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1 Introduction

Process algebras [18,19,24] constitute a widely studied framework for model-
ing and verifying concurrent systems [1,10]. Such theories typically consist of
a simple calculus with a well-de�ned operational semantics given in terms of
labeled transition systems; a behavioral equivalence is then used to relate im-
plementations and speci�cations, which are both given as terms in the calculus.
In order to facilitate compositional reasoning, in which systems are veri�ed on
the basis of the behavior of their components, researchers have devoted great
attention to the de�nition of behavioral congruences, which allow the substitu-
tion of \equals for equals" inside larger systems. Traditional process algebras
focus on modeling the potential nondeterminism that concurrent processes
may exhibit; approaches have also been suggested for introducing sensitivity to
other aspects of system behavior, including priority [2,3,6,7,14,16,20,21,29,35].
The concept of user-de�ned priorities enables the modeling of systems in which
some system transitions (e.g. interrupts) may take precedence over others.

In this paper, we develop an algebraic theory of action priority for distributed
systems. As in existing work, our aim is to model systems in which some tran-
sitions have precedence over others. Our point of departure is that the prior-
ity scheme should be localized within individual sites in the system; actions
should only be able to pre-empt actions being performed at the \same loca-
tion." This constraint re
ects an essential intuition about distributed systems,
namely, that the execution of a process on one processor should not a�ect the
behavior of a process on another processor unless the designer explicitly builds
in an interaction (e.g. synchronization) between them. Technically, we begin
with a theory of priority that includes a notion of global precedence [7,29] and
show how its semantics may be altered to localize capabilities for pre-emption
by using locations [26]. We then de�ne a semantics based on the notion of
bisimulation [24,32]: we present a strong congruence, axiomatize it for �nite
processes, and derive an observational congruence along the lines of [24].

Our semantic framework is based on traditional CCS [24]; in particular, we
\reduce" concurrency to nondeterminism using interleaving. Other semantic
theories of concurrency [38] treat parallelism as a primitive notion; such \truly
concurrent" frameworks include causal approaches | e.g. partial order seman-
tics [12,13,37], event structures [30], proved transitions [4], and Mazurkiewicz
traces [23] | and location semantics [5,15,26,27]. As these theories make con-
currency explicit, they may be seen as natural bases for modeling distributed
systems. However, in making concurrency generally observable, the frame-
works become technically more complex than traditional interleaving-based
ones. Our aim in this paper is to examine the extent to which one aspect of
distribution | namely, priority localization | may be formalized within an
interleaved theory of concurrency. Consequently, we start with an interleaving
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Fig. 1. A distributed system

semantics and introduce only as much sensitivity to \distribution" as our local
view of pre-emption requires.

The rest of the paper is organized as follows. In the next section we present
a generic example illustrating the need for local pre-emption in modeling sys-
tems. The three sections that follow present our calculus and derive the tech-
nical results discussed above, while Sect. 6 presents an example showing the
application of our theory. The next section discusses some alternatives to our
formulation. Sect. 8 focuses on related work, and the last section presents our
conclusions and directions for future work. The appendix contains characteri-
zations of our behavioral relations as standard strong bisimulations as well as
logical characterizations of these relations. Due to space constraints we omit
the more straightforward proofs; these may be found in [8].

2 Motivating Example

The example depicted in Fig. 1 motivates the need for considering a local no-
tion of pre-emption when dealing with priorities in distributed systems. The
system consists of two sites (computers), Site1 and Site2, that are connected
via the network Network. Each site runs an application, Application1 and
Application2, respectively, which may send or receive information from the
application at the other site via its (interrupt-)handler, Handler1 or Handler2.
A handler delivers the message to the network or receives a message for its
site from the network and noti�es the application by sending an interrupt.
Now, we have the following intuitive requirements that the semantics of a
design language should satisfy in order to re
ect the behavior of the system
correctly. First, an interrupt of a handler should pre-empt the normal work
of the application at its site, i.e. the application should immediately respond
to an interrupt request. Second, both sites should be able to perform inter-
nal computations that are local to their site without interference from the
other site. In particular, internal activities of Handler1 should not pre-empt
those of Handler2, and vice versa. While traditional process-algebraic treat-
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ments [7,29] of priority satisfy the �rst requirement, they typically violate the
second, since they allow an action of Application1 to pre-empt an action
of Application2 if the former has higher priority, even though they are per-
formed on di�erent sites. In general, one would expect priorities at di�erent
sites to be incomparable. The semantics given in [7,29], however, do not per-
mit this distinction to be made; the net e�ect is that some computations that
one would expect to �nd in a distributed system are improperly suppressed.
We propose to remedy this shortcoming in this paper by introducing a notion
of local pre-emption.

3 Syntax and Semantics of CCSprio

In this section we de�ne the syntax and semantics of our calculus CCSprio,
which is based on CCS [24].

3.1 Syntax of CCSprio

The syntax of CCSprio di�ers from CCS in that the action set exhibits a prior-
ity scheme, i.e. priorities are assigned to actions. It is important to note that
an action may have di�erent priorities in di�erent states of the system under
consideration. This property of priorities is called globally dynamic in [35].
For the sake of simplicity, we restrict ourselves to a two-level priority frame-
work. In Section 7, we discuss how our results presented in this paper can be
adapted to multi-level priority schemes. Intuitively, actions represent potential
synchronizations that a process may be willing to engage in with its environ-
ment. Given a choice between a synchronization on a high priority action and
one on a low priority action, a process should choose the former.

Formally, let � be a countable set of action labels, not including the internal
or silent action � . For every input action a 2 � , there exists a complementary
action a , the corresponding output action. Let �=dffa j a 2 �g , and let A =
�[�[f�g , where � =2 � , denote the set of all unprioritized actions. Intuitively,
an action constitutes a willingness to perform a synchronization on the port
associated with the action name. Thus a process that wishes to perform action
a is willing to \receive" a message on port a, whereas a process that wishes to
engage in a may send a message via port a. The action � represents either an
internal action of a process or the synchronization of two processes on some
port in order to communicate with each other. We use a; b; : : : to range over
� and �; �; : : : to range over A .

In order to de�ne prioritized actions, let � be a countable set of prioritized
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action labels disjoint from � . Then A=df� [ � [ f�g is the set of priori-
tized actions, where � =2 � is the prioritized internal or silent action. We use
A=dfA[A to denote the set of all actions. Intuitively, prioritized actions rep-
resent communication potentials over \important" channels. Therefore, com-
munications involving prioritized actions should be preferred over communi-
cations involving unprioritized actions. In the remainder of the paper, we let
a; b; : : : range over � , �; �; : : : over A , and 
; � over A . Additionally, we ex-

tend by de�ning 
 = 
 , and if L � A n f�; �g then L=dff
 j 
 2 Lg . A
mapping f on A is a relabeling if f preserves priorities (i.e. f(�) � � and
f(�) � � ), is such that the set f
 j f(
) 6= 
g is �nite, and satis�es the
following: f(a) = f(a) f(a) = f(a) , f(�) = � , and f(�) = � .

The syntax of our calculus may now be de�ned by the BNF

P ::= 0 j 
:P j P + P j P jP j P [f ] j P n L j C
def
= P

where f is a relabeling, L � A n f�; �g , and C is a process constant. We
use the standard de�nitions for sort of a process, free and bound variables,
open and closed terms, guarded recursion, and contexts. We refer to closed
and guarded terms as processes and denote syntactic equality by � . Finally,
we let P;Q;R; : : : range over the set P of processes.

3.2 Locations

We now introduce the notion of location, which will be used in the next section
in the operational semantics for CCSprio as a basis for deciding when one tran-
sition pre-empts another. Intuitively, a location represents the \address(es)"
of subterm(s) inside a larger term; when a system performs an action, our
semantics will also note the location of the subterm(s) that \generate(s)" this
action. Observe that because of the potential for synchronization more than
one subterm may be involved in an action. Our account of locations closely
follows that of [26].

Formally, let Aaddr=dffL;R; l; rg be the address alphabet, and let � be a spe-
cial symbol not in Aaddr. Then Addr=dff�s j s 2 A�

addrg represents the set
of (process) addresses ranged over by v; w . We abuse notation by omitting
� from addresses on occasion. If �s1 and �s2 are addresses then we write
�s1 � �s2 = �s1s2 to represent address concatenation (where s1s2 represents
the usual concatenation of elements in A�

addr). Further, if V � Addr then we
write V � � for fv � � j v 2 V g . Intuitively, an element of Addr represents the
address of a subterm, with � denoting the current term, l (r) representing
the left (right) subterm of + , and L (R) the left (right) subterm of j . For
example, in the process (a:0 j b:0)+c:0 the address of a:0 is �Ll , of b:0 is �Rl ,
and of c:0 is �r .
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As mentioned in the introduction, we want to adopt the view that processes
on di�erent sides of the parallel operator are logically { not necessarily phys-
ically { executed on di�erent processors. Thus, priorities on di�erent sides of
the parallel operator are distributed and, therefore, should be incomparable.
However, priorities on di�erent sides of the summation operator, which mod-
els nondeterministic choice, should be comparable since argument processes of
summation are logically scheduled on the same processor. We formalize this
intuition in the following comparability relation on addresses which is adapted
from [17].

De�nition 1 The comparability relation ./ on addresses is the smallest re-

exive and symmetric subset of Addr�Addr such that for all v; w 2 Addr :

(i) hv � l; w � ri 2 ./ , and
(ii) hv; wi 2 ./ implies hv � �; w � �i 2 ./ for � 2 Aaddr .

We write v ./ w instead of hv; wi 2 ./ .

If v 2 Addr then we use [v] to denote the set fw 2 Addr j v ./ wg .

Note that the comparability relation is not transitive, e.g. we have Ll ./ r and
r ./ Rl but Ll 6./ Rl, since L 6./ R . Considering our example (a:0 j b:0) + c:0
above, the addresses of a:0 and c:0, and the addresses of b:0 and c:0, are
comparable since they are on di�erent sides of the summation operator. In
contrast, the addresses of a:0 and b:0 are incomparable since they are on
di�erent sides of the parallel operator.

We may now de�ne the set of (transition) locations, Loc, as Loc=dfAddr [
(Addr �Addr). Intuitively, a transition location records the addresses of the
components in a term that participate in the execution of a given action. In
our algebra, transitions are performed by single processes or pairs of processes
(in the case of a synchronization). We de�ne hv; wi � � =dfhv � �; w � �i and
[hv; wi] =df[v] [ [w] where v; w 2 Addr and � 2 Aaddr . We use m;n; o; : : : to
range over Loc in what follows.

3.3 Semantics of CCSprio

The (operational) semantics of a CCSprio-process P 2 P is given by a labeled
transition system hP;Loc�A;�!; P i. The transition relation �!� P �
(Loc � A) � P is de�ned in Tables 2 and 3 using Plotkin-style operational
rules. We write P m;
�!P 0 instead of hP; hm; 
i; P 0i 2�! and say that P may
engage in action 
 o�ered from location m and thereafter behave like process
P 0. We also write P 
�!P 0 if there exists a locationm 2 Loc such that P m;
�!P 0.
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Table 1
Initial action sets

Im(C)=df Im(P ) where C
def
= P I�(�:P )=dff�g

Im�l(P +Q)=df Im(P ) In�r(P +Q)=df In(Q)

Im(P [f ])=dfff(�) j� 2 Im(P )g Im(P n L)=df Im(P ) n (L [ L)

Im�L(P jQ)=df Im(P ) In�R(P jQ)=df In(Q)

Ihm�L;n�Ri(P jQ)=dff� j Im(P ) \ In(Q) 6= ;g

IM (P )=df
S
fIm(P ) jm 2Mg IIM (P )=df IM (P ) n f�g

I(P )=df ILoc(P ) II(P )=df I(P ) n f�g

The presentation of the operational rules requires prioritized initial action sets,
which are de�ned as the least sets satisfying the rules in Table 1. Intuitively,
Im(P ) denotes the set of all prioritized initial actions of P from location m .
Note that these sets are either empty or contain exactly one initial transition.
Im(P ) = ; means that either m is not a location of P or P is incapable of
performing a prioritized action at location m . Additionally, let us denote the
set of all prioritized initial actions of process P from locations M � Loc by
IM(P ) and the set of all prioritized initial actions of process P by I(P ) . We
also de�ne analogous sets restricted to visible actions and denote them by
IIM(P ) , and II(P ) , respectively.

Note that the initial action sets are de�ned independently from the transition
relation �! . Therefore, �! is well-de�ned (cf. [36]). The side conditions of
the operational semantic rules guarantee that a process does not perform an
unprioritized action if it can engage in a prioritized synchronization or internal
computation, i.e. a � -transition, from a comparable location. Therefore, � -
actions have pre-emptive power over unprioritized actions. The reason that
prioritized visible actions do not have priority over unprioritized actions is
that visible actions only indicate the potential of a synchronization, i.e. the
potential of progress, whereas internal actions describe real progress in our
model.

The semantics of CCSprio for prioritized transitions is the same as the usual
CCS semantics. The di�erence arises by the side conditions of the rules for
unprioritized transitions. The process 
:P may engage in action 
 and then
behaves like P . The summation operator + denotes nondeterministic choice.
The process P +Q may behave like process P (Q) if Q (P ) does not pre-empt
unprioritized actions by being able to perform a � -transition. Note that pri-
orities arising from di�erent sides of the summation operator are comparable.
The restriction operator nL prohibits the execution of actions in L[L . Thus,
it permits the scoping of actions. P [f ] behaves exactly as the process P with
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Table 2
Operational semantics for CCSprio (Part I)

Act
��

�:P �;��!P
Act

��

�:P �;��!P

Sum1
P m;���!P 0

P +Q m�l;����!P 0
Sum1

P m;���!P 0

P +Q m�l;����!P 0
� =2 I(Q)

Sum2
Q n;��!Q0

P +Q n�r;���!Q0
Sum2

Q n;��!Q0

P +Q n�r;���!Q0
� =2 I(P )

Rel
P m;���!P 0

P [f ] m;f(�)����!P 0[f ]
Rel

P m;���!P 0

P [f ] m;f(�)����!P 0[f ]

Res
P m;���!P 0

P n L m;���!P 0 n L
� =2 L [ L Res

P m;���!P 0

P n L m;���!P 0 n L
� =2 L [ L

Con
P m;���!P 0

C m;���!P 0
C

def
= P Con

P m;���!P 0

C m;���!P 0
C

def
= P

Table 3
Operational semantics for CCSprio (Part II)

Com1
P m;���!P 0

P jQ m�L;����!P 0jQ
Com1

P m;���!P 0

P jQ m�L;����!P 0jQ
II[m](P ) \ II(Q) = ;

Com2
Q n;��!Q0

P jQ n�R;����!P jQ0
Com2

Q n;��!Q0

P jQ n�R;����!P jQ0
II[n](Q) \ II(P ) = ;

Com3
P m;a��!P 0 Q n;a�!Q0

P jQ hm�L;n�Ri;��������!P 0jQ0
Com3

P m;a��!P 0 Q n;a�!Q0

P jQ hm�L;n�Ri;��������!P 0jQ0

II[m](P ) \ II(Q) = ;

^ II[n](Q) \ II(P ) = ;

actions renamed according to the relabeling f . The process P jQ stands for
the interleaved parallel composition of P and Q with synchronized communi-
cation on complementary actions resulting in the internal action � or � . Since
locations on di�erent sides of a parallel operator are incomparable, � 's arising
from a location of P (Q) cannot pre-empt the execution of an action, even an
unprioritized one, of Q (P ). Only if P (Q) engages in a prioritized synchro-
nization with Q (P ) can unprioritized actions from a comparable location of
P (Q) be pre-empted. For example, the initial a-transition gets pre-empted in
the process (a:0+ b:0) j b:0 but not in the process (a:0 j b:0) j b:0 . Also observe
that actions a and a cannot synchronize. Thus, one may view the sets of prior-

itized and unprioritized action labels as being disjoint. Finally, C
def
= P denotes

a constant de�nition, i.e. C is a recursively de�ned process that behaves as a
distinguished solution of the equation C = P .
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In what follows we use S(P ) to denote the unprioritized sort of P and S(P )

for its prioritized sort. The next property of CCSprio-processes is important for
the proofs of our main theorems.

Lemma 2 (Finite Sorts)
Let P 2 P be a CCSprio-process. Then S(P ) and S(P ) are �nite.

The validity of this lemma is an immediate consequence of the fact that rela-
belings f satisfy the condition jf
 j f(
) 6= 
g j <1 .

4 Prioritized Strong Bisimulation

In this section we present an equivalence relation for CCSprio-processes that
is based on bisimulation [32]. Our aim is to characterize the largest congru-
ence contained in the \naive" adaptation of strong bisimulation [24] to our
framework obtained by ignoring location information.

De�nition 3 (Naive Prioritized Strong Bisimulation)
A symmetric relation R � P�P is called naive prioritized strong bisimulation
if for every hP;Qi 2 R and 
 2 A the following condition holds.

P 
�!P 0 implies 9Q0: Q 
�!Q0 and hP 0; Q0i 2 R :

We write P ' Q if there exists a naive prioritized strong bisimulation R such
that hP;Qi 2 R .

It is straightforward to establish that ' is the largest naive prioritized strong
bisimulation and that ' is an equivalence relation. Unfortunately, ' is not a
congruence, which is a necessary requirement for an equivalence to be suitable
for compositional reasoning. The lack of compositionality is demonstrated by
the following example, which embodies the traditional view that \parallelism
= nondeterminism." We have a:b:0+b:a:0 ' a:0 j b:0 but (a:b:0+b:a:0) j b:0 6'
(a:0 j b:0) j b:0, since the latter can perform an a-transition while the corre-
sponding a-transition of the former process is pre-empted because the right
process in the summation can engage in a prioritized communication. The
above observation is not surprising since the distribution of processes in
u-
ences the pre-emption of transitions and, consequently, the bisimulation. We
also have the following fact from universal algebra.

Theorem 4 Let X be an equivalence relation over an algebra < . Then the
largest congruence X+ in X exists and

X+ = fhP;Qi j 8<-contexts C[]: hC[P ]; C[Q]i 2 Xg :
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Consequently, we know that ' includes a largest congruence '+ for CCSprio. In
the remainder of this subsection we develop an operational characterization of
'+. To do so we need to take the local pre-emption of processes into account.

De�nition 5 (Prioritized Strong Bisimulation)
A symmetric relation R � P � P is a prioritized strong bisimulation if for
every hP;Qi 2 R , � 2 A , � 2 A , and m 2 Loc the following conditions hold.

(i) P ��!P 0 implies 9Q0: Q ��!Q0 and hP 0; Q0i 2 R .
(ii) P m;���!P 0 implies 9Q0; n: Q n;��!Q0 ; II[n](Q) � II[m](P ) ; and hP

0; Q0i 2 R .

We write P 'lQ if there exists a prioritized strong bisimulation R such that
hP;Qi 2 R .

The di�erence between this de�nition and that of ' is the additional require-
ment concerning the initial action sets, parameterized with the appropriate
locations, in the condition for unprioritized transitions. Intuitively, the priori-
tized initial action set of a process with respect to some location is a measure
of the pre-emptive power of the process relative to that location. Thus, the
second condition of Def. 5 states that an unprioritized action � from some
location m of the process P must be matched by the same action from some
location n of Q and that the pre-emptive power of Q relative to n is at most
as strong as the pre-emptive power of P relative to m .

Proposition 6 The relation 'l is a congruence, i.e. for all CCSprio-contexts
C[ ] we have: P 'lQ implies C[P ]'lC[Q] .

Now, we can state the main theorem of this section.

Theorem 7 The congruence 'l is the largest congruence contained in ' .

PROOF. By Theorem 4 the largest congruence '+ in ' exists and is char-
acterized by P '+Q i� 8CCSprio-contextsC[]: C[P ] ' C[Q] .

It is straightforward to show that 'l �'; one need only prove that 'l is a
naive prioritized strong bisimulation. The proof is standard and is omitted.
Also, since 'l is a congruence we know that 'l � '+ . In order to prove the
inclusion '+ � 'l it su�ces to show that R=dffhP;Qi jCPQ[P ] ' CPQ[Q]g
is a prioritized strong bisimulation for some CCSprio-context CPQ[] . For our
purposes we de�ne CPQ[X] =dfX jHPQ for P;Q 2 P where

HPQ
def
=

X

L�S(P )[S(Q)

� :(dL:HPQ +DL)

andDL=df
P

c2L c:0 . Note that
P

is the extension of the associative binary op-
erator + to �nitely many operands and that HPQ is well-de�ned by Lemma 2.
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We assume that dL; dL =2 S(P )[S(Q) . Such dL's exist because the prioritized
sort of a process is �nite according to Lemma 2. Note that the context CPQ[X]
is adapted from [28].

Now, let P;Q 2 P satisfying CPQ[P ] ' CPQ[Q] and P m;���!P 0 . Therefore,
CPQ[P ] can engage in the transitions illustrated in the left hand side of Fig. 2
where L = fc j c 2 (S(P ) [ S(Q)) n II[m](P )g . Since CPQ[P ] ' CPQ[Q] , the
process CPQ[Q] has to match each step.

CPQ[P ] � P jHPQ ' Q jHPQ � CPQ[Q]

?

�

?

�

P j dL:HPQ +DL ' Q j dL:HPQ +DL

?

m � L; �

?

n � L; �

P 0 j dL:HPQ +DL ' Q0 j dL:HPQ +DL

?

dL

?

dL

CPQ[P
0] � P 0 jHPQ ' Q0 jHPQ � CPQ[Q

0]

Fig. 2. Largest congruence proof - illustration

In order to be able to match the �rst step, CPQ[Q] has to choose exactly the
same branch of HPQ yielding to the process dL:HPQ +DL , because only this
process is able to execute the distinguished action dL . For matching the second
step, the process Qmust be able to perform an �-transition from some location
n 2 Loc . According to our semantics for parallel composition, the condition
II[n](Q)\ II(dL:HPQ +DL) = ; has to be satis�ed. Because of the choice of L ,
this implies II[n](Q) � II[m](P ) . The match of the third step, observing action
dL , is straightforward. Thus, Fig. 2 shows the existence of some Q0 2 P
satisfying CPQ[P

0] ' CPQ[Q
0] . Since S(P 0) � S(P ) and S(Q0) � S(Q) it

follows that CP 0Q0[P 0] ' CP 0Q0[Q0] , as desired.

The case where P performs a prioritized transition needs no special attention
since the condition of Def. 3 and Cond. (i) of Def. 5 are identical in this case.
Summarizing, we have shown that all conditions of Def. 5 are satis�ed, and
we may conclude that R is a prioritized strong bisimulation. Hence, P 'lQ ,
which completes the proof. �
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Axiomatization of 'l

In this section we give an axiomatization of 'l for �nite processes, i.e. pro-
cesses that do not contain recursion. In order to develop the axiomatization,
we add a new binary summation operator � to the process algebra CCSprio.
This operator is called distributed summation and needed for giving an ex-
pansion axiom (cf. Axiom (E) in Table 4). Its operational semantics is the
following.

dSum1
P m;���!P 0

P �Q m�L;����!P 0
dSum1

P m;���!P 0

P �Q m�L;����!P 0

dSum2
Q n;��!Q0

P �Q n�R;����!Q0
dSum2

Q n;��!Q0

P �Q n�R;����!Q0

Now, we turn to the axiom system for prioritized strong bisimulation. We
write `E P = Q if P can be rewritten to Q using the axioms in Tables 4
and 5. Axioms (Ic1), (D1), (S2), and (S3) involve side conditions. Regarding
Axiom (Ic1), we introduce the unary predicate \ over process terms of the formP

j2J 
j:xj for some nonempty index set J together with the following proof
rules: (i) \�:x and (ii) \x and \y implies \(x + y) . Intuitively, \(

P
j2J 
j:xj) if

and only if 
j 2 A for all j 2 J . The relation vi is the precongruence on �nite
processes generated from the axioms presented in Table 6 using the laws of
inequational reasoning. Its meaning is precised by Lemma 8 below. We write
`I P viQ if P can be related to Q by Axioms (iC1), (iC2), and (iC3), and
notate `I P =iQ if `I P viQ and `I Qvi P . The axioms in Table 4 are
basically those given in [7] and augmented with the corresponding axioms for
the distributed summation operator. Moreover, the expansion axiom has been
adapted for our algebra (cf. Axiom (E) where

P
is the indexed version of + ,

and
L

is the indexed version of � ). The axioms in Table 5 are new and show
how we may \restructure" locations. They deal with the distributivity of the
summation operators (Axioms (D1) and (D2)), the interchangeability of the
summation operators (Axioms (Ic1) and (Ic2)), and the saturation of locations
(Axioms (S1), (S2), and (S3)), respectively.

The following lemma presents a semantic interpretation of `I P viQ that is
essential for the soundness and completeness proof of our axiomatization. It
uses the notation `A P = Q meaning that P can be rewritten to Q by using
Axioms (A1){(A4) only. Hence, `A P = Q implies `E P = Q .

Lemma 8 (Semantic Interpretation of vi)

(i) Let `I P viQ . Then, II(P ) � II(Q) , and � 2 I(P ) if and only if � 2 I(Q) .
(ii) Let P �

Pm
i=1 
i:Pi and Q �

Pn
j=1 �j:Qj be �nite processes such that

12



Table 4
Axiomatization of 'l (Axioms E)

(A1) x+ y = y + x (iA1) x� y = y � x

(A2) x+ (y + z) = (x+ y) + z (iA2) x� (y � z) = (x� y)� z

(A3) x+ x = x (iA3) x� x = x

(A4) x+ 0 = x (iA4) x� 0 = x

(P) � :x+ �:y = � :x

(E) P �
L

i

P
j 
ij:Pij and Q �

L
k

P
l �kl:Qkl implies P jQ =

L
i

P
j(
ij :(Pij jQ) +

P
k

P
lf�:(Pij jQkl) j 
ij = �kl; 
ij ; �kl 2 Ag

+
P

k

P
lf� :(Pij jQkl) j 
ij = �kl; 
ij ; �kl 2 Ag) �

L
k

P
l(�kl:(P jQkl) +

P
i

P
jf�:(Pij jQkl) j 
ij = �kl; 
ij ; �kl 2 Ag

+
P

i

P
jf� :(Pij jQkl) j 
ij = �kl; 
ij ; �kl 2 Ag)

(Res1) 0 n L = 0

(Res2) (
:x) n L = 0 (
 2 L [ L)

(Res3) (
:x) n L = 
:(x n L) (
 =2 L [ L)

(Res4) (x+ y) n L = (x n L) + (y n L)

(iRes4) (x� y) n L = (x n L)� (y n L)

(Rel1) 0[f ] = 0 (Rel3) (x+ y)[f ] = x[f ] + y[f ]

(Rel2) (
:x)[f ] = f(
):(x[f ]) (iRel3) (x� y)[f ] = x[f ]� y[f ]

II(P ) � II(Q) , and � 2 I(P ) if and only if � 2 I(Q) . Then there exist
processes P 0 and Q0 such that `A P 0 = P , `A Q0 = Q , and `I P 0viQ

0 .
The same holds if we replace \�" by \=" and \vi" by \=i."

The proof of this lemma is quite straightforward and, therefore, omitted. The
following theorem states the soundness of our axiom system.

Theorem 9 (Soundness)
For P;Q 2 P satisfying `E P = Q we have P 'lQ .

Formally, the soundness of the axioms can be shown by constructing a pri-
oritized strong bisimulation R � P � P for each axiom P = Q such that

13



Table 5
Axioms E (continued)

(D1) (x� x0) + (y � y0) = ((x� x0) + y0)� ((y � y0) + x0)

(`I xvi x
0 ; `I yvi y

0)

(D2) (x� y) + �:z = (x+ �:z)� (y + �:z)

(Ic1) x� �:y = x+ �:y (\x)

(Ic2) (�:x+ y) = (�:x+ y)� �:x

(S1) (x+ �:y)� (x0 + �:y0) = (x+ �:y + �:y0)� (x0 + �:y0)

(S2) (x+ �:z) � (y + �:z) = (x+ �:z)� y (`I xvi y)

(S3) x� y = x+ y (`I x=i y)

Table 6
Axiomatization of vi (Axioms I)

(iC1) �:xvi �:y (iC2) 0vi �:x � 2 A n f�g (iC3) �:xvi 0

hP;Qi 2 R . This is obvious for all axioms beside Axioms (D1), (S2), and
(S3). Those axioms are only true if the appropriate side condition is satis�ed.
However, their soundness can easily be established by using the semantic in-
terpretation of the syntactic side conditions given in Lemma 8(i). In order to
prove our axiomatization complete, we introduce a notion of normal form of
processes that is based on the following de�nition.

De�nition 10 (Summation Form)
A process P is in summation form if it has the form P �

Lm
i=1

Pni
j=1 
ij:Pij

where m;ni 2 N and the processes Pij are again in summation form. Per
de�nition, 0 is in summation form.

Intuitively, P is distributed throughoutm incomparable locations which them-
selves consist of ni comparable locations, 1 � i � m . The following proposition
states that every �nite process can be rewritten into summation form.

Proposition 11 For every �nite process P there exists a process S in sum-
mation form such that `E S = P .

De�nition 12 (Normal Form)
Let P �

Lm
i=1

Pni
j=1 
ij:Pij be in summation form. We de�ne 


i�
=dff
ij j 1 �

j � nig \ A . The process P is said to be in normal form if the following
properties hold.

14



(i) ; � L � I(P ) implies 9i: 

i�
= L .

(ii) 

i�
= 


k�
implies i = k .

(iii) 
ij 2 A implies 81 � l � ni: 
il 6� � .
(iv) 
ij � 
kl � � implies 9j 0: Pij0 � Pkl and 
ij0 � � .

Intuitively, Cond. (i) and (ii) state that a term P in normal form contains
exactly one incomparable (or \outer") summand for each possible pre-emption
potential, i.e. for each subset of the prioritized initial actions of P . Cond. (iii)
re
ects our notion of pre-emption: an outer summand contains no unprioritized
initial actions when it also includes a prioritized internal action. The last
condition requires outer summands to be \saturated" in a certain sense with
respect to prioritized actions (cf. Axiom (S1)). The following proposition plays
a key role in the completeness proof of our axiomatization for �nite processes.

Proposition 13 If P is a �nite process, then there exists a normal form N
such that `E N = P .

The proof of this proposition uses induction on the depth of a �nite process
in summation form which is de�ned to be the maximum number of nested
pre�xes in that process, as usual. Moreover, it needs the following lemma
which can easily be established.

Lemma 14 Let P �
Lm

i=1

Pni
j=1 
ij:Pij . Then `E P = P � P and `I P vi P

where P �
Lm

i=1

Pni
j=1 P ij , P ij � 
ij:Pij if 
ij 2 A , and P ij � 0 if 
ij 2 A .

PROOF of Prop. 13. Let P be a �nite process. By Prop. 11 we know of the
existence of a process S �

Lm
i=1 Si� , where Si� �

Pni
j=1 
ij:Sij , in summation

form such that `E S = P . Therefore, it remains to establish that S can be
equationally rewritten into a process N in normal form such that `E N = S .
This is done by induction on the depth of S . If the depth of S is 0 , then we
apply Axiom (iA3) in order to obtain `E S = 0 where 0 is obviously in normal
form. For the induction step let the depth of S be greater than 0 . Now, we
proceed according to the following steps.

(i) We use Lemma 14 to rewrite S to S � S , where S �
Lm

i=1

Pni
j=1 Sij ,

and Sij � 
ij:Sij , if 
ij 2 A , and Sij � 0 , otherwise. We switch the
distributed summation operators in S into usual summation operators
using Axiom (Ic1), and Axioms (A2), (iA2), (A4), and (iA4), if needed.
By Axioms (iA1){(iA3) we duplicate summands of S and regroup them
such that for each ; 6= L � I(P ) there exists a distributed summand
of the form

L
j2J �j:Pj satisfying L = f�j j j 2 Jg . Using Axiom (Ic1)

each of the above mentioned distributed summands is rewritten into a
summand

P
j2J �j:Pj . Finally, we apply Axiom (iA4) once obtaining the

distributed summand 0 which ful�lls the required condition for L = ; .
This concludes the establishment of Property (i).
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(ii) Whenever i 6= k and 

i�
= 


k�
, where 1 � i; k � m , merge the terms

Pi� and Pk� into one by applying the following steps. Use Axioms (iA1)
and (iA2) to restructure the distributed summands of P such that the
terms Pi� and Pk� are standing side by side. According to Lemma 8(ii)
there exist processes P 0

i� and P 0
k� such that `A P 0

i� = Pi� , `A P 0
k� = Pk� ,

and `E P 0
i�=i P

0
k� . Thus, we may rewrite Pi� � Pk� to P 0

i� � P 0
k� and

apply Axiom (S3) to substitute P 0
i��P 0

k� by P
0
i�+P 0

k� . Repeat the above
procedure as often as possible. Hence, Property (ii) is established.

(iii) We use Axiom (P) in order to obtain Property (iii).
(iv) As long as Property (iv) is not satis�ed, i.e. there exists 
ij 2 


k�
for

some 1 � k � m and i 6= k but there is no 1 � l � nk such that

kl:Pkl � 
ij:Pij , then apply Axiom (S1), and possibly Axioms (A1),
(A2), (iA1), and (iA2), to add the term 
ij:Pij to Pk� as an additional
summand. Thus, Property (iv) is achieved.

This concludes the proof of the induction step and of the proposition. �

Rewriting a process in its normal form requires restructuring its locations.
After this is done, standard techniques used in CCS (cf. [24]) can be applied
in order to show our axiomatization complete.

Theorem 15 (Completeness)
For �nite processes P;Q 2 P satisfying P 'lQ we have `E P = Q .

PROOF. Let P and Q be �nite processes such that P 'lQ . By Prop. 13
we may assume w.l.o.g. that P and Q are in normal form, i.e. P �

Lm
i=1 Pi�

where Pi� �
Pni

j=1 
ij:Pij , and Q �
Lr

k=1Qk� where Qk� �
Psk

l=1 �kl:Qkl , and
Properties (i){(iv) of Def. 12 are satis�ed. We reason by induction on the
maximum of the depths of P and Q .

Induction base: If the maximum depth is 0 then P and Q are of the formLm
i=1 0 and

Lr
k=1 0 , respectively. Both processes are rewritten to 0 by applying

Axiom (iA3), and since `E 0 = 0 , we are done.

Induction step: Here, we use the following additional properties.

(I) We assume w.l.o.g. that Pij � Qkl for some 1 � i � m , 1 � j � ni ,
1 � k � r , and 1 � l � sk whenever Pij 'lQkl . The reason for being
able to assume this is that the maximum of the depths of the processes Pij

and Qkl is smaller than that of P and Q . Hence the induction hypothesis
is applicable, i.e. `E Pij = Qkl and we may substitute Pij for Qkl since
substitution is part of equational reasoning.
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(II) Moreover, we may assume w.l.o.g. that P satis�es the following property.


ij:Pij � 
kl:Pkl ; 
ij 2 A ; and i 6= k imply 

i�
6� 


k�
:

Otherwise, we apply Lemma 8(ii) that allows us to substitute Pi� and
Pk� by processes P 0

i� and P 0
k� , respectively, satisfying `A P 0

i� = Pi� ,
`A P 0

k� = Pk� , and `I P 0
i�vi P

0
k� . Now, we apply Axioms (S2), (A1),

(A2), (iA1), and (iA2) to achieve the above mentioned property. Note
that this transformation does not destroy the normal forms of P and Q ,
and Property (I). Similarly, we may assume that Q ful�lls Property (II).

Proof goal: In the main part of the induction step we show the existence
of a bijection � : f1; : : : ; mg �! f1; : : : ; rg such that 81 � i � m: `E
Pi� = Q�(i)� . Thus, it follows that `E P = Q by possibly using Axioms (iA1)
and (iA2) to reorder and regroup distributed summands.

Main part of the induction step: Since P 'lQ we have I(P ) = I(Q) . By Prop-
erties (i) and (ii) of Def. 12 we may conclude that m = r . Moreover, the
mapping � : f1; : : : ; mg �! f1; : : : ; rg de�ned by �(i)=df k where 


i�
= �k�

is a bijection. It remains to show that `E Pi� = Q�(i)� for some arbitrary
1 � i � m . Let k=df�(i) , i.e. 
i� = �k� . We show that every summand of
Pi� is syntactically identical to a summand of Qk� . For every 1 � j � ni we
have Pi�


ij�!Pij because of Property (iii) of Def. 12.

Case 1: Let 
ij � � 2 A for some j 2 f1; : : : ; nig . We may derive P ��!Pij

according to our operational rules and the de�nition of P . Since P 'lQ there
exists numbers k0 and l0 , where 1 � k0 � r and 1 � l0 � sk0 , such that
Q ��!Qk0l0 , � � �k0l0 , and Pij '

lQk0l0 . By Property (I) we have Pij � Qk0l0

and, thus, 
ij:Pij � �k0l0:Qk0l0 . Moreover, the summand �k0l0:Qk0l0 syntactically
equals with a summand �kl:Qkl for some 1 � l � sk by Property (iv) of Def. 12
since �k0l0 2 �k� = 


i�
.

Case 2: Let 
ij � � 2 A for some j 2 f1; : : : ; nig . By the de�nition of P and
the operational rules we also have P ��!Pij . Note that we do not include the
location of the action � 2 A in the label since the corresponding prioritized
initial action set is already determined by the index i . Because of P 'lQ we
know of the existence of numbers k0 and l , where 1 � k0 � r and 1 � l � sk0 ,
such that Q ��!Qk0l , � � �k0l , �k0� � 


i�
, and Pij 'lQk0l . Observe that the

inclusion �k0� � 

i�
is equivalent to our condition of prioritized initial action set

inclusion (cf. Cond. (ii) of Def. 5) by Property (iii) of normal forms. Because
of Property (I) we may conclude that Pij � Qk0l and, thus, 
ij:Pij � �k0l:Qk0l .
It remains to establish k0 = k . Since P 'lQ we know of the existence of
numbers i0 and j 0 , where 1 � i0 � m and 1 � j 0 � ni0 , such that P ��!Pi0j0 ,
� � 
i0j0 , 
i0� � �k0� , and Pi0j0 'lQk0l . Hence, Pi0j0 � Qk0l by Property (I)
and, thus, 
i0j0:Pi0j0 � �k0l:Qk0l . Together with 
ij:Pij � �k0l:Qk0l we conclude

i0j0:Pi0j0 � 
ij:Pij . Moreover, we have established 


i0�
� �k0� � 


i�
. This
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establishes i = i0 by Property (II), whence �k0� = 

i�
= �k� . Now, we may

conclude k = k0 by Property (ii) of normal forms, as desired.

Similarly, every summand of Qk� is syntactically equal to a summand of Pi� .
Hence, `E Pi� = Qk� by using Axiom (A3) to eliminate duplicate summands
and Axioms (A1) and (A2) to reorder and regroup summands as necessary. �

5 Prioritized Observational Congruence

The behavioral congruence developed in the previous section is too strong for
verifying systems in practice, as it requires that two equivalent terms match
each other's transitions exactly, even those labeled by internal actions. In this
section we remedy this problem by developing a semantic congruence that ab-
stracts away from internal transitions. Our approach follows the lines of [24,29].
We start o� with the de�nition of a naive prioritized weak bisimulation which
is an adaptation of observational equivalence [24].

De�nition 16 (Naive Weak Transition Relation)

(i) 
̂=df � if 
 2 f� ; �g and 
̂=df 
 , otherwise.
(ii)

�
=)� =df (

��! [
S
f m;��! jm 2 Locg)�

(iii)
m;

=)� =df

�
=)� �

m;
�!�
�

=)�

In the following we write P



=)� P 0 for 9m 2 Loc: P
m;

=)� P 0 .

De�nition 17 (Naive Prioritized Weak Bisimulation)
A symmetric relation R � P � P is a naive prioritized weak bisimulation if
for every hP;Qi 2 R , and 
 2 A the following condition holds.

P 
�!P 0 implies 9Q0: Q

̂

=)� Q0 and hP 0; Q0i 2 R :

We write P ��Q if there exists a naive prioritized weak bisimulation R such
that hP;Qi 2 R .

It is fairly easy to see that �� is not a congruence for CCSprio. On the other
hand, it re
ects an intuitive approach to abstracting away from internal com-
putation, and consequently we devote the rest of this section to characterizing
the largest congruence contained in this relation. To do so, we �rst rede�ne
the weak transition relation as follows.

De�nition 18 (Prioritized Weak Transition Relation)
For L;M � A n f�g we de�ne the following notations.

(i) �̂ =df � , â=df a , �̂ =df � , and â=df a .
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(ii) P
m;�
�!
L
P 0 i� P m;���!P 0 and II[m](P ) � L .

(iii)
�

=) =df(
��! [

S
f
m;�
�!
;
jm 2 Locg)�

(iv)
�

=) =df

�
=) � ��!�

�
=)

(v)
�

=)
L
=df(

��! [
S
f
m;�
�!
L
jm 2 Locg)�

(vi) P
m;�
=)
L;M

P 0 i� 9P 00; P 000: P
�

=)
L
P 00m;�

�!
L
P 000 �

=) P 0 and II(P 00) � M .

Intuitively, these de�nitions are designed to re
ect constraints that a process's
environment must satisfy in order for the given transition to be enabled. Thus,
P
m;�
�!
L
P 0 means that P can engage in action � at location m provided that the

environment does not o�er a (prioritized) communication involving actions in
L . If the environment were to o�er such a communication, the result would be
a � at a comparable location tom in P , which would pre-empt the � . In a sim-
ilar vein, P

�
=) P 0 holds if P can evolve to P 0 via a nonpre-emptable sequence

of internal transitions, regardless of the environment's behavior. These internal
transitions should therefore involve either � , which can never be pre-empted,
or � , in which case no prioritized actions should be enabled at the same loca-
tion. Likewise, P

�
=)
L
P 0 means that, so long as the environment does not o�er to

synchronize with P using the (prioritized) actions in L , the process P may en-
gage in a sequence of internal computation steps and become P 0 . Finally, the
M -parameter in

m;�
=)
L;M

provides a measure of the pre-emptive impact that a pro-

cess can have on its environment. From the de�nition, P
m;�
=)
L;M

P 0 is true if P can

engage in some internal computation followed by �, so long as the environment
refrains from synchronizations in L , and then some nonpre-emptable internal
computation to arrive at P 0 . In addition, the state at which � is enabled
should only o�er prioritized communications in M . To understand the role
played by M , consider the processes P � (a:0+ b:0) j c:0 and Q � a:0+ c:0 .

If one were to de�ne
m;�
=)
L

in the obvious manner, one would conclude that

P
lL;a
=)
fbg
P 0 � 0 j c:0 . Since Q o�ers a communication a and no interaction b , one

might then be tempted to infer that P jQ hlL;lRi;�����!P 0 jQ0 � (0 j c:0) j0 . How-
ever, the operational semantics disallows this; as P and Q can synchronize
on c , Q's a-transition becomes pre-empted, even though P 's a-transition is
not (because its location is incomparable with P 's c-transition). On the other

hand, P
lL;a
=)

fbg;fcg
P 0 alerts us to P 's pre-emptive capability on c .

Note that the de�nition of P
�

=)
L
P 0 corresponds with our intuition that in-

ternal actions, and therefore their locations, are unobservable. Moreover, an
environment of P is not in
uenced by internal actions performed by P since
priorities arising from di�erent sides of the parallel operator are incomparable.
Therefore, the parameter M is unnecessary in the de�nition of the relation
�

=)
L
. Finally, for notational convenience we interpret

m;�
=)
L;M

as
�

=)
L
.
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De�nition 19 (Prioritized Weak Bisimulation)
A symmetric relation R � P � P is a prioritized weak bisimulation if for
every hP;Qi 2 R , � 2 A , � 2 A , and m 2 Loc the following conditions hold.

(i) 9Q0; Q00: Q
�

=) Q00 �
=) Q0; II(Q00) � II(P ); and hP;Q0i 2 R .

(ii) P ��!P 0 implies 9Q0: Q
�̂

=) Q0 and hP 0; Q0i 2 R .

(iii) P m;���!P 0 implies 9Q0; n: Q
n;�̂
=)
L;M

Q0; L=II[m](P ); M=II(P ); and hP 0; Q0i 2 R.

We write P �Q if there exists a prioritized weak bisimulation R such that
hP;Qi 2 R .

From this de�nition we may directly conclude that � is the largest prioritized
weak bisimulation and that � is an equivalence relation. Cond. (i) of Def. 19
guarantees that prioritized weak bisimulation is compositional with respect to
the parallel operator. Its necessity is best illustrated by the following exam-

ple. The processes P
def
= � :a:0 and Q

def
= a:0 would be considered equivalent if

Cond. (i) were absent. However, the context C[X]
def
= X j(a:0+ b:0) can distin-

guish them.

Proposition 20 The equivalence relation � is a congruence with respect
to pre�xing, parallel composition, relabeling, and restriction. Moreover, � is
characterized as the largest congruence contained in �� , in the subalgebra of
CCSprio induced by these operators and recursion.

In contrast to [29], the summation �x presented in [24] is not su�cient in

order to achieve a congruence relation. To see why, let C
def
= � :D and D

def
= �:C .

Now de�ne P
def
= �:C and Q

def
= � :D . By Def. 19 we may observe P �Q , but

P +a:0 6� Q+a:0 since the former can perform an a-action whereas the latter
cannot. It turns out that we have to require that observationally congruent
processes must have the same prioritized initial actions. This requirement is
stronger than Cond. (i) of Def. 19.

De�nition 21 (Prioritized Observational Congruence)
We de�ne P �lQ if for all � 2 A , � 2 A , and m 2 Loc the following
conditions and their symmetric counterparts hold.

(i) I(P ) � I(Q)

(ii) P ��!P 0 implies 9Q0: Q
�

=) Q0 and P 0�Q0 .

(iii) P m;���!P 0 implies 9Q0; n: Q
n;�
=)
L;M

Q0; L = II[m](P ); M = II(P ); and P 0�Q0 .

Theorem 22 The relation �l is the largest congruence contained in �� .

Whereas the proof of the congruence property can be done using standard
techniques [24], the remainder of this section is concerned with the more chal-
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lenging proof of the \largest" part of the above theorem. The latter is an
instance of the following result from universal algebra.

Theorem 23 Let X and Y be equivalence relations over an algebra < such
that X+ � Y � X . Then X+ = Y + holds.

Here, we choose X = �� and Y = � . First, we establish Y + = �l .

Proposition 24 �l is the largest congruence contained in � .

PROOF. Since the relation �l is a congruence contained in � , it is su�cient
to show that for all CCSprio-contexts C[] and processes P;Q 2 P satisfying
C[P ]�C[Q] the relationship P �l Q holds. Moreover, we may restrict our-
selves to a subset of CCSprio-contexts. For this proof, we choose the context
CPQ[X] =df(c:0 + d:0) + X where c =2 S(P ) [ S(Q) and d =2 S(P ) [ S(Q) .
Note that such actions c and d exist by Lemma 2.

Assume � =2 I(P ) and, therefore, CPQ[P ]
rl;d�!0 . Since CPQ[P ] � CPQ[Q] and

d =2 S(Q) we necessarily have CPQ[Q]
rl;d
=)
L;M

0 and 0 � 0 where L = M = II(P )[

fcg . This requires � =2 I(Q) and II(Q) � II(P ) . Hence, I(Q) � I(P ) holds.

Let P m;���!P 0 for some P 0 2 P and m 2 Loc . Then CPQ[P ]
mr;���!P 0 . Since

CPQ[P ] � CPQ[Q] there exist Q
0 2 P and o 2 Loc satisfying CPQ[Q]

o;�̂
=)
L0;M0Q

0 ,

L0 = II[m](P )[fcg ,M
0 = II(P )[fcg , and P 0 � Q0 . We know thatQ0 6� CPQ[Q]

because P 0 � Q0 and P 0 is not capable of performing a weak c-transition.
Therefore, the matching step is necessary, even if � = � . Thus, Q

n;�
=)
L;M

Q0 and

P 0 � Q0 for some n 2 Loc where n � o or o � nr , L = II[m](P ) , and M =
II(P ) .

Finally, let P ��!P 0 for some P 0 2 P . Then CPQ[P ]
��!P 0 . A simpler argu-

mentation than the one above leads to the existence of some Q0 2 P such that
Q

�
=) Q0 and P 0 � Q0 .

Since also the symmetric properties hold, all conditions of Def. 21 are satis�ed,
and we obtain P �l Q as desired. �

Further, we have to show that X+ � Y � X i.e. ��
+ � � � �� . The in-

clusion � � �� follows immediately from the de�nition of the naive and the
prioritized weak transition relation. In order to apply Theorem 23, we have to
establish ��

+ � � . This inclusion turns out to be di�cult to show directly.
Therefore, we de�ne �a=dffhP;Qi jCPQ[P ]��CPQ[Q]g as auxiliary equiva-
lence relation which lies in between. Here, using the abbreviations S =df S(P )[
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dma

Appl

Bench1 Bench2

dma

τ

τ

dmadma

Fig. 3. Example system and its semantics

S(Q) and S =df S(P ) [ S(Q) , we de�ne CPQ[X] =dfX jHPQ and

HPQ
def
= c:0 +DS +

X

L;M � S ;

b 2 S

� :(

0
B@

dL;M;b:HPQ+
DL + e:HPQ+
b:(f:HPQ +DS)

1
CA�DM):

Note that HPQ is well-de�ned by Lemma 2. Moreover, the processes DL and
DM are de�ned as in the proof of Theorem 7, and the actions c; dL;M;b; e; f are
supposed to be `fresh' actions, i.e. they and their complements are not in the
unprioritized or prioritized sort of the processes P and Q under consideration
(cf. Lemma 2). By Theorem 4, we may conclude that ��

+ � �a . The other
necessary inclusion is established by the following proposition. Due to space
constraints its proof is omitted here and can be found in [8].

Proposition 25 The inclusion �a � � holds.

This proposition completes the establishment of the premises of Theorem 23.
Thus, X+ = Y + , i.e. ��

+ = �+ . Also, we have shown in Prop. 24 that
�+ = �l . Hence, ��

+ = �l , and Theorem 22 is proved.

In App. A it is shown how our prioritized bisimulations can be computed for
�nite-state processes. In order to apply standard partition re�nement algo-
rithms [22,31] the bisimulations are characterized as standard strong bisim-
ulations on enriched transition relations which are de�ned along the lines of
Def. 18 and take local pre-emption potential into account.

6 Example

In this section we demonstrate the utility of CCSprio for the veri�cation of
distributed systems using an example involving an architecture scheme found
in many of today's computers.
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Our example system consists of an application that manipulates data from
two memory benches (cf. Fig. 3, left-hand side). In order to improve the e�-
ciency in the computer system each bench is connected to a direct-memory-
access (DMA) controller. To overcome the low speed of most memory mod-
ules, the application Appl works alternately with each memory bench. We

model Appl in CCSprio by Appl
def
= fetch1:fetch2:Appl . Each memory bench

Bench1 and Bench2 is continuously able to serve the application or to al-
low the external DMA controller to access the memory via the channel dma.
However, if a memory bench has to decide between both activities, then it
chooses the former since the progress of the application is considered more im-

portant. Consequently, we de�ne Bench1
def
= fetch1:Bench1+ dma:Bench1 and

Bench2
def
= fetch2:Bench2 + dma:Bench2 . The overall system Sys is given by

Sys
def
=(Appl j Bench1 j Bench2) n ffetch1; fetch2g . Since the application uses

the memory cells alternately, the DMA is expected to be allowed to access the

free memory bench. Therefore, the speci�cation simply is Spec
def
= dma:Spec .

The CCSprio-semantics of Sys is given in Fig. 3, right hand side, where we
abstract away the locations. It is easy to see that the symmetric closure of

fhSpec; Sysi; hSpec; (fetch2:Appl j Bench1 j Bench2) n ffetch1; fetch2gig

is a prioritized weak bisimulation. Note that Cond. (i) of Def. 19 is trivially
satis�ed since Spec and Sys do not contain any visible prioritized actions.
Therefore, we obtain Spec� Sys as expected. However, in the traditional ap-
proach to priorities involving global pre-emption [7,29], the dma-loops in the
labeled transition system of Sys would be missing, and Sys would not be
observationally equivalent to Spec.

7 Extensions of CCSprio

Up to now we have restricted the number of priority levels in CCS
prio to two

and communication to complementary actions having the same priority. In
this section we study the implications for our theory of the removal of these
restrictions.

Allowing communication between unprioritized actions and complementary
prioritized actions raises the question of whether the resulting internal action
should be � or � . When dealing with local pre-emption this decision has no
important consequences for sequential communicating processes, i.e. those in
standard concurrent form; however, it is of obvious importance for processes
like (a:0 j a:0)+b:0 in which one has to decide if the b-transition is enabled. One
reasonable view is that a communication should be pre-empted whenever one
communication partner is pre-empted, i.e. cannot engage in a communication.
This implies that the minimal priority of the complementary actions ought to
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Table 7
Modi�ed operational rules

Com1
P m;���!P 0

P jQ m�L;����!P 0jQ
II[m](P ) \ (II(Q) [ II(Q)) = ;

Com3a
P m;a��!P 0 Q n;a�!Q0

P jQ hm�L;n�Ri;��������!P 0jQ0

II[m](P ) \ (II(Q) [ II(Q)) = ; ^

II[n](Q) \ (II(P ) [ II(P )) = ;

Com3b
P m;a��!P 0 Q n;a�!Q0

P jQ hm�L;n�Ri;��������!P 0jQ0
II[n](Q) \ (II(P ) [ II(P )) = ;

be assigned to the internal action. To re
ect this in our operational semantics,
we could replace Rules (Com1), (Com2), and (Com3) for parallel composition
by the ones presented in Table 7 plus their symmetric versions. The side
conditions involve sets II(P ) that include all unprioritized visible initial actions
that P can engage in.

It turns out that the largest congruence results concerning our behavioral re-
lations can be carried over to the new calculus; however, the new semantics
has algebraic shortcomings, since parallel composition is not associative, as
illustrated by the following example. Consider the process (b:0 + a:0) j(a:0 +
c:0) j c:0 . When computing the semantics in a left-associative manner, the
initial b-transition is pre-empted according to Rule (Com1) since a may po-
tentially communicate with a . However, when �rst composing the second and
third parallel components, the a-transition is pre-empted, and consequently
the b-transition is enabled by Rule (Com1) since a =2 II((a:0 + c:0) j c) . The
reason for this problem is that we pre-empt transitions because the considered
process can potentially engage in a higher prioritized communication from
a comparable location. However, this potential communication cannot take
place if the communication partner is itself pre-empted. The same problem
also arises when extending CCS

prio to multiple priority levels, even if commu-
nication is only allowed on complementary actions of the same priority. This
can be illustrated using a slight adaptation of the previous example, where
priorities are given by natural numbers, with lower numbers denoting higher
priority values: (b :2:0 + a :1:0) j(a :1:0 + c :0:0) j c :0:0 .

One can imagine two approaches to �xing the problems with the �rst (and
second) alteration to our theory. One is to change the operational semantics; in
particular, we could weaken the side conditions so that an unprioritized tran-
sition is only pre-empted when a prioritized action from a comparable location
can actually engage in a communication. To do so we can adopt a conserva-
tive view of pre-emption by replacing the complementary initial action sets in
the side conditions of parallel composition by ones that only include actions
having the highest priority value. Hence, only actual communication partners
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are considered. One may observe that in this setting additional transitions
should be pre-empted whenever actions are restricted. For instance, in the
process P =df(b:0+ a:0) j(a:0+ c:0) the b-transition is not pre-empted since a
does not have the highest priority in the right parallel component. However,
when plugging P in the context [ ] n fc; cg , which restricts the c-transition,
the communication on port a may in fact take place and, consequently, the
b-transition should be pre-empted. This additional potential of pre-emption
needs to be taken care of by the side conditions of the operational rules for
restriction. Unfortunately, it turns out that these are hard to formalize in a
compact fashion. It is also not clear to us how to establish the statements of
our main theorems for the resulting semantic theory.

The second solution follows an approach developed in [6] for a di�erent setting
and involves the use of a syntax restriction on processes prohibiting output
actions, i.e. actions in � , from occurring as initial actions of processes that
are in the scope of + . Hence, all potential communication partners are also
actual ones, and our side conditions for parallel composition are su�cient to
encode the desired notion of pre-emption. It is important to mention that the
proposed syntax restriction still allows one to specify many practically relevant
examples within the calculus. Indeed, a similar restriction may be found in
the programming language occam. For the new calculus all results presented
for CCSprio in this paper can be carried over.

8 Discussion and Related Work

Several proposals have been made for extending traditional process algebras
with priorities. They di�er in the aspects of computation, such as interrupts [2],
programming constructs like the PRIALT construct of occam [6,21] and con-
structs of Ada [14], or real-time [16], that they aim to capture.

An extension of CCS [24] with priorities has been proposed in [7], where pri-
orities are assigned to actions in a globally dynamic way, i.e. in one state of a
system action � may have priority over action � while the situation may be
reversed in another state of the system. For that process algebra a complete
semantic theory has been developed in an analogous fashion to [24] which in-
cludes congruences based on strong and weak bisimulation and their axiomatic
characterizations [29]. Our process algebra CCS

prio is based on the approach
in [7,29], where we adopt all design decisions except the notion of global pre-
emption. Therefore, CCSprio has the following characteristics. Only transitions
labeled by complementary actions with the same priority may engage in a
synchronization. As in [7], we consider actions with di�erent priorities as dif-
ferent channels which is su�cient for most cases occurring in practice [9]. The
strong relation of CCSprio to the process algebra proposed in [7,28,29] can be
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made precise by the following fact. If we leave out the distributed summation
operator and globalize pre-emption in our framework by de�ning [m] =dfLoc
for allm 2 Loc , our operational semantics and our behavioral relations reduce
to the corresponding notions presented in [7,28,29].

For a comparison with other work one should note that existing approaches
that assign priorities to actions are provided with a semantics dealing with
global pre-emption. In contrast, we consider a notion of local pre-emption.
This idea is also presented in [17], where a CSP-based calculus is extended
with priorities. However, this process algebra su�ers from a complicated se-
mantics, especially for the hiding operator, and the authors only conjecture
that their strong bisimulation is a congruence. They also do not provide an
axiomatization for their equivalence and do not present a theory for observa-
tional congruence. Prasad's Calculus of Broadcasting Systems with Priorities
(PCBS) [33] deals with a distributed notion of priorities. For PCBS a nice se-
mantic theory based on bisimulation has been developed. However, our process
algebra CCSprio is concerned with a di�erent model for communication.

As shown in the previous section, having a notion of local pre-emption en-
ables one to avoid some problems arising in the assignment of priority values
to synchronizations involving actions at di�erent priority levels. In traditional
approaches, which assign priorities to actions [16,17], several proposals for
adjustment functions, e.g. taking the maximum, minimum, or the sum of pri-
ority values, have been made. Unfortunately, in settings involving global pre-
emption each solution is only intuitive for certain (classes of) examples and
works only for certain frameworks without violating the congruence property
of the considered behavioral relation.

In the remainder of this section we compare our work in detail with [6,21]
where also a CCS-based framework is chosen but where priorities are not
assigned to actions. Instead, there exists a special summation operator +i
which favors its left argument over its right argument. Also in that approach
a prioritized � , i.e. a � -action in which the left argument of +i can initially
engage in, has pre-emptive power over unprioritized actions, i.e. actions in
which the right argument of +i can initially engage in. Thus, the prioritized
summation operator +i of [6] corresponds to the summation operator + in
our framework. In [6] the operator + stands for nondeterministic choice where
priorities arising from the left and the right argument are incomparable. This
operator is matched by the distributed summation operator � in CCS

prio.

As in our framework, priorities arising from di�erent sides of the parallel oper-
ator are considered to be incomparable in [6,21]. However, a prioritized parallel
operator ji is introduced in [21] which favors its left argument over its right one.
It can be used in descriptions of simple scheduling algorithms. We say \sim-
ple" because most scheduling algorithms deal with priority values that may
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change as the system evolves. This dynamic behavior cannot be described in
the framework of [21], which considers static priorities only. In contrast, we
concentrate on modeling interrupts and prioritized choice and show that this
requires the concept of local pre-emption. However, scheduling is a global task
and, therefore, it is based on a notion of global pre-emption. We feel that
describing interrupts and scheduling algorithms should be done using two dif-
ferent priority concepts. More precisely, each action should be assigned with
two priority values, the �rst interpreted as global priority value for schedul-
ing purposes and the second interpreted as local priority value for modeling
interrupts where the �rst priority value has more weight than the second one.

After stressing similarities and di�erences of CCSprio to the process algebra
presented in [6,21] with respect to design decisions we focus on the algebraic
results established in these frameworks. In [6,21] the pre-emption potential
is directly encoded in the transition relation. By plugging in this transition
relation into the de�nition of standard strong bisimulation one obtains a con-
gruence relation immediately. In contrast, we start o� de�ning naive strong
bisimulation using the naive transition relation and consider the pre-emption
potential subsequently (by introducing the prioritized initial action set condi-
tion). Then we show that the so obtained congruence is the largest congruence
in the naive strong bisimulation. Similarly, a naive weak bisimulation is de-
�ned in [21] by using the above mentioned transition relation, which already
re
ects some pre-emption potential. More precisely, this transition relation
corresponds to our prioritized weak transition relation where we drop the pa-
rameterM . Thus, our naive weak transition relation is more abstract than the
one in [21]. In both approaches, the cited and the presented one, the obtained
prioritized observational congruence is shown to be the largest congruence in
the naive weak bisimulation. However, our result is tighter since our naive
weak bisimulation is coarser.

We turn to some remarks about our notion of prioritized strong and weak
bisimulation. Since our semantic theory re
ects local pre-emption, locations
are implicitly occurring in our semantic equivalences. However, in contrast
to [5,27] we do not consider locations explicitly. Our objective is not to ob-
serve locations but to observe local pre-emption which is necessary for causal
reasoning in process algebras with priorities.

Priorities have also been investigated in other concurrent frameworks, most
notably in Petri Nets [34,37]. In this setting priorities are either expressed
explicitly by priority relations over transitions [3] or implicitly via inhibitor
arcs [20]. In the latter work priorities are modeled via the absence of tokens,
i.e. a transition can �re if some predecessor places do not contain any tokens. In
contrast to Petri Nets, the focus of process algebras lies in examining properties
of behavioral relations with respect to the operators included in the considered
algebra. Thus, it is di�cult to compare priority approaches of both areas, Petri
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Nets and process algebras, from a semantic point of view.

Finally, priorities can implicitly arise when studying causality for mobile pro-
cesses (see e.g. [13]). In these approaches priorities cut o� super
uous paths
that only present new temporal but not causal dependencies of systems. Hence,
this kind of priorities is equipped with a global nature of pre-emption. In con-
trast, the local view of pre-emption in CCSprio is used for restricting the causal,
not the temporal, behavior of distributed systems.

9 Conclusions and Future Work

We have presented a process algebra, CCSprio, that is capable of modeling
interrupts and other prioritized behavior in distributed systems. The key idea
for CCSprio is to take the distribution of the considered system into account in
order to de�ne a notion of local pre-emption. We have developed a semantic
theory for this algebra and have shown its algebraic suitability by an example.

In order to investigate the practical bene�ts of our approach to distributed
priorities, CCSprio and its semantic theory need to be implemented in an au-
tomated veri�cation tool (e.g. [10]) that allow one to carry out larger case
studies. It would also be useful to enhance the practical utility of our calculus
by introducing value-passing. This can be done in an orthogonal fashion along
the lines of [11]. From a theoretical point of view, we intend to axiomatize
prioritized observational congruence in order to gain a better understanding
of the relationship of our approach to the one presented in [6,21]. Moreover,
having studied the semantic concept of distributed priorities within the simple
CCS-based framework, it would be interesting to see if our approach can be
carried over to more expressive calculi involving mobile processes [15,25].
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A Computing the Behavioral Relations

In this section we show how to compute prioritized strong bisimulation 'l

and prioritized weak bisimulation �l. Existing algorithms for computing stan-
dard strong bisimulation [24] for �nite-state processes are based on the idea
of partition re�nement [22,31]. One approach to computing the prioritized
equivalences would involve characterizing them as \standard" bisimulations
over enriched transition systems and then applying these algorithms. In the
next two subsections, we provide these characterizations; we then brie
y dis-
cuss how they may be used as bases for computing the relations.

A.1 Alternative Characterization of Prioritized Strong Bisimulation

The following de�nition introduces an equivalence'� which characterizes'l as
standard strong bisimulation. It uses the notation P

�
�!
L
P 0 for some P; P 0 2 P ,

� 2 A, and L � Anf�g whenever 9m 2 Loc: P m;���!P 0 and II[m](P ) � L . Note
that these enriched transitions take local pre-emption potential into account,
thereby avoiding the explicit annotation of transitions with locations.

De�nition 26 (Alternative Prioritized Strong Bisimulation)
A symmetric relation R � P � P is an alternative prioritized strong bisimu-
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lation if for every hP;Qi 2 R , � 2 A , � 2 A , and L � A n f�g the following
conditions hold.

(i) P ��!P 0 implies 9Q0: Q ��!Q0 and hP 0; Q0i 2 R .
(ii) P

�
�!
L
P 0 implies 9Q0: Q

�
�!
L
Q0 and hP 0; Q0i 2 R .

We write P '�Q if there exists an alternative prioritized strong bisimulation
R such that hP;Qi 2 R .

Proposition 27 (Characterization of 'l) We have 'l = '�.

The proof of this proposition follows traditional lines and is omitted.

A.2 Alternative Characterization of Prioritized Weak Bisimulation

We now characterize prioritized weak bisimulation as standard bisimulation
over an appropriately de�ned transition system. To begin with, we introduce
a family of relations =)

M
on processes, where M � Anf�g, by de�ning P=)

M
P 0

if 9P 00: P
�

=) P 00 �
=) P 0 and II(P 00) � M . Moreover, we make the prioritized

weak transition relation independent of locations by writing P
�̂

=)
L;M

P 0 whenever

9m 2 Loc: P
m;�̂
=)
L;M

P 0.

De�nition 28 (Alternative Prioritized Weak Bisimulation)
A symmetric relation R � P �P is an alternative prioritized weak bisimula-
tion if for every hP;Qi 2 R, � 2 A, � 2 A, and L;M � A n f�g the following
conditions hold.

(i) P=)
M
P 0 implies 9Q0: Q=)

M
Q0 and hP 0; Q0i 2 R .

(ii) P
�̂

=) P 0 implies 9Q0: Q
�̂

=) Q0 and hP 0; Q0i 2 R .

(iii) P
�̂

=)
L;M

P 0 implies 9Q0: Q
�̂

=)
L;M

Q0 and hP 0; Q0i 2 R.

We write P ��Q if there exists an alternative prioritized weak bisimulation R
such that hP;Qi 2 R .

Proposition 29 (Characterization of �) We have � = ��.

In order to prove the above proposition we need the following two properties
of prioritized weak bisimulation.

Lemma 30 Let P; P 0; Q 2 P such that P �Q and P
�

=) P 0 . Then there
exists some Q0 2 P satisfying Q

�
=) Q0 and P 0�Q0 .
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Lemma 31 Let P; P 0; Q 2 P and L � A n f�g such that P �Q and P
�

=)
L
P 0 .

Then there exists some Q0 2 P satisfying Q
�

=)
L
Q0 and P 0�Q0 .

Both lemmata can easily be established by induction on the length of the
transition from process P to process P 0 .

Proof of Prop. 29 We �rst establish the inclusion � � �� by showing that
� is an alternative prioritized weak bisimulation. Let P;Q 2 P be such that
P �Q.

(i) Let P=)
M
P 0 for some P 0 2 P and M � A n f�g, i.e. P

�
=) P 00 �

=) P 0 and
II(P 00) � M for some P 00 2 P. Because of P �Q we know by Lemma 30

of the existence of some Q00 2 P such that Q
�

=) Q00 and P 00�Q00. By
Cond. (i) of Def. 19 we obtain processes Q

0
; Q

00
2 P such that Q00 �

=)

Q
0 �
=) Q

00
, II(Q

00
) � II(P 00), and P 00�Q

00
. Because of the latter, there also

exists some Q0 2 P such that Q
00 �
=) Q0 and P 0�Q0. Summarizing, we

have Q
�

=) Q00 �
=) Q

0 �
=) Q

00 �
=) Q0, II(Q

00
) � II(P 00) �M , and P 0�Q0.

Thus, we have established the existence of some Q0 2 P satisfying Q=)
M
Q0

and P 0�Q0, as desired.

(ii) Let P
�̂

=) P 0 for some P 0 2 P and some � 2 A, i.e. there exist some

P 00; P 000 2 P such that P
�

=) P 00 �̂�!P 000 �
=) P 0 by the de�nition of the

prioritized weak transition relation. In the following, we assume � 6= �
since the other case follows similar lines but is simpler. Because of P �Q
and Lemma 30 we conclude the existence of some Q00 2 P satisfying

Q
�

=) Q00 and P 00�Q00. The latter implies Q00 �̂
=) Q000 and P 000�Q000 for

some Q000 2 P . Finally, P 000�Q000 and Lemma 30 implies the existence
of some Q0 2 P such that Q000 �

=) Q0 and P 0�Q0. Summarizing, we

conclude Q
�̂

=) Q0 and P 0�Q0 for some Q0 2 P.

(iii) Let P
�̂

=)
L;M

P 0 for some P 0 2 P , � 2 A, and L;M � Anf�g. Hence by de�ni-

tion, P
m;�̂
=)
L;M

P 0 for somem 2 Loc, i.e. P
�

=)
L
P 00 m;�̂��!P 000 �

=) P 0, II[m](P
00) � L,

and II(P 00) � M for some P 00; P 000 2 P according to the de�nition of the
prioritized weak transition relation. A similar reasoning as in the previ-
ous case, using Lemma 31 instead of Lemma 30, leads to the existence

of some Q0; Q00; Q000 2 P and n 2 Loc such that Q
�

=)
L
Q00

n;�̂
=)
L0;M0Q

000 �
=) Q0,

where L0 = II[m](P
00) � L, M 0 = II(P 00) � M , P 00�Q00, P 000�Q000, and

P 0�Q0. Thus, we obtain Q
n;�̂
=)
L;M

Q0, i.e. Q
�̂

=)
L;M

Q0, and P 0�Q0 by the de�ni-

tion of the prioritized weak transition relation, as desired.

Hence, � is an alternative prioritized weak bisimulation, i.e. � � �� by
Def. 28. For proving the reverse inclusion �� � �, let P;Q 2 P be such that
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P ��Q. In the following we show that �� is a prioritized weak bisimulation.

(i) Because of P=)
M
P for M = II(P ) and the premise P ��Q we may con-

clude the existence of some Q0 2 P such that Q=)
M
Q0 and P ��Q0. Thus,

Cond. (i) of Def. 19 holds.
(ii) Let P ��!P 0 for some P 0 2 P and � 2 A. By the de�nition of the priori-

tized weak transition relation P
�̂

=) P 0 also holds. Now we may conclude

the existence of some Q0 2 P satisfying Q
�̂

=) Q0 and P 0��Q0 because
of the premise P ��Q. Hence, Cond. (ii) of Def. 19 is established.

(iii) Let P m;���!P 0 for some P 0 2 P, � 2 A, and m 2 Loc. This implies

P
�̂

=)
L;M

P 0, where L = II[m](P ) and M = II(P ), according to the de�nitions

in this section. By the premise P ��Q we may conclude the existence of

some Q0 2 P such that Q
�̂

=)
L;M

Q0 and P 0��Q0. Therefore, Q
n;�̂
=)
L;M

Q0 for some

n 2 Loc and P 0��Q0, i.e. Cond. (iii) of Def. 19 is satis�ed, as desired.

Finally, we conclude by Def. 19 that �� is a prioritized weak bisimulation, i.e.
�� � � holds. �

A.3 Algorithms

On the basis of these characterizations we may compute 'l and � for �nite-
state processes using the following general technique. First build transition
systems for the processes in question that have transitions of the form speci�ed
above; then apply a standard bisimulation algorithm. Thus, for example, to
determine if P 'lQ we would build transition systems for P and Q having
transitions ��! and

�
�!
L
and then use e.g. the Paige-Tarjan partition-re�nement

algorithm [31] to see if P and Q wind up in the same equivalence class.

Regarding e�ciency, we begin by noting that the time complexity of the most
e�cient algorithm by Paige and Tarjan [31] is linear in the size of the transition
relations of the considered processes and logarithmic in the size of their state
spaces. Also, our enriched transition relations for unprioritized actions are
parameterized by subsets of the prioritized visible alphabet of interest, i.e.
the union of the �nite sorts of the considered processes, leading to a potential
exponential blow-up in the number of transitions. This is unlikely to be an issue
in practice, however, since most actions used in a system de�nition are internal
and only a few of them remain visible for an external observer. It should be
noted that the local view of pre-emption does not allow us to eliminate the
prioritized action set parameters of our transition relations, as has been done
in [28] with respect to a priority framework dealing with global pre-emption.

34



B Logical Characterizations

In this section we provide a logical characterization of 'l by adapting the well-
known Hennessy-Milner Logic [24] to the (strong) enriched transition relation
presented in the previous section. The syntax of our logic is de�ned by the
following BNF where � 2 A , � 2 A , and L � A n f�g .

� ::= tt j :� j � ^ � j h�i� j h�; Li�

The set of all formulae is denoted by F and ranged over by �;	; : : : . We
de�ne the satisfaction relation j= � P � F between processes and formulae
inductively on the structure of formulae.

P j= tt

P j=:� if not P j=�

P j=� ^ 	 if P j=� and P j=	

P j=h�i� if 9P 0 2 P: P ��!P 0 and P 0 j=�

P j=h�; Li� if 9P 0 2 P: P
�
�!
L
P 0 and P 0 j=�

Intuitively, P satis�es h�; Li� if P possesses an �-transition with parameter
L to a process satisfying � .

Theorem 32 (Characterization of 'l)
Let P;Q 2 P. Then P 'lQ if and only if f� 2 F jP j=�g = f� 2 F jQ j=�g.

Most proof parts of this theorem are similar to the corresponding ones pre-
sented in [24]. First, we de�ne yet another characterization of prioritized strong
bisimulation.

De�nition 33 Let 'l
0 = P�P and P 'l

i+1Q for some i 2 N if the following
properties and their symmetric counterparts hold for all � 2 A , � 2 A , and
L � A n f�g .

(i) P ��!P 0 implies 9Q0: Q ��!Q0 and P 0'l
iQ

0 .
(ii) P

�
�!
L
P 0 implies 9Q0: Q

�
�!
L
Q0 and P 0'l

iQ
0 .

The proof of the next proposition follows the lines in [24]. Note that for all
processes in P their corresponding transition systems are �nite-branching [24]
because CCSprio-processes are guarded, and the summation operators are bi-
nary.
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Proposition 34 Let P;Q 2 P . Then we have P 'lQ if and only if P 'l
iQ

for all i 2 N .

Now we are able to prove Theorem 32. By Prop. 34 it is su�cient to establish
the following two lemmata.

Lemma 35 Let P;Q 2 P , i 2 N , and � 2 F such that P 'l
iQ and P j=� .

Then Q j=� holds.

PROOF. We prove the lemma by induction on i where the induction step
is divided into several cases according to the structure of � . The only non-
standard case is � � h�; Li	 for � 2 A and L � A n f�g . By de�nition of j=
we conclude the existence of a process P 0 2 P such that P

�
�!
L
P 0 and P 0 j=	 .

Since P 'l
iQ we also know of the existence of some Q0 2 P such that Q

�
�!
L
Q0 ,

and P 0'l
i�1Q

0 . By induction hypothesis, Q0 j=	 . Therefore, Q j=h�; Li	 , as
desired. �

Lemma 36 Let P;Q 2 P and i 2 N such that P 6'l
iQ holds. Then there

exists a formula � 2 F satisfying P j=� but Q 6j=� .

PROOF. We prove this lemma by induction on i . The induction base is
trivial since the premise P 6'l

0Q does not hold. Now, let i > 0 and P 6'l
iQ .

We have to �nd a formula � 2 P such that P j=� and Q 6j=� . Since P 6'l
iQ

we either have P ��!P 0 for some � 2 A and P 0 2 P , or P
�
�!
L
P 0 for some

� 2 A , L � A n f�g , and P 0 2 P . The �rst case follows the standard
lines. In the second case we know that whenever Q

�
�!
L
Q0 then P 0 6'l

i�1Q
0 . Let

fQ0 jQ
�
�!
L
Q0g = fQj j j 2 Jg for some index set J . By induction hypothesis

we conclude the existence of formulae 	j , for j 2 J , such that P 0 j=	j and
Qj 6j=	j . Now, de�ne �=dfh�; Li

V
j2J 	j . It is easy to see that P j=� . Since

no �-derivative ofQ parameterized by L satis�es
V
j2I 	j , we also have Q 6j=� ,

as desired. �

We conclude this section with a remark on the logical characterization of � .
De�ning a suitable logic can be done by replacing the h�; Li operators of the
logic presented above by new operators hh�; L;Mii for M � A n f�g where
a process P 2 P satis�es the formula hh�; L;Mii� if there exists a process

P 0 2 P such that P
�̂

=)
L;M

P 0 and P 0 j=� . The operators h�i have also to be

replaced by operators hh�ii where P j=hh�ii� if there exists a process P 0 2 P

such that P
�̂

=) P 0 and P 0 j=� . Finally, the logic has to be extended by new
unary operators *M for M � A n f�g in order to match the �rst requirement
of Def. 19 where P j= *M� if 9P 0: P=)

M
P 0 and P 0 j=� . Using these de�nitions

a characterization of � can be done along the lines of [24].
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