Bounded Reachability Checking of
Asynchronous Systems Using Decision Diagrams™*

Andy Jinging Yu', Gianfranco Ciardo', and Gerald Liittgen?

! Department of Computer Science and Engineering, University of California,
Riverside, CA 92521, USA {jqyu, ciardo}@cs.ucr.edu
2 Department of Computer Science, University of York, York YO10 5DD, U.K.
luettgen@cs.york.ac.uk

Abstract. Bounded reachability or model checking is widely believed to
work poorly when using decision diagrams instead of SAT procedures.
Recent research suggests this to be untrue with regards to synchronous
systems, particularly digital circuits. This paper shows that the belief
is also a myth for asynchronous systems, such as models specified by
Petri nets. We propose Bounded Saturation, a new algorithm to compute
bounded state spaces using Multi-way Decision Diagrams (MDDs). This
is based on the established Saturation algorithm which benefits from
a non-standard search strategy that is very different from breadth-first
search. To bound Saturation, we employ Edge-Valued MDDs and rework
its search strategy. Experimental results show that our algorithm often,
but not always, compares favorably against two SAT-based approaches
advocated in the literature for deadlock checking in Petri nets.

1 Introduction

Bounded model checking is a well-established technique to reason about reactive
systems [3]. Unlike conventional model checking based on explicit or symbolic
representations of state spaces [13], bounded model checking takes a system,
a bound B, and a safety property ¢, unwinds the system’s transition relation
B times, and derives a propositional formula which is satisfiable if and only if
there exists a path through the system of length at most B that demonstrates
the violation of ¢. Due to the impressive technology advances in SAT solving
(see, e.g., [24]), such satisfiability problems can often be decided efficiently.

BDDs vs. SAT. Bounded model checking is an incomplete verification tech-
nique unless the bound exceeds the state space diameter. However, as many faults
involve relatively short counterexamples in practice, the technique has proved
itself an efficient debugging aid, and bounded model checkers are now used to
verify digital circuits [12], Petri nets [17,25], and software [20,26]. Several studies
have found such tools beneficial in industrial settings, especially when compared
to symbolic model checkers using decision diagrams [14].

* Research supported by the NSF under grants CNS-0501747 and CNS-0501748 and
by the EPSRC under grant GR/S86211/01.

Tt is often believed that SAT methods are key to the performance of bounded
model checkers. Recent research by Cabodi et al. [5], however, counters this sug-
gestion. Their work proposes enhancements to standard techniques based on
Binary Decision Diagrams (BDDs), making BDD-based bounded model check-
ing competitive with SAT-based approaches. These results were obtained in the
context of debugging synchronous systems and digital circuits, for which BDDs
are known to work well. It has remained an open question whether the afore-
mentioned belief is also a myth with regards to asynchronous systems governed
by interleaving semantics, such as distributed algorithms expressed in Petri nets.

This paper. Our aim is to prove that decision diagrams are competitive with
SAT solvers for the bounded model checking of asynchronous systems. To this
end we propose a new approach for bounded reachability checking using decision
diagrams based on Saturation [7], an established symbolic algorithm for gener-
ating the state space of asynchronous systems. By taking into account event
locality and interleaving semantics and by using Multi-way Decision Diagrams
(MDDs) instead of BDDs, Saturation is often orders of magnitude more efficient
than breadth-first search algorithms implemented in popular model checkers [11].

The difficulty in adapting Saturation to bounded reachability checking lies
in its non-standard search strategy that is completely different from breadth-
first search. We then cope by storing not only the reachable states but also the
distance of each state from the initial state(s), using the edge-valued decision
diagrams of [9]. These extend EVBDDs [22] just as MDDs extend BDDs, and
use a more general reduction rule. Each state stored in such a decision diagram
corresponds to a path from the root to the only terminal node, whereas the
distance of a state is the sum of the weights of the edges along that path.

The resulting Bounded Saturation algorithm comes in two variants. The first
one computes all reachable states at distance no more than a user-provided
bound B. The second one finds additional states at distance greater than B but
at most K -B, where K is the number of “components” of the underlying asyn-
chronous system. Just as ordinary breadth-first search, both can find minimal-
length counterexamples. However, the second variant is usually more efficient in
terms of runtime and memory, even if it discovers more states. Such behavior,
while counterintuitive at first, is not uncommon with decision diagrams.

Experiments and results. We evaluate Bounded Saturation against two SAT-
based approaches for bounded reachability checking proposed by Heljanko [17]
and Ogata, Tsuchiya, and Kikuno [25], both aimed at finding deadlocks in asyn-
chronous systems specified by Petri nets. We implemented our algorithm in
SMART [6], and ran it on the suite of examples used in both [17] and [25], first
proposed by Corbett in [15], and on two models from the SMART release. The
static variable ordering used in our algorithm was computed via a heuristic [27].

Our experiments show that Bounded Saturation performs better or at par
with competing SAT-based algorithms, and is less efficient in only few cases.
Thus, it is a myth that decision diagrams are uncompetitive w.r.t. SAT solvers
for bounded model checking; just as the roles of bounded and unbounded model
checking are complementary, so are the use of SAT solving and decision diagrams.

2 Background

We consider a discrete-state model M = (§ , St R), where Sisa (finite) set of
states, S C S are the initial states, and R C S x & is a transition relation. We
assume the global model state to be a tuple (zk, ..., x1) of K local state variables
where, for K >1>1, 1, € § = {0,1,...,n;— 1} with n; > 0, is the the I local
state variable. Thus, S = Sk x - - x & and we write R(i[K], ..., i[1], j[K], ..., j[1]),
or R(i,j), if the model can move from current state i to next state j in one step.

Computation of the reachable state space consists of building the smallest
set of states S C S satisfying S O S and S O Img(S,R), where the image
computation function Img(X,R) = {j: Ji € X, R(i,j)} describes the successors
to the set of states X. In bounded model checking, only part of this state space
is considered, the set of states within some distance bound B from S,

Most symbolic approaches encode z; in b; boolean variables, where b; is either
ng or [logn;] (one-hot or binary encoding), and a set of states using a BDD with
Y ksi>1 bi levels. Ordered multi-way decision diagrams (MDDs) [21], instead
map z; to level [, whose nodes have n; outgoing edges. MDDs can be implemented
directly, as is done in our tool SMART [6], or as an interface to BDDs [16].

Symbolic technique for asynchronous models. A BFS-based approach,
as used for example by NuSMV [11], computes the bounded state space with a
simple image computation iteration. Set X! is initialized to S and, after d it-
erations, set X% contains the states at distance up to d from S™*. With MDDs,
X4 is encoded as a K-level MDD and R as a 2K-level MDD whose current and
next state variables are normally interleaved for efficiency. The transition re-
lation is often conjunctively partitioned into a set of conjuncts or disjunctively
partitioned into a set of disjuncts [4], stored as a set of MDDs with shared nodes,
instead of a single monolithic MDD. Heuristically, such partitions are known to
be effective for synchronous and asynchronous systems, respectively.

Disjunctive partitioning and chaining. Our work focuses on the important
class of systems exhibiting globally-asynchronous locally-synchronous behavior,
and assumes that the high-level model specifies a set of asynchronous events &,
where each event « € £ is further specified as a set of small synchronous compo-
nents. We then write the transition relation as R = /¢ Da, and further con-
junctively partition each disjunct D, into conjuncts representing a synchronous
component of o, finally expressing R as R =/ ce Do = Voce (A, Cayr)-

For example, a guarded command language model consists of a set of com-
mands of the form “guard — assignment, || assignments || ---|| assignment,,”,
with the meaning that, whenever the boolean predicate guard evaluates to true,
the m parallel atomic assignments can be executed concurrently (synchronously).
Commands are asynchronous events and, for each command, the corresponding
parallel assignments are its synchronous components. Similarly, for a Petri net,
the transitions are the asynchronous events, and the firing of a transition syn-
chronously updates all the input and output places connected to it. We use
extended Petri nets as the input formalism in SMART [6].

Petri net model Guarded command language model

#wait)—#(wait)

initial state: p =2 Aw =0A1i = 0;
Do:p>1—{p=p—1Aw=wt+1Ai=i};

Ds:i>1l—{p=p+lAw=wAi=i—1}
Dy:w>1—{p=pAw=0Ai=itw};

. wait in-servi
arrive gate L-Service gorpe

pool e

Fig. 1: A limited-arrival gated-service model with marking-dependent arc cardinalities.

Running example. Fig. 1 shows a Petri net, and its equivalent guarded com-
mand language expression, modeling a gated-service queue with a limited pool
of customers. New arrivals wait at the gate until it is opened, then all the waiting
customers enter the service queue. Customers return to the pool after service.
Each state of the model corresponds to a possible value of the integer variable
vector (p,w,i), where p stands for pool, w for wait, and i for in-service. Assuming
a pool of two customers, the model has an initial state (2,0,0) and six reachable
states: S = {(2,0,0), (1,1,0), (0,2,0), (1,0,1), (0,0,2), (0,1,1)}.

Event locality. In asynchronous models, the execution of each event usually
modifies or depends on just a small subset of all the state variables. In the
running example, for example, event gate, D,, depends only on variable w and
modifies only variables w and i. Given an event «, we define the set of variables
o V(o) ={x;:31,j€ S, Du(i,j) Ai[l] # j[I]} and

o Vp(a)={z: 3,78, VE£Li[k]=1[k] A FeS, Da(i,j)A 2 €S, Da(i',§)}
that can be modified by «, or can disable «, respectively. Letting

Top(a) = max{l : z; € V() UVp(a)}, Bot(a) = min{l : ; € Vi (a)UVp(a)},

we can then partition the events according to the value of Top, into the subsets
& ={a: Top(a) =}, for K > [> 1. In [8] we observed that a chaining [2§]
order where these subsets are applied to the MDD in bottom-up fashion results
in good speedups with respect to a strict BFS symbolic state-space generation.
The bounded version of chaining is shown in Fig. 3 and discussed in Sec. 3.

By exploiting this event locality, we can store D, in an MDD over just the
current and next state variables with index k, for Top(«) > k > Bot(«); variables
outside this range undergo an identity transformation, i.e., remain unchanged.

Saturation-based symbolic fixpoint computation. The Saturation algo-
rithm for computing the reachable state spaces of asynchronous systems was
originally proposed in [7] for models in Kronecker-product form; it has since
been extended to general models [10] and applied to shortest path computations
and CTL model-checking [9]. Saturation has been shown to reduce memory and
runtime requirements by several orders of magnitude with respect to BFS-based
algorithms, when applied to asynchronous systems.

Saturation is unique in that it does not perform fixpoint computations over
a global decision diagram, as standard breadth-first iteration strategies do, but
recursively computes (sub-)fixpoints at each decision diagram node. This exploits
the locality of events inherent in asynchronous systems as well as the semantic

13100001111 130000 1111

1200110011 20011 0011

11101010101 110101 0101

£102322410 10230000410

Fig. 2: Storing total (a) and partial (b) integer functions with EDDs.

concept of interleaving. The formal algorithm of Saturation on our variant of
edge-valued decision diagrams is described in detail in Sec. 3. For details of the
original Saturation algorithm on MDDs we refer the reader to [10].

To employ Saturation for bounded reachability checking we encode not just
the reachable states, but also their distance from S. This can be achieved
using either edge-valued decision diagrams (EDDs, called EVTMDDs in [9]) or
the ADDs of [2]. ADDs are a well-known variant of BDDs that can encode non-
boolean functions by having an arbitrary set of terminal nodes instead of just
the two terminal nodes corresponding to the boolean values true and false. In
our discussion, we focus instead on EDDs since they can be exponentially more
compact than ADDs; see also the results in Sec. 4.

Definition 1 (EDD [9]). An EDD on the domain S = Si X --- x S is a
directed acyclic graph with labeled and weighted edges where:

— Each node p belongs to a level in {K, ..., 1,0}, denoted p.lvl.

— Level 0 contains a single terminal node, L.

— A non-terminal node p at level [> 0 has n; > 2 outgoing edges, labeled from
0 to n; — 1. We write p[i] = (v,q) if the i'" edge has weight v € NU {oc} and
points to node q. We also write p[i].val = v and pli].node = q.

— If pli].val = oo, then pli].node =1 ; otherwise, p[i].node is at level p.lvl—1.

— There is a single root node, r*, at level K, with an incoming “dangling” edge
having weight p € Z. We write such edges as (p,r).

— Each non-terminal node has at least one outgoing edge labeled with 0.

— There are no duplicate nodes, i.e., if Vi,0<i <ny,p[i].node = q[i].node and
pli].val = q[i].val, then p = q.

The function f(,,y : S;x---x81 — Z U {oc} encoded by an edge (v,p), with

p.l’l)l =[>0is f<U7p> (il, N ,il) =v+ f(p[iﬂ.val,p[iﬂ.node) (il—la ey il), where we
let f(, 1y = x. Thus, the function encoded by the entire EDD is f, .. m|

As defined, EDDs can canonically encode any function of the form & — ZU{o0},
except the constant oo, for which we use a special EDD with r =1 and p = oc.
Fig. 2 shows two EDDs storing a total and partial function, respectively. Here,
“partial” means that some of its values are co; whenever this is the case, we omit

mdd BoundedBfsChain()
1S «— Sinit;
2 ford=1to B do

3 forl=1to K do

4 foreach oo € &, do

5 S — Union(S, Image(S,Dy))
6 return S;

Fig. 3: Symbolic bounded BFS state-space generation with chaining.

the corresponding value and edge from the graphical representation. We point
out that EDDs allow for efficient implementations of standard operations on the
functions they encode, including computing the EDD representing the pointwise
minimum of two functions, needed in our reachability algorithm [9].

3 Bounded reachability checking using decision diagrams

Given a model M and a property ¢, a generic breadth-first bounded reachability
checking algorithm starts with some initial guess for the bound B, computes the
set of states SP within distance B of the initial states S"**, and, if any state
in SP violates ¢, returns Error. If no such state exists, B is increased and these
steps are repeated except that, if S® does not change between iterations, the
entire state space has been explored, so one can stop and declare ¢ to hold.

MDDs with BFS-style event-locality-based chaining. Before presenting
our main contribution, an algorithm for bounded reachability checking based on
Saturation and EDDs, we first show how the above algorithm can be improved
when dealing with MDD-encoded state spaces of event-based asynchronous sys-
tems, using ideas from event locality and forward chaining. This serves as one
of the reference algorithms in our experimental studies of Sec. 4. The improved
algorithm is displayed in Fig. 3.

Exploiting event locality for an event «, we can ignore MDD levels above
Top(a) and modify in-place MDD nodes at level Top(«). Indeed, the call to
Image in Fig. 3 does not even access nodes below Bot(«), only Union does. This
has been shown to significantly reduce the peak number of MDD nodes [8§].

Chaining [28] compounds the effect of multiple events within a single itera-
tion. For example, if (i) the set of states known at iteration B is X5, (ii) j ¢ AP
can be reached from i € X'Z by firing the sequence of events (a, 3,7), and (iii) we
happen to explore events in that exact order, then j will be included in X5+,
Thus, X? O SP, since some states in SI€I'5\ S® might be present in X'Z. Reduc-
ing the number of iterations does not guarantee greater efficiency, as the MDD
for X7 can be much larger than that for S¥; however, it has been shown exper-
imentally that chaining often reduces both time and memory requirements [28§].

It is well known that the variable order for the MDD representation is essen-
tial. Furthermore, in our setting, the variable order affects also the value of Top
and Bot and the event order. In this paper we employ the heuristics reported in
[27] to automatically generate a good order.

6

Bounded Saturation using EDDs. In several studies, Saturation has been
shown superior to BFS-style iterations when symbolically computing least fix-
points for asynchronous models [8,9,10]. The challenge in adapting Saturation
to bounded model checking lies in the need to bound the symbolic traversal in
the nested fixpoint computations. We propose to use EDDs to encode both the
bounded state space and the distance information in the same symbolic encod-
ing. Thus, we bound the symbolic traversal during the EDD symbolic operations
by using the distance information, instead of simply limiting the number of out-
ermost iterations performed in a traditional BFS-style approach with or without
chaining. Instead of EDDs, we could have used ADDs, but this can result in a
performance penalty, as reported in Sec. 4.

Fig. 4 shows two EDD approaches differing in how they bound the sym-
bolic traversal. They are obtained by replacing the Truncate call in procedure
BoundedImage with either TruncateEzxact or TruncateApprox. The former com-
putes the exact bounded state space SZ; the latter computes a superset of SP
that may contain reachable states with distance at most K-B, where K is the
number of state variables, i.e., EDD levels. Recall that the transition relations
are stored using MDDs, with 0 and 1 denoting an MDD’s terminal nodes.

Both approaches start from an EDD where states in S™it have distance 0
and states in S\ §™% have distance oo (line 1 in BoundedSaturation). Then,
procedure BoundedSaturate is called on all EDD nodes, starting from those at
level 1, to compute the bounded state space. Each EDD node p at level [encodes
a set of (sub-)states and distance information consisting of variables at level [
or below. When calling procedure BoundedSaturate on an EDD node p at level
I, a least fixpoint encoding the (sub-)state space and distance with respect to
the set & of events with top level [is computed. During the fixpoint computa-
tion of BoundedSaturate on node p at level I, each event in & is exhaustively
fired to perform bounded forward traversal, until no more new reachable (sub-
)states are found. BoundedImage performs bounded forward traversal by first
computing the forward image, followed by either an exact truncation to prune
all the (sub-)states exceeding bound B (procedure TruncateExact), or a faster
but approximate truncation to prune only (sub-)states for which the edge value in
the current EDD node would exceed B (procedure TruncateApproz). Procedures
BoundedSaturate and BoundedImage are mutually recursive: BoundedImage per-
forms a bounded forward traversal of the reachable state space, while all the
newly created nodes in the new image are saturated by BoundedSaturate (line 7
in procedure BoundedImage). Procedure Minimum computes the pointwise min-
imum of the functions encoded by its two argument EDDs, i.e., computing the
union of the state sets encoded by the arguments. Finally, procedure Normalize
takes a node p and ensures that it has at least one outgoing edge with value 0,
returning the excess in the edge value v.

We now examine the manipulation of the edge values in more detail. When
an event « is fired, the distance of the image states is the distance of the cor-
responding “from” states incremented by 1. BoundedSaturate fires o by calling
BoundedImage (line 4), which returns the root of the image, so that the “dan-

void BoundedSaturation ()

1 7* < root of the EDD encoding f(i) = 0 if i € S, and f(i) = oo otherwise
2 for I =1 to K do foreach node p at level | do BoundedSaturate(p);

node BoundedSaturate(node p)

1 [—plvl;
repeat
choose a € &;,i € 1,7 € S s.t. p[i].val < B and D, [7][j] # 0;
(v,q) < BoundedImage(pl[i], Da[i][7]):
plj] = Minimum(plj], Truncate(v+1,q)); eexact or approximate
until p does not change;
return p;

if f =0 then return (co,L); if f =1 or ¢ =L then return (v,q);
k «— q.lvl; egiven our quasi-reduced form, f.lvl = k as well
s < NewNode(k); ecreate EDD node at level k with edges set to (oo, L)
4 foreach i € Sy, j € Sk s.t. ¢[i].val < B and f[i][j] # O do
(w,0) «— Truncate(BoundedImage(qli], f[i][5])): eexact or approximate
s[j] «— Minimum(s[j], (w,0));
s < BoundedSaturate (s);
(v,8) < Normalize(s);
9 return (y+uv,s);

2
3
4
5
6
7
edge BoundedImage(edge (v,q), mdd f)
1
2
3
5
6
7
8

edge Minimum(edge (v,p), edge (w,q))
if v = co then return (w,q); if w = co then return (v,p);
k — p.lvl; egiven our quasi-reduced form, q.lvl = k as well
if £ = 0 then return (min{v, w}, 1); ethe only node at level k =0 is L
s < NewNode(k); ecreate EDD node at level k with edges set to (co,L)
~v < min{v,w};
foreach i € Sy do

sli] «— Minimum({v—~+pli].val,p[i].node), (w—~y+q[i].val,q[i].node));
return (7,s);

O~NOOCTDh WN =

edge Normalize(node p)
1 v+ min{p[ilval : i € Sp.ivi}
2 foreach i € Sy do pli].val — plil.val — v;
3 return (v,p);

edge TruncateEzact(edge (v,p))
1 if v > bound then return (co,L);
2 foreach i € S,.1.; do p[i]| — TruncateEzact({v+pli].val,pli].node));
3 return {(v,p);

edge TruncateApproz(edge (v,p))

1 if v > bound then return (co,L); else return (v,p);

Fig. 4: Bounded Saturation for state-space exploration using EDDs.

gling” edge value must be incremented by 1 to account for the firing of o (line
5). The first portion of procedure BoundedImage (lines 1-6) performs the sym-
bolic image computation of the same event « fired by BoundedSaturate, and the
distance of the new image is incremented by the distance of the “from” states at

the return statement (line 9). The distance of the image states can be greater
than the distance of their “from” states by more than one, due to saturation of
the image states (line 7). BoundedSaturate uses the test p[i].value < B (line 3),
but BoundedImage uses instead the test ¢[i].val < B, since the increment of the
edge value by 1 is performed in the former, but not in the latter.

Comparing with BFS-style MDD approaches, our new proposed EDD ap-
proaches use Saturation, a more advanced iteration order, but at the cost of a
more expensive symbolic data structure, EDDs (or ADDs). The experimental
results of Sec. 4 show that this tradeoff is effective in both time and memory, as
the new algorithms often outperform the BFS approach in our benchmarks.

Running example of the EDD approach. Fig. 5 shows the execution of
bounded Saturation using TruncateApprox as the truncation procedure, on the
running example of Fig. 1 with bound B = 1. In Fig. 5, snapshot (a) shows
the 2K -level MDDs for the disjunctively partitioned transition relation. D, and
Dy have identity transformations for variables ¢ and g, respectively, thus the
corresponding levels in the decision diagram are skipped to exploit event locality.
Snapshots (b)—(f) show the evolution of the bounded state space encoded by the
EDD, from the initial state to the final bounded state space, listing the key
procedure calls. For readability, edges with value co are omitted. We denote the
nodes of the EDD encoding the state space with capital letters (A to E), two
specific MDD nodes in the transition relation encoding with f and h, and color
a node black once it is saturated. The algorithm starts by saturating nodes A
and B, which are saturated immediately since no events are enabled in them
(Snapshot (c)). Nodes E, D, and C are saturated in that order. The procedure
stops when the root C becomes saturated. Not all procedure calls are shown, e.g.,
BoundedImage(C[1], Ds[1][2]) is called in Snapshot (f) before node C' becomes
saturated, but it is not shown since this call does not generate new nodes (states).

Bounded Saturation using ADDs. A version of Saturation using ADDs can
be obtained by extending the MDD-based Saturation algorithm of [10], so that
it uses an ADD to store the states and their distances, instead of a simple MDD.
The ADD has B + 1 terminal nodes corresponding to the distances of interest,
{0,1,...,B,00}. We omit this algorithm’s details due to space limitations.

4 Experimental Results

We implemented Bounded Saturation in the verification tool SMART', which sup-
ports Petri nets as front-end. This section reports our experimental results
on a suite of asynchronous Petri net benchmarks when checking for deadlock-
freedom as an example of bounded reachability checking. For our symbolic algo-
rithms, this check simply requires us to remove the set of states enabling o, i.e.,
Img (S, D,), for each event «, from the final bounded state space. We compare
the performance of several decision-diagram-based methods and the SAT-based
methods of Heljanko et al. [18,19] and Ogata et al. [25].

We conduct our experiments on a 3Ghz Pentium machine with 1GB RAM.
Benchmarks byzagr4, mmgt, dac, hs(hartstone), sentest, speed, dp, q, elevator,

(a) Transition relation (¢) BoundedSaturate(C): (e) E is saturated.
f<—Dq[2][1]. DI[0] +— Minimum(DI[0], (1,E)).
BoundedImage(C|[2], f): D is saturated.

BJ0] < BoundedImage(BI0], f[0][1]).

X (d) BoundedSaturate(D): (f) BoundedSaturate(C):
(b) EDD encoding h —Dgy[1][0]. C[1] — Minimum(C[1], (1,D)).
for the initial states BoundedImage(D[1], h]): C is saturated.
0 E[1] < BoundedImage(A[0], h[0][1]).
p C
0
w B[(]
0
i A[Q

Fig. 5: Bounded Saturation applied to our running example.

key are taken from Corbett [15], and were translated into safe Petri nets by
Heljanko [17]. Benchmarks fms and kanban are deadlocked versions of non-safe
Petri net manufacturing system models in the SMART' distribution, automatically
translated into safe Petri nets by SMART'. All benchmarks have deadlocks.

BDDs and EVBDDs are natural candidates for our decision-diagram-based
approaches when models have binary variables, as is the case for safe Petri nets.
However, thanks to a heuristic to merge binary variables and exploit Petri net
invariants, we can instead use MDDs and EDDs, and achieve time and mem-
ory savings. In the following, we thus present the multi-valued version of our
algorithms and consider only one EVBDD-based approach (EVBDD-Approx),
applied to safe Petri net models, for comparison. The MDD- and EDD-based ap-
proaches apply the merging heuristic to the safe nets of Corbett’s benchmarks,
while they use the non-safe Petri nets fms and kanban as-is. Variable orders for
our experiments are automatically obtained using the heuristic in [27].

Result table. The first three columns of Table 1 show the model name and
parameters, and the number of places (#P) and events (#E). The other columns
are either “approximate” methods that use a difference definition of distance:
- MDD-Chain (BFS-style event-locality-based chaining technique of Fig. 3)
- SAT-S (circuit SAT-based method with step semantics [19])
- SAT-C (CNF SAT-based method with forward chaining [25])
Or compute a superset of the states S” within distance B:
- EDD-Approx/ EVBDD-Approz (Bounded Saturation: TruncateApproz)

10

Or “exact” methods that limit their search to exactly S&:
- SAT-I (circuit SAT-based method with interleaving semantics [19])
- EDD-Ezact/ADD-Ezact (Bounded Saturation: TruncateEzact).

For each approximate method, we report the smallest bound B at which either
a deadlock is found or the runtime exceeds 10 minutes. For the exact methods,
report the exact distance bound B of the deadlock, except for the cases marked
“?” where none of the exact methods could find a deadlock within 10 minutes.
All the decision-diagram-based methods are implemented in SMART, and their
runtime and memory consumptions are reported in the table, while for the SAT-
based tools, only the runtime is available and reported.

Corbett’s benchmarks and the SAT-I and SAT-C tools are from [18]. In our
experiments, SAT-S performs at least as well as the analogous approach using
process semantics [17] (this is also confirmed by the results in Heljanko and Junt-
tila’s recent tutorial [18]), therefore we report only the former in Table 1. With
Corbett’s benchmarks, we show different bounds for SAT-C than those reported
in [25]; this is due to using a different initial state, the same as the one considered
in [18]. For SAT-I and SAT-C both the encoding time and the bczchaff circuit
SAT-solver runtime are reported in Table 1. For a fair comparison, the runtime
of SAT-C includes the preprocessing steps for scheduling events, encoding the
safe Petri net into a boolean formula and then into a CNF formula, and querying
the zchaff SAT-solver for deadlocks.

Discussion. From Table 1 we can roughly classify benchmarks byzagr, hs, sen-
test, fms, kanban as models with “deep” deadlocks, where the smallest bounds
to detect deadlocks range from 30 to 500, and classify all the other benchmarks
as models with “shallow” deadlocks, where the smallest bounds are less than
30. For benchmarks with “deep” deadlocks, the newly proposed EDD-Approx
method achieves the best performance. For models with “shallow” deadlocks,
it seems almost all the methods perform reasonably well, including our MDD-
Chain method. Comparing EDD-Approx with EVBDD-Approx, we observe that
the former always performs better than the latter. The comparison between
EDD-Exact and ADD-Exact shows that they can complement each other. EDD-
Approx is arguably the method with the best overall performance, except for
the elevator model, where it performs much worse than the MDD-Chain method
and the SAT-S method. This might be because a very large superset of S? is
computed, and the elevator model could be a case where doing so is not beneficial
to the structure of the EDD. We also suspect that our variable order heuristic
does not perform well on this model.

We also observe that the poor performance of SAT-solvers for unsatisfiable
boolean formulas makes it hard to guess the bound B. If the guess is too large, the
boolean formula is huge, if it is too small the formula is unsatisfiable, and both
cases have severe performance penalties. For example, SAT-I finds a deadlock in
benchmark ¢(1) in less than 1 sec when B = 21 but, when B = 20, the formula is
unsatisfiable and the runtime exceeds 600 sec. Decision-diagram-based methods
tend instead to have “well-behaved” runtimes monotonically increasing in B.

11

Approximate distance methods

Exact distance methods

EDD-Approx|EVBDD-Approx| MDD-Chain | SAT-S [SAT-C SAT-I|[EDD-Exact|ADD-Exact

Model|#P|#FE| B|Time[Mem| B[Time] Mem| B|Time[Mem| B[Time|B|Time| B| Time|Time] Mem|Time] Mem
byzagr4 (2a)|579|473|| 49| 2.23| 2.41| 49| 9.14 3.43| 6| 7.3| 9.24| 8| 0.79| 2| 2.07| ?| >600{>600 ~|>600 -
mmgt(3)|122|172|| 9| 0.11| 0.2 8| 1.28 0.34| 5| 0.07| 0.16] 7| 0.09| 3| 1.04| 10| 1.37| 0.32] 0.55| 0.41 0.33
mmgt(4)|158|232|| 17| 1.22| 1.15| 17| 2.15 1.67| 3| 0.11| 0.2| 8| 0.23| 4| 5.52| 20| 1.24| 4.36| 3.12|12.87 3.61
dac(15)[105| 73| 4| 0.01| 0.0 4| 0.03 0.01| 2| 0.01] 0.01| 3| 0.01| 2 0.04| 20| 0.01| 0.03| 0.05| 0.06 0.04
hs(75)[302|152(151| 0.01| 0.03(151| 0.36 0.05| 93| 0.08| 0.53|151| 5.84| 1| 0.07|151| 7.94| 0.15| 0.03| 0.13 0.34
hs(100)|402|202({201| 0.03| 0.04|201| 0.78 0.07|116| 0.14| 0.78/201|14.85| 1| 0.13|201| 20.31| 0.3| 0.04| 0.23 0.58
sentest(75)|252|102(| 45| 0.0 0.02| 45| 0.21 0.03| 32| 0.03| 0.21| 83| 4.27| 3| 0.13| 88| 8.51| 0.06| 0.02| 0.08 0.14
sentest(100)|327|127|| 61| 0.01| 0.03| 61| 0.34 0.05| 73| 0.07| 0.47|108|10.71| 4| 0.29/113| 21.85| 0.12| 0.03| 0.22 0.25
speed(1)| 29| 31|| 4| 0.01] 0.02| 2| 0.24 0.01| 3| 0.01| 0.04] 4| 0.01| 2| 0.03 7| 0.02| 0.02| 0.04| 0.02 0.01
dp(12)| 72| 48| 2| 0.01| 0.02| 2| 0.02 0.03| 1| 0.0] 0.01 1| 0.0| 1| 0.02| 12| 0.06| 0.96| 1.77| 0.33 0.12
¢(1)[163|194|| 9| 0.01| 0.03| 8| 1.45 0.04| 7| 0.06| 0.14] 9| 0.13| 1| 0.07| 21| 0.83| 0.08 0.15| 0.19 0.13
elevator(3)|326|782|| 8|15.07| 9.46| 7| 28.5 9.83| 6| 0.87| 0.58| 8| 0.42| 2| 3.77| 20| 2.74|>600 ~| 7.54 1.83
key(2)| 94| 92| 13| 0.06| 0.14| 18| 0.16 0.19| 14| 0.07| 0.2 36| 2.88| 2| 0.05| 50| >600| 0.15 0.2| 0.22 0.34
key(3)[129|133|| 17| 0.2| 0.48| 17| 0.55 0.71| 14| 0.21] 0.52| 37| 4.39| 2| 0.10| 50 >600| 0.62| 0.67| 2.8 1.64
key(4)|164|174| 17| 0.69| 1.48| 15| 24 1.39| 17| 0.67| 1.54| 38| 4.21| 2| 0.18] 50 >600| 2.02| 2.11| 9.71 3.15
key(5)[199|215|| 17| 2.04| 4.15| 17| 5.97 6.66| 15| 1.73| 3.37| 39| 8.07| 2| 0.25| 50| >600{16.87| 10.52|33.65| 10.03
fms(3)| 22| 16|| 9| 0.06] 0.02| 5| 0.74 0.02| 7| 0.01| 0.08| 10| 0.75| 3| 1.25| 30| >600(0.07| 0.06| 0.05 0.14
fms(7)| 22| 16| 19| 0.07| 0.26| 11| 4.4 0.69| 15| 0.24| 2.58| 18(>600| 6/>600| 70 >600| 0.8 2.2 1.12 4.7
fms(10)| 22| 16| 28] 0.12| 0.99| 6(>600 —| 21} 1.35{14.75| 16|>600| 7|>600{100(>600(5.37| 14.37| 5.24| 24.11
kanban(1)| 17| 16|| 28| 0.04| 0.0 27| 0.33 0.01| 13| 0.0{ 0.01| 19| 0.05| 5| 0.09| 40| 16.56| 0.08 0.0| 0.01 0.01
kanban(3)| 17| 16|l 82| 0.05| 0.06| 79| 5.34 0.34| 19| 0.03| 0.23| 12|>600| 3(>600{120] >600{ 0.1 0.07| 0.27 0.64
kanban(10)| 17| 16|(271| 0.84|10.43] 1|>600 54| 2.83(29.29| 1(>600(1/>600{400| >600| 14.4| 10.46/51.76| 187.9

Table 1: Experimental results (Time in sec, Mem in MB). “>600" indicates that runtime exceeds 600 sec or memory exceeds 1GB.

12

5 Discussion and Related Work

SAT-solving for Petri nets. We first add some details to the two SAT-based
approaches to deadlock checking of safe Petri nets [17,25], against which we
compared ourselves in the previous section regarding run-time efficiency.

Heljanko’s work [17] establishes the so-called process semantics of Petri nets
as the ‘best’ net semantics for translating bounded reachability into a proposi-
tional satisfiability problem, in the sense that the resulting SAT problem can
be solved more efficiently than for step or interleaving semantics. However, this
technique can only be safely applied for safe Petri nets, i.e., finite nets, as other-
wise these semantics may not coincide. In contrast, our technique is applicable
to general Petri nets, even if they exhibit an infinite state space.

Ogata, Tsuchiya, and Kikuno’s approach [25] focuses on the translation of
Petri nets, which must again be safe, into propositional formulas. The ordi-
nary encoding of safe nets into propositional formulas results in large formulas,
thereby degrading the performance of SAT solving and hampering scalability.
The authors suggest a more succinct encoding, albeit at the price of exploring
not only states with a distance up to the considered bound but also some states
with a larger distance. This is similar to our Bounded Saturation, for which it
is also more efficient to collect some additional states. The authors leave a com-
parison to Heljanko’s approach as future work; this comparison is now included
in the previous section, and shows that neither method is superior in all cases.

BDD vs. SAT on synchronous systems. As mentioned before, the com-
mon belief that SAT-based model checking outperforms decision-diagram-based
model checking was proved wrong by Cabodi, Nocco, and Quer [5] for a class of
digital circuits that largely exhibits synchronous behavior. The advocated ap-
proach relies on improving standard BDD-based techniques by mixing forward
and backward traversals, dovetailing approximate and exact methods, adopt-
ing guided and partitioned searches, and using conjunctive decompositions and
generalized cofactor-based BDD simplifications.

Our research complements their findings for asynchronous systems. In a nut-
shell, our improvement over standard techniques lies in the local manipulation of
decision diagrams by exploiting the event locality inherent in asynchronous sys-
tems, interleaving semantics, and disjunctive partitioning. These are the central
ideas behind Saturation [7] on which our Bounded Saturation algorithm is based.
Similar to the algorithm proposed in [5], we also achieve efficiency by including
some states with a distance larger than the given bound B; such states have a
distance of up to K -B in our approach and up to E-B in [5], where K and E
are the number of components and events in the studied Petri net, respectively.

Together, the results of Cabodi et al. and ours, as well as further recent re-
search [29], revise some of the claims made in the literature, especially regarding
the performance of decision-diagram-based (bounded) model checking. It must
be noted here that our results were obtained with static variable orders which
have been computed using a simple heuristic [27]. Thus, no fine-tuning of models
by hand was necessary, which was criticized in [14].

13

Petri net unfoldings. Both SAT-based and decision-diagram-based techniques
are established techniques for addressing the state-space explosion problem. The
Petri net community has developed another successful technique to address this
problem, first suggested in a seminal paper by McMillan [23]. The idea is to
finitely unfold a Petri net until the resulting prefix has exactly the same reachable
markings as the original net. For certain Petri nets such finite prefixes exist and
often prove to be small in practice. In contrast to bounded reachability checking,
analysis techniques based on unfoldings are thus complete, as they capture a net’s
entire behavior. However, unfoldings are often limited to finite-state Petri nets,
although recent work suggests an extension to some infinite-state systems [1].

6 Conclusions and Future Work

This paper explored the utility of decision diagrams for bounded reachability
checking of asynchronous systems. To this end, we reconsidered Saturation, a
state-space generation algorithm which is based on Multi-way Decision Diagrams
(MDDs) and exploits the event locality and interleaving semantics inherent in
asynchronous systems. As the search strategy in Saturation is unlike breadth-first
search, bounding the search required us to employ Edge-Valued MDDs, which
allow for storing states together with their distances from the initial states.

Our extensive experimental analysis of the resulting Bounded Saturation al-
gorithm showed that it often compares favorably to the competing SAT-based
approaches introduced in [17,18,25]. In many cases, Bounded Saturation could
build bounded state spaces and check for deadlocks at least as fast and frequently
faster, while using acceptable amounts of memory. Thus, decision-diagram-based
techniques can well compete with SAT-based techniques for bounded reachability
checking of asynchronous systems, and the widespread perception that decision
diagrams are not suited for bounded model checking [14] is untrue.

Future work should investigate whether an efficient version of Bounded Sat-
uration can be developed using standard decision diagrams, rather than decision
diagrams with explicit distance counters built in. We also intend to investigate
whether the event locality inherent in asynchronous systems can be exploited in
SAT-based reachability checking.

Acknowledgements We would like to thank K. Heljanko, T. Jussila, and
T. Tsuchiya for providing their inputs and software tools used in our study.

References

1. P. Abdulla, S.Iyer, and A.Nylén. SAT-solving the coverability problem for Petri
nets. FMSD, 24(1):25-43, 2004.

2. R.I. Bahar, et. al. Algebraic decision diagrams and their applications. FMSD,
10(2/3):171-206, 1997.

3. A.Biere, A. Cimatti, E. Clarke, Y.Zhu. Symbolic model checking without BDDs.
TACAS, LNCS 1579, pp. 193-207, 1999. Springer.

14

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. J.R. Burch, E. M. Clarke, D.E. Long. Symbolic model checking with partitioned
transition relations. VLSI, pp.49-58, 1991.

G. Cabodi, S.Nocco, S. Quer. Are BDDs still alive within sequential verification?
STTT, 7(2):129-142, 2005.

G. Ciardo, R.L. Jones, A.S. Miner, and R.Siminiceanu. Logical and stochastic
modeling with SMART. Perf. Eval., 63:578-608, 2006.

G. Ciardo, G. Liittgen, R. Siminiceanu. Saturation: an efficient iteration strategy for
symbolic state-space generation. TACAS, LNCS 2031, pp. 328-342, 2001. Springer.
G. Ciardo, R. Marmorstein, R. Siminiceanu. The saturation algorithm for symbolic
state space exploration. STTT, 8(1):4-25, 2006.

G. Ciardo, R. Siminiceanu. Using edge-valued decision diagrams for symbolic gen-
eration of shortest paths. FMCAD, LNCS 2517, pp. 256-273, 2002. Springer.

G. Ciardo, A. Yu. Saturation-based symbolic reachability analysis using conjunctive
and disjunctive partitioning. CHARME, LNCS 3725, pp. 146-161, 2005. Springer
A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri. NuSMV: A new symbolic model
verifier. CAV, LNCS 1633, pp. 495-499, 1999. Springer.

E. Clarke, A. Biere, R. Raimi, Y. Zhu. Bounded model checking using satisfiability
solving. FMSD, 19(1):7-34, 2001.

E. Clarke, O. Grumberg, D. Peled. Model Checking. MIT, 1999.

F. Copty, et. al. Benefits of bounded model checking at an industrial setting. CAV,
LNCS 2102, pp.436-453, 2001. Springer.

J.C. Corbett. Evaluating deadlock detection methods for concurrent software.
IEEE Trans. Softw. Eng., 22(3):161-180, 1996.

The VIS Group. VIS: A system for verification and synthesis. CAV, LNCS 1102,
pp-428-432, 1996. Springer.

K.Heljanko. Bounded reachability checking with process semantics. CONCUR,
LNCS 2154, pp.218-232, 2001. Springer.

K. Heljanko, T. Junttila. Advanced tutorial on bounded model checking,
ACSD/ICATPN, 2006. http://www.tcs.hut.fi/~kepa/bmc-tutorial. html.

K. Heljanko, I. Niemeld. Answer set programming and bounded model checking.
Answer Set Programming, 2001.

F.Ivanéi¢, Z.Yang, M. Ganai, A.Gupta, P. Ashar. F-Soft: Software Verification
Platform. CAV, LNCS 3576, 2005. Springer.

T.Kam, T.Villa, R.Brayton, A.Sangiovanni-Vincentelli. Multi-valued decision
diagrams: Theory and applications. Multiple- Valued Logic, 4(1-2):9-62, 1998.
Y.-T. Lai, S.Sastry. Edge-valued binary decision diagrams for multi-level hierar-
chical verification. DAC, pp.608-613, 1992. IEEE Press.

K.McMillan. A technique of state space search based on unfolding. FMSD, 6(1):45—
65, 1995.

M. Moskewicz, C.Madigan, Y.Zhao, L.Zhang, S.Malik. Chaff: Engineering an
efficient SAT solver. DAC, pp.530-535, 2001. ACM Press.

S. Ogata, T. Tsuchiya, T. Kikuno. SAT-based verification of safe Petri nets. AT'VA,
LNCS 3299, pp. 79-92, 2004. Springer.

I. Rabinovitz, O.Grumberg. Bounded model checking of concurrent programs.
CAV, LNCS 3576, pp. 82-97, 2005. Springer.

R. Siminiceanu, G. Ciardo. New metrics for static variable ordering in decision
diagrams. TACAS, LNCS 3920, pp. 90-104, 2006. Springer.

M. Sol¢é, E. Pastor. Traversal techniques for concurrent systems. FMCAD, LNCS
2517, pp. 220-237, 2002. Springer.

R. Tzoref, M. Matusevich, E.Berger, I.Beer. An optimized symbolic bounded
model checking engine. CHARME, LNCS 2860, pp. 141-149, 2003. Springer.

15

