in, stat_out

level 3: in (c1, s1)

level 4: outu (c2u, s2u), tick

* * K * * K

* Slow-scan system

bi 8S (SPC | LGL | TPC | Clock)\{c1:3,c2:2,c2u:4,s1:3,s2:2,s2u:4,mcs:0,
mct:0,0k:1,init:1,ack_init:1,reset:1}

* SSI-side protocol converter (SPC)
bi SPC SPCO [> (init:1.’ack_init:1.#’recovered:0.SPC + ack_init:1.SPC)

bi SPCF comm_in:2.SPCF + s2:2.SPCF + s2u:4.SPCF + mcs:0.SPCF +
ok:1.’reset:1.’init:1.nil

* Track-side protocol converter (TPC)
bi TPC TPCO [> (init:1.’ack_init:1.#’recovered:0.TPC + ack_init:1.TPC)

bi TPCF stat_in:2.TPCF + ¢c2:2.TPCF + c2u:4.TPCF + mct:0.TPCF +
ok:1.’reset:1.’init:1.nil

* Clock

bi Clock ClockO [> reset:1.Clock
bi ClockO ’tick:4.’mcs:0.’mct:0.ClockO

If a link has been repaired, the system should reset itself immediately.
Therefore, all actions involving the recovery scheme are interrupt actions.
However, they should not be able to interfere with the atomicity of the
clock signals (actions ’mes and ’mct). Therefore, the actions ok, online,
init and ack_init are assigned to priority level one. The action *repaired
should never be preempted by any communication in which the buffer is
involved, so it gets the priority value two. Finally, the action ’recovered
is handled as the other ‘atomic propositions’ *det and *fail overfull.

3.4 The Fault-tolerant Model

We now turn our attention to modeling fault-tolerance which is an essential
requirement of the SSI [11]. We have already modeled an error-recovery
scheme for the medium, which ensures fault-tolerance on a software-level. In
practice, the hardware of the system is also replicated in order to guarantee



122 R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

comm_out

LGL

Clock

FIGURE 4. The fault-tolerant model

TABLE 6. The fault-tolerant model (Part 1)

level 0: fail_overfull, det, recovered, mcs, mct

level 1: online (ok, ok’), init, ack_init, switch, ack_switch, reset

level 2: out (c2, s2), out’ (c2’, s2’), fail_wire, repaired,
comm_in, comm_out, stat_in, stat_out

level 3: in (c1, s1), in’ (c1’, s1?)

level 4: outu (c2u, s2u), outu’ (c2u’, s2u’), tick

* Slow-scan system

bi 8S (SPC | LGL | TPC | Clock)\{c1:3,c2:2,c2u:4,s1:3,s2:2,s2u:4,
cl’:3,c2’:2,c2u’:4,s17:3,827:2,
s2u’:4,mcs:0,mct:0,0k:1,0k’:1,
init:1,ack_init:1,reset:1,
switch:1,ack_switch:1}

better safety-critical behavior [11]. Therefore, we explicitly duplicate the
data path in our design. The new situation is depicted in Figure 4, where
the LGL consists of the usual link and a spare link whose corresponding
actions are annotated by a prime. Our fault-tolerant model, where the
‘prime’ states of the SPC and TPC indicate that the system works on the
second line, behaves as follows. If a failure of the currently used line is
detected by the SPC (TPC), i.e. it is in its failure state, and the other line
is ‘up’, then the SPC (TPC) signals its wish to switch the line to the TPC
(SPC) by performing the action ’switch. The interrupt handlers react on
that request (action ’ack_switch) in the same fashion as in the recovery
model. Tables 6 and 7 summarize the necessary changes to our model.

Ideally, we assume the switch to be atomic in the design of the slow-
scan system, i.e. SPC and TPC switch to the new link at the same time.
Using priorities, this can be modeled by giving the actions switch and
ack_switch the same priority as the interrupt actions init, ack_init, and
ok.



Priorities for Modeling and Verifying Distributed Systems 123

TABLE 7. The fault-tolerant model (Part 2)

* §8I-side protocol converter (SPC) ... (changes to TPC analogue)

bi SPC SPCO [> (init:1.’ack_init:1.#’recovered:0.SPC +
ack_init:1.8PC +
switch:1.’ack_switch:1.#’recovered:0.8PC’ +
ack_switch:1.SPC?)

bi SPCF comm_in:2.SPCF + s2:2.SPCF + s2u:4.SPCF + mcs:0.SPCF +
ok:1.’reset:0.’init:1.nil + ok’:1.’reset:0.’switch:1.nil

bi SPC? SPCO’ [> (init:1.’ack_init:1.#’recovered:0.SPC’ +
ack_init:1.8PC’ +
switch:1.’ack_switch:1.#’recovered:0.SPC +
ack_switch:1.SPC)

bi SPCO’ comm_in:2.’stat_out:2.SPCO’ + ’c1’:3.8PCO’ + s27:2.SPCO’ +
s2u’:4.8PCO’ + mcs:0.’¢c1’:3.SPC1’

bi SPCF’ comm_in:2.SPCF’ + s2’:2.8PCF’ + s2u’:4.SPCF’ + mcs:0.SPCF’ +
ok’:1.’reset:0.’init:1.nil + ok:1.’reset:0.’switch:1.nil

* Low grade link (LGL)

bi LGL CommOO[c1:3/in:3,s1:3/in’:3,c2:2/0out:2,82:2/0ut’:2,
c2u:4/outu:4,s2u:4/outu’:4,0k:1/online:1]
CommOO[c1’:3/in:3,s817:3/in’:3,c2’:2/0ut:2,s82’:2/out’:2,
c2u’:4/outu:4,s2u’:4/outu’:4,0k’:1/online:1]

3.5 State Space of the Models
We have run the NCSU Concurrency Workbench on a SUN SPARC 20

workstation to construct and minimize the state spaces of our models.
We refer to the slow-scan model as bruns.pccs, to the recovery model as
recovery.pccs, and to the fault-tolerant model as ftolerant.pccs. More-
over, we refer to the slow-scan model where the buffer has been replaced by
the full-duplex version as basic.pccs. The CCS models corresponding to
bruns.pccs and basic.pccs, which are obtained by leaving out all priority
values, are called bruns.ccs and basic.ccs, respectively. Table 8 provides
for each model the number of states and transitions of the corresponding
transition system and the time (in seconds) needed for constructing it.
The table also contains this information for the minimized (with respect
to prioritized strong bisimulation) models (cf. “reduced state space”).
Table 8 shows that the number of states decreases by over 70% when
using the calculus with priorities. Even more impressive is the reduction of
transitions by approximately 85%. This results from the fact that we are
not able to model the atomicity of action sequences and interrupts in plain



124 R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

TABLE 8. Transition system sizes

Model Global State Space Reduced State Space
Name states | trans. | time || states | trans. | time
bruns.ccs 3527 [ 17122 8 3154 | 14894 38
bruns.pccs 899 2567 6 766 2094 11
basic.ccs 1114 4721 2 1021 4217 9
basic.pccs 312 801 2 287 713 3

[ recovery.pces ]| 1100 | 2801 [ 20 [[ 789 | 2233 | 25 ||

[ ftolerant.pces ]| 11905 | 33760 [ 452 [ 7485 | 26164 | 552 ||

CCS. That observation demonstrates the utility of priorities for the verifica-
tion of distributed systems. The large reduction of the fault-tolerant model
with respect to prioritized strong bisimulation is due to the symmetry of
its design. The minimization of bruns.ccs and basic.ccs with respect to
observational equivalence reduces the model to 2057 states / 8280 transi-
tions and 698 states / 2293 transitions, respectively. We are currently im-
plementing an algorithm to compute prioritized observational equivalence.
The adaption of the corresponding observational equivalence [14] is not
suitable for automated verification tools since the weak transition relation
is parameterized with (arbitrary) sets of actions. However, we have devel-
oped a characterization of the prioritized observational equivalence which
uses an alternative weak transition relation that is efficiently computable.

4 Verifying the Railway System

In this section, we specify and verify requirements of the slow-scan, the
recovery, and the fault-tolerant model. We use the well-known modal u-
calculus [12] as our specification language and determine the validity of
our properties by model checking [3]. For the verification, we use the NCSU
Concurrency Workbench on a SUN SPARC 20 workstation with 512 MByte
of main memory.

4.1 Requirements of the Slow-Scan System

Since the slow-scan system 1s embedded in a safety-critical system, we want
to verify that our designs satisfy the following required properties.

After a low-grade link fails; either the slow-scan system will eventually
detect the error or the link is repaired. Moreover, this property holds after
every reinitialization of the system.

The slow-scan system is always capable of continuing to tick. If this
property holds, then the system is deadlock-free, too.

A failure of the slow-scan system 1s possible. This property should also



Priorities for Modeling and Verifying Distributed Systems 125

be valid after every reinitialization of the system.

A failure i1s detected only if a failure has actually occurred. Also this
property should hold after every reinitialization of the system.

After a low-grade link fails, the slow-scan system will eventually stop
responding to the SSI and TFMs if the low-grade link does not recover
from the error.

If a failure is detected and the broken line is repaired, then the system
will be reinitialized.

All properties — except for the last one — are adapted from [5]. However,
since the recovery and the fault-tolerant model are able to recover from an
error, the properties of [5] should also hold after every reinitialization of
these models.

4.2 Specifying our Requirements in the p-Calculus

For specifying our requirements we use the modal p-calculus. Its syntax is
defined by the following BNF, which uses a set of variables V with X € V.

> = | X | 2 | AP | (k)P | puX.D

Further, we define the following dual operators: ## =q¢ —ff, P71V ®2 =4¢
(2P A Dy), [ak]® =g (k) (—D), and v X. P =gr “uX.(-P[-X/X]),
where [-X/X] denotes the substitution of all free occurrences of X by —=X.
Finally, we introduce the following abbreviations where I C A: (L}® =g4¢
V{{ak)® |ake L}, (=)@ =qs (A)D, (—L)® =gr (A\ L), [L]°P =4
vX.®A[L]X, and (L)*® =4y puX. OV (L)X .

We use the well-known standard semantics of the modal p-calculus as e.g.
presented in [12]. The model checker integrated in the NCSU Concurrency
Workbench is based on [3]. More precisely, it is a local model checker for a
fragment of the modal p-calculus. The formulae we intend to verify can be
automatically rewritten into semantical equivalent ones which satisfy the
syntactic restriction required in [3]. The time and space complexity of the
model checker is linear in the size of the formula, in its alternation depth,
and in the size of the transition system.

We now formally specify the requirements of the slow-scan system as
presented above in the modal p-calculus. We take particular care in im-
plementing eventuality since we want to consider only execution paths in
which the clock continues to tick. This fairness property is not satisfied by
the models themselves since they contain livelocks. As discussed in [5], we
are interested in the following notion of fair eventuality:

even(®) =q¢ pX. (VY. @V ([tick] X A [—tick]Y)) .

Moreover, we need a meta-formula which expresses that the argument for-
mula holds again if the low-grade system has recovered:

again(®) =4¢ []*[recovered|d .



126 R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

Now, we can formalize the desired properties of the slow-scan model and
the fault-tolerant model, where Fail =4 {fail wire, fail overfull}.

After the low-grade link fails (for the first time), the slow-scan system
will eventually detect the error or the link is repaired:

failures-responded =4t (1)
[~Fail]*[Fail]even(({det)ttV (repaired)tt) .

The formula failures-responded holds after every reinitialization of the sys-
tem again:

failures-responded-again =g¢ again(failures-responded) . (2)

Since the formula failures-responded is trivially true if the underlying model
cannot perform the action ’tick or if it cannot fail, we are also interested
in the following two properties. The slow-scan model i1s always capable of
continuing to tick:

can-tick =qp [—]°(=)* (tick)tt . (3)
A failure of the slow-scan system is possible:
failures-possible =4¢ (—recovered)*(Fail)t{ . (4)

The formula failures-possible holds after every reinitialization of the system
again:
failures-possible-again =g again(failures-possible) . (5)

A failure is detected only if a failure has actually occurred since the last
reinitialization of the system:

no-false-alarms =4¢ (6)

[-Fail,recovered|™([det]ffV (fail_overfull){l) .

The body of the formula reflects that fail overfull signals that a failure
has already occurred, i.e. it may be enabled at the same time as det. More-
over, the formula no-false-alarms should hold after every reinitialization of
the system:

no-false-alarms-again =q¢ again(no-false-alarms) . (7)

The auxiliary property “the system never responds”, which is used below,
can be encoded as follows:

silent =4¢ [—]*°[comm_out, stat _out|[f .

After a low-grade link fails, the slow-scan system will eventually be silent
if the low-grade link does not recover from the error:

eventually-silent =g¢ [—]°°[det]even(silent V (recovered)tt). (8)



Priorities for Modeling and Verifying Distributed Systems 127

If a failure 1s detected and the broken line is repaired, then the system will
be reinitialized:

react-on-repair =g¢ [—]°°[det]([—recovered|*[repaired]
even({recovered)it)) .

9)

4.3 Verification Results

We applied the model checker for all models and formulae twice. The first
time, we let the model checker construct the state space on the fly as is
usual for local model checking. The second time, before invoking the model
checker, we minimized the models with respect to prioritized strong bisim-
ulation. The verification results are given in Tables 9/10 and 11/12, respec-
tively. The tables show which properties hold for which formulae (columns
“ok”) and give the CPU time (in seconds) used by the NCSU Concurrency
Workbench for checking each formula. The symbol “?” indicates that a
computation ran out of memory. The speed-up of the model checker for
minimized models is partly due to the fact that the transition systems for
our models were constructed in a preprocessing step (minimization) and,
thus, are not constructed on the fly. Additionally, the times for the veri-
fication results with respect to our minimized models do not include the
times needed for the minimizations.

TABLE 9. Verification results wrt. the non-minimized models

Non-minimized Formula 1 || Formula 3 || Formula 4 || Formula 6 || Formula 8
models ok | time || ok | time || ok | time || ok | time || ok | time
bruns.ccs 7| 1936 it | 1811 it 1 ik 6 ? ?
bruns.pccs it | 1483 11 261 11 1 11 52 i | 1164
basic.ccs 7| 1460 it 524 it 1 ik 19 it | 7541
basic.pccs 11 396 11 86 11 1 11 43 11 331

[ recovery.pces |l #t | 808 [t [ 495 e | 1 [ e[ 68 [ #] 1685 ]

” ftolerant.pccs ” tt | 1306 ” ? | ? ” tt | 1 ” tt | 135 ” ? | ? ”

TABLE 10. Verification results wrt. the non-minimized models (continued)

Non-minimized Formula 2 || Formula 5 || Formula 7 || Formula 9
models ok | time || ok | time || ok | time || ok | time
[ recovery.pccs [[ et [ 1942 || ¢ [ 429 [[ et | 492 [ e« [ 2581 |
” ftolerant.pccs ” ? | ? ” ? | ? ” ? | ? ” ? | ? ”

In contrast to [5], we could verify most properties automatically and
without using any abstractions by hand. However, the formulae eventually-
silent, react-on-repair, and failures-responded-again are complicated and



128 R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

TABLE 11. Verification results wrt. the minimized models

Minimized Formula 1 || Formula 3 || Formula 4 || Formula 6 || Formula 8
models ok | time || ok | time || ok | time || ok | time || ok | time
bruns.ccs | 1570 it 366 it 1 ik 18 ? ?
bruns.pccs tt 604 tt 920 tt 1 tt 17 tt 512
basic.ccs ik 225 it 106 it 1 ik 7 it 763
basic.pccs 11 213 11 32 11 1 11 16 11 142

” recovery.pccs ” 11 | 90 ” 11 | 86 ” 11 | 1 ” 11 | 16 ” 11 | 423 ”

[ ftolerant.pces [ #t [ 122 [t [ 864 | 1 [ e 16 2] 7 |

TABLE 12. Verification results wrt. the minimized models (continued)

Minimized Formula 2 || Formula 5 || Formula 7 || Formula 9
models ok | time || ok | time || ok | time || ok | time
” recovery.pccs ” 11 | 481 ” 11 | 96 ” 11 | 109 ” 11 | 768 ”
” ftolerant.pccs ” ? | ? ” tt | 911 ” tt | 1159 ” ? | ? ”

large in size. Therefore, we could not check them automatically for the
model ftolerant.pccs, which has 7485 states and 26164 transitions after
minimization. Although the size of bruns. ccs is relatively small, the model
checker ran out of memory for the formula eventually-silent, which has
alternation depth two.

Moreover, our timing results show that using a local model checker often
gains no advantage. This is because most of the formulae are valid safety
properties, and the local model checker has to investigate all states of the
models anyway. However, our model checker has quickly detected invalid
formulae.

In the prioritized models all properties that could be verified automati-
cally hold as expected. The formula no-false-alarms does not hold for the
models in plain CCS. This is due to the fact that the atomicity of actions
cannot be expressed without priorities. Indeed, there exists an interleaving
in the CCS models where one observes a ’det before a failure has occurred.

Surprisingly, we found the formula failures-responded invalid in the model
bruns.ccs whereas in [5] it is reported to hold. The reason for this is that
we left out the actions ¢1’ (s1?) which occur directly before a *det in
Bruns’ model. Although that reflects our intuition that a ’det should be
signaled as soon as an error is detected, Bruns’ modeling does not allow
both SPC and TPC to detect the overfull-failure of the medium before the
action ’fail _overfull has occurred.



Priorities for Modeling and Verifying Distributed Systems 129
5 Conclusions and Future Work

We have demonstrated the importance of priorities for modeling and veri-
fying distributed systems by means of a practically relevant case study of
the slow-scan part of a railway signaling system. Priorities allow us to fa-
vor one communication over another and to make action sequences atomic.
While the former helps to model systems more realistically, the latter dras-
tically cuts the number of states and transitions. Our models explicitly re-
flect safety-critical parts of the slow-scan system, namely an error-recovery
scheme and a fault-tolerant medium, which are required in the design doc-
ument [11]. We have used the NCSU Concurrency Workbench for checking
properties of our design. We are currently implementing an algorithm for
computing prioritized observational equivalence that will enable us to fur-
ther reduce the size of our models.

Acknowledgments: We want to thank Girish Bhat for the implementation of
his model checker in the NCSU Concurrency Workbench.

6 REFERENCES

[1] J. Baeten, editor. Applications of Process Algebra, volume 17 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University

Press, Cambridge, England, 1990.

[2] J. Baeten, J. Bergstra, and J. Klop. Syntax and defining equations for
an interrupt mechanism in process algebra. Fundamenta Informaticae

IX, pages 127-168, 1986.
[3] G. Bhat and R. Cleaveland. Efficient local model-checking for frag-

ments of the modal p-calculus. To appear in Proceedings of Second

International Workshop on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 96), 1996.

[4] T. Bolognesi and E. Brinksma. Introduction to the ISO specification
language LOTOS. Computer Networks and ISDN Systems, 14:25-59,
1987.

[6] G. Bruns. A case study in safety-critical design. In G. Bochmann and
D. Probst, editors, Computer Aided Verification (CAV °92), volume
663 of Lecture Notes in Computer Science, pages 220-233, Montréal,
June/July 1992. Springer-Verlag.

[6] J. Camilleri and G. Winskel. CCS with priority choice. In Sizth
Annual Symposium on Logic in Computer Science (LICS ’91), pages
246-255, Amsterdam, July 1991. IEEE Computer Society Press.



130

[7]

[10]

[15]

R. Cleaveland, G. Luttgen, V. Natarajan, S. Sims

R. Cleaveland. Analyzing concurrent systems using the Concurrency
Workbench. In P. Lauer, editor, Functional Programming, Concur-
rency, Simulation and Automated Reasoning, volume 693 of Lecture
Notes in Computer Science, pages 129-144. Springer-Verlag, 1993.

R. Cleaveland and M. Hennessy. Priorities in process algebra. Infor-

mation and Computation, 87(1/2):58-77, July/August 1990.

R. Cleaveland, E. Madelaine, and S. Sims. Generating front-ends for
verification tools. In E. Brinksma, W. R. Cleaveland, K. G. Larsen,
T. Margaria, and B. Steffen, editors, First International Workshop on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’95), volume 1019 of Lecture Notes in Computer Science,
pages 153-173, Aarhus, Denmark, May 1995. Springer-Verlag.

R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Work-
bench: A semantics-based tool for the verification of finite-state sys-
tems. ACM Transactions on Programming Languages and Systems,

15(1):36-72, January 1993.

A. Cribbens. Solid-state interlocking (SSI): an integrated electronic
signalling system for mainline railways. [IEF Proceedings, 134, Pt.
B(3), May 1987.

D. Kozen. Results on the propositional p-calculus. Theoretical Com-

puter Science, 27:333-354, 1983.

R. Milner. Communication and Concurrency. Prentice-Hall, London,

1989.

V. Natarajan, L. Christoff, I. Christoff, and R. Cleaveland. Priori-
ties and abstraction in process algebra. In P. Thiagarajan, editor,
Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 880 of Lecture Notes in Computer Science, pages 217—
230, Madras, India, Dec. 1994. Springer-Verlag.

W.Yi. CCS + time = an interleaving model for real time systems. In
J. L. Albert, B. Monien, and M. R. Artalejo, editors, Automata, Lan-
guages and Programming (ICALP °91), volume 510 of Lecture Notes in
Computer Science, pages 217-228, Madrid, July 1991. Springer-Verlag.



